

FCC Measurement/Technical Report on WEM-200

FCC ID: 2AJ99-WEM-200

Test Report Reference: MDE_SKF_1903_FCC01

Test Laboratory: 7layers GmbH Borsigstrasse 11 40880 Ratingen Germany

Note:

The following test results relate only to the devices specified in this document. This report shall not be reproduced in parts without the written approval of the test laboratory.

7layers GmbH Borsigstraße 11 40880 Ratingen, Germany T +49 (0) 2102 749 0 F +49 (0) 2102 749 350 Geschäftsführer/ Managing Directors: Frank Spiller Bernhard Retka Alexandre Norré-Oudard

Registergericht/registered: Düsseldorf HRB 75554 USt-Id.-Nr./VAT-No. DE203159652 Steuer-Nr./TAX-No. 147/5869/0385 a Bureau Veritas Group Company

www.7layers.com

Commerzbank AG Account No. 303 016 000 Bank Code 300 400 00 IBAN DE81 3004 0000 0303 0160 00 Swift Code COBADEFF

Table of Contents

1	Applied Standards and Test Summary	4
1.1	Applied Standards	4
1.2	FCC-IC Correlation Table	5
1.3	Measurement Summary / Signatures	6
2	Revision History	8
3	Administrative Data	9
3.1	Testing Laboratory	9
3.2	Project Data	9
3.3	Applicant Data	9
3.4	Manufacturer Data	9
4	Test object Data	10
4.1	General EUT Description	10
4.2	EUT Main components	10
4.3	Ancillary Equipment	11
4.4	Auxiliary Equipment	11
4.5	EUT Setups	11
4.6	Operating Modes	12
4.7	Product labelling	12
5	Test Results	13
5.1	Occupied Bandwidth (6 dB)	13
5.2	Occupied Bandwidth (99%)	15
5.3	Peak Power Output	17
5.4	Spurious RF Conducted Emissions	19
5.5	Transmitter Spurious Radiated Emissions	21
5.6 5.7	Band Edge Compliance Conducted	28 30
5.7 5.8	Band Edge Compliance Radiated Power Density	30
6	Test Equipment	35
7	Antenna Factors, Cable Loss and Sample Calculations	38
7.1	LISN R&S ESH3-Z5 (150 kHz – 30 MHz)	38
7.2	Antenna R&S HFH2-Z2 (9 kHz – 30 MHz)	39
7.3	Antenna R&S HL562 (30 MHz – 1 GHz)	40
7.4	Antenna R&S HF907 (1 GHz – 18 GHz)	41
7.5	Antenna EMCO 3160-09 (18 GHz – 26.5 GHz)	42
7.6	Antenna EMCO 3160-10 (26.5 GHz – 40 GHz)	43
8	Setup Drawings	44

9	Measurement Uncertainties	45
10	Photo Report	46

1 APPLIED STANDARDS AND TEST SUMMARY

1.1 APPLIED STANDARDS

Type of Authorization

Certification for an Intentional Radiator.

Applicable FCC Rules

Prepared in accordance with the requirements of FCC Rules and Regulations as listed in 47 CFR Ch.1 Parts 2 and 15 (10-1-18 Edition). The following subparts are applicable to the results in this test report.

- Part 2, Subpart J Equipment Authorization Procedures, Certification
- Part 15, Subpart C Intentional Radiators
- § 15.201 Equipment authorization requirement
- § 15.207 Conducted limits
- § 15.209 Radiated emission limits; general requirements
- § 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

Note:

The tests were selected and performed with reference to the FCC Public Notice "Guidance for Compliance Measurements on Digital Transmission System, Frequency Hopping Spread Spectrum System, and Hybrid System Devices Operating under Section 15.247 of the FCC Rules, 558074 D01 15.247 Meas Guidance v05r02, 2019-04-02". ANSI C63.10-2013 is applied.

Summary Test Results:

The EUT complied with all performed tests as listed in chapter 1.3 Measurement Summary / Signatures.

1.2 FCC-IC CORRELATION TABLE

Correlation of measurement requirements for DTS (e.g. WLAN 2.4 GHz, BT LE) equipment from FCC and IC

DTS equipment

Measurement	FCC reference	IC reference
Conducted emissions on AC Mains	§ 15.207	RSS-Gen Issue 5: 8.8
Occupied bandwidth	§ 15.247 (a) (2)	RSS-247 Issue 2: 5.2 (a)
Peak conducted output power	§ 15.247 (b) (3), (4)	RSS-247 Issue 2: 5.4 (d)
Transmitter spurious RF conducted emissions	§ 15.247 (d)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Transmitter spurious radiated emissions	§ 15.247 (d); § 15.209 (a)	RSS-Gen Issue 5: 6.13 / 8.9/8.10; RSS-247 Issue 2: 5.5
Band edge compliance	§ 15.247 (d)	RSS-247 Issue 2: 5.5
Power density	§ 15.247 (e)	RSS-247 Issue 2: 5.2 (b)
Antenna requirement	§ 15.203 / 15.204	RSS-Gen Issue 5: 8.3
Receiver spurious emissions	-	-

1.3 MEASUREMENT SUMMARY / SIGNATURES

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	§ 15.247 (a	ı) (2)		
Occupied Bandwidth (6 dB) The measurement was performed accord	ding to ANSI C63	8.10	Final R	esult
OP-Mode	Setup	Date	FCC	IC
Radio Technology, Operating Frequency Bluetooth LE, high	S01 AA01	2019-09-05	Passed	Passed
Bluetooth LE, low	S01_AA01	2019-09-05	Passed	Passed
Bluetooth LE, mid	S01_AA01	2019-09-05	Passed	Passed
47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	IC RSS-Gen	& IC TRC-43;	Ch. 6.7	& Ch. 8
Occupied Bandwidth (99%) The measurement was performed accord	ding to ANSI C63	3.10	Final R	esult
OP-Mode Radio Technology, Operating Frequency	Setup	Date	FCC	IC
Bluetooth LE, high	S01_AA01	2019-09-05	N/A	Performed
Bluetooth LE, low	S01_AA01	2019-09-05	N/A	Performed
Bluetooth LE, mid	S01_AA01	2019-09-05	N/A	Performed
47 CFR CHAPTER I FCC PART 15	§ 15.247 (b) (3)		
Subpart C §15.247	3 13:247 (1)(3)		
Subpart C §15.247 Peak Power Output The measurement was performed accord			Final R	esult
Peak Power Output The measurement was performed accord OP-Mode Radio Technology, Operating Frequency,			Final R FCC	esult IC
Peak Power Output The measurement was performed accord OP-Mode Radio Technology, Operating Frequency, Measurement method	ding to ANSI C63	3.10	-	
Peak Power Output The measurement was performed accord OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted	ding to ANSI C63 Setup	5.10 Date	FCC	IC
The measurement was performed accord OP-Mode	ding to ANSI C63 Setup S01_AA01	2019-09-05	FCC Passed	IC Passed
Peak Power Output The measurement was performed accord OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted Bluetooth LE, mid, conducted 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247	ding to ANSI C63 Setup S01_AA01 S01_AA01	2019-09-05 2019-09-05 2019-09-05 2019-09-05	FCC Passed Passed	IC Passed Passed
Peak Power Output The measurement was performed accord OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted Bluetooth LE, mid, conducted 47 CFR CHAPTER I FCC PART 15	ding to ANSI C63 Setup S01_AA01 S01_AA01 S01_AA01 § 15.247 (d	3.10 Date 2019-09-05 2019-09-05 2019-09-05	FCC Passed Passed	IC Passed Passed Passed
Peak Power Output The measurement was performed accord OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted Bluetooth LE, mid, conducted 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions	ding to ANSI C63 Setup S01_AA01 S01_AA01 S01_AA01 § 15.247 (d	3.10 Date 2019-09-05 2019-09-05 2019-09-05	FCC Passed Passed Passed	IC Passed Passed Passed
Peak Power Output The measurement was performed accord OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted Bluetooth LE, mid, conducted 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions The measurement was performed accord OP-Mode	ding to ANSI C63 Setup S01_AA01 S01_AA01 S01_AA01 § 15.247 (c ding to ANSI C63	3.10 Date 2019-09-05 2019-09-05 2019-09-05 2019-09-05	FCC Passed Passed Passed	IC Passed Passed Passed
Peak Power Output The measurement was performed accord OP-Mode Radio Technology, Operating Frequency, Measurement method Bluetooth LE, high, conducted Bluetooth LE, low, conducted Bluetooth LE, mid, conducted 47 CFR CHAPTER I FCC PART 15 Subpart C §15.247 Spurious RF Conducted Emissions The measurement was performed accord OP-Mode Radio Technology, Operating Frequency	ding to ANSI C63 Setup S01_AA01 S01_AA01 S01_AA01 § 15.247 (c ding to ANSI C63 Setup	3.10 Date 2019-09-05 2019-09-05 2019-09-05 2019-09-05 3.10 Date	FCC Passed Passed Passed Final R FCC	IC Passed Passed Passed

Final Result

Final Result

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

§ 15.247 (d)

Transmitter Spurious Radiated Emissions

The measurement was performed according to ANSI C63.10

OP-Mode Radio Technology, Operating Frequency, Measurement range	Setup	Date	FCC	IC
Bluetooth LE, high, 1 GHz - 26 GHz	S01_AB01	2019-09-05	Passed	Passed
Bluetooth LE, high, 30 MHz - 1 GHz	S01_AC01	2019-09-05	Passed	Passed
Bluetooth LE, low, 1 GHz - 26 GHz	S01_AB01	2019-09-05	Passed	Passed
Bluetooth LE, low, 30 MHz - 1 GHz	S01_AC01	2019-09-05	Passed	Passed
Bluetooth LE, mid, 1 GHz - 26 GHz	S01_AB01	2019-09-05	Passed	Passed
Bluetooth LE, mid, 30 MHz - 1 GHz	S01_AC01	2019-09-05	Passed	Passed
Bluetooth LE, mid, 9 kHz - 30 MHz	S01_AC01	2019-09-05	Passed	Passed

47 CFR CHAPTER I FCC PART 15 Subpart C §15.247

§ 15.247 (d)

Band Edge Compliance Conducted

The measurement was performed according to ANSI C63.10

OP-Mode Radio Technology, Operating Frequency, Band Edge	Setup	Date	FCC	IC
Bluetooth LE, high, high	S01_AA01	2019-09-05	Passed	Passed
Bluetooth LE, low, low	S01_AA01	2019-09-05	Passed	Passed

47 CFR CHAPTER I FCC PART 15 § 15.247 (d) Subpart C §15.247

 Band Edge Compliance Radiated

 The measurement was performed according to ANSI C63.10

 OP-Mode Setup
 Date

Radio Technology, Operating Frequency,
Band EdgeSo1_AB01Bluetooth LE, high, highS01_AB01

47 CFR CHAPTER I FCC PART 15 § 15.247 (e) Subpart C §15.247

Power Density

The measurement was performed according to ANSI C63.10

	Final	Result
--	-------	--------

Final Result

FCC

Passed

2019-09-05

IC

Passed

OP-Mode Radio Technology, Operating Frequency	Setup	Date	FCC	IC
Bluetooth LE, high	S01_AA01	2019-09-05	Passed	Passed
Bluetooth LE, low	S01_AA01	2019-09-05	Passed	Passed
Bluetooth LE, mid	S01_AA01	2019-09-05	Passed	Passed

N/A: Not applicable N/P: Not performed

2 REVISION HISTORY

Report version control			
Version	Release date	Change Description	Version validity
initial	2019-09-19		valid

COMMENT: -

(responsible for accreditation scope) Dipl. -Ing. Marco Kullik

(responsible for testing and report) Mohamed Fraitat

7 layers GmbH, Borsigstr. 11 40880 Ratingen, Germany Phone +49 (0)2102 749 0

3 ADMINISTRATIVE DATA

3.1 TESTING LABORATORY

Company Name:

7layers GmbH

Address:

Borsigstr. 11 40880 Ratingen Germany

The test facility is accredited by the following accreditation organisation:

Laboratory accreditation no:	DAkkS D-PL-12140-01-00
FCC Designation Number:	DE0015
FCC Test Firm Registration:	929146
ISED CAB Identifier	DE0007; ISED#: 3699A
Responsible for accreditation scope:	DiplIng. Marco Kullik
Report Template Version:	2019-06-18

3.2 PROJECT DATA

Responsible for testing and report:	Mohamed Fraitat
Employees who performed the tests:	documented internally at 7Layers
Date of Report:	2019-09-19
Testing Period:	2019-09-05 to 2019-09-05

3.3 APPLICANT DATA

Company Name:	SKF France
Address:	204 Bld Charles de Gaulle 37540 Saint-Cyr-sur-Loire France

Contact Person:

Mr. Salem Boushabi

3.4 MANUFACTURER DATA

Company	Name:
---------	-------

please see Applicant Data

4 TEST OBJECT DATA

4.1 GENERAL EUT DESCRIPTION

Kind of Device product description	WEM-200	
Product name	WEM-200	
Туре	-	
Declared EUT data by	the supplier	
Voltage Type	DC (internal Battery)	
Voltage Level	3 VDC	
Tested Modulation Type	GFSK	
General product description	WEM-200 it is a sensor for Bearing vibration monitoring. And Wheel end Temperature measurement.	
Specific product description for the EUT	BLE 4.2 transceiver in the 2.4 GHz band.	
The EUT provides the following ports:	-	
Antenna Gain / Type	-2.8 dBi / Integral	
Tested datarates	1 Mbit/s	
Special software used for testing	-	

The main components of the EUT are listed and described in chapter 3.2 EUT Main components.

4.2 EUT MAIN COMPONENTS

Sample Name	Sample Code	Description	
EUT A	DE1388000aa01	Conducted Sample	
Sample Parameter		Value	
Serial No.	WEMFFFF99		
HW Version	LQ-WEM-200_EU (Rev 4)		
SW Version	LX-WEM-200_02_WM		
Comment	-		
Integral Antenna	Replaced by temporary SMA connector		

Sample Name	Sample Code	Description
EUT B	DE1388000ab01	Radiated sample
Sample Parameter		Value
Serial No.	WEMFFFF97	
HW Version	LQ-WEM-200_EU (Rev 4)	
SW Version	LX-WEM-200_02_WM	
Comment	-	
Integral Antenna	Yes	

Sample Name	Sample Code	Description
EUT C	DE1388000ac01	Radiated sample
Sample Parameter		Value
Serial No.	WEMFFFF96	
HW Version	LQ-WEM-200_EU (Rev 4)	
SW Version	LX-WEM-200_02_WM	
Comment	-	
Integral Antenna	Yes	

NOTE: The short description is used to simplify the identification of the EUT in this test report.

4.3 ANCILLARY EQUIPMENT

For the purposes of this test report, ancillary equipment is defined as equipment which is used in conjunction with the EUT to provide operational and control features to the EUT. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Ancillary Equipment can influence the test results.

	Details (Manufacturer, Type Model, OUT Code)	Description
-	-	-

4.4 AUXILIARY EQUIPMENT

For the purposes of this test report, auxiliary equipment is defined as equipment which is used temporarily to enable operational and control features especially used for the tests of the EUT which is not used during normal operation or equipment that is used during the tests in combination with the EUT but is not subject of this test report. It is necessary to configure the system in a typical fashion, as a customer would normally use it. But nevertheless Auxiliary Equipment can influence the test results.

Device	Details (Manufacturer, Type Model, HW, SW, S/N)	Description	
-	-	-	

4.5 EUT SETUPS

This chapter describes the combination of EUTs and equipment used for testing. The rationale for selecting the EUTs, ancillary and auxiliary equipment and interconnecting cables, is to test a representative configuration meeting the requirements of the referenced standards.

Setup	Combination of EUTs	Description and Rationale
S01_AA01	EUT A,	Setup for conducted measurement
S01_AC01	EUT C,	Setup for radiated measurement
S01_AB01	EUT B,	Setup for radiated measurement

4.6 OPERATING MODES

This chapter describes the operating modes of the EUTs used for testing.

4.6.1 TEST CHANNELS

	2.4 GHz ISM 2400 - 2483.5 MHz		
BT LE Test Channels:	low	mid	high
Channel:	0	19	39
Frequency [MHz]	2402	2440	2480

4.7 PRODUCT LABELLING

4.7.1 FCC ID LABEL

Please refer to the documentation of the applicant.

4.7.2 LOCATION OF THE LABEL ON THE EUT Please refer to the documentation of the applicant.

5 TEST RESULTS

5.1 OCCUPIED BANDWIDTH (6 DB)

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

5.1.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The results recorded were measured with the modulation which produce the worst-case (smallest) emission bandwidth.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss.

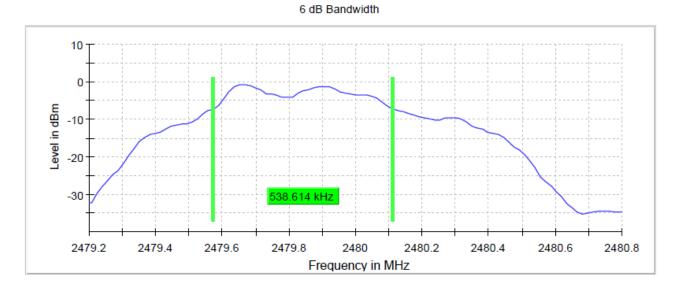
Analyzer settings:

- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Span: 1.6 MHz
- Trace: Maxhold
- Sweeps: 101
- Sweeptime: 19 us
- Detector: Peak

5.1.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (a) (2)

Systems using digital modulation techniques may operate in the 902-928 MHz and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.



5.1.3 TEST PROTOCOL

Ambient temperature: Air Pressure: Humidity: BT LE GFSK	25 °C 1010 hPa 51 %				
Band / Mode	Channel No.	Frequency [MHz]	6 dB Bandwidth [MHz]	Limit [MHz]	Margin to Limit [MHz]
2.4 GHz ISM, 1Mbps	0	2402	0.539	0.5	0.039
2.4 GHz ISM, 1Mbps	19	2440	0.539	0.5	0.039
2.4 GHz ISM, 1Mbps	39	2480	0.539	0.5	0.039

Remark: Please see next sub-clause for the measurement plot.

5.1.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

BT LE 4.2 GFSK Ch 39

5.1.5 TEST EQUIPMENT USED

- R&S TS8997

5.2 OCCUPIED BANDWIDTH (99%)

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

5.2.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the occupied bandwidth measurements.

The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical.

The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

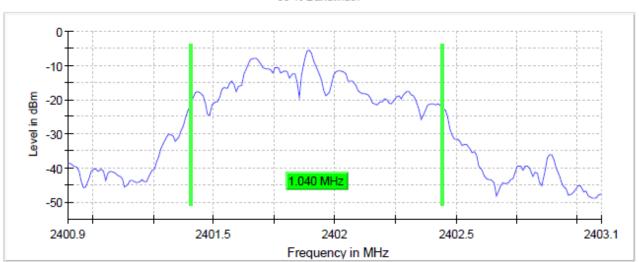
- Resolution Bandwidth (RBW): 20 kHz
- Video Bandwidth (VBW): 100 kHz
- Span: 2.2 MHz
- Trace: Maxhold
- Sweeps: 220
- Sweeptime: 95 us
- Detector: Peak

The 99 % measurement function of the spectrum analyser function was used to determine the 99 % bandwidth.

5.2.2 TEST REQUIREMENTS / LIMITS

No applicable limit:

5.2.3 TEST PROTOCOL


Ambient temperature:	25 °C
Air Pressure:	1010 hPa
Humidity:	51 %
BT LE	

Band	Channel No.	Frequency [MHz]	99 % Bandwidth [MHz]
2.4 GHz ISM, 1Mbps	0	2402	1.040
2.4 GHz ISM, 1Mbps	19	2440	1.030
2.4 GHz ISM, 1Mbps	39	2480	1.030

Remark: Please see next sub-clause for the measurement plot.

5.2.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

BT LE 4.2 GFSK Ch 00

99 % Bandwidth

- 5.2.5 TEST EQUIPMENT USED
 - R&S TS8997

5.3 PEAK POWER OUTPUT

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

5.3.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the output power measurements. The results recorded were measured with the modulation which produces the worst-case (highest) output power. The reference level of the spectrum analyzer was set higher than the output power of the EUT.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Resolution Bandwidth (RBW): 2 MHz
- Video Bandwidth (VBW): 10 MHz
- Trace: Maxhold
- Sweeps: 101
- Sweeptime: 950 ns
- Detector: Peak

The channel power function of the spectrum analyser was used (Used channel bandwidth = DTS bandwidth)

5.3.2 TEST REQUIREMENTS / LIMITS

DTS devices:

FCC Part 15, Subpart C, §15.247 (b) (3) For systems using digital modulation techniques in the 902-928 MHz, 2400-2483.5 MHz and 5725-5850 MHz bands: 1 watt.

==> Maximum conducted peak output power: 30 dBm (excluding antenna gain, if antennas with directional gains that do not exceed 6 dBi are used).

Frequency Hopping Systems:

FCC Part 15, Subpart C, §15.247 (b) (1)

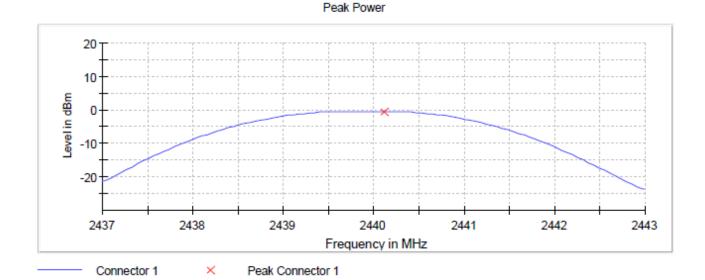
For frequency hopping systems operating in the 2400-2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band: 0.125 watts.

FCC Part 15, Subpart C, §15.247 (b) (2)

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels; and, 0.25 watts for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.

Used conversion factor: Limit (dBm) = $10 \log (\text{Limit (W)}/1\text{mW})$

5.3.3 TEST PROTOCOL


Ambient	25 °C
temperature:	
Air Pressure:	1010 hPa
Humidity:	51 %
BTIE	

Band	Channel No.	Frequency [MHz]	Peak Power [dBm]	Limit [dBm]	Margin to Limit [dB]	E.I.R.P [dBm]
2.4 GHz ISM, 1Mbps	0	2402	-0.7	30.0	30.7	-3.5
2.4 GHz ISM, 1Mbps	19	2440	-0.5	30.0	30.5	-3.3
2.4 GHz ISM, 1Mbps	39	2480	-0.5	30.0	30.5	-3.3

Remark: Please see next sub-clause for the measurement plot.

5.3.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

5.3.5 TEST EQUIPMENT USED

- R&S TS8997

5.4 SPURIOUS RF CONDUCTED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

5.4.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up to perform the spurious emissions measurements. The EUT was connected to spectrum analyzer via a short coax cable with a known loss. Analyzer settings:

- Frequency range: 30 25000 MHz
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Trace: Maxhold
- Sweeps: 238
- Sweep Time: 23.7 ms
- Detector: Peak

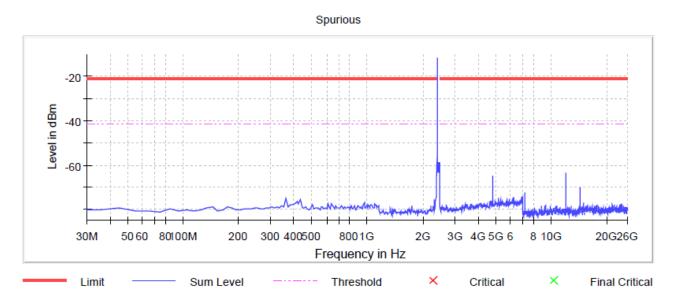
The reference value for the measurement of the spurious RF conducted emissions is determined during the test "band edge compliance conducted". This value is used to calculate the 20 dBc limit.

5.4.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (c)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

5.4.3 TEST PROTOCOL


Ambient	25 °C
temperature:	
Air Pressure:	1010 hPa
Humidity:	51 %
BT LE GFSK	

Mode	Channel No	Channel Center Freq.	Spurious Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1Mbps	0	[MHz] 2402	2395.0	-54.5	PEAK	100	-1.0	-21.0	33.5
1Mbps	19	2440	4807.2	-68.3	PEAK	100	-0.8	-20.8	47.5
1Mbps	39	2480	2488.5	-54.6	PEAK	100	-0.7	-20.7	33.9

Remark: Please see next sub-clause for the measurement plot.

5.4.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

BT LE 4.2 GFSK Ch 00

- 5.4.5 TEST EQUIPMENT USED
 - R&S TS8997

5.5 TRANSMITTER SPURIOUS RADIATED EMISSIONS

Standard FCC Part 15 Subpart C

The test was performed according to:

ANSI C63.10

5.5.1 TEST DESCRIPTION

The test set-up was made in accordance to the general provisions of ANSI C63.10 in a typical installation configuration. The Equipment Under Test (EUT) was set up on a non-conductive table $1.0 \times 2.0 \text{ m}^2$ in the semi-anechoic chamber. The influence of the EUT support table that is used between 30-1000 MHz was evaluated.

The measurement procedure is implemented into the EMI test software EMC32 from R&S. Exploratory tests are performed at 3 orthogonal axes to determine the worst-case orientation of a body-worn or handheld EUT. The final test on all kind of EUTs is also performed at 3 axes. A pre-check is performed while the EUT is powered from a DC power source.

1. Measurement up to 30 MHz

The Loop antenna HFH2-Z2 is used.

Step 1: pre measurement

- Anechoic chamber
- Antenna distance: 3 m
- Detector: Peak-Maxhold
- Frequency range: 0.009 0.15 MHz and 0.15 30 MHz
- Frequency steps: 0.05 kHz and 2.25 kHz
- IF-Bandwidth: 0.2 kHz and 9 kHz
- Measuring time / Frequency step: 100 ms (FFT-based)

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: final measurement

For the relevant emissions determined in step 1, an additional measurement with the following settings will be performed. Intention of this step is to find the maximum emission level.

- Open area test side
- Antenna distance: according to the Standard
- Detector: Quasi-Peak
- Frequency range: 0.009 30 MHz
- Frequency steps: measurement at frequencies detected in step 1
- IF-Bandwidth: 0.2 10 kHz
- Measuring time / Frequency step: 1 s

2. Measurement above 30 MHz and up to 1 GHz

Step 1: Preliminary scan

This is a preliminary test to identify the highest amplitudes relative to the limit. Settings for step 1:

- Antenna distance: 3 m
- Detector: Peak-Maxhold / Quasipeak (FFT-based)
- Frequency range: 30 1000 MHz
- Frequency steps: 30 kHz
- IF-Bandwidth: 120 kHz
- Measuring time / Frequency step: 100 ms

- Turntable angle range: -180° to 90°
- Turntable step size: 90°
- Height variation range: 1 3 m
- Height variation step size: 2 m
- Polarisation: Horizontal + Vertical

Intention of this step is, to determine the radiated EMI-profile of the EUT. Afterwards the relevant emissions for the final measurement are identified.

Step 2: Adjustment measurement

In this step the accuracy of the turntable azimuth and antenna height will be improved. This is necessary to find out the maximum value of every frequency.

For each frequency, which was determined the turntable azimuth and antenna height will be adjusted. The turntable azimuth will slowly vary by \pm 45° around this value. During this action, the value of emission is continuously measured. The turntable azimuth at the highest emission will be recorded and adjusted. In this position, the antenna height will also slowly vary by \pm 100 cm around the antenna height determined. During this action, the value of emission is also continuously measured. The antenna height of the highest emission will also be recorded and adjusted.

- Detector: Peak Maxhold
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 100 ms
- Turntable angle range: \pm 45 ° around the determined value
- Height variation range: ± 100 cm around the determined value
- Antenna Polarisation: max. value determined in step 1

Step 3: Final measurement with QP detector

With the settings determined in step 3, the final measurement will be performed: EMI receiver settings for step 4:

- Detector: Quasi-Peak (< 1 GHz)
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 120 kHz
- Measuring time: 1 s

After the measurement a plot will be generated which contains a diagram with the results of the preliminary scan and a chart with the frequencies and values of the results of the final measurement.

3. Measurement above 1 GHz

The following modifications apply to the measurement procedure for the frequency range above 1 GHz:

Step 1:

The Equipment Under Test (EUT) was set up on a non-conductive support (tilt device) at 1.5 m height in the fully-anechoic chamber.

All steps were performed with one height (1.5 m) of the receiving antenna only.

The EUT is turned during the preliminary measurement across the elevation axis, with a step size of 90 °.

The turn table step size (azimuth angle) for the preliminary measurement is 45 °. Step 2:

Due to the fact, that in this frequency range the test is performed in a fully anechoic room, the height scan of the receiving antenna instep 2 is omitted. Instead of this, a maximum search with a step size \pm 45° for the elevation axis is performed.

The turn table azimuth will slowly vary by \pm 22.5°.

The elevation angle will slowly vary by \pm 45°

EMI receiver settings (for all steps):

- Detector: Peak, Average
- IF Bandwidth = 1 MHz

Step 3:

- Spectrum analyser settings for step 3:
- Detector: Peak / Average
- Measured frequencies: in step 1 determined frequencies
- IF Bandwidth: 1 MHz
- Measuring time: 1 s

5.5.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (d)

... In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

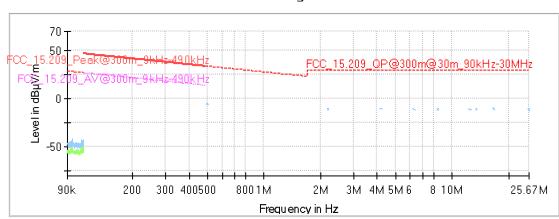
Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

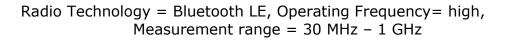
§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

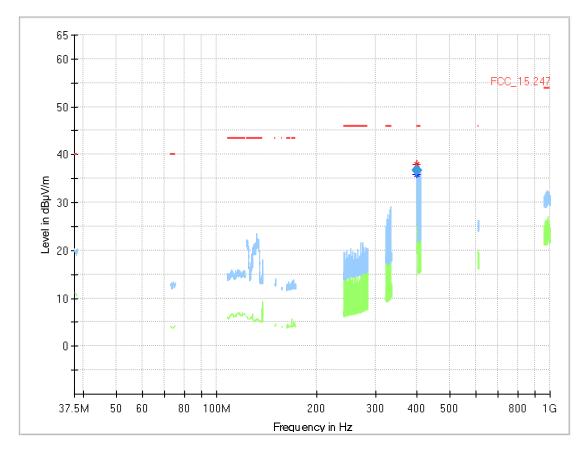
Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$

5.5.3 TEST PROTOCOL

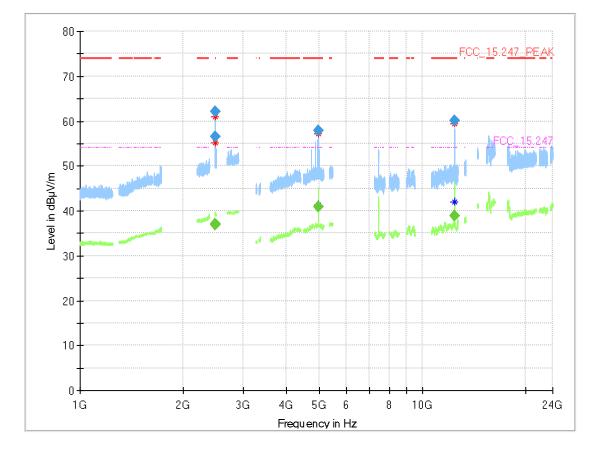

Ambient temperature: Air Pressure: Humidity: BT low Energy 26 °C 1013 hPa 40 %

Ch. No.	Ch. Center Freq. [MHz]	Spurious Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
0	2402	1719.9	55.2	PEAK	1000	74.0	18.8	RB
0	2402	1719.9	33.3	AV	1000	54.0	20.7	RB
0	2402	2484.2	49.8	PEAK	1000	74.0	24.2	RB
0	2402	2484.3	36.7	AV	1000	54.0	17.3	RB
0	2402	4803.1	55.5	PEAK	1000	74.0	18.5	RB
0	2402	4803.7	40.1	AV	1000	54.0	13.9	RB
0	2402	12008.3	58.8	PEAK	1000	74.0	15.2	RB
0	2402	12010.4	40.8	AV	1000	54.0	13.2	RB
0	2402	15602.2	42.0	AV	1000	54.0	12.0	RB
0	2402	15609.8	55.2	PEAK	1000	74.0	18.8	RB
0	2402	400.0	38.1	QP	120	46.0	12.7	RB
19	2440	400.0	36.8	QP	120	46.0	9.2	RB
19	2440	4879.8	40.9	AV	1000	54.0	13.1	RB
19	2440	4884.2	56.8	PEAK	1000	74.0	17.2	RB
19	2440	5007.5	34.7	AV	1000	54.0	19.3	RB
19	2440	5007.8	55.6	PEAK	1000	74.0	18.4	RB
19	2440	7318.9	56.6	PEAK	1000	74.0	17.4	RB
19	2440	7319.1	37.8	AV	1000	54.0	16.2	RB
19	2440	12198.3	63.1	PEAK	1000	74.0	10.9	RB
19	2440	12198.5	40.0	AV	1000	54.0	14.0	RB
39	2480	2487.5	56.5	PEAK	1000	74.0	17.5	RB
39	2480	2487.5	37.0	AV	1000	54.0	17.0	RB
39	2480	4957.1	57.9	PEAK	1000	74.0	16.1	RB
39	2480	4959.4	40.9	AV	1000	54.0	13.1	RB
39	2480	12398.4	60.0	PEAK	1000	74.0	14.0	RB
39	2480	12398.4	39.0	AV	1000	54.0	15.0	RB


Remark: Please see next sub-clause for the measurement plot.



5.5.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")



Radio Technology = Bluetooth LE, Operating Frequency= mid, Measurement range = 9 kHz – 30 MHz

Radio Technology = Bluetooth LE, Operating Frequency= high, Measurement range = 1 GHz - 26 GHz

Critical_Freqs

Frequency	MaxPeak	Average	Limit	Margi	Meas. Time	Bandwidt	Heigh	Pol	Azimut	Elevatio
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	n	(ms)	h	t		h	n
2483.748	61.0		74.00	12.83			150.0	V	-2.0	-7.0
2483.913		37.2	54.00	14.31			150.0	V	-2.0	-3.0
2487.460	55.2		74.00	17.99			150.0	V	-39.0	8.0
2487.543		37.0	54.00	14.51			150.0	V	28.0	-4.0
4957.113	57.3		74.00	17.47			150.0	Н	-127.0	7.0
4959.388		41.3	54.00	8.91			150.0	Н	-128.0	-4.0
12398.440	59.4		74.00	15.78			150.0	V	-8.0	2.0
12398.440		42.1	54.00	7.06			150.0	V	-8.0	-4.0

Final_Result

Frequency	MaxPeak	CAverage	Limit	Margi	Meas. Time	Bandwidt	Heigh	Pol	Azimut	Elevatio
(MHz)	(dBµV/m)	(dBµV/m)	(dBµV/m)	n	(ms)	h	t		h	n
2483.748	62.2		74.00	11.83	1000.0	1000.000	150.0	V	-2.0	-7.0
2483.913		37.1	54.00	16.86	1000.0	1000.000	150.0	V	-2.0	-3.0
2487.460	56.5		74.00	17.52	1000.0	1000.000	150.0	V	-39.0	8.0
2487.543		37.0	54.00	17.03	1000.0	1000.000	150.0	V	28.0	-4.0
4957.113	57.9		74.00	16.10	1000.0	1000.000	150.0	Н	-127.0	7.0
4959.388		40.9	54.00	13.07	1000.0	1000.000	150.0	Н	-128.0	-4.0
12398.440		39.0	54.00	15.01	1000.0	1000.000	150.0	V	-8.0	-4.0
12398.440	60.0		74.00	13.96	1000.0	1000.000	150.0	V	-8.0	2.0

5.5.5 TEST EQUIPMENT USED

- Radiated emissions

5.6 BAND EDGE COMPLIANCE CONDUCTED

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

5.6.1 TEST DESCRIPTION

For the conducted measurement, the Equipment Under Test (EUT) is placed in a shielded room. The reference power was measured in the test case "Spurious RF Conducted Emissions". The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Lower Band Edge: Minimum frequency: 2397.0 MHz Upper Band Edge Maximum frequency: 2485.0 MHz
- Span: 83.5 MHz
- Detector: Peak
- Resolution Bandwidth (RBW): 100 kHz
- Video Bandwidth (VBW): 300 kHz
- Sweeptime: 95 us
- Sweeps: 1670
- Trace: Maxhold

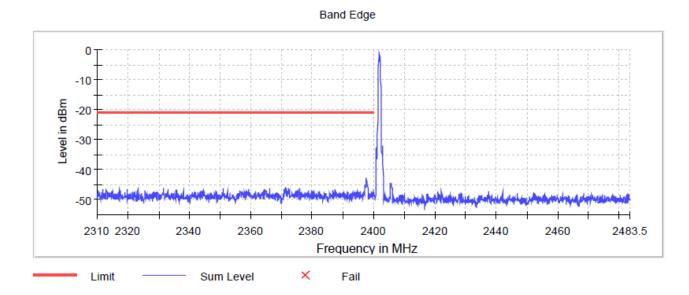
5.6.2 TEST REQUIREMENTS / LIMITS

FCC Part 15.247 (d)

"In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. ...

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c))."

For the conducted measurement the RF power at the band edge shall be "at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power..."



5.6.3 TEST PROTOCOL

Ambien tempera		25 °C							
Air Pres Humidit BT LE G	sure: y:	1010 hPa 51 %							
Mode	Channel No.	Channel Center Frequency [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBm]	Detector	RBW [kHz]	Ref. Level [dBm]	Limit [dBm]	Margin to Limit [dB]
1Mbps	0	2402	2400.0	-42.7	PEAK	100	-1.0	-21.0	21.7
1Mbps	39	2480	2483.5	-43.1	PEAK	100	-0.7	-20.7	22.4

Remark: Please see next sub-clause for the measurement plot.

5.6.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

BT LE 4.2 GFSK Ch 00

5.6.5 TEST EQUIPMENT USED

- R&S TS8997

5.7 BAND EDGE COMPLIANCE RADIATED

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

5.7.1 TEST DESCRIPTION

Please see test description for the test case "Spurious Radiated Emissions"

5.7.2 TEST REQUIREMENTS / LIMITS

For band edges connected to a restricted band, the limits are specified in Section 15.209(a)

FCC Part 15, Subpart C, §15.209, Radiated Emission Limits

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
0.009 - 0.49	2400/F(kHz)@300m	3	(48.5 – 13.8)@300m
0.49 - 1.705	24000/F(kHz)@30m	3	(33.8 – 23.0)@30m
1.705 - 30	30@30m	3	29.5@30m

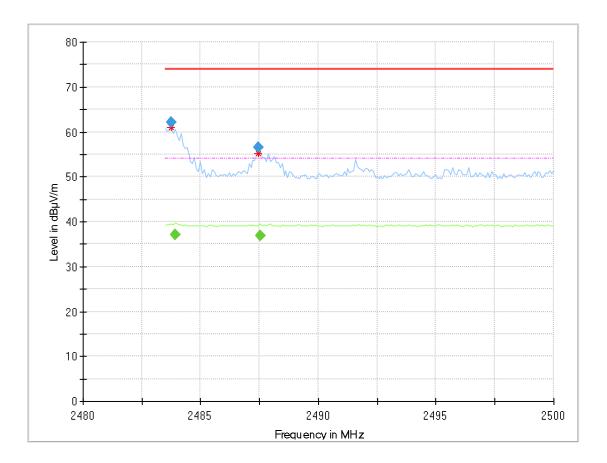
The measured values are corrected with an inverse linear distance extrapolation factor (40 dB/decade) according FCC 15.31 (2).

Frequency in MHz	Limit (µV/m)	Measurement distance (m)	Limits (dBµV/m)
30 - 88	100@3m	3	40.0@3m
88 - 216	150@3m	3	43.5@3m
216 - 960	200@3m	3	46.0@3m
960 - 26000	500@3m	3	54.0@3m
26000 - 40000	500@3m	1	54.0@3m

The measured values above 26 GHz are corrected with an inverse linear distance extrapolation factor (20 dB/decade).

§15.35(b) ..., there is also a limit on the radio frequency emissions, as measured using instrumentation with a peak detector function, corresponding to 20 dB above the maximum permitted average limit....

Used conversion factor: Limit $(dB\mu V/m) = 20 \log (Limit (\mu V/m)/1\mu V/m)$



5.7.3 TEST PROTOCOL

Ambient temperature: Air Pressure: Humidity: BT LE GFSK Applied duty cycle correction (AV): 0 dB				26 °C 1013 hPa 40 %					
Mode	Ch. No.	Ch. Center Freq. [MHz]	Band Edge Freq. [MHz]	Spurious Level [dBµV/m]	Detec- tor	RBW [kHz]	Limit [dBµV/m]	Margin to Limit [dB]	Limit Type
1Mbps	39	2480	2483.5	62.2	PEAK	1000	74.0	11.8	BE
1Mbps	39	2480	2483.5	37.1	AV	1000	54.0	16.9	BE

Remark: Please see next sub-clause for the measurement plot.

5.7.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Critical_Freqs

Frequency (MHz)	MaxPeak (dBµV/m)	Average (dBµV/m)	Limit (dBµV/m)	Margi n	Meas. Time (ms)	Bandwidt h	Heigh t	Pol	Azimut h	Elevatio n
2483.748	61.0		74.00	12.83			150.0	V	-2.0	-7.0
2483.913		37.2	54.00	14.31			150.0	V	-2.0	-3.0
2487.460	55.2		74.00	17.99			150.0	V	-39.0	8.0
2487.543		37.0	54.00	14.51			150.0	V	28.0	-4.0

Final_Result

Frequency (MHz)	MaxPeak (dBµV/m)	CAverage (dBµV/m)	Limit (dBµV/m)	Margi n	Meas. Time (ms)	Bandwidt h	Heigh t	Pol	Azimut h	Elevatio n
2483.748	62.2		74.00	11.83	1000.0	1000.000	150.0	V	-2.0	-7.0
2483.913		37.1	54.00	16.86	1000.0	1000.000	150.0	V	-2.0	-3.0
2487.460	56.5		74.00	17.52	1000.0	1000.000	150.0	V	-39.0	8.0
2487.543		37.0	54.00	17.03	1000.0	1000.000	150.0	V	28.0	-4.0

5.7.5 TEST EQUIPMENT USED

- Radiated emissions

5.8 POWER DENSITY

Standard FCC Part 15 Subpart C

The test was performed according to: ANSI C63.10

5.8.1 TEST DESCRIPTION

The Equipment Under Test (EUT) was set up in a shielded room to perform the Power Density measurements.

The results recorded were measured with the modulation which produces the worst-case (highest) power density.

The EUT was connected to the spectrum analyzer via a short coax cable with a known loss.

Analyzer settings:

- Resolution Bandwidth (RBW): 10 kHz
- Video Bandwidth (VBW): 30 kHz
- Trace: Maxhold
- Sweeps: 330
- Sweeptime: 1.65 ms
- Detector: Peak

5.8.2 TEST REQUIREMENTS / LIMITS

FCC Part 15, Subpart C, §15.247 (e)

For digitally modulated systems, the peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

•••

The same method of determining the conducted output power shall be used to determine the power spectral density.

FCC Part 15, Subpart C, §15.247 (f)

(f) For the purposes of this section, hybrid systems are those that employ a combination of both frequency hopping and digital modulation techniques.

The power spectral density conducted from the intentional radiator to the antenna due to the digital modulation operation of the hybrid system, with the frequency hopping operation turned off, shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission

5.8.3 TEST PROTOCOL

Ambient temperature:	25 °C
Air Pressure:	1010 hPa
Humidity:	51 %
BT LE	

Band	Channel No.	Frequency [MHz]	Power Density [dBm/3kHz]	Limit [dBm/3kHz]	Margin to Limit [dB]				
2.4 GHz ISM, 1Mbps	0	2402	-9.9	8.0	17.9				
2.4 GHz ISM, 1Mbps	19	2440	-9.7	8.0	17.7				
2.4 GHz ISM, 1Mbps	39	2480	-9.7	8.0	17.7				

Remark: Please see next sub-clause for the measurement plot.

5.8.4 MEASUREMENT PLOT (SHOWING THE HIGHEST VALUE, "WORST CASE")

Peak Power Spectral Density 10 0 -10 Level in dBm -20 -30 -40 -50 2479.175 2479.4 2479.6 2479.8 2480 2480.2 2480.4 2480.6 2480.825 Frequency in MHz Limit Sum Level PSD

BT LE 4.2 GFSK Ch 00

5.8.5 TEST EQUIPMENT USED

-R&S TS8997

6 TEST EQUIPMENT

The calibration interval is the time interval between "Last Calibration" and "Calibration Due"

1 R&S TS8997 EN300328/301893 Test Lab

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last	Calibration
					Calibration	Due
1.1	SMB100A	Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	107695	2017-07	2020-07
1.2	FSV30	Signal Analyzer 10 Hz - 30 GHz	Rohde & Schwarz	103005	2018-04	2020-04
1.3	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
1.4	Temperature Chamber VT 4002	Temperature Chamber Vötsch 03	Vötsch	58566002150010	2018-04	2020-04
1.5	A8455-4	4 Way Power Divider (SMA)		-		
1.6	Opus10 THI (8152.00)	ThermoHygro Datalogger 03	Lufft Mess- und Regeltechnik GmbH	ID 7482	2019-06	2021-06
1.7	SMBV100A	Vector Signal Generator 9 kHz - 6 GHz	Rohde & Schwarz	259291	2016-10	2019-10
1.8	OSP120	Switching Unit with integrated power meter	Rohde & Schwarz	101158	2018-05	2021-05

2 Radiated emissions

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.1	NRV-Z1	Sensor Head A	Rohde & Schwarz GmbH & Co. KG	827753/005	2019-08	2020-08
2.2	MFS	Rubidium Frequency Normal MFS	Datum GmbH	002	2018-10	2020-10
2.3	Opus10 TPR (8253.00)		Lufft Mess- und Regeltechnik GmbH	13936		
2.4	ESW44	EMI Receiver / Spectrum Analyzer	Rohde & Schwarz GmbH & Co. KG	101603	2018-05	2019-11
-	Anechoic Chamber	10.58 x 6.38 x 6.00 m³	Frankonia	none	2018-06	2020-06
2.6	FS-Z60	Harmonic Mixer 40 - 60 GHz	Rohde & Schwarz Messgerätebau GmbH	100178	2016-12	2019-12

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.7		Harmonic Mixer 140 - 220 GHz	Rohde & Schwarz Messgerätebau GmbH	101005	2017-03	2020-03
2.8	SGH-05	/ Pyramidal Physics GmbH Horn Antenna (140 - 220 GHz)		075		
2.9	HL 562	Ultralog new biconicals	Rohde & Schwarz	830547/003	2018-07	2021-07
2.10		Filter	Trilithic	9942012		
2.11	kg .		Maturo GmbH	-		
2.12	Room	8.80m x 4.60m x 4.05m (l x w x h)	Albatross Projects	P26971-647-001- PRB	2018-06	2020-06
2.13	Fluke 177	Digital Multimeter 03 (Multimeter)	Fluke Europe B.V.	86670383	2018-04	2020-04
2.14	PONTIS Con4101	PONTIS Camera Controller		6061510370		
2.15	NRVD	Power Meter	Rohde & Schwarz GmbH & Co. KG	828110/016	2019-08	2020-08
2.16	HF 906	Double-ridged horn	Rohde & Schwarz	357357/002	2018-09	2021-09
2.17		Broadband Amplifier 18 GHz - 26 GHz	Miteq	849785		
2.18	FSW 43	Spectrum Analyzer	Rohde & Schwarz	103779	2019-02	2021-02
2.19	3160-09	Standard Gain / Pyramidal Horn Antenna 26.5 GHz	EMCO Elektronic GmbH	00083069		
2.20			RPG-Radiometer Physics GmbH	093		
2.21		High Pass Filter	Wainwright	09		
2.22	4HC1600/12750 -1.5-KK	High Pass Filter	Trilithic	9942011		
2.23		AC Power Source	Chroma ATE INC.	64040001304		
2.24	42-5A	Broadband Amplifier 30 MHz - 26 GHz	Miteq	619368		
2.25	TT 1.5 WI	Turn Table	Maturo GmbH	-		
2.26		Logper. Antenna	Rohde & Schwarz	100609	2019-05	2022-05
2.27	HF 906	Double-ridged horn	Rohde & Schwarz	357357/001	2018-03	2021-03
2.28		Harmonic Mixer 220 - 325 GHz	Rohde & Schwarz Messgerätebau GmbH	101006	2017-03	2020-03

Ref.No.	Device Name	Description	Manufacturer	Serial Number	Last Calibration	Calibration Due
2.29	3160-10	/ Pyramidal Horn Antenna 40 GHz	EMCO Elektronic GmbH	00086675		
2.30	SGH-08	Standard Gain / Pyramidal Horn Antenna (90 - 140 GHz)	RPG-Radiometer Physics GmbH	064		
2.31	SGH-12	Standard Gain / Pyramidal HornAntenna (60 - 90 GHz)	RPG-Radiometer Physics GmbH			
2.32	Air compressor	Anechoic Chamber; 8.8m x 4.6 m x 4.05 m	JUN-AIR Deutschland GmbH	612582		
2.33	5HC3500/18000 -1.2-KK	High Pass Filter	Trilithic	200035008		
2.34	FS-Z140	Harmonic Mixer 90 -140 GHz	Rohde & Schwarz Messgerätebau GmbH	101007	2017-02	2020-02
2.35	HFH2-Z2		Rohde & Schwarz	829324/006	2018-01	2021-01
2.36	Opus10 THI (8152.00)	ThermoHygro	Lufft Mess- und Regeltechnik GmbH	12482		
2.37	ESR 7		Rohde & Schwarz	101424	2019-01	2020-01
2.38	JS4-00101800- 35-5P	Broadband Amplifier 30 MHz - 18 GHz	Miteq	896037		
2.39	AS 620 P	Antenna mast	HD GmbH	620/37		
2.40	Tilt device Maturo (Rohacell)	Antrieb TD1.5- 10kg		TD1.5- 10kg/024/37907 09		
2.41	SGH-03	Standard Gain / Pyramidal Horn Antenna (220 - 325 GHz)	RPG-Radiometer Physics GmbH	060		
2.42	FS-Z90	Harmonic Mixer 60 - 90 GHz	Rohde & Schwarz Messgerätebau GmbH	101686	2017-03	2020-03
2.43	ESIB 26	Spectrum Analyzer	Rohde & Schwarz	830482/004	2018-01	2020-01
2.44	PAS 2.5 - 10 kg		Maturo GmbH	-		
2.45	AFS42- 00101800-25-S- 42	Broadband	Miteq	2035324		
2.46	AM 4.0	Antenna mast	Maturo GmbH	AM4.0/180/1192 0513		
2.47	HF 907	Double-ridged horn	Rohde & Schwarz	102444	2018-07	2021-07

7 ANTENNA FACTORS, CABLE LOSS AND SAMPLE CALCULATIONS

This chapter contains the antenna factors with their corresponding path loss of the used measurement path for all antennas as well as the insertion loss of the LISN.

			cable
		LISN	loss
		insertion	(incl. 10
		loss	dB
		ESH3-	atten-
Frequency	Corr.	Z5	uator)
MHz	dB	dB	dB
0.15	10.1	0.1	10.0
5	10.3	0.1	10.2
7	10.5	0.2	10.3
10	10.5	0.2	10.3
12	10.7	0.3	10.4
14	10.7	0.3	10.4
16	10.8	0.4	10.4
18	10.9	0.4	10.5
20	10.9	0.4	10.5
22	11.1	0.5	10.6
24	11.1	0.5	10.6
26	11.2	0.5	10.7
28	11.2	0.5	10.7
30	11.3	0.5	10.8

7.1 LISN R&S ESH3-Z5 (150 KHZ - 30 MHZ)

Sample calculation

 U_{LISN} (dB μ V) = U (dB μ V) + Corr. (dB)

U = Receiver reading

LISN Insertion loss = Voltage Division Factor of LISN

Corr. = sum of single correction factors of used LISN, cables, switch units (if used)

Linear interpolation will be used for frequencies in between the values in the table.

				cable	cable	cable	cable	distance	dLimit	dused
	. –			loss 1	loss 2	loss 3	loss 4	corr.	(meas	(meas.
_	AF			(inside	(outside	(switch	(to	(-40 dB/	distance	distance
	HFH-Z2)	Corr.	-	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
	dB (1/m)	dB	-	dB	dB	dB	dB	dB	m	m
0.009	20.50	-79.6	-	0.1	0.1	0.1	0.1	-80	300	3
0.01	20.45	-79.6	_	0.1	0.1	0.1	0.1	-80	300	3
0.015	20.37	-79.6	_	0.1	0.1	0.1	0.1	-80	300	3
0.02	20.36	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.025	20.38	-79.6	_	0.1	0.1	0.1	0.1	-80	300	3
0.03	20.32	-79.6	_	0.1	0.1	0.1	0.1	-80	300	3
0.05	20.35	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.08	20.30	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.1	20.20	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.2	20.17	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.3	20.14	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.49	20.12	-79.6		0.1	0.1	0.1	0.1	-80	300	3
0.490001	20.12	-39.6		0.1	0.1	0.1	0.1	-40	30	3
0.5	20.11	-39.6		0.1	0.1	0.1	0.1	-40	30	3
0.8	20.10	-39.6		0.1	0.1	0.1	0.1	-40	30	3
1	20.09	-39.6		0.1	0.1	0.1	0.1	-40	30	3
2	20.08	-39.6		0.1	0.1	0.1	0.1	-40	30	3
3	20.06	-39.6	Ī	0.1	0.1	0.1	0.1	-40	30	3
4	20.05	-39.5	Ī	0.2	0.1	0.1	0.1	-40	30	3
5	20.05	-39.5	Ī	0.2	0.1	0.1	0.1	-40	30	3
6	20.02	-39.5	Ī	0.2	0.1	0.1	0.1	-40	30	3
8	19.95	-39.5	Ī	0.2	0.1	0.1	0.1	-40	30	3
10	19.83	-39.4	Ī	0.2	0.1	0.2	0.1	-40	30	3
12	19.71	-39.4	Ī	0.2	0.1	0.2	0.1	-40	30	3
14	19.54	-39.4	Ī	0.2	0.1	0.2	0.1	-40	30	3
16	19.53	-39.3	Ī	0.3	0.1	0.2	0.1	-40	30	3
18	19.50	-39.3	Ī	0.3	0.1	0.2	0.1	-40	30	3
20	19.57	-39.3	Ī	0.3	0.1	0.2	0.1	-40	30	3
22	19.61	-39.3	ľ	0.3	0.1	0.2	0.1	-40	30	3
24	19.61	-39.3	ľ	0.3	0.1	0.2	0.1	-40	30	3
26	19.54	-39.3	ŀ	0.3	0.1	0.2	0.1	-40	30	3
28	19.46	-39.2	ľ	0.3	0.1	0.3	0.1	-40	30	3
30	19.73	-39.1	ľ	0.4	0.1	0.3	0.1	-40	30	3

7.2 ANTENNA R&S HFH2-Z2 (9 KHZ – 30 MHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-40 * LOG (d_{Limit} / d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values

7.3 ANTENNA R&S HL562 (30 MHZ – 1 GHZ)

(<u>d_{Limit} = 3 m)</u>

Frequency	AF R&S HL562	Corr.
MHz	dB (1/m)	dB
30	18.6	0.6
50	6.0	0.9
100	9.7	1.2
150	7.9	1.6
200	7.6	1.9
250	9.5	2.1
300	11.0	2.3
350	12.4	2.6
400	13.6	2.9
450	14.7	3.1
500	15.6	3.2
550	16.3	3.5
600	17.2	3.5
650	18.1	3.6
700	18.5	3.6
750	19.1	4.1
800	19.6	4.1
850	20.1	4.4
900	20.8	4.7
950	21.1	4.8
1000	21.6	4.9

cable loss 1 (inside chamber)	cable loss 2 (outside chamber)	cable loss 3 (switch unit)	cable loss 4 (to receiver)	distance corr. (-20 dB/ decade)	d _{Limit} (meas. distance (limit)	d _{used} (meas. distance (used)
dB	dB	dB	dB	dB		m
0.29	0.04	0.23	0.02	0.0	3	3
0.39	0.09	0.32	0.08	0.0	3	3
0.56	0.14	0.47	0.08	0.0	3	3
0.73	0.20	0.59	0.12	0.0	3	3
0.84	0.21	0.70	0.11	0.0	3	3
0.98	0.24	0.80	0.13	0.0	3	3
1.04	0.26	0.89	0.15	0.0	3	3
1.18	0.31	0.96	0.13	0.0	3	3
1.28	0.35	1.03	0.19	0.0	3	3
1.39	0.38	1.11	0.22	0.0	3	3
1.44	0.39	1.20	0.19	0.0	3	3
1.55	0.46	1.24	0.23	0.0	3	3
1.59	0.43	1.29	0.23	0.0	3	3
1.67	0.34	1.35	0.22	0.0	3	3
1.67	0.42	1.41	0.15	0.0	3	3
1.87	0.54	1.46	0.25	0.0	3	3
1.90	0.46	1.51	0.25	0.0	3	3
1.99	0.60	1.56	0.27	0.0	3	3
2.14	0.60	1.63	0.29	0.0	3	3
2.22	0.60	1.66	0.33	0.0	3	3
2.23	0.61	1.71	0.30	0.0	3	3

 $(d_{\text{Limit}} = 10 \text{ m})$

	•/								
30	18.6	-9.9	0.29	0.04	0.23	0.02	-10.5	10	3
50	6.0	-9.6	0.39	0.09	0.32	0.08	-10.5	10	3
100	9.7	-9.2	0.56	0.14	0.47	0.08	-10.5	10	3
150	7.9	-8.8	0.73	0.20	0.59	0.12	-10.5	10	3
200	7.6	-8.6	0.84	0.21	0.70	0.11	-10.5	10	3
250	9.5	-8.3	0.98	0.24	0.80	0.13	-10.5	10	3
300	11.0	-8.1	1.04	0.26	0.89	0.15	-10.5	10	3
350	12.4	-7.9	1.18	0.31	0.96	0.13	-10.5	10	3
400	13.6	-7.6	1.28	0.35	1.03	0.19	-10.5	10	3
450	14.7	-7.4	1.39	0.38	1.11	0.22	-10.5	10	3
500	15.6	-7.2	1.44	0.39	1.20	0.19	-10.5	10	3
550	16.3	-7.0	1.55	0.46	1.24	0.23	-10.5	10	3
600	17.2	-6.9	1.59	0.43	1.29	0.23	-10.5	10	3
650	18.1	-6.9	1.67	0.34	1.35	0.22	-10.5	10	3
700	18.5	-6.8	1.67	0.42	1.41	0.15	-10.5	10	3
750	19.1	-6.3	1.87	0.54	1.46	0.25	-10.5	10	3
800	19.6	-6.3	1.90	0.46	1.51	0.25	-10.5	10	3
850	20.1	-6.0	1.99	0.60	1.56	0.27	-10.5	10	3
900	20.8	-5.8	2.14	0.60	1.63	0.29	-10.5	10	3
950	21.1	-5.6	2.22	0.60	1.66	0.33	-10.5	10	3
1000	21.6	-5.6	2.23	0.61	1.71	0.30	-10.5	10	3

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) distance correction = $-20 * LOG (d_{Limit}/d_{used})$

Linear interpolation will be used for frequencies in between the values in the table.

Tables show an extract of values.

7.4 ANTENNA R&S HF907 (1 GHZ – 18 GHZ)

			`		· · ·				
						cable			
				cable		loss 3			
				loss 1		(switch			
				(relay +	cable	unit,			
	AF			cable	loss 2	atten-	cable		
	R&S			inside	(outside	uator &	loss 4 (to		
Frequency	HF907	Corr.		chamber)	chamber)	pre-amp)	receiver)		
MHz	dB (1/m)	dB		dB	dB	dB	dB		
1000	24.4	-19.4		0.99	0.31	-21.51	0.79		
2000	28.5	-17.4		1.44	0.44	-20.63	1.38		
3000	31.0	-16.1		1.87	0.53	-19.85	1.33		
4000	33.1	-14.7		2.41	0.67	-19.13	1.31		
5000	34.4			2.41					
		-13.7			0.86	-18.71	1.40		
6000	34.7	-12.7		2.74	0.90	-17.83	1.47		
7000	35.6	-11.0		2.82	0.86	-16.19	1.46		
	1 1								,
							cable		
							loss 4		
				cable			(switch		
				loss 1	cable	cable	unit,		used
	AF			(relay	loss 2	loss 3	atten-	cable	for
	R&S			inside	(inside	(outside	uator &	loss 5 (to	FCC
Frequency	HF907	Corr.		chamber)	chamber)	chamber)	pre-amp)	receiver)	15.247
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	
3000	31.0	-23.4		0.47	1.87	0.53	-27.58	1.33	
4000	33.1	-23.3		0.56	2.41	0.67	-28.23	1.31	
5000	34.4	-21.7		0.61	2.78	0.86	-27.35	1.40	
6000	34.7	-21.2		0.58	2.74	0.90	-26.89	1.47	
7000	35.6	-19.8		0.66	2.82	0.86	-25.58	1.46	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5510	19.0		0.00	2.02	0.00	25.50	1.40	
				cable					
				loss 1	cable	cable	cable	cable	cable
	AF			(relay	loss 2	loss 3	loss 4	loss 5	loss 6
	R&S			inside		(pre-	(inside	outside	
Frequency	HF907	Corr.		chamber)	(High Pass)		chamber)	chamber)	(to
				,	Pass)	amp)			receiver)
MHz	dB (1/m)	dB		dB	dB	dB	dB	dB	dB
7000	35.6	-57.3		0.56	1.28	-62.72	2.66	0.94	1.46
8000	36.3	-56.3		0.69	0.71	-61.49	2.84	1.00	1.53
9000	37.1	-55.3		0.68	0.65	-60.80	3.06	1.09	1.60
10000	37.5	-56.2		0.70	0.54	-61.91	3.28	1.20	1.67
11000	37.5	-55.3		0.80	0.61	-61.40	3.43	1.27	1.70
12000	37.6	-53.7		0.84	0.42	-59.70	3.53	1.26	1.73
13000	38.2	-53.5		0.83	0.44	-59.81	3.75	1.32	1.83
14000	39.9	-56.3		0.91	0.53	-63.03	3.91	1.40	1.77
15000	40.9	-54.1		0.98	0.53	-61.05	4.02	1.44	1.83
16000	41.3	-54.1		1.23	0.49	-61.51	4.17	1.44	1.85
17000	41.3								
		-54.4		1.36	0.76	-62.36	4.34	1.53	2.00
18000	44.2	-54.7		1.70	0.53	-62.88	4.41	1.55	1.91

Sample calculation

E (dB μ V/m) = U (dB μ V) + AF (dB 1/m) + Corr. (dB)

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table. Tables show an extract of values.

			cable	cable	cable	cable	cable
				loss 2	loss 3	loss 4	loss 5
			``	(pre-	(inside	(switch	(to
3160-09	Corr.		chamber)	amp)	chamber)	unit)	receiver)
dB (1/m)	dB		dB	dB	dB	dB	dB
40.2	-23.5		0.72	-35.85	6.20	2.81	2.65
40.2	-23.2		0.69	-35.71	6.46	2.76	2.59
40.2	-22.0		0.76	-35.44	6.69	3.15	2.79
40.3	-21.3		0.74	-35.07	7.04	3.11	2.91
40.3	-20.3		0.72	-34.49	7.30	3.07	3.05
40.3	-19.9		0.78	-34.46	7.48	3.12	3.15
40.3	-19.1		0.87	-34.07	7.61	3.20	3.33
40.3	-19.1		0.90	-33.96	7.47	3.28	3.19
40.3	-18.7		0.89	-33.57	7.34	3.35	3.28
40.4	-19.0		0.87	-33.66	7.06	3.75	2.94
40.4	-19.5		0.88	-33.75	6.92	3.77	2.70
40.4	-19.3		0.90	-33.35	6.99	3.52	2.66
40.4	-19.8		0.88	-33.99	6.88	3.88	2.58
40.4	-19.5		0.91	-33.89	7.01	3.93	2.51
40.4	-19.3		0.88	-33.00	6.72	3.96	2.14
40.5	-20.4		0.89	-34.07	6.90	3.66	2.22
40.5	-21.3		0.86	-35.11	7.02	3.69	2.28
40.5	-21.1		0.90	-35.20	7.15	3.91	2.36
	40.2 40.2 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3	EMCO 3160-09 Corr. dB (1/m) dB 40.2 -23.5 40.2 -23.2 40.2 -23.2 40.2 -23.2 40.2 -23.2 40.2 -23.2 40.2 -23.2 40.2 -23.2 40.2 -22.0 40.3 -21.3 40.3 -20.3 40.3 -19.9 40.3 -19.1 40.3 -19.1 40.3 -19.1 40.3 -19.1 40.4 -19.5 40.4 -19.3 40.4 -19.3 40.4 -19.5 40.4 -19.5 40.4 -19.3 40.5 -20.4 40.5 -21.3	EMCO3160-09Corr.dB (1/m)dB40.2-23.540.2-23.240.3-21.340.3-20.340.3-19.940.3-19.140.3-19.140.3-19.140.4-19.040.4-19.540.4-19.340.4-19.340.4-19.340.5-20.4	AF loss 1 EMCO (inside 3160-09 Corr. (hamber) dB (1/m) dB dB 40.2 -23.5 0.72 40.2 -23.2 0.69 40.2 -22.0 0.74 40.3 -21.3 0.74 40.3 -20.3 0.72 40.3 -20.3 0.72 40.3 -19.9 0.78 40.3 -19.1 0.87 40.3 -19.1 0.87 40.3 -19.1 0.88 40.4 -19.0 0.87 40.4 -19.5 0.88 40.4 -19.3 0.90 40.4 -19.8 0.88 40.4 -19.3 0.88 40.4 -19.3 0.88 40.4 -19.3 0.88 40.4 -19.3 0.88 40.4 -19.3 0.88 40.5 -20.4 0.89 40.5 -20.4 0.89	AF EMCOIoss 1 (inside (inside (pre- chamber)Ioss 2 (pre- chamber)dB (1/m)dBdBdB40.2-23.50.72-35.8540.2-23.20.69-35.7140.2-22.00.76-35.4440.3-21.30.74-35.0740.3-20.30.72-34.4940.3-19.10.87-34.4640.3-19.10.87-34.6740.3-19.10.87-33.9640.3-19.10.88-33.5740.4-19.00.88-33.5740.4-19.30.90-33.3540.4-19.30.90-33.8940.4-19.30.88-33.0040.4-19.30.88-33.0040.4-19.30.88-33.0040.5-20.40.89-34.0740.5-21.30.86-35.11	AF EMCOIoss 1 (inside (inside chamber)Ioss 2 (pre- (inside 	AF EMCOIoss 1 (insideIoss 2 (insideIoss 3 (insideIoss 4 (switch3160-09Corr.(inside(inside(inside(switchdB (1/m)dBdBdBdBdBdB40.2-23.50.72-35.856.202.8140.2-22.00.69-35.716.462.7640.3-21.30.74-35.077.043.1140.3-20.30.72-34.497.303.0740.3-19.10.87-34.467.483.1240.3-19.10.87-34.077.613.2040.3-19.10.87-33.967.473.2840.3-19.10.88-33.577.343.3540.4-19.00.88-33.756.923.7740.4-19.30.90-33.356.993.5240.4-19.30.90-33.897.013.9340.4-19.30.88-33.006.723.9640.4-19.30.88-33.006.723.9640.4-19.30.88-33.006.723.9640.4-19.30.88-33.006.723.9640.5-20.40.89-34.076.903.6640.5-20.40.88-33.006.723.9640.4-19.30.88-33.006.723.9640.5-20.40.89-34.076.903.66<

7.5 ANTENNA EMCO 3160-09 (18 GHZ - 26.5 GHZ)

Sample calculation

 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

U = Receiver reading

AF = Antenna factor

Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

Table shows an extract of values.

	AF EMCO		cable loss 1 (inside	cable loss 2 (outside	cable loss 3 (switch	cable loss 4 (to	distance corr. (-20 dB/	d _{Limit} (meas. distance	d _{used} (meas. distance
Frequency	3160-10	Corr.	chamber)	chamber)	unit)	receiver)	decade)	(limit)	(used)
GHz	dB (1/m)	dB	dB	dB	dB	dB	dB	m	m
26.5	43.4	-11.2	4.4				-9.5	3	1.0
27.0	43.4	-11.2	4.4				-9.5	3	1.0
28.0	43.4	-11.1	4.5				-9.5	3	1.0
29.0	43.5	-11.0	4.6				-9.5	3	1.0
30.0	43.5	-10.9	4.7				-9.5	3	1.0
31.0	43.5	-10.8	4.7				-9.5	3	1.0
32.0	43.5	-10.7	4.8				-9.5	3	1.0
33.0	43.6	-10.7	4.9				-9.5	3	1.0
34.0	43.6	-10.6	5.0				-9.5	3	1.0
35.0	43.6	-10.5	5.1				-9.5	3	1.0
36.0	43.6	-10.4	5.1				-9.5	3	1.0
37.0	43.7	-10.3	5.2				-9.5	3	1.0
38.0	43.7	-10.2	5.3				-9.5	3	1.0
39.0	43.7	-10.2	5.4				-9.5	3	1.0
40.0	43.8	-10.1	5.5				-9.5	3	1.0

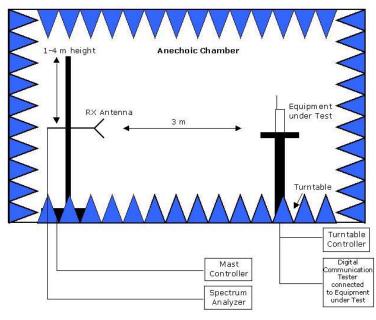
7.6 ANTENNA EMCO 3160-10 (26.5 GHZ - 40 GHZ)

Sample calculation

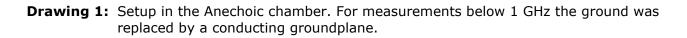
 $E (dB \mu V/m) = U (dB \mu V) + AF (dB 1/m) + Corr. (dB)$

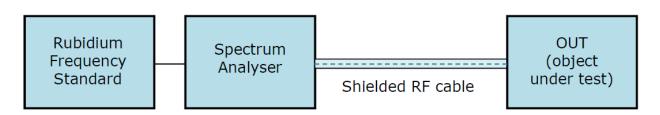
U = Receiver reading

AF = Antenna factor


Corr. = sum of single correction factors of used cables, switch unit, distance correction, amplifier (if applicable) Linear interpolation will be used for frequencies in between the values in the table.

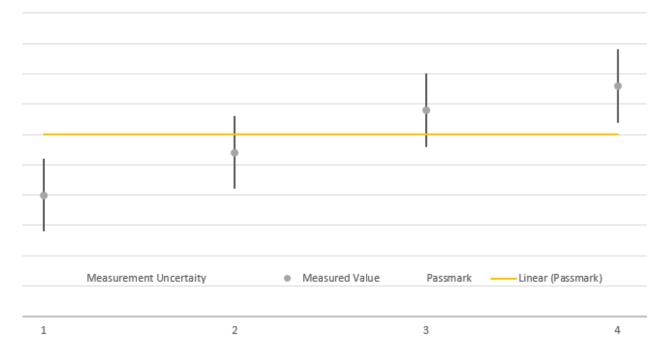
distance correction = -20 * LOG ($d_{\text{Limit}}/d_{\text{used}}$) Linear interpolation will be used for frequencies in between the values in the table.


Table shows an extract of values.



8 SETUP DRAWINGS

<u>Remark:</u> Depending on the frequency range suitable antenna types, attenuators or preamplifiers are used.


Drawing 2: Setup for conducted radio tests.

9 MEASUREMENT UNCERTAINTIES

Test Case	Parameter	Uncertainty
AC Power Line	Power	± 3.4 dB
Field Strength of spurious radiation	Power	± 5.5 dB
6 dB / 26 dB / 99% Bandwidth	Power Frequency	± 2.9 dB ± 11.2 kHz
Conducted Output Power	Power	± 2.2 dB
Band Edge Compliance	Power Frequency	± 2.2 dB ± 11.2 kHz
Frequency Stability	Frequency	± 25 Hz
Power Spectral Density	Power	± 2.2 dB

The measurement uncertainties for all parameters are calculated with an expansion factor (coverage factor) k = 1.96. This means, that the true value is in the corresponding interval with a probability of 95 %.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so called shared risk principle.

10 PHOTO REPORT

Please see separate photo report.