Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: cttl@chinattl.com http://www.chinattl.cn # Measurement Conditions DASY system configuration, as | AST system configuration, as far as | not given on page 1. | - CO | | |-------------------------------------|--|----------------------------------|--| | DASY Version | DASY52 | V52.10.4 | | | Extrapolation | Advanced Extrapolation | | | | Phantom | Triple Flat Phantom 5.1C | | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | | Zoom Scan Resolution | dx, dy = 4 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | | Frequency | 5250 MHz ± 1 MHz
5600 MHz ± 1 MHz
5750 MHz ± 1 MHz | | | # Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 36.0 ± 6 % | 4.68 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | <u> </u> | # SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | 1.5 | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.82 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 78.2 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.23 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.3 W/kg ± 24.2 % (k=2) | Certificate No: Z21-60022 Page 3 of 8 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | -10 | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.4 ± 6 % | 5.06 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | | ## SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.16 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.6 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | - | | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.3 W/kg ± 24.2 % (k=2) | ## Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.2 ± 6 % | 5.22 mho/m ± 6 % | | Head TSL temperature change during test | <1.0 °C | | 244 | ## SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm^3 (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.94 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 79.3 W/kg ± 24.4 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | Condition | | | SAR measured | 100 mW input power | 2.25 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 22.5 W/kg ± 24.2 % (k=2) | Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Appendix (Additional assessments outside the scope of CNAS L0570) #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 47.8Ω - 1.46jΩ | | |--------------------------------------|----------------|--| | Return Loss | - 31.3dB | | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 51.6Ω + 2.95jΩ | |--------------------------------------|----------------| | Return Loss | - 29.6dB | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | $50.0\Omega + 3.42j\Omega$ | | |--------------------------------------|----------------------------|--| | Return Loss | - 29.3dB | | #### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.101 ns | |----------------------------------|-----------| | | 8005/1005 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### Additional EUT Data | WKC 80000 000 | | | |-----------------|-------|--| | Manufactured by | SPEAG | | Certificate No: Z21-60022 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 E-mail: ettl@chinattl.com http://www.chinattl.cn #### DASY5 Validation Report for Head TSL Test Laboratory: CTTL, Beijing, China DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1273 Communication System: CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Date: 01.26.2021 Frequency: 5750 MHz, Medium parameters used: f = 5250 MHz; σ = 4.678 S/m; ϵ_r = 36.04; ρ = 1000 kg/m³, Medium parameters used: f = 5600 MHz; σ = 5.055 S/m; ϵ_r = 35.43; ρ = 1000 kg/m³, Medium parameters used: f = 5750 MHz; σ = 5.219 S/m; ϵ_r = 35.21; ρ = 1000 kg/m³. Phantom section: Center Section DASY5 Configuration: - Probe: EX3DV4 SN7600; ConvF(5.68, 5.68, 5.68) @ 5250 MHz; ConvF(5.11, 5.11, 5.11) @ 5600 MHz; ConvF(5.07, 5.07, 5.07) @ 5750 MHz; Calibrated: 2020-11-30 - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn771; Calibrated: 2020-02-10 - Phantom: MFP_V5.1C (20deg probe tilt); Type: QD 000 P51 Cx; Serial: 1062 - Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.14 (7483) #### Dipole Calibration /Pin=100mW, d=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 65.72 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 32.0 W/kg SAR(1 g) = 7.82 W/kg; SAR(10 g) = 2.23 W/kg Smallest distance from peaks to all points 3 dB below = 7.2 mm Ratio of SAR at M2 to SAR at M1 = 64.5% Maximum value of SAR (measured) = 18.4 W/kg ### Dipole Calibration /Pin=100mW, d=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.05 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 35.4 W/kg SAR(1 g) = 8.16 W/kg; SAR(10 g) = 2.33 W/kg Smallest distance from peaks to all points 3 dB below = 7.5 mm Ratio of SAR at M2 to SAR at M1 = 62.8% Maximum value of SAR (measured) = 20.4 W/kg Certificate No: Z21-60022 Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel; +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Dipole Calibration /Pin=100mW, d=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.61 V/m; Power Drift = -0.06 dB Peak SAR (extrapolated) = 35.8 W/kg SAR(1 g) = 7.94 W/kg; SAR(10 g) = 2.25 W/kg Smallest distance from peaks to all points 3 dB below = 7.6 mm Ratio of SAR at M2 to SAR at M1 = 61.7% Maximum value of SAR (measured) = 19.7 W/kg 0 dB = 19.7 W/kg = 12.94 dBW/kg Add: No.51 Xueyuan Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fax: +86-10-62304633-2504 http://www.chinattl.cn ## Impedance Measurement Plot for Head TSL Certificate No: Z21-60022 # **Extended Dipole Calibrations** Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | Head-5250 | | | | | | | | |-------------|------------------|-----------|----------------|-------|-----------------|-------|--| | Date of | Return-loss (dB) | Delta (%) | Real Impedance | Delta | Imaginary | Delta | | | measurement | | | (ohm) | (ohm) | impedance (ohm) | (ohm) | | | 2021-01-26 | -31.3 | | 47.8 | | -1.46 | | | | 2022-01-17 | -31.8 | 1.60 | 47.3 | 0.5 | -1.06 | 0.4 | | | Head-5600 | | | | | | | | |-------------|------------------|-----------|----------------|-------|-----------------|-------|--| | Date of | Return-loss (dB) | Delta (%) | Real Impedance | Delta | Imaginary | Delta | | | measurement | | | (ohm) | (ohm) | impedance (ohm) | (ohm) | | | 2021-01-26 | -29.6 | | 51.6 | | 2.95 | | | | 2022-01-17 | -30.1 | -1.06 | 51.2 | 0.4 | 2.75 | 0.2 | | | Head-5750 | | | | | | | | |-------------|------------------|-----------|----------------|-------|-----------------|-------|--| | Date of | Return-loss (dB) | Delta (%) | Real Impedance | Delta | Imaginary | Delta | | | measurement | | | (ohm) | (ohm) | impedance (ohm) | (ohm) | | | 2021-01-26 | -29.3 | | 50.0 | | 3.42 | | | | 2022-01-17 | -29.6 | -1.02 | 50.7 | 0.7 | 3.02 | 0.4 | | The return loss is <-20dB, within 20% of prior calibration; the impedance is within 50hm of prior calibration. Therefore the verification result should support extended calibration.