SHURE ## **ELECTROMAGNETIC COMPATIBILITY LABORATORY TEST REPORT** TEST REPORT TITLE: Electromagnetic Compatibility Tests of the Shure QLXD2 Digital Wireless Microphone Transmitter in the J50A Band (572MHz to 616MHz) #### **TEST ITEM DESCRIPTION:** The Shure QLXD2 is a digital wireless microphone transmitter. For: Shure Incorporated 5800 West Touhy Avenue Niles, IL 60714 Project ID Number: SEL-041/QLXD2 J50A FCC15C **Date Tested:** February 13 thru September 9, 2020 and November 9, 2020 **Test Personnel:** Sharjeel Sohail and Juan Castrejon ## **Test Specification:** IC RSS-Gen – General Requirements and Information for the Certification of Radio Apparatus IC RSS-210 - License-exempt Radio Apparatus (All Frequency Bands): Category I Equipment FCC Part 15C, Section 15.236(g) FCC Part 15C, Section 15.236(d)(1) FCC Part 15C, Section 15.236(f)(1) FCC Part 15C, Section 15.236(f)(2) Global Compliance Engineer November 10, 2020 APPROVED BY: Musion November 10,, 2020 Position Date # **TABLE OF CONTENTS** | <u>P</u> | RAGRAI | PH DESCRIPTION OF CONTENTS | PAGE NO. | |----------|-------------|---------------------------------------|----------| | 0. | Report Rev | ision History | 4 | | 1. | Introductio | n | 5 | | | 1.1. | Scope of Tests | 5 | | | 1.2. | Purpose | 5 | | | 1.3. | Deviation, Additions and Exclusions | 5 | | | 1.4. | EMC Laboratory Identification | 5 | | | 1.5. | Summary of Tests Performed | 6 | | 2. | | Documents | | | 3. | EUT Setup | and Operation | 7 | | | 3.1 | General Description | 7 | | | 3.2 | Test Samples | | | | 3.3 | Operational Mode | | | 4 | | mentation | | | 5 | | | | | 6 | | Conditions | | | | 6.1 | Test Personnel | | | | 6.2 | Disposition of the EUT | | | 7 | | Tests | | | 8 | | S | | | 9 | | n | | | 10 | | List | | | 11 | • • | · | | | | • • | 8 | | | 13 | Appendix C | · · · · · · · · · · · · · · · · · · · | 44 | Note: This report shall not be reproduced, except in full, without the written approval of the Shure Incorporated Electromagnetic Laboratory (SEL). Total Page Count is 55. ## **LIST OF APPENDICIES** | APPENDIX | TEST DESCRIPTION | | | |----------|--|--|--| | Α | Necessary Bandwidth, Frequency Offset, Maximum Bandwidth, 99% Emission Bandwidth | | | | В | Radiated Spurious Emissions | | | | С | Maximum Radiated Power | | | ## **REPORT REVISION HISTORY** | Revision Date | | Description | | | |---------------------|--|---|--|--| | 0 September 9, 2020 | | Initial release | | | | 1 November 10, 2020 | | Added RSS-210, RSS-Gen 99% Emission Bandwidth | #### 1. INTRODUCTION ## 1.1. Scope of Tests This report presents the results of testing per FCC Part 15C, Section 15.236(g), Section 15.236(d)(1) Section 15.236(d)(2), Section 15.236(f)(1), Section 15.236(f)(2), FCC OET Basic Certification Requirements for Wireless Microphones, RSS-Gen, and RSS-210. The following data was taken following the measurement method as described in the document section(s) listed on page 1 of this document. Provided is the data for the test sample. Also included is a summary of the measurements made and a description of the measurement setup. The test samples meet the requirements of the above standards. The equipment under test (EUT) contained a transmitter that was designed to transmit in the UHF TV frequency bands shown in Table 1. | Model | Band | Frequency (MHz) | Output Power (mW) | |-------|------|-----------------|-------------------| | QLXD2 | J50A | 572-616 | 1 and 10 | | QLXD2 | J50 | 572-608 | 1 and 10 | **Table 1. EUT Frequencies and Power Levels** #### 1.2. Purpose This series of testing was performed to determine if the test item would meet the requirements of FCC Part 15C, Section 236(g), Section 15.236(d)(1), Section 15.236(d)(2), Section 15.236(f)(1), Section 15.236(f)(2), the FCC OET Basic Certification Requirements for Wireless Microphones, RSS-Gen, and RSS-210. ## 1.3 Deviations, Additions and Exclusions None ### 1.4 EMC Laboratory Identification The electromagnetic compatibility tests were performed at the Shure Electromagnetic Laboratory, Shure Incorporated, 5800 West Touhy Ave, Niles, Illinois 60714-4608. This laboratory is registered with Industry Canada as Site # 616A-1. The Shure Electromagnetic Laboratory is accredited by the National Institute of Standards and Technology (NIST) under the National Voluntary Laboratory Accreditation Program (NVLAP). The NVLAP Lab Code is: 200946-0. #### 1.5 Summary of Tests Performed The following electromagnetic compatibility tests (Table 2) were performed on the test item in accordance with ETSI specifications. Table 2. Summary of tests performed | FCC Part 15C Test
Spec | Description | EUT Firmware | Tested Frequency in MHz | Appendix | Test Results | |---------------------------|--------------------------------|--------------|--|----------|--------------| | 15.236(g) | Necessary Bandwidth | 2.3.22 | 572.000, 589.925, 607.875,
614.125, 615.875 | Α | Pass | | 15.236(f)(1) | Frequency Offset | 2.3.22 | 572.000, 589.925, 607.875,
614.125, 615.875 | Α | Pass | | 15.236(f)(2) | Maximum Bandwidth | 2.3.22 | 572.000, 589.925, 607.875,
614.125, 615.875 | А | Pass | | RSS-210, RSS-Gen | 99% Emission Bandwidth | 2.3.22 | 572.000, 589.925, 607.875,
614.125, 615.875 | Α | Pass | | 15.236(g) | Radiated Spurious
Emissions | 2.3.22 | 572.000, 589.925, 607.875,
614.125, 615.875 | В | Pass | | 15.236(d)(1) | Maximum Radiated
Power | 2.3.22 | 572.000, 589.925, 607.875,
614.125, 615.875 | С | Pass | #### 2 APPLICABLE DOCUMENTS The following documents of the exact issue designated form part of this document to the extent specified herein: FCC Part 15C, Section 15.236(g) FCC Part 15C, Section 15.236(d)(1) FCC Part 15C, Section 15.236(d)(2) FCC Part 15C, Section 15.236(f)(1) FCC Part 15C, Section 15.236(f)(2) EN 300 422-1 V1.4.2 (2011-08), "Electromagnetic compatibility and Radio spectrum Matters (ERMM); Wireless Microphones in the 25 MHz to 3 GHz frequency range; Part 1: technical characteristics and methods of measurement" ANSI C63.10 (2013), "American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices" "Federal Communications Commission Office of Engineering and Technology, Laboratory Division BASIC CERTIFICATION REQUIREMENTS FOR WIRELESS MICROPOHONES" Dated December 13, 2017 RSS-Gen Issue 5, "General Requirements for Compliance of Radio Apparatus" RSS-210 Issue 9, "Licence-Exempt Radio Apparatus: Category I Equipment" #### 3 EUT SET-UP AND OPERATION ## 3.1. General Description The test sample used was Shure QLXD2 digital wireless microphone transmitter. The EUT was arranged and tested per individual Appendices. #### 3.2 Test Sample The following product sample was tested: Table 3: Shure QLXD2 Digital Wireless Transmitter Sample | Band | Serial Numbers | |------|----------------| | J50A | 1 | | J50A | N6 | #### 3.3 Operational Mode The transmit frequency and output power modes shown in the individual appendixes. #### 4. Test Instrumentation A list of the test equipment used can be found in Table 10-1. All equipment used was within calibration during and throughout the duration of the tests. All calibrations are traceable to the National Institute of Standards and Technology (NIST). #### 5. Procedure The specific test procedures are presented in the individual appendices. #### 6. Other Test Conditions: #### 6.1. Test Personnel All EMC tests were performed by qualified personnel from the Shure EMC Laboratory. #### 6.2. Disposition of the EUT The EUTs and all associated equipment were returned to Shure Incorporated upon completion of the tests. #### 7. Results of Tests: The results are presented in Appendices. It was found that the EUT meets the requirements of FCC Part 15C, Section 236(g), Section 15.236(d)(1), Section 15.236(d)(2), Section 15.236(f)(1), Section 15.236(f)(2), the FCC OET Basic Certification Requirements for Wireless Microphones, RSS-Gen, and RSS-210 #### 8. Conclusions: It was determined that the Shure QLXD2 Digital Wireless Microphone Transmitter did fully comply with the requirements of FCC Part 15C, Section 236(g), Section 15.236(d)(1), Section 15.236(d)(2), Section 15.236(f)(1), Section 15.236(f)(2), the FCC OET Basic Certification Requirements for Wireless Microphones, RSS-Gen, RSS-210. #### 9. **Certification**: Shure EMC Laboratory certifies that the information contained in this report was obtained under conditions which meet or exceed those specified in the test specifications. The data presented in this test report pertains to the EUTs at the test date. Any electrical or mechanical modification made to the EUTs subsequent to the specified test date will serve to invalidate the data and void this certification. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. ## 10. Equipment List **Table 10-1 Test Equipment** | L# or ID | Description | Manufacturer | Model # | Serial # | Frequency
Range | Cal Date | Due Date | |------------|--|--------------------|-------------------------------|-----------|--------------------|------------|------------| | L23-011-01 | 3-meter RF
Chamber | ETS Lindgren | FACT-3 | AJ640 | 25MHz - 18GHz | 5/23/2019 | 5/23/2021 | | L23-011-02 | Electric
Powered
Turntable | ETS Lindgren | 2088 | N/A | N/A | N/A | N/A | | L23-011-08 | Controller | EMCO | 2090 | 29799 | N/A | N/A | N/A | | L23-011-09 | Antenna
Positioner | ETS Lindgren | 2071-2 | 35500 | N/A | N/A | N/A | | L23-011-15 | BiConiLog
Antenna | ETS Lindgren | 3142C | 34790 | 25MHz-1GHz | 7/16/2019 | 7/16/2021 | | L23-011-54 | EMI Test
Receiver | Rohde &
Schwarz | ESR26 | 100220 | 9kHz-26GHz | 11/18/2019 | 11/18/2021 | | L23-011-31 |
EMI/EMS
Test Software | Rohde &
Schwarz | EMC32 | V 9.21.00 | N/A | N/A | N/A | | L23-011-53 | Horn antenna
with pre-
amplifier | ETS Lindgren | 3117-PA | 200363 | 1GHz to 18 GHz | 9/17/2019 | 9/17/2021 | | L23-011-41 | Horn
Antenna | ETS Lindgren | 3117 | 123511 | 1GHz to 18 GHz | 1/23/2019 | 1/23/2021 | | L23-011-56 | High Pass
Filter | K&L | 11SH10-
940/X10000-
0/0 | 2 | 940MHz –
10GHz | 3/3/2020 | 3/3/2022 | | L23-022-02 | Spectrum
Analyzer | Rohde &
Schwarz | FSW26 | 103788 | 9kHz-26GHz | 3/4/2020 | 3/4/2022 | | L23-022-01 | Spectrum
Analyzer | Rohde &
Schwarz | FSU26 | 201043 | 9kHz-26GHz | 8/23/2017 | 8/14/2021 | | L23-034-02 | Temperature
Hygrometer | Extech | 445703 | 48254-65 | N/A | 5/1/2020 | 5/1/2022 | | L23-034-04 | Temperature
Hygrometer | Extech | 445703 | 48254-13 | N/A | 5/1/2020 | 5/1/2022 | | L23-040-03 | 20dB
Attenuator | MCL | BW-
N20W5+ | N/A | 20MHz to
18GHz | 3/2/2020 | 3/2/2022 | | L23-045-36 | RF Power
Sensor | ETS-Lindgren | 7002-006 | 151071 | 10MHz to 6GHz | 1/10/2020 | 1/10/2022 | | L23-023-01 | RF Signal
Generator | Rohde &
Schwarz | SMF100A | 101553 | 20Hz to
26.5GHz | 8/14/2019 | 8/14/2021 | ## NECESSARY BANDWIDTH FREQUENCY OFFSET OPERATING BANDWIDTH #### **PURPOSE** This test was performed to determine if the EUT meets the necessary bandwidth requirements of EN 300 422-1, section 8.3.2., and RSS-210 Annex G, with the EUT operating at 572.000MHz, 589.925MHz, 607.875MHz, 614.125 MHz and 615.875MHz. This testing results show the EUT meets FCC 15C 15.236(f)(1), a frequency offset of the lower band limits by 25kHz or an integral multiple thereof. The frequency offset is 125 kHz. The testing results show the EUT meets FCC 15C 15.236(f)(2) and RSS-210, operating bandwidth does not exceed 200kHz. #### **REQUIREMENTS** As stated in EN 300 422-1, section 8.3.2, the emission mask given in section 8.3.2.2 shall not be exceeded. #### **TEST SETUP AND INSTRUMENTATION** A photograph of the test setup is shown in Figure A-1. The test instrumentation can be determined from Table 10-1. #### MEASUREMENT UNCERTAINTY All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system. Values of Expanded Measurement Uncertainty (95% Confidence): | Measurement Type | U _{LAB} | | |---------------------|------------------|--| | Necessary Bandwidth | ±0.130 % | | U_{lab} = Determined for Shure EMC Laboratory Since U_{LAB} is less than or equal to U_{ETSI}: - Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit; - Non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit. ## **EUT OPERATION** The EUT was powered up and the transmit frequency and power output of the EUT were selected. A Shure KSM8 microphone head was used. The EUT was checked for proper operation after it was setup for the test. Testing was conducted with the EUT set to transmit at 572.000MHz, 589.925MHz, 607.875MHz, 614.125 MHz and 615.875MHz., at an output power level of 1mW and 10mW. The transmitter was modulated per EN300422-1 V1.4.2 (2011-08), clause 7.1.2. #### **TEST PROCEDURE** The test procedure followed is shown in EN300422-1 V1.4.2 (2011-08), section 8.3.2. #### **RESULTS** The necessary bandwidth data is presented on pages 12 and 20. Data is shown on the figures for each transmitter. The figure shows the maximum relative level within the emission mask with modulation. As shown by the test data, the necessary bandwidth of the EUT meets the requirements of EN 300 422-1, section 8.3.2. The RSS-Gen maximum ISED Canada 99% bandwidth measurement was less than 200 kHz. The temperature during the testing was 74 degrees F, with relative humidity of 17%. Figure A-1 - Test Setup for Necessary Bandwidth ## **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: EN 300 422 Digital Necessary Bandwidth Low Frequency, 572.000MHz, 1mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 1; Carrier Power Date Tested: Tested on July 27, 2020 #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: Low Frequency, 572.000MHz, 1mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 2; Maximum Relative Level #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: EN 300 422 Digital Necessary Bandwidth Low Frequency, 572.000MHz, 1mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 3; Lower and upper frequency transmitter band Wide band noise floor Date Tested: Test on July 27, 2020 #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: Low Frequency, 572.000MHz, 10mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 1; Carrier Power Date Tested: Tested on July 27, 2020 17:55:24 27.07.2020 #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: EN 300 422 Digital Necessary Bandwidth Low Frequency, 572.000MHz, 10mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 2; Maximum Relative Level Date Tested: Test on July 27, 2020 ## **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: Low Frequency, 572.000MHz, 10mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 3; Lower and upper frequency transmitter band Wide band noise floor ## **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: Middle Frequency, 589.925MHz, 1mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 1; Carrier Power Date Tested: Tested on July 27, 2020 #### **Test Information** EUT Name: QLXD2 J50A 18:02:21 27.07.2020 Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: Middle Frequency, 589.925MHz, 1mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 2; Maximum Relative Level #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: Middle Frequency, 589.925MHz, 1mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 3; Lower and upper frequency transmitter band Wide band noise floor Date Tested: Test on July 27, 2020 #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: Middle Frequency, 589.925MHz, 10mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 1; Carrier Power Date Tested: Tested on July 27, 2020 #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: Middle Frequency, 589.925MHz, 10mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 2; Maximum Relative Level Date Tested: Test on July 27, 2020 #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: Middle Frequency, 589.925MHz, 10mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 3; Lower and upper frequency transmitter band Wide band noise floor ## **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: High Frequency, 607.875MHz, 1mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 1; Carrier Power Date Tested: Tested on July 27, 2020 #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: High Frequency, 607.875MHz, 1mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 2; Maximum Relative Level #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: High Frequency, 607.875MHz, 1mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 3; Lower and upper frequency transmitter band Wide band noise floor Date Tested: Test on July 27, 2020 #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: High Frequency, 607.875MHz, 10mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 1; Carrier Power Date Tested: Tested on July 27, 2020 #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: High Frequency, 607.875MHz, 10mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 2; Maximum Relative Level Date Tested: Test on July 27, 2020 #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: High Frequency, 607.875MHz, 10mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 3; Lower and upper frequency transmitter band Wide band noise floor ## **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: High Frequency, 614.125MHz, 1mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 1; Carrier Power Date Tested: Tested on July 27, 2020 #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: High Frequency, 614.125MHz, 1mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 2; Maximum Relative Level #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: High Frequency,
614.125MHz, 1mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 3; Lower and upper frequency transmitter band Wide band noise floor Date Tested: Test on July 27, 2020 #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: High Frequency, 614.125MHz, 10mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 1; Carrier Power Date Tested: Tested on July 27, 2020 18:15:00 27.07.2020 ## **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: High Frequency, 614.125MHz, 10mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 2; Maximum Relative Level Date Tested: Test on July 27, 2020 #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: High Frequency, 614.125MHz, 10mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 3; Lower and upper frequency transmitter band Wide band noise floor ## **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: High Frequency, 615.875MHz, 1mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 1; Carrier Power Date Tested: Tested on July 27, 2020 18:20:04 27.07.2020 #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: High Frequency, 615.875MHz, 1mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 2; Maximum Relative Level #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: High Frequency, 615.875MHz, 1mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 3; Lower and upper frequency transmitter band Wide band noise floor Date Tested: Test on July 27, 2020 ## 18:20:32 27.07.2020 #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: High Frequency, 615.875MHz, 10mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 1; Carrier Power Date Tested: Tested on July 27, 2020 18:17:51 27.07.2020 #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: High Frequency, 615.875MHz, 10mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 2; Maximum Relative Level Date Tested: Test on July 27, 2020 #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: EN 300 422 Digital Necessary Bandwidth Operating Conditions: High Frequency, 615.875MHz, 10mW Operator Name: Juan Castrejon Comment: 8.3.3.1: Step 3; Lower and upper frequency transmitter band Wide band noise floor ## RSS-210, RSS-Gen 99% Emissions Bandwidth | QLXD2 Unit # N6 | Frequency in MHz | Measured 99% BW (kHz) | RSS-210 Limit (kHz) | |-----------------|------------------|-----------------------|---------------------| | | 572.000 | 162.65 | 200 | | | 589.925 | 162.44 | 200 | | | 607.875 | 162.28 | 200 | | | 614.125 | 162.94 | 200 | | | 615.875 | 162.57 | 200 | RF Power Output set to 10 mW Tested by Juan Castrejon, November 9, 2020 #### **Radiated Spurious Emissions** ## **Purpose:** This test performed to determine if the EUT meets the radiated RF emission requirements of the FCC Part 15C section 236(g) and FCC OET Basic Certification Requirements for Wireless Microphones over the frequency range from 30MHz to 6GHz. A Quasi-Peak and Average detectors were used for the measurements. Both FCC Part 15C and IC RSS-Gen require measurements to the 10th harmonic of the carrier. #### **Requirements:** As stated in FCC 15C section 236(g), the FCC OET Basic Certification Requirements for Wireless Microphones, and RSS-210 Annex G, Compliance for spurious emission requirements shall be demonstrated using the applicable measurement procedures of ETSI EN 300 422-1. Compliance with the emission limits shall be demonstrated using a QP detector below 1GHz and a RMS Average detector above 1GHz. Emissions shall be investigated up to the 10th harmonic of the fundamental. #### **Measurement Uncertainty:** All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system. Values of Expanded Measurement Uncertainty (95% Confidence) | Measurement Type | U _{lab} | U _{ETSI} | |---|------------------|-------------------| | Radiated disturbance (electric field strength on an open area test site or alternative test site) (30 MHz – 1000 MHz) | 4.24 dB | 6.00 dB | | Radiated disturbance (electric field strength on an open area test site or alternative test site) (1 GHz – 13 GHz) | 4.56 dB | 6.00 dB | U_{lab} = Determined for Shure EMC Laboratory U_{ETSI} = From ETSI EN 300 422-1 Table 10 Since U_{lab} is less than or equal to U_{ETSI}: - Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit; Non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit. #### **Test Setup and Instrumentation:** Photographs of the test setup are shown in Figure B 1 and Figure B 2. The test instrumentation can be determined from Table 10-1. #### **EUT Operation:** The EUT was powered up and the frequency of the transmitter was selected using the front panel controls. A Shure KSM8 microphone head was used. The EUT was checked for proper operation after it was setup on the test table. For radiated spurious emissions the testing was performed with the EUT set to the low, middle, and high frequencies with RF power output of 1mW and 10mW. ## **Specific Test Procedures:** All tests were performed in a 28ft. x 20ft. x 18.5ft. 3m semi-anechoic test chamber. The walls and ceiling of the shielded chamber are lined with ferrite tiles. Anechoic absorber material is installed over the ferrite tile. The floor of the chamber is used as the ground plane. The chamber complies with ANSI C63.4a-2017 for site attenuation. The shielded enclosure prevents emissions from other sources, such as radio and TV stations from interfering with the measurements. All power lines and signal lines entering the enclosure pass through filters on the enclosure wall. The power line filters prevent extraneous signals from entering the enclosure on these leads. ## **BLOCK DIAGRAM OF SHIELDED ENCLOSURE** Preliminary radiated measurements were performed to determine the frequencies where the significant emissions might be found. With the EUT at one set position and the measurement antenna at a set height (i.e. without maximizing), the radiated emissions were measured using a peak detector and automatically plotted. The BiConiLog measuring antenna was positioned at a 3-meter distance from the EUT for below 1GHz testing, and a double ridged waveguide antenna above 1GHz testing. All significant broadband and narrowband signals found in the preliminary sweeps were then measured using a peak detector at a test distance of 3 meters. To ensure that maximum emission levels were measured, the following steps were taken: - i. The EUT was rotated so that all of its sides were exposed to the receiving antenna. - ii. Since the measuring antennas are linearly polarized, both horizontal and vertical field components were measured. - iii. The measuring antenna was raised and lowered from 1 to 4 meters for each antenna polarization to maximize the readings. The equivalent power was determined from the field intensity levels measured at 3 meters using the substitution method. To determine the emission power, another antenna was set in place of the EUT and connected to a calibrated signal generator. (A tuned dipole was used for all measurements below 1GHz and a double ridged waveguide antenna was used for all measurements above 1GHz.) The output of the signal generator was adjusted to match the received level at the EMI receiver. The signal level was recorded. The reading was corrected to compensate for cable loss and antenna gain. #### **Results:** The plots of the peak preliminary radiated voltage levels in the graphs on page 30 thru page 39. The ERP measurements are shown on pages 40 thru page 44. All emissions measured from the EUT were within the ETSI EN 300 422-1 specification limits. Figure B 1: QLXD2 Transmitter Test Setup Figure B 2: QLXD2 Transmitter Test Setup ## **SHURE Radiated RF Emissions Test Report** #### **Common Information** Test Description: EUT: Serial Number: **RF Power Level** Operating Frequency: **Tester Name: Date Tested** FCC 15C Radiated Emissions 30MHz - 1GHz QLXD2 J50A 1 Low Frequency 572.000MHz 1mW Sharjeel Sohail August 3, 2020, 75F 39% RH ## **SHURE Radiated RF Emissions Test Report** #### **Common Information** Test Description: EUT: Serial Number: Operating Frequency: **RF Power Level** Tester Name: **Date Tested** FCC 15C Radiated Emissions 1GHz - 7GHz QLXD2 J50A Low frequency 572.000MHz 1mW Sharjeel Sohail August 13, 2020, 75F 42% RH ## **SHURE Radiated RF Emissions Test Report** #### **Common Information** Test Description: EUT: Serial Number: Operating Frequency: **RF Power Level** Tester Name: Date Tested FCC 15C Radiated Emissions 30MHz - 1GHz QLXD2 J50A 1 Low Frequency 572.000MHz 10mW Sharjeel Sohail August 3, 2020, 75F 40% RH Full Spectrum #### **SHURE Radiated RF Emissions Test Report** ## **Common Information** Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested FCC 15C Radiated Emissions 1GHz - 7GHz QLXD2 J50A 1 Low Frequency 572.000MHz 10mW Sharjeel Sohail August 13, 2020, 75F 43% RH ## **SHURE Radiated RF Emissions Test Report** #### **Common Information** Test Description: EUT: Serial Number:
Operating Frequency: RF Power Level Tester Name: **Date Tested** FCC 15C Radiated Emissions 30MHz - 1GHz QLXD2 J50A 1 Middle Frequency 589.925MHz 1mW Sharjeel Sohail August 3, 2020, 75F 39% RH Full Spectrum ## **SHURE Radiated RF Emissions Test Report** ## **Common Information** Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: Date Tested FCC 15C Radiated Emissions 1GHz - 7GHz QLXD2 J50A 1 Middle Frequency 589.925MHz 1mW Sharjeel Sohail August 13, 2020, 75F 41% RH ## **SHURE Radiated RF Emissions Test Report** FCC 15C Radiated Emissions 30MHz - 1GHz #### **Common Information** Test Description: **EUT** Serial Number Operating Frequency: **RF Power Level Tester Name** **Date Tested** Middle Frequency 589.925MHz 10mW 1 Sharjeel Sohail QLXD2 J50A August 4, 2020, 74F 36% RH Full Spectrum #### **SHURE Radiated RF Emissions Test Report** #### **Common Information** Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: **Date Tested** FCC 15C Radiated Emissions 1GHz - 7GHz QLXD2 J50A Middle Frequency 589.925MHz 10mW Sharjeel Sohail August 13, 2020, 75F 40% RH ## **SHURE Radiated RF Emissions Test Report** FCC 15C Radiated Emissions 30MHz - 1GHz #### **Common Information** Test Description: EUT Serial Number Operating Frequency: RF Power Level Tester Name Date Tested QLXD2 J50A 1 T High Frequency 607.875MHz 1mW Sharjeel Sohail August 4, 2020, 75F 33% RH Full Spectrum ## **SHURE Radiated RF Emissions Test Report** ## **Common Information** Test Description: EUT: Serial Number: **Operating Frequency:** RF Power Level Tester Name: Date Tested FCC 15C Radiated Emissions 1GHz - 7GHz QLXD2 J50A 1 High Frequency 607.875MHz 1mW Sharjeel Sohail August 14, 2020, 73F 44% RH ## **SHURE Radiated RF Emissions Test Report** FCC 15C Radiated Emissions 30MHz - 1GHz #### **Common Information** Test Description: EUT Serial Number **Operating Frequency:** RF Power Level Tester Name Date Tested 1 High Frequency 607.875MHz 10mW Sharjeel Sohail QLXD2 J50A August 4, 2020, 75F 35% RH Full Spectrum ## **SHURE Radiated RF Emissions Test Report** ## **Common Information** Test Description: EUT: Serial Number: **Operating Frequency:** RF Power Level Tester Name: **Date Tested** FCC 15C Radiated Emissions 1GHz - 7GHz QLXD2 J50A 1 High Frequency 607.875MHz 10mW Sharjeel Sohail August 13, 2020, 75F 39% RH # **SHURE Radiated RF Emissions Test Report** ## **Common Information** Test Description: **EUT** Serial Number Operating Frequency: **RF Power Level** **Tester Name Date Tested** FCC 15C Radiated Emissions 30MHz - 1GHz QLXD2 J50A 1 Low Frequency 614.125MHz 1mW Sharjeel Sohail August 4, 2020, 75F 33% RH Full Spectrum ## **SHURE Radiated RF Emissions Test Report** ### **Common Information** Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: **Date Tested** FCC 15C Radiated Emissions 1GHz - 7GHz QLXD2 J50A Low Frequency 614.125MHz 1mW Sharjeel Sohail August 14, 2020, 74F 43% RH # **SHURE Radiated RF Emissions Test Report** FCC 15C Radiated Emissions 30MHz - 1GHz ### **Common Information** Test Description: **EUT** Serial Number Operating Frequency: **RF Power Level** **Tester Name Date Tested** 1 Low Frequency 614.125MHz 10mW Sharjeel Sohail QLXD2 J50A August 4, 2020, 75F 34% RH Full Spectrum ## **SHURE Radiated RF Emissions Test Report** ## **Common Information** Test Description: EUT: Serial Number: Operating Frequency: **RF Power Level** Tester Name: **Date Tested** FCC 15C Radiated Emissions 1GHz - 7GHz QLXD2 J50A 1 Low Frequency 614.125MHz 10mW Sharjeel Sohail August 14, 2020, 74F 42% RH # **SHURE Radiated RF Emissions Test Report** FCC 15C Radiated Emissions 30MHz - 1GHz ### **Common Information** Test Description: EUT Serial Number Operating Frequency: RF Power Level Tester Name Date Tested QLXD2 J50A 1 High Frequency 615.875MHz 1mW Sharjeel Sohail August 4, 2020, 75F 34% RH Full Spectrum # **SHURE Radiated RF Emissions Test Report** #### **Common Information** Test Description: EUT: Serial Number: Operating Frequency: Operating Frequency RF Power Level Tester Name: Date Tested FCC 15C Radiated Emissions 1GHz - 7GHz QLXD2 J50A 1 High Frequency 615.875MHz 1mW Sharjeel Sohail August 14, 2020, 74F 41% RH # **SHURE Radiated RF Emissions Test Report** FCC 15C Radiated Emissions 30MHz - 1GHz ### **Common Information** Test Description: EUT Serial Number Operating Frequency: **RF Power Level Tester Name** **Date Tested** QLXD2 J50A High Frequency 615.875MHz 10mW Sharjeel Sohail August 4, 2020, 75F 34% RH Full Spectrum # **SHURE Radiated RF Emissions Test Report** ## **Common Information** Test Description: EUT: Serial Number: Operating Frequency: RF Power Level Tester Name: **Date Tested** FCC 15C Radiated Emissions 1GHz - 7GHz QLXD2 J50A High Frequency 615.875MHz 10mW Sharjeel Sohail August 14, 2020, 74F 42% RH Date: September 9, 2020 EUT: QLXD2 Band: J50A Serial Number: 1 Specification: EN 300 422-1, Spurious Radiated Emissions Comments: Test Distance is 3 meters Mode: EUT set to Low Frequency 572.000MHz at 10mW Tested By: Sharjeel Sohail | Frequency
in MHz | Detector
Used | Antenna
Polarity | Measured
Level in
dBuV | Matched
Sig. Gen.
Reading
in dBm | Antenna
Gain
in dB | Cable
Loss
in dB | ERP
Total
in dBm | ETSI
Limit
in dBm | Margin
In dB | |---------------------|------------------|---------------------|------------------------------|---|--------------------------|------------------------|------------------------|-------------------------|-----------------| | 1190.967 | Average | V | 35.68 | -63.24 | 3.65 | 2.81 | -62.40 | -30.00 | 32.40 | | 1626.167 | Average | V | 36.21 | -75.89 | 6.10 | 3.33 | -73.13 | -30.00 | 43.13 | | 1716.267 | Average | V | 43.68 | -63.81 | 5.57 | 3.48 | -61.72 | -30.00 | 31.72 | | 3009.400 | Average | ٧ | 38.45 | -64.02 | 7.10 | 4.53 | -61.45 | -30.00 | 31.45 | Total (dBm) = Matched Signal. Generator Reading (dBm) + Antenna Gain (dB) – Cable Loss (dB) Date: September 9, 2020 EUT: QLXD2 Band: J50A Serial Number: 1 Specification: EN 300 422-1, Spurious Radiated Emissions Comments: Test Distance is 3 meters Mode: EUT set to Middle Frequency 589.925MHz at 10mW Tested By: Sharjeel Sohail | Frequency
in MHz | Detector
Used | Antenna
Polarity | Measured
Level in
dBuV | Matched
Sig. Gen.
Reading
in dBm | Antenna
Gain
in dB | Cable
Loss
in dB | ERP
Total
in dBm | ETSI
Limit
in dBm | Margin
In dB | |---------------------|------------------|---------------------|------------------------------|---|--------------------------|------------------------|------------------------|-------------------------|-----------------| | 1035.133 | Average | ٧ | 34.97 | -71.65 | 3.09 | 2.62 | -71.18 | -30.00 | 41.18 | | 1770.100 | Average | ٧ | 46.26 | -49.69 | 5.26 | 3.44 | -47.87 | -30.00 | 17.87 | | 2006.400 | Average | ٧ | 37.65 | -68.26 | 4.95 | 3.70 | -67.01 | -30.00 | 37.01 | | 2214.933 | Average | ٧ | 38.42 | -76.12 | 5.49 | 3.91 | -74.54 | -30.00 | 44.54 | Total (dBm) = Matched Signal. Generator Reading (dBm) + Antenna Gain (dB) - Cable Loss (dB) Date: September 9, 2020 EUT: QLXD2 Band: J50A Serial Number: 1 Specification: EN 300 422-1, Spurious Radiated Emissions Comments: Test Distance is 3 meters Mode: EUT set to High Frequency 607.875MHz at 10mW Tested By: Sharjeel Sohail | Frequency
in MHz | Detector
Used | Antenna
Polarity | Measured
Level in
dBuV | Matched
Sig. Gen.
Reading
in dBm | Antenna
Gain
in dB | Cable
Loss
in dB | ERP
Total
in dBm | ETSI
Limit
in dBm | Margin
In dB | |---------------------|------------------|---------------------|------------------------------|---|--------------------------|------------------------|------------------------|-------------------------|-----------------| | 1045.333 | Average | V | 34.57 | -70.51 | 3.24 | 2.65 | -69.93 | -30.00 | 39.93 | | 1823.367 | Average | V | 58.79 | -36.41 | 4.99 | 3.56 | -34.98 | -30.00 | 4.98 | | 2068.733 | Average | V | 37.07 | -73.97 | 5.23 | 3.83 | -72.58 | -30.00 | 42.58 | | 3709.800 | Average | V | 39.83 | -68.26 | 8.32 | 5.32 | -65.26 | -30.00 | 35.26 | Date: September 9, 2020 EUT: QLXD2 Band: J50A Serial Number: 1 Specification: EN 300 422-1, Spurious Radiated Emissions Comments: Test Distance is 3 meters Mode: EUT set to Low Frequency 614.125MHz at 10mW Tested By: Sharjeel Sohail | Frequency
in MHz | Detector
Used | Antenna
Polarity | Measured
Level in
dBuV | Matched
Sig. Gen.
Reading
in dBm | Antenna
Gain
in dB | Cable
Loss
in dB | ERP
Total
in dBm | ETSI
Limit
in dBm | Margin
In dB | |---------------------|------------------|---------------------|------------------------------|---|--------------------------|------------------------|------------------------|-------------------------|-----------------| | 1041.933 | Average | V | 34.97 | -61.22 | 3.19 | 2.65 | -60.68 | -30.00 | 30.68 | | 1269.167 | Average | V | 35.48 | -73.17 | 3.73 | 3.64 | -73.08 | -30.00 | 43.08 | | 1490.167 | Average | V | 34.48 | -75.76 | 5.98 | 3.20 | -72.98 | -30.00 | 42.98 | | 1842.633 | Average | V | 52.77 | -41.71 | 5.07 | 3.52 | -40.16 | -30.00 | 10.16 | | 4057.167 | Average | V | 39.96 | -69.28 | 9.01 | 5.92 | -66.19 | -30.00 | 36.19 | Date: September 9, 2020 EUT: QLXD2 Band: J50A Serial Number: 1 Specification: EN 300 422-1, Spurious Radiated Emissions Comments: Test Distance is 3 meters Mode: EUT set to High Frequency 615.875MHz at 10mW Tested By: Sharjeel Sohail | Frequency
in MHz | Detector
Used | Antenna
Polarity | Measured
Level in
dBuV | Matched
Sig. Gen.
Reading
in dBm | Antenna
Gain
in dB | Cable
Loss
in dB | ERP
Total
in dBm | ETSI
Limit
in dBm | Margin
In dB |
---------------------|------------------|---------------------|------------------------------|---|--------------------------|------------------------|------------------------|-------------------------|-----------------| | 1231.767 | Average | V | 38.65 | -60.91 | 3.54 | 2.89 | -60.26 | -30.00 | 30.26 | | 1627.867 | Average | V | 36.94 | -79.27 | 6.09 | 3.30 | -76.48 | -30.00 | 46.48 | | 1845.467 | Average | V | 36.80 | -76.33 | 5.08 | 3.50 | -74.75 | -30.00 | 44.75 | | 1847.733 | Average | V | 54.49 | -38.23 | 5.09 | 3.52 | -36.66 | -30.00 | 6.66 | | 3066.067 | Average | V | 39.80 | -65.94 | 7.13 | 4.53 | -63.34 | -30.00 | 33.34 | #### **Maximum Radiated Power** ## **Purpose:** This test performed to determine if the EUT meets the Maximum Radiated Power requirements of the FCC Part15C, Section 15.236(d)(1), Section 15.236(d)(2), the FCC OET Basic Certification Requirements for Wireless Microphones, and RSS-210 Annex G. #### Requirements: As stated in FCC 15C Section 115.236(d)(1), Section 15.236 (6)(2). the FCC OET Basic Certification Requirements for Wireless Microphones, and RSS-210 Annex G. ## **Measurement Uncertainty:** All measurements are an estimate of their true value. The measurement uncertainty characterizes, with a specified confidence level, the spread of values which may be possible for a given measurement system. Values of Expanded Measurement Uncertainty (95% Confidence) | Measurement Type | U_lab | |---|---------| | Radiated measurements (30 MHz – 1000 MHz) | 4.24 dB | U_{lab} = Determined for Shure EMC Laboratory Since U_{lab} is less than or equal to U_{ETSI}: - Compliance is deemed to occur if no measured disturbance exceeds the disturbance limit; Non-compliance is deemed to occur if any measured disturbance exceeds the disturbance limit. #### **Test Setup and Instrumentation:** Photographs of the test setup are shown in Figure C 1. The test instrumentation can be determined from Table 10-1. #### **EUT Operation:** The EUT was powered up and the frequency of the transmitter was selected using the front panel controls. A Shure KSM8 microphone head was used. For rated output power, the testing was performed with the EUT set to the low, middle, and high frequency within the operating frequency range, and at 1mW and 10mW RF output. # **Specific Test Procedures:** The Maximum Rated Power test was performed with the RF output port connected to a 20dB attenuator, which was connected to the EMPower RF Power Sensor. The EUT was set to transmit on the low, middle, and high frequencies, and power levels of 1mW and 10mW. ### **Results:** The EIRP for all frequencies measured meets the FCC15C 15.236 requirements, the FCC OET Basic Certification Requirements for Wireless Microphones requirements, and RSS-210 Annex G. The results are shown on page 45 thru page 54. Figure C-1 – Maximum Radiated RF Output Power setup ## **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: Maximum Radiated Output Operating Conditions: Low Frequency, 572.000MHz, 1mW Operator Name: Juan Castrejon Comment: FCC Part15C, Section 15.236 Date Tested: Tested on July 27, 2020 | Measured in RF
Output, in dBm | Equivalent Antenna
Gain in dBi | EIRP
in dBm | EIRP in
mW | EIRP
Limit in
mW | Margin
In mW | |----------------------------------|-----------------------------------|----------------|---------------|------------------------|-----------------| | 0.09 | -1.3 | -1.21 | 0.76 | 50.00 | 49.24 | EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dBi) #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: Maximum Radiated Output Operating Conditions: Low Frequency, 572.000MHz, 10mW Operator Name: Juan Castrejon | Measured in RF
Output, in dBm | Equivalent Antenna
Gain in dBi | EIRP
in dBm | EIRP in
mW | EIRP
Limit in
mW | Margin
In mW | |----------------------------------|-----------------------------------|----------------|---------------|------------------------|-----------------| | 10.23 | -1.3 | 8.93 | 7.82 | 50.00 | 42.18 | EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dBi) ## **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: Maximum Radiated Output Operating Conditions: Middle Frequency, 589.925MHz, 1mW Operator Name: Juan Castrejon Comment: FCC Part15C, Section 15.236 Date Tested: Tested on July 27, 2020 | Measured in RF
Output, in dBm | Equivalent Antenna
Gain in dBi | EIRP
in dBm | EIRP in
mW | EIRP
Limit in
mW | Margin
In mW | |----------------------------------|-----------------------------------|----------------|---------------|------------------------|-----------------| | 0.01 | -1.3 | -1.29 | 0.74 | 50.00 | 49.26 | EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dBi) #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: Maximum Radiated Output Operating Conditions: Middle Frequency, 589.925MHz, 10mW Operator Name: Juan Castrejon Comment: FCC Part15C, Section 15.236 Date Tested: Tested on July 27, 2020 | Measured in RF
Output, in dBm | Equivalent Antenna
Gain in dBi | EIRP
in dBm | EIRP in
mW | EIRP
Limit in
mW | Margin
In mW | |----------------------------------|-----------------------------------|----------------|---------------|------------------------|-----------------| | 10.16 | -1.3 | 8.86 | 7.69 | 50.00 | 42.31 | ## **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: Maximum Radiated Output Operating Conditions: High Frequency, 607.875MHz, 1mW Operator Name: Juan Castrejon Comment: FCC Part15C, Section 15.236 Date Tested: Tested on July 27, 2020 | Measured in RF
Output, in dBm | Equivalent Antenna
Gain in dBi | EIRP
in dBm | EIRP in
mW | EIRP
Limit in
mW | Margin
In mW | |----------------------------------|-----------------------------------|----------------|---------------|------------------------|-----------------| | -0.12 | -1.3 | -1.42 | 0.72 | 50.00 | 49.28 | EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dBi) ### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: Maximum Radiated Output Operating Conditions: High Frequency, 607.875MHz, 10mW Operator Name: Juan Castrejon | Measured in RF
Output, in dBm | Equivalent Antenna
Gain in dBi | EIRP
in dBm | EIRP in
mW | EIRP
Limit in
mW | Margin
In mW | |----------------------------------|-----------------------------------|----------------|---------------|------------------------|-----------------| | 9.96 | -1.3 | 8.66 | 7.35 | 50.00 | 42.65 | EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dBi) ## **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: Maximum Radiated Output Operating Conditions: Low Frequency, 614.125MHz, 1mW Operator Name: Juan Castrejon Comment: FCC Part15C, Section 15.236 Date Tested: Tested on July 27, 2020 | Measured in RF
Output, in dBm | Equivalent Antenna
Gain in dBi | EIRP
in dBm | EIRP in
mW | EIRP
Limit in
mW | Margin
In mW | |----------------------------------|-----------------------------------|----------------|---------------|------------------------|-----------------| | -0.19 | -1.3 | -1.49 | 0.71 | 20.00 | 19.29 | EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dBi) ### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: Maximum Radiated Output Operating Conditions: Low Frequency, 614.125MHz, 10mW Operator Name: Juan Castrejon | Measured in RF
Output, in dBm | Equivalent Antenna
Gain in dBi | EIRP
in dBm | EIRP in
mW | EIRP
Limit in
mW | Margin
In mW | |----------------------------------|-----------------------------------|----------------|---------------|------------------------|-----------------| | 9.88 | -1.3 | 8.58 | 7.21 | 20.00 | 12.79 | EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dBi) ## **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: Maximum Radiated Output Operating Conditions: High Frequency, 615.875MHz, 1mW Operator Name: Juan Castrejon Comment: FCC Part15C, Section 15.236 Date Tested: Tested on July 27, 2020 | Measured in RF
Output, in dBm | Equivalent Antenna
Gain in dBi | EIRP
in dBm | EIRP in
mW | EIRP
Limit in
mW | Margin
In mW | |----------------------------------|-----------------------------------|----------------|---------------|------------------------|-----------------| | -0.19 | -1.3 | -1.49 | 0.71 | 20.00 | 19.29 | EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dB) ### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: Maximum Radiated Output Operating Conditions: High Frequency, 615.875MHz, 10mW Operator Name: Juan Castrejon | Measured in RF
Output, in dBm | Equivalent Antenna
Gain in dBi | EIRP
in dBm | EIRP in
mW | EIRP
Limit in
mW | Margin
In mW | |----------------------------------|-----------------------------------|----------------|---------------|------------------------|-----------------| | 9.87 | -1.3 | 8.57 | 7.19 | 20.00 | 12.81 | EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dBi) ## **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: Maximum Radiated Output Operating Conditions: Low Frequency, 572.000MHz, 1mW Operator Name: Juan Castrejon Comment: RSS-210 Date Tested: Tested on July 27, 2020 | Measured in RF
Output, in dBm | Equivalent Antenna
Gain in dBi | EIRP
in dBm | EIRP in
mW | EIRP
Limit in
mW | Margin
In mW | |----------------------------------|-----------------------------------|----------------|---------------|------------------------|-----------------| | 0.09 | -1.3 | -1.21 | 0.76 | 250.00 | 249.24 | EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dBi) #### **Test Information** EUT
Name: QLXD2 J50A Serial Number: N6 Test Description: Maximum Radiated Output Operating Conditions: Low Frequency, 572.000MHz, 10mW Operator Name: Juan Castrejon Comment: RSS-210 Date Tested: Tested on July 27, 2020 | Measured in RF
Output, in dBm | Equivalent Antenna
Gain in dBi | EIRP
in dBm | EIRP in
mW | EIRP
Limit in
mW | Margin
In mW | |----------------------------------|-----------------------------------|----------------|---------------|------------------------|-----------------| | 10.23 | -1.3 | 8.93 | 7.82 | 250.00 | 242.18 | EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dBi) ## **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: Maximum Radiated Output Operating Conditions: Middle Frequency, 589.925MHz, 1mW Operator Name: Juan Castrejon Comment: RSS-210 Date Tested: Tested on July 27, 2020 | Measured in RF
Output, in dBm | Equivalent Antenna
Gain in dBi | EIRP
in dBm | EIRP in
mW | EIRP
Limit in
mW | Margin
In mW | |----------------------------------|-----------------------------------|----------------|---------------|------------------------|-----------------| | 0.01 | -1.3 | -1.29 | 0.74 | 250.00 | 249.26 | EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dBi) #### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: Maximum Radiated Output Operating Conditions: Middle Frequency, 589.925MHz, 10mW Operator Name: Juan Castrejon Comment: RSS-210 Date Tested: Tested on April 27, 2020 | Measured in RF
Output, in dBm | Equivalent Antenna
Gain in dBi | EIRP
in dBm | EIRP in
mW | EIRP
Limit in
mW | Margin
In mW | |----------------------------------|-----------------------------------|----------------|---------------|------------------------|-----------------| | 10.16 | -1.3 | 8.86 | 7.69 | 250.00 | 242.31 | EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dBi) ## **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: Maximum Radiated Output Operating Conditions: High Frequency, 607.875MHz, 1mW Operator Name: Juan Castrejon Comment: RSS-210 Date Tested: Tested on July 27, 2020 | Measured in RF
Output, in dBm | Equivalent Antenna
Gain in dBi | EIRP
in dBm | EIRP in
mW | EIRP
Limit in
mW | Margin
In mW | |----------------------------------|-----------------------------------|----------------|---------------|------------------------|-----------------| | -0.12 | -1.3 | -1.42 | 0.72 | 250.00 | 249.28 | EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dBi) ### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: Maximum Radiated Output Operating Conditions: High Frequency, 607.875MHz, 10mW Operator Name: Juan Castrejon Comment: RSS-210 Date Tested: Tested on July 27, 2020 | Measured in RF
Output, in dBm | Equivalent Antenna
Gain in dBi | EIRP
in dBm | EIRP in
mW | EIRP
Limit in
mW | Margin
In mW | |----------------------------------|-----------------------------------|----------------|---------------|------------------------|-----------------| | 9.96 | -1.3 | 8.66 | 7.35 | 250.00 | 242.65 | ## **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: Maximum Radiated Output Operating Conditions: Low Frequency, 614.125MHz, 1mW Operator Name: Juan Castrejon Comment: RSS-210 Date Tested: Tested on July 27, 2020 | Measured in RF
Output, in dBm | Equivalent Antenna
Gain in dBi | EIRP
in dBm | EIRP in
mW | EIRP
Limit in
mW | Margin
In mW | |----------------------------------|-----------------------------------|----------------|---------------|------------------------|-----------------| | -0.19 | -1.3 | -1.49 | 0.71 | 20.00 | 19.29 | EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dBi) ### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: Maximum Radiated Output Operating Conditions: Low Frequency, 614.125MHz, 10mW Operator Name: Juan Castrejon Comment: RSS-210 Date Tested: Tested on July 27, 2020 | Measured in RF
Output, in dBm | Equivalent Antenna
Gain in dBi | EIRP
in dBm | EIRP in
mW | EIRP
Limit in
mW | Margin
In mW | |----------------------------------|-----------------------------------|----------------|---------------|------------------------|-----------------| | 9.88 | -1.3 | 8.58 | 7.21 | 20.00 | 12.79 | ## **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: Maximum Radiated Output Operating Conditions: High Frequency, 615.875MHz, 1mW Operator Name: Juan Castrejon Comment: RSS-210 Date Tested: Tested on July 27, 2020 | Measured in RF
Output, in dBm | Equivalent Antenna
Gain in dBi | EIRP
in dBm | EIRP in
mW | EIRP
Limit in
mW | Margin
In mW | |----------------------------------|-----------------------------------|----------------|---------------|------------------------|-----------------| | -0.19 | -1.3 | -1.49 | 0.71 | 20.00 | 19.29 | EIRP (dBm) = Measurement (dBm) + Equivalent Antenna Gain (dBi) ### **Test Information** EUT Name: QLXD2 J50A Serial Number: N6 Test Description: Maximum Radiated Output Operating Conditions: High Frequency, 615.875MHz, 10mW Operator Name: Juan Castrejon Comment: RSS-210 Date Tested: Tested on July 27, 2020 | Measured in RF
Output, in dBm | Equivalent Antenna
Gain in dBi | EIRP
in dBm | EIRP in
mW | EIRP
Limit in
mW | Margin
In mW | |----------------------------------|-----------------------------------|----------------|---------------|------------------------|-----------------| | 9.87 | -1.3 | 8.57 | 7.19 | 20.00 | 12.81 |