# TEST REPORT

# Class II Permissive Change

for the

# Lucent PC24-H-FC RF Modem for Wireless LAN

used in the

**Apple Airport Base Station** 

Model # M8440

Apple Computer, Inc.

November 9, 2001

Engineering contact:

Mike Kriege

Apple Computers, Inc. 1 Infinite Loop M/S 26A Cupertino, California 95014

(408) 974-0560 Voice, (408) 862-5061 Fax

E-Mail: kriege@apple.com

EMC NVLAP Technical Manager:

Date: November 9, 2001

Robert Steinfeld

EMC Test Engineer:

Mike Kriege

\_\_Date:

11/9/200

This document may not be reproduced without written permission from Apple Computer, 1 Infinite Loop, Cupertino, CA 95014.

# **Test Report Summary**

| Specification              | Test Description                                                   | Result | Comment                                                                                             |
|----------------------------|--------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------|
| CFR 15.203(a)<br>pg. 70    | Antenna Requirement                                                | Pass   | Section 1.6                                                                                         |
| CFR 15.207(a)<br>pg. 72    | Conducted Emission/Mains<br>450 kHz to 30 MHz, 250 microvolts      | Pass   | Section 2                                                                                           |
| CFR 15.209(a)<br>pg. 73    | Radiated Emissions<br>30 MHz to 25 GHz                             | Pass   | Section 3                                                                                           |
| CFR 15.247(a)(2)<br>pg. 89 | Bandwidth for Direct Sequence Systems<br>Shall be at least 500 kHz | Pass   | Section 4                                                                                           |
| CFR 15.247(b)(1)<br>pg. 89 | Maximum Peak Output Power<br>Shall be less than 1 Watt             | Pass   | Section 5                                                                                           |
| CFR 15.247(b)(4)<br>pg. 90 | RF Exposure Calculation                                            | Pass   | Section 6                                                                                           |
| CFR 15.247(c)              | -20 dBc Spurious Emissions                                         | Pass   | Section 7                                                                                           |
| CFR 15.247(e)              | Processing Gain<br>Shall be at least 10 dB                         | Pass   | Reference RevB of Processing<br>Gain found under FCC Grant<br>IMRWLPC24H.<br>Grant Date: 07/06/1999 |

# TABLE OF CONTENTS

| 1       | General Information                                                                                                                   | 5      |
|---------|---------------------------------------------------------------------------------------------------------------------------------------|--------|
| 1.1     | Introduction and Purpose for Class II Change                                                                                          | 5      |
| 1.2     | Product General and Technical Descriptions                                                                                            | 5<br>5 |
| 1.3     | Product Photograph                                                                                                                    | 6      |
| 1.4     | Product Block Diagram                                                                                                                 | 6<br>7 |
| 1.5     | Product Label                                                                                                                         | 8      |
| 1.6     | Antenna Information                                                                                                                   | 9      |
| 1.6.1   | CFR 47 Section 15.203(a) Antenna Requirement                                                                                          | 9      |
| 1.6.2   | Antenna Photograph                                                                                                                    | 9      |
| 1.6.3   | Antenna Electrical Informaton                                                                                                         | 10     |
|         | Antenna Azimuth Radiation Pattern                                                                                                     | 10     |
|         | Antenna Elevation #1 Radiation Pattern                                                                                                | 11     |
|         | Antenna Elevation #1 Radiation Pattern  Antenna Elevation #2 Radiation Pattern                                                        | 12     |
| 1.6.7   | Antenna Azimuth and Elevation Radiation Pattern Tabular Data                                                                          | 13     |
| 1.0.7   | Antenna Azimuti and Elevation Radiation I attern Tabular Data                                                                         | 13     |
| 2       | CFR 15.207(a) AC Power Line Conducted Emissions                                                                                       | 14     |
| 2.1     | CFR 15.207(a) AC Power Line Conducted Emissions Test Setup                                                                            | 14     |
| 2.2     | CFR 15.207(a) AC Power Line Conducted Emissions Test Procedure                                                                        | 15     |
| 2.3     | CFR 15.207(a) AC Power Line Conducted Emissions Test Flocedure                                                                        | 15     |
| 2.3.1   | CFR 15.207(a) AC Power Line Conducted Emissions Instrument Settings                                                                   | 15     |
| 2.4     | CFR 15.207(a) AC Power Line Conducted Emissions EUT Operating Conditions                                                              | 15     |
| 2.5     | CFR 15.207(a) AC Power Line Conducted Emissions Line 1 Test results                                                                   | 16     |
| 2.6     | CFR 15.207(a) AC Power Line Conducted Emissions Line 2 Test Results                                                                   | 17     |
| 2.0     | CIR 13.207(a) The Fower Ellie Conducted Ellissions Ellie 2 Test Results                                                               | 17     |
| 3       | CFR 15.209(a) Radiated Emissions                                                                                                      | 18     |
| 3.1     | CFR 15.209(a) Radiated Emissions less than 1 GHz                                                                                      | 18     |
| 3.1.1   | CFR 15.209(a) Radiated Emissions less than 1 GHz Test Setup                                                                           | 18     |
|         | CFR 15.209(a) Radiated Emissions less than 1 GHz Test Procedure                                                                       | 18     |
|         | CFR 15.209(a) Radiated Emissions less than 1 GHz Test Flocedure                                                                       | 19     |
|         | CFR 15.209(a) Radiated Emissions less than 1 GHz Instrument Settings                                                                  | 19     |
|         | CFR 15.209(a) Radiated Emissions less than 1 GHz EUT Operating Conditions                                                             | 19     |
| 3.1.5   | CFR 15.209(a) Radiated Emissions less than 1 GHz - Vertical Data                                                                      | 20     |
| 3.1.6   | CFR 15.209(a) Radiated Emissions less than 1 GHz - Vertical Data                                                                      | 20     |
| 5.1.0   | CTK 15.205(a) Radiated Ellissions less than 1 GHz - Horizontal Data                                                                   | 21     |
| 3.2     | CFR 15.209(a) Radiated Emissions greater than 1 GHz                                                                                   | 22     |
| 3.2.1   | CFR 15.209(a) Radiated Emissions greater than 1 GHz Test Setup                                                                        | 22     |
| 3.2.1   | CFR 15.209(a) Radiated Emissions greater than 1 GHz Test Setup<br>CFR 15.209(a) Radiated Emissions greater than 1 GHz Test Procedures | 22     |
|         | CFR 15.209(a) Radiated Emissions greater than 1 GHz Test Floedures                                                                    | 23     |
| 3.2.3   | CFR 15.209(a) Radiated Emissions greater than 1 GHz Instrument Settings                                                               | 23     |
| 3.2.3.1 | CFR 15.209(a) Radiated Emissions greater than 1 GHz EUT Operating Conditions                                                          | 23     |
| 3.2.5   | CFR 15.209(a) Radiated Emissions greater than 1 GHz Vertical, channel 1 (2.412 GHz)                                                   | 23     |
| 3.2.5   |                                                                                                                                       | 25     |
|         | CFR 15.209(a) Radiated Emissions greater than 1 GHz Horizontal, channel 1 (2.412 GHz)                                                 |        |
| 3.2.7   | CFR 15.209(a) Radiated Emissions greater than 1 GHz Vertical, channel 6 (2.437 GHz)                                                   | 26     |
| 3.2.8   | CFR 15.209(a) Radiated Emissions greater than 1 GHz Horizontal, channel 6 (2.437 GHz)                                                 | 27     |
| 3.2.9   | CFR 15.209(a) Radiated Emissions greater than 1 GHz Vertical, channel 11 (2.462 GHz)                                                  | 28     |
| 3.2.10  | CFR 15.209(a) Radiated Emissions greater than 1 GHz Horizontal, channel 11 (2.462 GHz)                                                | 29     |

# **Apple Airport Base Station**

# Apple File No. 1874-R-3

| 4     | CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems                          | 30 |
|-------|---------------------------------------------------------------------------------|----|
| 4.1   | CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems Test Setup               | 30 |
| 4.2   | CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems Test Procedures          | 30 |
| 4.3   | CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems Test Equipment           | 30 |
| 4.3.1 | CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems Instrument Settings      | 30 |
| 4.4   | CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems EUT Operating Conditions | 30 |
| 4.5   | CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems Channel 1, 1 Mbps        | 31 |
| 4.6   | CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems Channel 6, 1 Mbps        | 31 |
| 4.7   | CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems Channel 11, 1 Mbps       | 32 |
| 4.8   | CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems Channel 1, 11 Mbps       | 32 |
| 4.9   | CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems Channel 6, 11 Mbps       | 33 |
| 4.10  | CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems Channel 11, 11 Mbps      | 33 |
| 5     | CFR 15.247(b)(1) Maximum Power Output                                           | 34 |
| 5.1   | CFR 15.247(b)(1) Maximum Power Output Test Setup                                | 34 |
| 5.2   | CFR 15.247(b)(1) Maximum Power Output Test Procedures                           | 34 |
| 5.3   | CFR 15.247(b)(1) Maximum Power Output Test Equipment                            | 34 |
| 5.3.1 | CFR 15.247(b)(1) Maximum Power Output Instrument Settings                       | 34 |
| 5.4   | CFR 15.247(b)(1) Maximum Power Output EUT Operating Conditions                  | 35 |
| 5.5   | CFR 15.247(b)(1) Maximum Power Output - Channels 1, 6 and 11                    | 35 |
| 6     | CFR 15.247(b)(4) RF Exposure Calculation                                        | 36 |
| 7     | CFR 15.247(c) - 20 dBc Spurious Conducted Emissions                             | 37 |
| 7.1   | CFR 15.247(c) - 20 dBc Spurious Conducted Emissions Test Setup                  | 37 |
| 7.2   | CFR 15.247(c) - 20 dBc Spurious Conducted Test Procedures                       | 37 |
| 7.3   | CFR 15.247(c) - 20 dBc Spurious Conducted Emissions Test Equipment              | 37 |
| 7.3.1 | CFR 15.247(c) - 20 dBc Spurious Conducted Emissions Instrument Settings         | 37 |
| 7.4   | CFR 15.247(c) - 20 dBc Spurious Conducted Emissions EUT Operating Conditions    | 38 |
| 7.5   | CFR 15.247(c) - 20 dBc Spurious Conducted Emissions Channel 1 (2.412 GHz)       | 39 |
| 7.6   | CFR 15.247(c) - 20 dBc Spurious Conducted Emissions Channel 6 (2.437 GHz)       | 40 |
| 7.7   | CFR 15.247(c) - 20 dBc Spurious Conducted Emissions Channel 11 (2.462 GHz)      | 41 |
|       |                                                                                 |    |

#### 1 General Information

### 1.1 Introduction and Purpose of testing for Class II Permissive Change

Apple Computer will use the 2.4 GHz wireless LAN card listed below in a new Apple Airport Base Station with an Apple antenna. This card is manufactured by Lucent Technologies and has already been approved by the FCC per CFR 47 Part 15, Subpart C for Direct Sequence Spread Spectrum systems.

## 1.2 Product General and Technical Descriptions

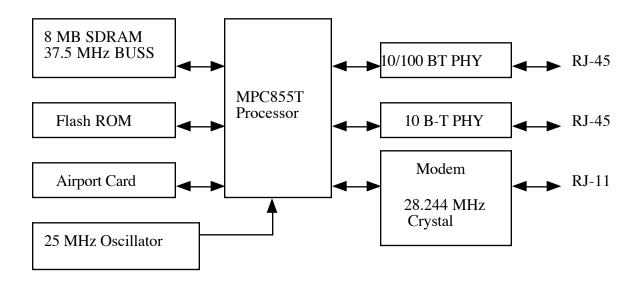
The Apple Airport Base Station uses the Lucent LUC PC24-H-FC Wireless LAN card. Information on the Lucent Wireless LAN card is provided in the table below.

| Existing Wireless Lan Card information |                                 |
|----------------------------------------|---------------------------------|
| Model Number                           | LUC PC24-H-FC                   |
| FCC ID                                 | IMRWLPC24H                      |
| Date of Original FCC Grant             | July 6, 1999                    |
| Class                                  | Spread Spectrum Transceiver     |
| Method                                 | Direct Sequence Spread Spectrum |
| Max RF Power Output                    | 14.7 dBm                        |
| Frequency Range                        | 2412 MHz - 2462 MHz             |
| Number of Channels                     | 11                              |
| Data Rates                             | 11 Mbps, 5 Mbps, 2 Mbps, 1 Mbps |

The Airport Base Station provides a wireless access point to a Local Area Network or RJ-11 modem. The wireless access conforms to IEEE standard 802.11b using the 2.4 GHz IS band. The Airport Base Station comes with the following I/O ports: Additional information on the Apple Airport Base Station is provided in the table below.

- RJ-45 10/100 Base T Ethernet port
- RJ-45 10 Base T Ethernet Port
- RJ-11 modem
- 12 Volt DC Input Port

| Apple Airport Base Station - Class II Change |                             |
|----------------------------------------------|-----------------------------|
| Model Number                                 | M8440                       |
| Antenna Type                                 | Apple Designed "Inverted F" |
| Antenna Gain                                 | 3 dBi                       |


# 1.3 Product Photograph

NOTE: Additional photographs of the product can be found at the end of this report.





# 1.4 Product Block Diagram



#### 1.5 Product Label

Below is the Product ID label for the Apple Airport Base Station. The FCC ID reflects the FCC ID granted for the Lucent LUC PC24-H-FC Wireless LAN card.



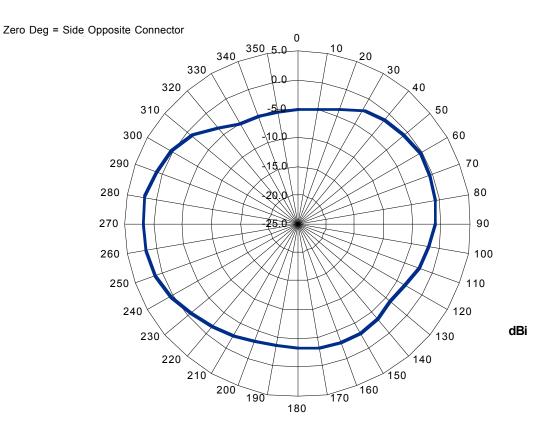
#### 1.6 Antenna Information

### 1.6.1 CFR 47 Section 15.203(a) Antenna Requirement

Per CFR 47 Section 15.203(a), an intentional radiator shall be designed to insure that no antenna other than that furnished by the responsible party shall be used with the device. The Apple Airport Base Station Antenna is permanently attached to an RF coax cable which connects to the LUC PC24-H-FC wireless module using a unique connector. This connector is not available for sale to the public.

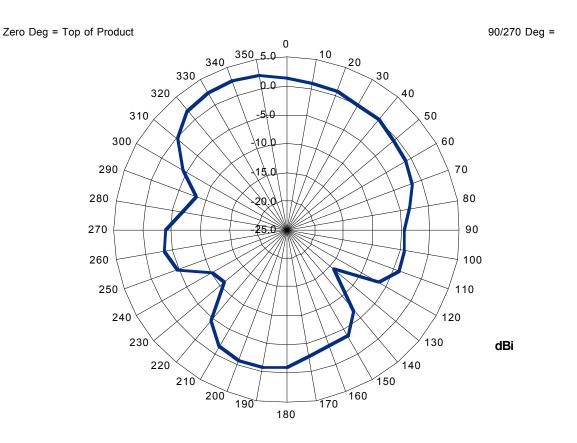
## 1.6.2 Antenna Photograph

Two sheetmetal antennas are used with the Apple Airport BaseStation. One is used for transmitting and both can be used for receiving. Below is a photograph of the Apple Airport BaseStation Antennas.



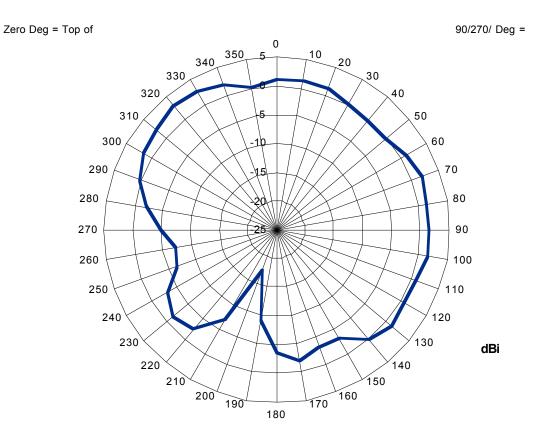

#### 1.6.3 Antenna Electrical Information

The Apple Airport Base Station can be mounted either horizontally or vertically (for example, on a wall). Therefore, the antenna radiation pattern measurements were performed in azimuth and with two orthogonal elevations. The radiation patterns and tabular data is provided in the following sections.


## 1.6.4 Antenna Azimuth Radiation Pattern

# P19 Transmit Pattern; Azimuth Pattern; Diversity Switch Loss Included; 8/15/01 V and H Polarizations Summed

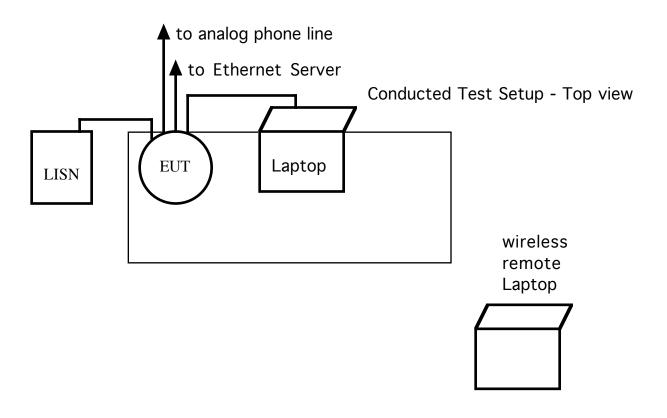


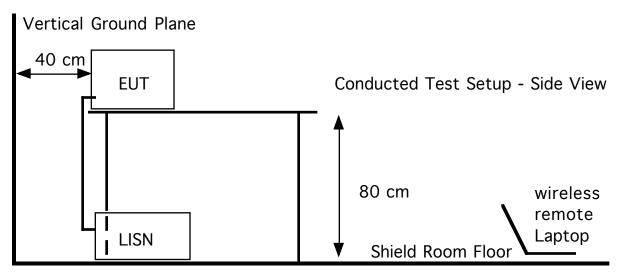

## 1.6.5 Antenna Elevation #1 Radiation Pattern

# P19 Transmit Pattern; Elevation Pattern; Diversity Switch Loss Included; 8/15/01 V and H Polarizations Summed



## 1.6.6 Antenna Elevation #2 Radiation Pattern


# P19 Transmit Pattern; Elevation Pattern; Diversity Switch Loss Included; 8/15/01 V and H Polarizations Summed




# 1.6.7 Antenna Azimuth and Elevation Radiation Pattern Tabular Data

| 8/15/01; P19 | 8/15/01; P19 DVT Unit; All cables and switch loss included |                     |                     |  |  |  |  |
|--------------|------------------------------------------------------------|---------------------|---------------------|--|--|--|--|
|              |                                                            |                     |                     |  |  |  |  |
| Angle        | Azimuth Pattern                                            | Elevation Pattern 1 | Elevation Pattern 2 |  |  |  |  |
| 0            | -5.0                                                       | 1.4                 | 1.1                 |  |  |  |  |
| 10           | -4.6                                                       | 0.9                 | 1.4                 |  |  |  |  |
| 20           | -3.8                                                       | 0.4                 | 1.2                 |  |  |  |  |
| 30           | -2.2                                                       | -0.2                | 0.1                 |  |  |  |  |
| 40           | -1.3                                                       | 0.0                 | -0.5                |  |  |  |  |
| 50           | -1.2                                                       | -0.7                | -0.3                |  |  |  |  |
| 60           | -0.5                                                       | -1.3                | 0.9                 |  |  |  |  |
| 70           | -0.8                                                       | -1.7                | 1.8                 |  |  |  |  |
| 80           | -0.7                                                       | -3.2                | 1.4                 |  |  |  |  |
| 90           | -1.0                                                       | -4.6                | 1.5                 |  |  |  |  |
| 100          | -2.0                                                       | -4.3                | 1.6                 |  |  |  |  |
| 110          | -2.6                                                       | -4.2                | 0.8                 |  |  |  |  |
| 120          | -3.5                                                       | -6.7                | 0.4                 |  |  |  |  |
| 130          | -4.1                                                       | -14.3               | 0.9                 |  |  |  |  |
| 140          | -3.3                                                       | -6.6                | -0.2                |  |  |  |  |
| 150          | -3.1                                                       | -3.9                | -3.2                |  |  |  |  |
| 160          | -3.0                                                       | -3.7                | -3.4                |  |  |  |  |
| 170          | -3.0                                                       | -2.6                | -2.0                |  |  |  |  |
| 180          | -3.5                                                       | -1.3                | -3.6                |  |  |  |  |
| 190          | -3.7                                                       | -0.7                | -9.1                |  |  |  |  |
| 200          | -3.3                                                       | -0.9                | -17.6               |  |  |  |  |
| 210          | -2.6                                                       | -1.7                | -7.0                |  |  |  |  |
| 220          | -1.9                                                       | -4.4                | -2.5                |  |  |  |  |
| 230          | -0.8                                                       | -11.0               | -1.6                |  |  |  |  |
| 240          | 0.3                                                        | -9.9                | -3.0                |  |  |  |  |
| 250          | 1.3                                                        | -4.7                | -6.5                |  |  |  |  |
| 260          | 1.7                                                        | -3.5                | -7.3                |  |  |  |  |
| 270          | 2.0                                                        | -4.0                | -4.8                |  |  |  |  |
| 280          | 1.8                                                        | -6.5                | -1.9                |  |  |  |  |
| 290          | 1.2                                                        | -8.4                | 0.2                 |  |  |  |  |
| 300          | 0.2                                                        | -4.4                | 1.7                 |  |  |  |  |
| 310          | -1.1                                                       | -0.1                | 2.2                 |  |  |  |  |
| 320          | -3.2                                                       | 1.7                 | 3.0                 |  |  |  |  |
| 330          | -4.8                                                       | 2.4                 | 2.7                 |  |  |  |  |
| 340          | -5.0                                                       | 2.4                 | 1.8                 |  |  |  |  |
| 350          | -5.3                                                       | 2.1                 | 0.1                 |  |  |  |  |
|              |                                                            |                     |                     |  |  |  |  |
| Maximum Gain | 2.0                                                        | 2.4                 | 3.0                 |  |  |  |  |

- 2 CFR 15.207(a) AC Power Line Conducted Emissions
- 2.1 CFR 15.207(a) AC Power Line Conducted Emissions Test Setup





#### 2.2 CFR 15.207(a) AC Power Line Conducted Emissions Test Procedure

Conducted Emissions were performed at the Apple Computer EMC compliance lab located at 20650 Valley Green Drive, Cupertino, California. The EUT was placed on a nonmetallic table, 80 cm above the metallic ground-plane. The EUT and peripherals were powered from a filtered main supply. The frequency spectrum from 150 kHz to 30 MHz was scanned. This procedure was performed for both ac lines of the EUT.

#### 2.3 CFR 15.207(a) Conducted Emissions Test Equipment

| Description        | Manufacturer | Model No.    | Identification<br>No. | Last Cal          | Next Cal          |
|--------------------|--------------|--------------|-----------------------|-------------------|-------------------|
| Spectrum Analyzer  | НР           | 8568B        | E2564/E2565           | April 5, 2001     | April 5, 2002     |
| Receiver           | R&S          | ESH 10       | E5388                 | January 19, 2001  | January 19, 2002  |
| LISN/AMN           | R&S          | ESH3-Z5      | LISN 01               | June 21, 2001     | June 21, 2002     |
| LISN/AMN Periph.   | Solar        | 8012-50-R-24 | E5520                 | N/A               | N/A               |
| Coaxial Test Cable | Beldon       | 8268         | CE#2                  | December 20, 2001 | December 20, 2002 |

Notes: H.P. is an abbreviation for Hewlett Packard.

R&S is an abbreviation for Rhode & Schwarz.

Ca. Inst. is an abbreviation for California Instruments.

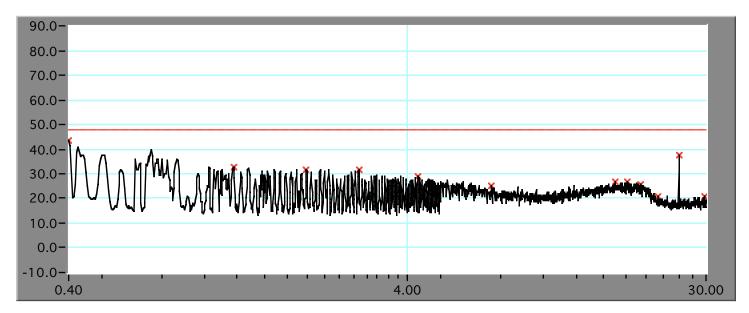
N/A is an abbreviation for Not Applicable

The above equipment is traceable to NVLAP calibration standards.

## 2.3.1 CFR 15.207(a) Conducted Emissions Instrument Settings:

| Instrument Settings |                 |             |               |          |
|---------------------|-----------------|-------------|---------------|----------|
| Frequency Range     | Reference Level | Attenuation | Resolution BW | Video BW |
| 450 kHz - 30 MHz    | 90 dBuV         | 10          | 10 kHz        | 10 kHz   |

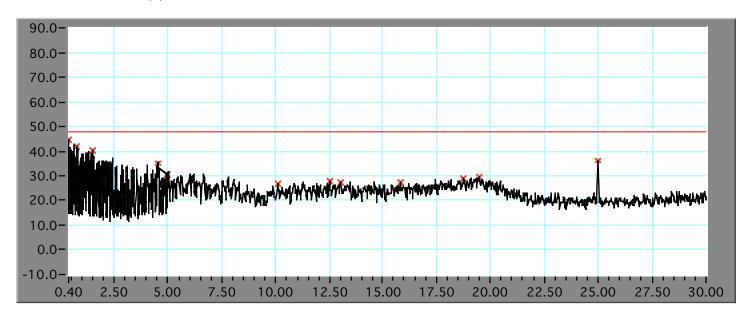
#### 2.4 CFR 15.207(a) AC Power Line Conducted Emissions EUT Operating Conditions


Conducted Emissions scans were performed with the transmitter frequency set to the low, mid and high channels. In each case, the emissions were found to be similar. Thus conducted emissions data in this report is provided for channel 1 only. The Airport Base Station ethernet ports, internal modem and RF portion were activated simultaneously throughout the testing as described in the following two paragraphs.

The ethernet ports on the Airport Base Station were activated by using them as an ethernet hub as follows. A local laptop computer was connected to one of the Airport Base Station ethernet ports and the other Airport Base Station ethernet port was connected to a local server. The local laptop computer was configured to continuously read and write a text file to the local server through the Airport Base Station. The scans were performed and data is provided with the transmitter frequency set to the following channels

The wireless portion of the Airport Base Station was activated as follows: The Airport Base Station was configured with the modem connected to an analog line. The modem was on and configured to maintain a connection to a local ISP which provided a dynamic IP address to the Airport Base Station. The Airport Base Station dynamically assigned an IP address wirelessly to a remote wireless laptop computer. The remote wireless laptop computer, using a web browser, downloaded a large file over the internet throughout the testing.

## 2.5 CFR 15.207(a) AC Power Line Conducted Emissions Line 1 Test results


Date of test: September 4, 2001



| Frequency | Level | Limit | Delta | Raw Data | LISN | Cable | All Factors |
|-----------|-------|-------|-------|----------|------|-------|-------------|
| MHz       | dBuV  | dBuV  | dB    | dBuV     | dB   | dB    | dB          |
| 0.400     | 44.0  | 48.0  | -4.0  | 43.10    | 0.85 | 0.06  | -0.90       |
| 1.219     | 32.7  | 48.0  | -15.3 | 32.25    | 0.36 | 0.09  | -0.45       |
| 1.996     | 31.4  | 48.0  | -16.6 | 30.95    | 0.33 | 0.12  | -0.45       |
| 2.843     | 31.2  | 48.0  | -16.8 | 30.72    | 0.32 | 0.16  | -0.48       |
| 4.273     | 28.5  | 48.0  | -19.5 | 28.01    | 0.30 | 0.19  | -0.49       |
| 7.050     | 24.7  | 48.0  | -23.3 | 24.06    | 0.37 | 0.26  | -0.64       |
| 16.256    | 26.7  | 48.0  | -21.3 | 25.85    | 0.45 | 0.40  | -0.85       |
| 17.556    | 26.3  | 48.0  | -21.7 | 25.41    | 0.48 | 0.41  | -0.89       |
| 19.316    | 25.3  | 48.0  | -22.7 | 24.30    | 0.53 | 0.47  | -1.00       |
| 21.636    | 20.9  | 48.0  | -27.1 | 19.72    | 0.72 | 0.46  | -1.18       |
| 24.976    | 38.0  | 48.0  | -10.0 | 36.59    | 0.89 | 0.52  | -1.41       |
| 29.796    | 20.6  | 48.0  | -27.4 | 19.11    | 0.94 | 0.55  | -1.49       |

All levels are with a peak detector.

## 2.6 CFR 15.207(a) AC Power Line Conducted Emissions Line 2 Test Results



| Frequency | Level | Limit | Delta | Raw Data | LISN | Cable | All Factors |
|-----------|-------|-------|-------|----------|------|-------|-------------|
| MHz       | dBuV  | dBuV  | dB    | dBuV     | dB   | dB    | dB          |
| 0.400     | 44.8  | 48.0  | -3.2  | 43.89    | 0.85 | 0.06  | -0.91       |
| 0.800     | 42.0  | 48.0  | -6.0  | 41.47    | 0.44 | 0.09  | -0.53       |
| 1.490     | 40.8  | 48.0  | -7.2  | 40.33    | 0.36 | 0.12  | -0.47       |
| 4.551     | 35.0  | 48.0  | -13.0 | 34.48    | 0.31 | 0.21  | -0.52       |
| 5.000     | 30.1  | 48.0  | -17.9 | 29.56    | 0.32 | 0.22  | -0.54       |
| 10.085    | 26.5  | 48.0  | -21.5 | 25.78    | 0.40 | 0.31  | -0.72       |
| 12.507    | 27.5  | 48.0  | -20.5 | 26.68    | 0.46 | 0.36  | -0.82       |
| 12.991    | 27.2  | 48.0  | -20.8 | 26.37    | 0.46 | 0.37  | -0.83       |
| 15.822    | 27.0  | 48.0  | -21.0 | 26.14    | 0.45 | 0.41  | -0.86       |
| 18.780    | 28.8  | 48.0  | -19.2 | 27.85    | 0.52 | 0.43  | -0.95       |
| 19.469    | 29.2  | 48.0  | -18.8 | 28.19    | 0.56 | 0.45  | -1.01       |
| 24.976    | 36.5  | 48.0  | -11.5 | 35.09    | 0.89 | 0.52  | -1.41       |

All levels are with a peak detector.

#### 3 CFR 15.209(a) Radiated Emissions

#### 3.1 CFR 15.209(a) Radiated Emissions less than 1 GHz

Pre-scans below 1 GHz were performed with the transmitter frequency set to the low, mid and high channels. In each case, the emissions below 1 GHz were found to be similar. Thus radiated emissions data in this report below 1 GHz is provided for channel 1 only.

#### 3.1.1 CFR 15.209(a) Radiated Emissions less than 1 GHz Test Setup

Radiated Emission measurements at or below 1 GHz were performed at the Apple Computer Test Site ALTS #1, located at 123 East Evelyn Ave., Mountain View, California. The EUT was placed on a nonmetallic table, 80 cm above the metallic ground-plane. The EUT and peripherals were powered from a filtered main supply.

#### 3.1.2 CFR 15.209(a) Radiated Emissions less than 1 GHz Test Procedure

The frequency spectrum from 30 MHz to ≤ 1 GHz was scanned and the emission levels maximized at each frequency recorded. The antenna was varied in height between 1.0 and 4.0 meters and the system was rotated 360 degrees while scanning for maximum emission amplitudes. This procedure was performed for both horizontal and vertical polarization of the receiving antenna. During maximization the position of the cables was varied and the scanning repeated until the worst case emission was found. The data recorded in this report are the maximum emission levels measured.

Radiated Emission measurements at or below 1 GHz were performed at an EUT to antenna distance of 3 meters.

### 3.1.3 CFR 15.209(a) Radiated Emissions less than 1 GHz Test Equipment

The following test equipment was used when performing radiated emissions tests below 1 GHz.

| Description            | Manufacturer    | Model No. | Identification No. | Last Cal | Next Cal |
|------------------------|-----------------|-----------|--------------------|----------|----------|
| Spectrum<br>Analyzer   | Hewlett Packard | 8566      | E4663/E            | 2/01     | 2/02     |
| EMI Receiver           | R&S             | ESI 26    | 100025             | 6/01     | 6/02     |
| Wide Band<br>Amplifier | Penstock        | PSAJ9138A | 104                | 1/01     | 1/02     |
| Coaxial Cable          | Times Microwave | N/A       | ALT TS#1           | 10/00    | 10/01    |
| Bilog Antenna          | Chase           | CBL6112B  | 2518               | 4/01     | 4/02     |

Notes: HP is an abbreviation for Hewlett Packard.

R&S is an abbreviation for Rhode & Schwarz.

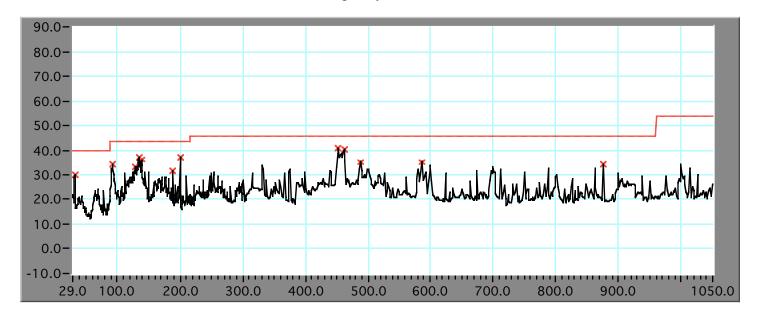
N/A is an abbreviation for Not Applicable

The above equipment is traceable to NVLAP calibration standards.

#### 3.1.3.1 CFR 15.209(a) Radiated Emissions less than 1 GHz Instrument Settings:

| Instrument Settings |                 |             |               |          |
|---------------------|-----------------|-------------|---------------|----------|
| Frequency Range     | Reference Level | Attenuation | Resolution BW | Video BW |
| 30 MHz - 1 GHz      | 90 dBuV         | 10          | 100 kHz       | 100 kHz  |

#### 3.1.4 CFR 15.209(a) Radiated Emissions less than 1 GHz EUT Operation Conditions

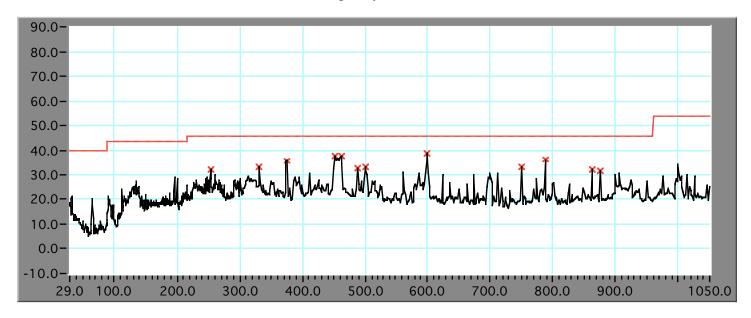

The Airport Base Station ethernet ports, internal modem and RF portion were activated simultaneously throughout the testing as described in the following two paragraphs.

The ethernet ports on the Airport Base Station were activated by using them as an ethernet hub as follows. A local laptop computer was connected to one of the Airport Base Station ethernet ports and the other Airport Base Station ethernet port was connected to a local server. The local laptop computer was configured to continuously read and write a text file to the local server through the Airport Base Station. The scans were performed and data is provided with the transmitter frequency set to the following channels

The wireless portion of the Airport Base Station was activated as follows: The Airport Base Station was configured with the modem connected to an analog line. The modem was on and configured to maintain a connection to a local ISP which provided a dynamic IP address to the Airport Base Station. The Airport Base Station dynamically assigned an IP address wirelessly to a remote wireless laptop computer. The remote wireless laptop computer, using a web browser, downloaded a large file over the internet throughout the testing.

## 3.1.5 CFR 15.209(a) Radiated Emissions less than 1 GHz - Vertical Data

The data below was collected with a transmitter frequency of 2.412 GHz.




| Frequency | Level  | Limit  | Delta | Raw Data | Antenna | Cable | Amp   | All Factors |
|-----------|--------|--------|-------|----------|---------|-------|-------|-------------|
| MHz       | dBuV/m | dBuV/m | dB    | dBuV     | dB      | dB    | dB    | dB          |
| 32.32     | 30.0   | 40.0   | -10.0 | 54.14    | 18.02   | 0.75  | 42.90 | 24.13       |
| 93.16     | 34.1   | 43.5   | -9.4  | 63.80    | 9.46    | 1.17  | 40.31 | 29.69       |
| 128.56    | 33.2   | 43.5   | -10.3 | 62.08    | 11.78   | 1.34  | 42.04 | 28.92       |
| 134.09    | 37.5   | 43.5   | -6.0  | 66.82    | 11.54   | 1.38  | 42.23 | 29.30       |
| 139.07    | 36.2   | 43.5   | -7.3  | 65.79    | 11.43   | 1.42  | 42.39 | 29.55       |
| 187.74    | 31.7   | 43.5   | -11.8 | 64.43    | 9.20    | 1.62  | 43.59 | 32.77       |
| 199.91    | 37.1   | 43.5   | -6.4  | 70.19    | 9.30    | 1.67  | 44.04 | 33.07       |
| 452.35    | 41.2   | 46.0   | -4.8  | 65.65    | 16.50   | 2.53  | 43.52 | 24.50       |
| 461.43    | 40.8   | 46.0   | -5.2  | 65.19    | 16.61   | 2.55  | 43.56 | 24.40       |
| 487.15    | 35.0   | 46.0   | -11.0 | 58.41    | 17.45   | 2.63  | 43.47 | 23.39       |
| 587.01    | 35.3   | 46.0   | -10.7 | 57.07    | 18.70   | 2.90  | 43.40 | 21.80       |
| 876.00    | 34.2   | 46.0   | -11.8 | 53.23    | 20.54   | 3.57  | 43.11 | 19.01       |

All levels are with a peak detector.

# 3.1.6 CFR 15.209(a) Radiated Emissions less than 1 GHz - Horizontal Data

The data below was collected with a transmitter frequency of 2.412 GHz.



| Frequency | Level  | Limit  | Delta | Raw Data | Antenna | Cable | Amp   | All Factors |
|-----------|--------|--------|-------|----------|---------|-------|-------|-------------|
| MHz       | dBuV/m | dBuV/m | dB    | dBuV     | dB      | dB    | dB    | dB          |
| 254.11    | 31.8   | 46.0   | -14.2 | 60.25    | 13.14   | 1.88  | 43.47 | 28.46       |
| 331.31    | 32.8   | 46.0   | -13.2 | 60.14    | 13.90   | 2.13  | 43.41 | 27.39       |
| 375.19    | 35.9   | 46.0   | -10.1 | 62.15    | 14.92   | 2.28  | 43.48 | 26.29       |
| 450.84    | 37.7   | 46.0   | -8.3  | 62.17    | 16.55   | 2.52  | 43.52 | 24.45       |
| 461.43    | 37.7   | 46.0   | -8.3  | 62.09    | 16.61   | 2.55  | 43.56 | 24.40       |
| 487.15    | 32.2   | 46.0   | -13.8 | 55.62    | 17.45   | 2.63  | 43.47 | 23.39       |
| 499.26    | 33.3   | 46.0   | -12.7 | 56.45    | 17.55   | 2.67  | 43.41 | 23.19       |
| 600.63    | 39.2   | 46.0   | -6.8  | 60.43    | 19.20   | 2.93  | 43.40 | 21.27       |
| 750.42    | 32.9   | 46.0   | -13.1 | 53.04    | 19.51   | 3.31  | 42.99 | 20.17       |
| 788.25    | 36.0   | 46.0   | -10.0 | 55.91    | 19.80   | 3.38  | 43.07 | 19.89       |
| 862.38    | 32.0   | 46.0   | -14.0 | 51.21    | 20.40   | 3.54  | 43.13 | 19.19       |
| 876.00    | 31.6   | 46.0   | -14.4 | 50.61    | 20.54   | 3.57  | 43.11 | 19.01       |

All levels are with a peak detector.

## 3.2 CFR 15.209(a) Radiated Emissions greater than 1 GHz

### 3.2.1 CFR 15.209(a) Radiated Emissions greater than 1 GHz Test Setup

Radiated Emission measurements above 1 GHz were performed at the Apple Computer 3 meter semi-anechoic chamber located at 20650 Valley Green Drive. The EUT was placed on a nonmetallic table, 80 cm above the metallic ground-plane. The EUT and peripherals were powered from a filtered main supply.

Radiated Emission measurements above 1 GHz were performed at an EUT to antenna distance of 30 centimeters.

## 3.2.2 CFR 15.209(a) Radiated Emissions greater than 1 GHz Test Procedure

The frequency spectrum from 1 GHz to 18 GHz was scanned and the emission levels maximized at each frequency. The antenna was varied in height and the system was rotated 360 degrees while scanning for maximum emission amplitudes. This procedure was performed for both horizontal and vertical polarization of the receiving antenna.

During maximization the position of the cables was varied and the scanning repeated until the worst case emission was found. The data recorded in this report are the maximum emission levels measured.

Scans above 1 GHz were performed with the transmitter frequency set to the low, mid and high channels and Radiated Emissions data is provided in this report for each case.

- low channel 2.412 GHz
- mid channel 2.437 GHz
- high channel 2.462 GHz

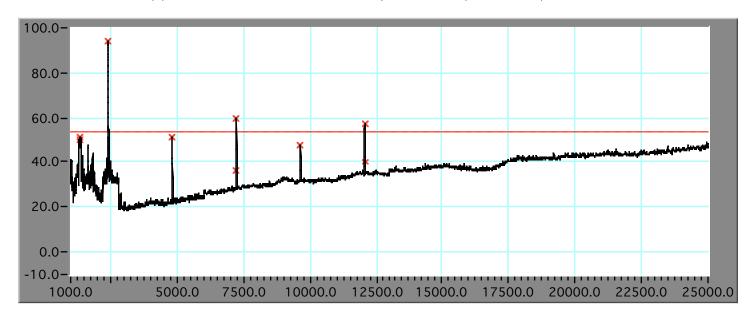
### 3.2.3 CFR 15.209(a) Radiated Emissions greater than 1 GHz Test Equipment

The following test equipment was used when performing radiated emissions tests above 1 GHz.

| Description       | Manufacturer | Model No. | Identification No. | Last<br>Cal | Next Cal   |
|-------------------|--------------|-----------|--------------------|-------------|------------|
| Spectrum Analyzer | НР           | HP 8563E  | AOU201613          | Feb., 2001  | Feb., 2002 |
| Amplifier         | НР           | 8449      | 3008A00713         | 12/00       | 12/01      |
| Cable             | Pasternack   | RG55B/C   | 26G1/2             | 08/01       | 08/02      |
| Cable             | Pasternack   | RG142B/U  | 26G2/2             | 08/01       | 08/02      |
| Horn Antenna      | EMCO         | 3160-09   | 011269-0041264     | 09/01       | 09/05      |
| Horn Antenna      | EMCO         | 3115      | 9904-5788          | 09/01       | 09/05      |

## 3.2.3.1 CFR 15.209(a) Radiated Emissions greater than 1 GHz Instrument Settings

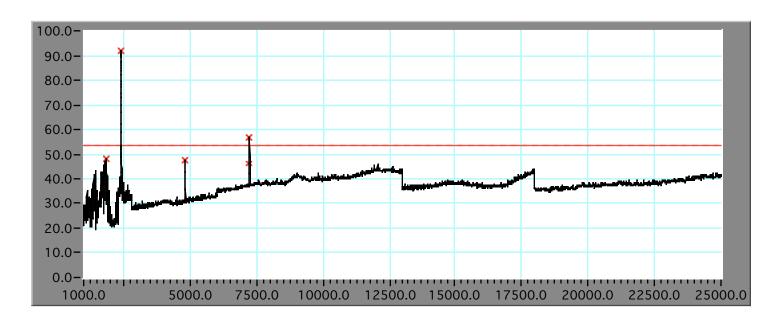
| Instrument Settings |                 |             |               |          |
|---------------------|-----------------|-------------|---------------|----------|
| Frequency Range     | Reference Level | Attenuation | Resolution BW | Video BW |
| 1 GHz - 2.4 GHz     | 110 dBuV        | 20          | 1 MHz         | 1 MHz    |
| 2.4 GHz - 2.8 GHz   | 120 dBuV        | 30          | 1 MHz         | 1 MHz    |
| 2.8 GHz - 13 GHz    | 100 dBuV        | 10          | 1 MHz         | 1 MHz    |
| 13 GHz - 25 GHz     | 100 dBuV        | 0           | 1 MHz         | 1 MHz    |


#### 3.2.4 CFR 15.209(a) Radiated Emissions greater than 1 GHz EUT Operating Conditions

The Airport Base Station ethernet ports, internal modem and RF portion were activated simultaneously throughout the testing as described in the following two paragraphs.

The ethernet ports on the Airport Base Station were activated by using them as an ethernet hub as follows. A local laptop computer was connected to one of the Airport Base Station ethernet ports and the other Airport Base Station ethernet port was connected to a local server. The local laptop computer was configured to continuously read and write a text file to the local server through the Airport Base Station.

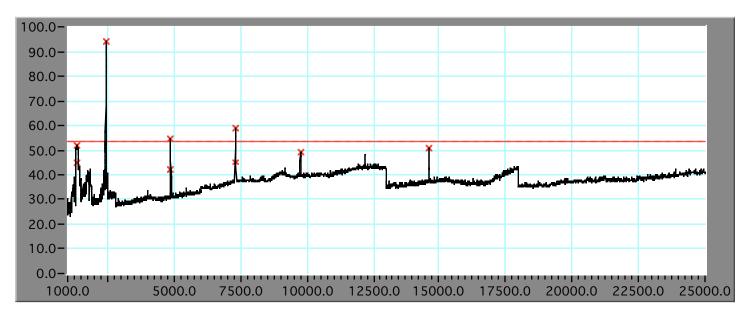
The wireless portion of the Airport Base Station was activated as follows: The Airport Base Station was configured with the modem connected to an analog line. The modem was on and configured to maintain a connection to a local ISP which provided a dynamic IP address to the Airport Base Station. The Airport Base Station dynamically assigned an IP address wirelessly to a local client labtop computer. The client laptop computer, using a web browser, downloaded a large file over the internet throughout the testing.


# 3.2.5 CFR 15.209(a) Radiated Emissions - Vertical, channel 1 (2.412 GHz)



| Frequency | Level   | Limit  | Delta | Raw Data | Antenna | Cable | Amp   | All Factors |
|-----------|---------|--------|-------|----------|---------|-------|-------|-------------|
| MHz       | dBuV/m  | dBuV/m | dB    | dBuV     | dB      | dB    | dB    | dB          |
| 1333.67   | 50.5    | 54.0   | -3.5  | 77.10    | 26.13   | 0.27  | 53.00 | 26.60       |
| 1368.33   | 51.5    | 54.0   | -2.5  | 77.97    | 26.25   | 0.27  | 53.00 | 26.47       |
| 2415.00   | 94.2    | 54.0   | 40.2  | 116.38   | 30.35   | 0.44  | 53.00 | 22.21       |
| 4821.33   | 51.7    | 54.0   | -2.3  | 69.39    | 34.60   | 0.68  | 53.00 | 17.72       |
| 7236.00   | 36.3 Av | 54.0   | -17.7 | 50.57    | 37.24   | 1.49  | 53.00 | 14.27       |
| 7236.67   | 59.7    | 54.0   | 5.7   | 73.94    | 37.24   | 1.49  | 53.00 | 14.27       |
| 9640.00   | 47.7    | 54.0   | -6.3  | 59.23    | 38.61   | 2.83  | 53.00 | 11.56       |
| 12055.00  | 57.5    | 54.0   | 3.5   | 65.21    | 41.76   | 3.53  | 53.00 | 7.71        |
| 12059.00  | 40.3 Av | 54.0   | -13.7 | 48.04    | 41.76   | 3.53  | 53.00 | 7.71        |
|           |         |        |       |          |         |       |       |             |
|           |         |        |       |          |         |       |       |             |
|           |         |        |       |          |         |       |       |             |

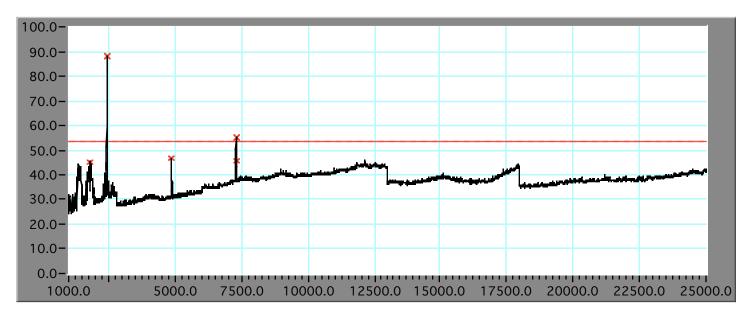
All levels are with a peak detector unless otherwise indicated.


# 3.2.6 CFR 15.209(a) Radiated Emissions - Horizontal, channel 1 (2.412 GHz)



| Frequency | Level   | Limit  | Delta | Raw Data | Antenna | Cable | Amp   | All Factors |
|-----------|---------|--------|-------|----------|---------|-------|-------|-------------|
| MHz       | dBuV/m  | dBuV/m | dB    | dBuV     | dB      | dB    | dB    | dB          |
| 1840.67   | 48.2    | 54.0   | -5.8  | 72.47    | 28.34   | 0.37  | 53.00 | 24.30       |
| 2410.83   | 92.0    | 54.0   | 38.0  | 114.23   | 30.33   | 0.44  | 53.00 | 22.23       |
| 4821.33   | 47.7    | 54.0   | -6.3  | 65.39    | 34.60   | 0.68  | 53.00 | 17.72       |
| 7236.00   | 46.5 Av | 54.0   | -7.5  | 60.77    | 37.24   | 1.49  | 53.00 | 14.27       |
| 7236.67   | 57.2    | 54.0   | 3.2   | 71.44    | 37.24   | 1.49  | 53.00 | 14.27       |
|           |         |        |       |          |         |       |       |             |
|           |         |        |       |          |         |       |       |             |
|           |         |        |       |          |         |       |       |             |
|           |         |        |       |          |         |       |       |             |
|           |         |        |       |          |         |       |       |             |
|           |         |        |       |          |         |       |       |             |
|           |         |        |       |          |         |       |       |             |

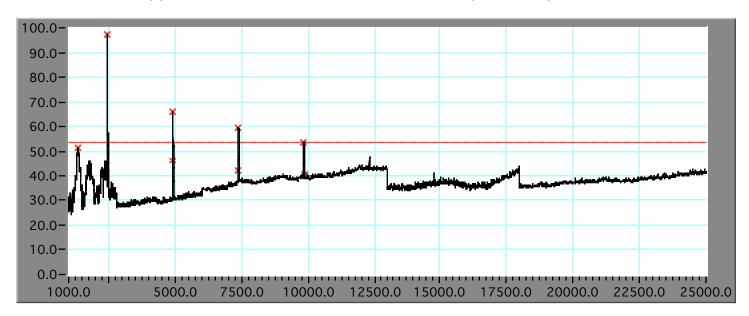
All levels are with a peak detector unless otherwise indicated.


# 3.2.7 CFR 15.209(a) Radiated Emissions - Vertical Channel 6 (2.437 GHz)



| Frequency | Level   | Limit  | Delta |   | Height | Angle | Raw Data | Antenna | Cable | Amp   | All Factors |
|-----------|---------|--------|-------|---|--------|-------|----------|---------|-------|-------|-------------|
| MHz       | dBuV/m  | dBuV/m | dB    |   | m      | Deg   | dBuV     | dB      | dB    | dB    | dB          |
| 1348.83   | 52.2    | 54.0   | -1.8  |   | 0.00   |       | 78.71    | 26.19   | 0.27  | 53.00 | 26.54       |
| 1349.00   | 44.6 Av | 54.0   | -9.4  |   |        |       | 71.14    | 26.19   | 0.27  | 53.00 | 26.54       |
| 2439.17   | 94.2    | 54.0   | 40.2  | * | 0.00   |       | 116.31   | 30.42   | 0.44  | 53.00 | 22.14       |
| 4874.00   | 41.7 Av | 54.0   | -12.3 |   |        |       | 59.26    | 34.75   | 0.69  | 53.00 | 17.56       |
| 4874.67   | 55.0    | 54.0   | 1.0   | * | 0.00   |       | 72.56    | 34.75   | 0.69  | 53.00 | 17.56       |
| 7306.67   | 59.0    | 54.0   | 5.0   | * | 0.00   |       | 73.17    | 37.31   | 1.52  | 53.00 | 14.17       |
| 7310.40   | 45.3 Av | 54.0   | -8.7  |   |        |       | 59.47    | 37.31   | 1.52  | 53.00 | 14.17       |
| 9745.00   | 49.3    | 54.0   | -4.7  |   | 0.00   |       | 60.80    | 38.70   | 2.85  | 53.00 | 11.46       |
| 14625.00  | 51.0    | 54.0   | -3.0  |   | 0.00   |       | 57.73    | 41.65   | 4.62  | 53.00 | 6.73        |
|           |         |        |       |   |        |       |          |         |       |       |             |
|           |         |        |       |   |        |       |          |         |       |       |             |
|           |         |        |       |   |        |       |          |         |       |       |             |

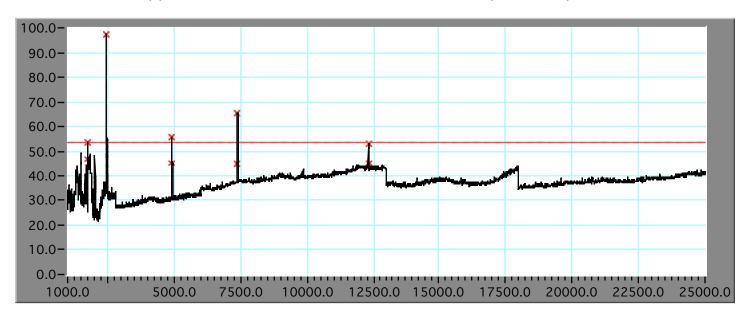
All levels are with a peak detector unless otherwise indicated.


# 3.2.8 CFR 15.209(a) Radiated Emissions - Horizontal Channel 6 (2.437 GHz)



| Frequency | Level   | Limit | Delta | Raw Data | Antenna | Cable | Amp   | All Factors |
|-----------|---------|-------|-------|----------|---------|-------|-------|-------------|
| MHz       | dBuV    | dBuV  | dB    | dBuV     | dB      | dB    | dB    | dB          |
| 1812.50   | 45.2    | 54.0  | -8.8  | 69.41    | 28.40   | 0.36  | 53.00 | 24.24       |
| 2438.33   | 88.0    | 54.0  | 34.0  | 110.29   | 30.26   | 0.44  | 53.00 | 22.29       |
| 4874.67   | 46.7    | 54.0  | -7.3  | 64.18    | 34.80   | 0.69  | 53.00 | 17.51       |
| 7295.00   | 55.3    | 54.0  | 1.3   | 69.36    | 37.47   | 1.52  | 53.00 | 14.02       |
| 7311.00   | 45.8 Av | 54.0  | -8.2  | 59.78    | 37.50   | 1.52  | 53.00 | 13.98       |
|           |         |       |       |          |         |       |       |             |
|           |         |       |       |          |         |       |       |             |
|           |         |       |       |          |         |       |       |             |
|           |         |       |       |          |         |       |       |             |
|           |         |       |       |          |         |       |       |             |
|           |         |       |       |          |         |       |       |             |
|           |         |       |       |          |         |       |       |             |

All levels are with a peak detector unless otherwise indicated.


## 3.2.9 CFR 15.209(a) Radiated Emissions - Vertical Channel 11 (2.462 GHz)



| Frequency | Level   | Limit  | Delta |   | Height | Angle | Raw Data | Antenna | Cable | Amp   | All Factors |
|-----------|---------|--------|-------|---|--------|-------|----------|---------|-------|-------|-------------|
| MHz       | dBuV/m  | dBuV/m | dB    |   | m      | Deg   | dBuV     | dB      | dB    | dB    | dB          |
| 1346.67   | 51.5    | 54.0   | -2.5  |   | 0.00   |       | 78.05    | 26.18   | 0.27  | 53.00 | 26.55       |
| 2462.50   | 97.2    | 54.0   | 43.2  | * | 0.00   |       | 119.24   | 30.49   | 0.45  | 53.00 | 22.07       |
| 4922.67   | 66.2    | 54.0   | 12.2  | * | 0.00   |       | 83.59    | 34.88   | 0.69  | 53.00 | 17.42       |
| 4924.00   | 46.2 Av | 54.0   | -7.8  |   |        |       | 63.62    | 34.88   | 0.69  | 53.00 | 17.42       |
| 7376.67   | 59.8    | 54.0   | 5.8   | * | 0.00   |       | 73.61    | 37.68   | 1.55  | 53.00 | 13.77       |
| 7386.00   | 41.7 Av | 54.0   | -12.3 |   |        |       | 55.44    | 37.71   | 1.56  | 53.00 | 13.73       |
| 9838.33   | 53.7    | 54.0   | -0.3  |   | 0.00   |       | 64.96    | 38.84   | 2.87  | 53.00 | 11.29       |
| 9848.00   | 40.2 Av | 54.0   | -13.8 |   |        |       | 51.47    | 38.86   | 2.87  | 53.00 | 11.27       |
|           |         |        |       |   |        |       |          |         |       |       |             |
|           |         |        |       |   |        |       |          |         |       |       |             |
|           |         |        |       |   |        |       |          |         |       |       |             |
|           |         |        |       |   |        |       |          |         |       |       |             |

All levels are with a peak detector unless otherwise indicated.

## 3.2.10 CFR 15.209(a) Radiated Emissions - Horizontal Channel 11 (2.462 GHz)



| Frequency | Level   | Limit  | Delta | Raw Data | Antenna | Cable | Amp   | All Factors |
|-----------|---------|--------|-------|----------|---------|-------|-------|-------------|
| MHz       | dBuV/m  | dBuV/m | dB    | dBuV     | dB      | dB    | dB    | dB          |
| 1736.67   | 53.8    | 54.0   | -0.2  | 78.46    | 28.04   | 0.35  | 53.00 | 24.62       |
| 1737.00   | 46.7 Av | 54.0   | -7.3  | 71.32    | 28.04   | 0.35  | 53.00 | 24.62       |
| 2463.33   | 97.2    | 54.0   | 43.2  | 119.40   | 30.32   | 0.45  | 53.00 | 22.23       |
| 4922.67   | 55.7    | 54.0   | 1.7   | 73.06    | 34.91   | 0.69  | 53.00 | 17.39       |
| 4924.00   | 45.2 Av | 54.0   | -8.8  | 62.59    | 34.91   | 0.69  | 53.00 | 17.39       |
| 7376.67   | 65.8    | 54.0   | 11.8  | 79.61    | 37.68   | 1.55  | 53.00 | 13.77       |
| 7388.00   | 44.8 Av | 54.0   | -9.2  | 58.53    | 37.71   | 1.56  | 53.00 | 13.73       |
| 12300.00  | 53.2    | 54.0   | -0.8  | 60.73    | 41.76   | 3.68  | 53.00 | 7.56        |
| 12311.00  | 45.0 Av | 54.0   | -9.0  | 52.57    | 41.74   | 3.69  | 53.00 | 7.57        |
|           |         |        |       |          |         |       |       |             |
|           |         |        |       |          |         |       |       |             |
|           |         |        |       |          |         |       |       |             |


All levels are with a peak detector unless otherwise indicated.

### 4 CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems

### 4.1 CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems Test Setup

The 6 dB Bandwidth for Direct Sequence Systems must be at least 500 kHz. The Setup for measuring the bandwidth is straight forward and is depicted in the figure below.

## Bandwidth Test Setup

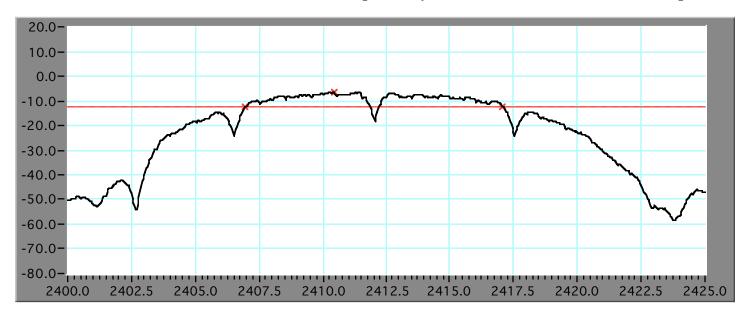


## 4.2 CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems Test Procedures

The transmitter output is connected to the spectrum analyzer RF input. The bandwidth of the spectrum analyzer was set to 100 kHz. The 6 dB bandwidth of the transmitter is defined as the portion of the signal which is higher than the peak signal minus 6 dB.

#### 4.3 CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems Test Equipment

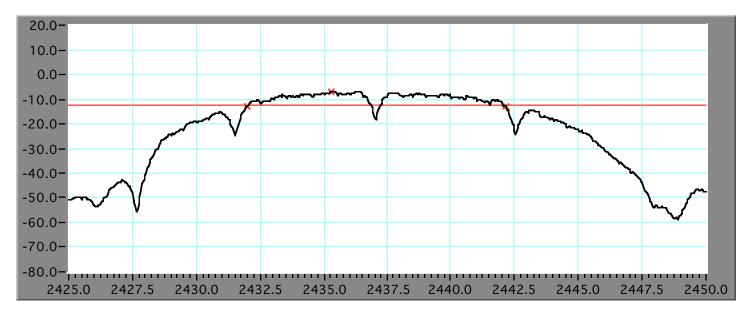
| Description       | Manufacturer |          | Identification No. | Last<br>Cal | Next Cal   |
|-------------------|--------------|----------|--------------------|-------------|------------|
| Spectrum Analyzer | HP           | HP 8563E | AOU201613          | Feb., 2001  | Feb., 2002 |


#### 4.3.1 CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems Instrument Settings

| Instrument<br>Settings |             |               |          |            |        |
|------------------------|-------------|---------------|----------|------------|--------|
| Reference Level        | Attenuation | Resolution BW | Video BW | Sweep Rate | Span   |
| 20 dBm                 | 30 dB       | 100 kHz       | 1 kHz    | 630 mS     | 25 MHz |

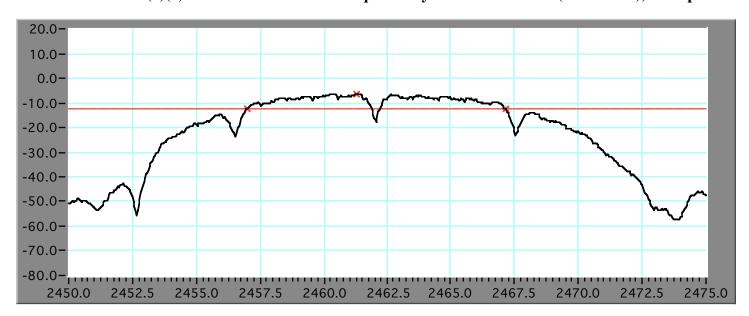
#### 4.4 CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems EUT Operating Conditions

The transmitter was set to transmit continuously at 1 Mbps and the channels which were measured were the low, mid and high channels. At each channel, the bandwidth was recorded. The process was repeated using an 11 Mbps data rate.


# 4.5 CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems Channel 1 (2.412 GHz), 1 Mbps



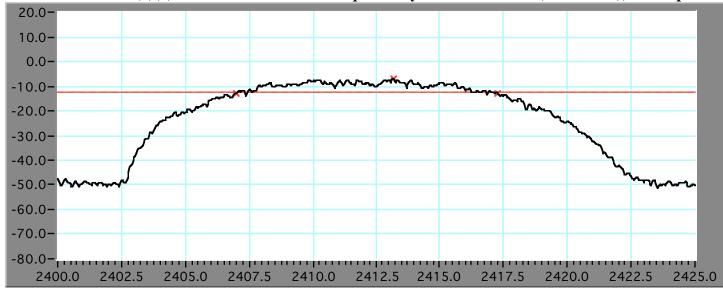
| Channel      | lower -6 dB frequency | upper -6 dB frequency | Data Rate | 6 dB Bandwidth |
|--------------|-----------------------|-----------------------|-----------|----------------|
| 1 - 2412 MHz | 2407 MHz              | 2417.1 MHz            | 1 Mbps    | 9.1 MHz        |


Date of Test: November 7, 2001

# 4.6 CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems Channel 6 (2.437 GHz), 1 Mbps

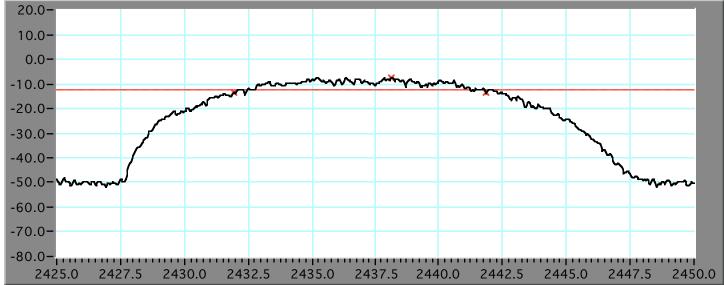


| Channel      | lower -6 dB frequency | upper -6 dB frequency | Data Rate | 6 dB Bandwidth |
|--------------|-----------------------|-----------------------|-----------|----------------|
| 6 - 2437 MHz | 2432 MHz              | 2442 MHz              | 1 Mbps    | 10 MHz         |


## 4.7 CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems Channel 11 (2.462 GHz), 1 Mbps



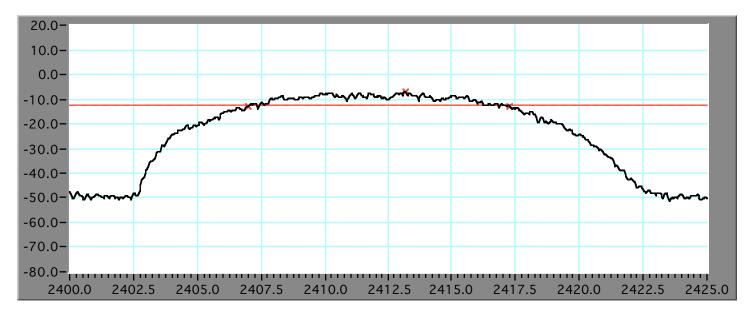
| Channel       | lower -6 dB frequency | upper -6 dB frequency | Data Rate | 6 dB Bandwidth |
|---------------|-----------------------|-----------------------|-----------|----------------|
| 11 - 2462 MHz | 2457 MHz              | 2467.2 MHz            | 1 Mbps    | 10.2 MHz       |


Date of Test: November 7, 2001

## 4.8 CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems Channel 1 (2.412 GHz), 11 Mbps



| Channel      | lower -6 dB frequency | upper -6 dB frequency | Data Rate | 6 dB Bandwidth |
|--------------|-----------------------|-----------------------|-----------|----------------|
| 1 - 2412 MHz | 2407 MHz              | 2417.3 MHz            | 11 Mbps   | 10.3 MHz       |



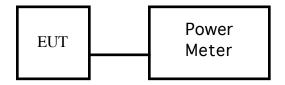



Date of Test: November 7, 2001

| Channel      | lower -6 dB frequency | upper -6 dB frequency | Data Rate | 6 dB Bandwidth |
|--------------|-----------------------|-----------------------|-----------|----------------|
| 6 - 2437 MHz | 2431.9 MHz            | 2441.8 MHz            | 11 Mbps   | 9.9 MHz        |

## 4.10 CFR 15.247(a)(2) Bandwidth for Direct Sequence Systems Channel 11 (2.462 GHz), 11 Mbps




| Channel       | lower -6 dB frequency | upper -6 dB frequency | Data Rate | 6 dB Bandwidth |
|---------------|-----------------------|-----------------------|-----------|----------------|
| 11 - 2462 MHz | 2457 MHz              | 2466.8 MHz            | 11 Mbps   | 9.8 MHz        |

## 5 CFR 15.247(b)(1)Maximum Power Output

## 5.1 CFR 15.247(b)(1)Maximum Power Output Test Setup

The Setup for measuring the bandwidth is straight forward and is depicted in the figure below.

# Conducted Output Power Test Setup



## 5.2 CFR 15.247(b)(1)Maximum Power Output Test Procedures

The transmitter output is connected to the spectrum analyzer RF input. The bandwidth of the spectrum analyzer was set to 100 kHz. The 6 dB bandwidth of the transmitter is defined as the portion of the signal which is higher than the peak signal minus 6 dB.

### 5.3 CFR 15.247(b)(1)Maximum Power Output Test Equipment

| Description                                            | Manufacturer       | Model No. | Identification No. | Last<br>Cal | Next Cal   |
|--------------------------------------------------------|--------------------|-----------|--------------------|-------------|------------|
| Power Meter                                            | Rohde &<br>Schwarz | URV5      | E3954              | Nov., 2001  | Nov., 2002 |
| 100nW - 500 mW<br>10 MHz - 18 GHz<br>Power Sensor Head | Rohde &<br>Schwarz | NRV-Z-2   | A0410              | Nov., 2001  | Nov., 2002 |

## 5.3.1 CFR 15.247(b)(1)Maximum Power Output Instrument Settings

| Rohde & Schwarz Power Meter Instrument Settings |                |
|-------------------------------------------------|----------------|
| Measurement Mode                                | Absolute Units |
| Measurement Units                               | dBm            |
| Range                                           | Auto           |
| Channel                                         | В              |

# 5.4 CFR 15.247(b)(1)Maximum Power Output EUT Operating Conditions

The transmitter was set to transmit continuously at 1 Mbps and the channels which were measured were the low, mid and high channels. At each channel, the bandwidth was recorded. The process was repeated using 2, 5.5 and 11 Mbps data rates.

## 5.5 CFR 15.247(b)(1)Maximum Power Output - Channels 1, 6 and 11

| Channel | Frequency | 1        |          | Maximum Output<br>Power (5.5 Mbps) |          |
|---------|-----------|----------|----------|------------------------------------|----------|
| 1       | 2412 MHz  | 14.4 dBm | 14.4 dBm | 14.0 dBm                           | 14.2 dBm |
| 6       | 2437 MHz  | 14.6 dBm | 14.6 dBm | 14.2 dBm                           | 14.4 dBm |
| 11      | 2462 MHz  | 14.7 dBm | 14.7 dBm | 14.3 dBm                           | 14.4 dBm |

## 6 CFR 15.247(b)(4) RF Exposure Calculation

The following calculations are based on guidelines published in OET Bulliten 65, Supplement C, Edition 01-01, August 1997:Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.

For a simple case discounting reflections, from Friis formula the power density is given as:

Power Density = PG / 
$$4 \cdot \pi \cdot r^2$$

where

P = Maximum Transmitter Output Power

G = Antennna Gain

r = distance from antenna

P = 16.08 dBm (see Section 5.1 of this report)

 $P = 10^{6}(6.08 / 10) = 40.55 \text{ mW}$ 

G = 3.0 dB (see Section 1.6.7 of this report)

 $G = 10^{(3 / 10)} = 2$ 

Using the general population - uncontrolled Maximum Power Density limit of  $1 \text{mW} / \text{cm}^2$  at a distance of 20 cm as given in OET Bulliten 65

Power Density =  $40.55 \cdot 2 / (4 \cdot \pi \cdot 20^2)$ 

Power Density =  $0.0161 \text{ mW} / \text{cm}^2$  - This is well under the limit of  $1 \text{ mW} / \text{cm}^2$ .

If we use a stricter prediction which includes reflections from nearby surfaces to determine worst case

Power Density = PG /  $\pi \cdot r^2$ 

Power Density =  $40.55 \cdot 2 / (\pi \cdot 20^2)$ 

Power Density =  $0.064 \text{ mW} / \text{cm}^2$  - This is still under the limit of  $1 \text{mW} / \text{cm}^2$ 

## 7 CFR 15.247(c) -20 dBc Spurious Conducted Emissions

### 7.1 CFR 15.247(c) -20 dBc Spurious Conducted Emissions Test Setup

Spurious Emissions measurements were performed at the Apple Computer 3 meter semi-anechoic chamber located at 20650 Valley Green Drive. The EUT was placed on a nonmetallic table, 80 cm above the metallic ground-plane. The EUT and peripherals were powered from a filtered main supply.

## 7.2 CFR 15.247(c) -20 dBc Spurious Conducted Emissions Test Procedure

The frequency spectrum from 1 GHz to 25 GHz was scanned

Scans were performed with the transmitter frequency set to the low, mid and high channels and -20 dBc Spurious Emissions data is provided in this report for each case.

- low channel 2.412 GHz
- mid channel 2.437 GHz
- high channel 2.462 GHz

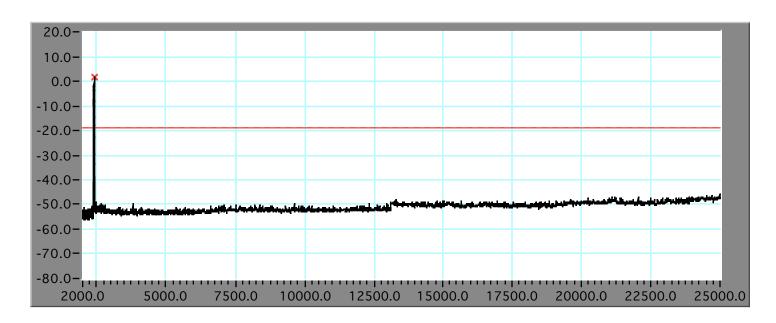
## 7.3 CFR 15.247(c) -20 dBc Spurious Conducted Emissions Test Equipment

The following test equipment was used when performing spurious emissions tests above 1 GHz.

| Description      | Manufacturer | Model No. | Identification No. | Last Cal   | Next Cal   |
|------------------|--------------|-----------|--------------------|------------|------------|
| Spectrum Anayzer | НР           | HP 8563E  | AOU201613          | Feb., 2001 | Feb., 2002 |

#### 7.3.1 CFR 15.247(c) -20 dBc Spurious Conducted Emissions Instrument Settings

| Instrument<br>Settings |               |          |                 |             |            |
|------------------------|---------------|----------|-----------------|-------------|------------|
| Frequency Range        | Resolution BW | Video BW | Reference Level | Attenuation | Sweep Time |
| 2 GHz - 2.8 GHz        | 100 kHz       | 300 kHz  | 20 dBm          | 30 dB       | 100 mS     |
| 2.8 GHz - 6 GHz        | 100 kHz       | 300 kHz  | 20 dBm          | 30 dB       | 100 mS     |
| 6 GHz - 12 GHz         | 100 kHz       | 300 kHz  | 20 dBm          | 30 dB       | 800 mS     |
| 12 GHz - 18 GHz        | 100 kHz       | 300 kHz  | 20 dBm          | 30 dB       | 1.5 S      |
| 18 GHz - 25 GHz        | 100 kHz       | 300 kHz  | 20 dBm          | 30 dB       | 1.8 S      |

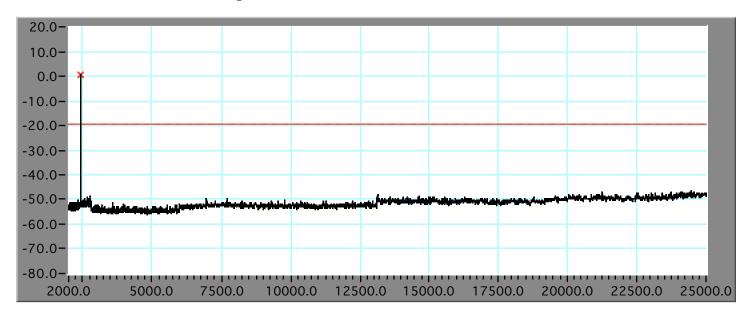

## 7.4 CFR 15.247(c) -20 dBc Spurious Conducted Emissions EUT Operating Conditions

The Airport Base Station ethernet ports, internal modem and RF portion were activated simultaneously throughout the testing as described in the following two paragraphs.

The ethernet ports on the Airport Base Station were activated by using them as an ethernet hub as follows. A local laptop computer was connected to one of the Airport Base Station ethernet ports and the other Airport Base Station ethernet port was connected to a local server. The local laptop computer was configured to continuously read and write a text file to the local server through the Airport Base Station.

The wireless portion of the Airport Base Station was activated as follows: The Airport Base Station was configured with the modem connected to an analog line. The modem was on and configured to maintain a connection to a local ISP which provided a dynamic IP address to the Airport Base Station. The Airport Base Station dynamically assigned an IP address wirelessly to a local client labtop computer. The client laptop computer, using a web browser, downloaded a large file over the internet throughout the testing.

# 7.5 CFR 15.247(c) -20 dBc Spurious Conducted Emissions -Channel 1 (2.412 GHz)

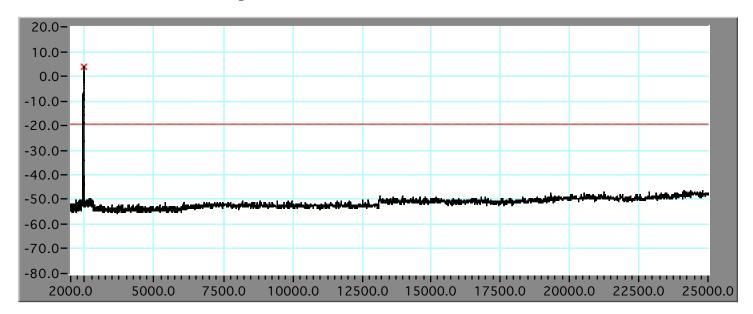



| Frequency | Level | Limit | Raw Data | Cable | All Factors |
|-----------|-------|-------|----------|-------|-------------|
| MHz       | dBm   | dBm   | dBm      | dB    | dB          |
| 2409.33   | 1.5   | -18.5 | 0.82     | 0.68  | -0.68       |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |

All levels are with a peak detector unless otherwise indicated.

The values listed in the table have a frequency precision error due to the wide span.

# 7.6 CFR 15.247(c) -20 dBc Spurious Conducted Emissions - Channel 6 (2.437 GHz)




| Frequency | Level | Limit | Raw Data | Cable | All Factors |
|-----------|-------|-------|----------|-------|-------------|
| MHz       | dBm   | dBm   | dBm      | dB    | dB          |
| 2438.67   | 0.5   | -19.5 | -0.18    | 0.68  | -0.68       |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |

All levels are with a peak detector unless otherwise indicated.

The values listed in the table have a frequency precision error due to the wide span.

# 7.7 CFR 15.247(c) -20 dBc Spurious Conducted Emissions Channel 11 (2.462 GHz)



| Frequency | Level | Limit | Raw Data | Cable | All Factors |
|-----------|-------|-------|----------|-------|-------------|
| MHz       | dBm   | dBm   | dBm      | dB    | dB          |
| 2462.00   | 3.8   | -19.5 | 3.16     | 0.68  | -0.68       |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |
|           |       |       |          |       |             |

All levels are with a peak detector unless otherwise indicated.