FCC and ISED Test Report

Sepura Limited TETRA mobile radio, Model: SCG2221 Basic

In accordance with FCC 47 CFR Part 15B, ICES-003 and ISED RSS-GEN

Prepared for: Sepura Limited 9000 Cambridge Research Park Beach Drive, Waterbeach Cambridge, CB25 9TL United Kingdom

Add value. Inspire trust.

FCC ID: XX6SCG2221X IC: 8739A-SCG2221X

COMMERCIAL-IN-CONFIDENCE

Document 75957883-01 Issue 01

SIGNATURE			
P			
NAME	JOB TITLE	RESPONSIBLE FOR	ISSUE DATE
John Laydon	General Manager	Authorised Signatory	19-September-2023
Signatures in this approve	al box have checked this document in line with the re		

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 15B, ICES-003 and ISED RSS-GEN. The sample tested was found to comply with the requirements defined in the applied rules.

RESPONSIBLE FOR	NAME		DATE	SIGNATURE
Testing	Ravi Kishore Darshanam		19-September-2023	Arian
FCC Accreditation		ISED Accredita	ation	
330364 Bearley Test Laboratory		2932E Bearley	Test Laboratory	

EXECUTIVE SUMMARY

A sample of this product was tested and found to be compliant with FCC 47 CFR Part 15B: 2021, ICES-003 Issue 7: 2020 and ISEDC RSS-GEN: Issue 5 + A2 (2021-02) for the tests detailed in section 1.3

DISCLAIMER AND COPYRIGHT

This non-binding report has been prepared by TÜV SÜD with all reasonable skill and care. The document is confidential to the potential Client and TÜV SÜD. No part of this document may be reproduced without the prior written approval of TÜV SÜD. © 2023 TÜV SÜD. This report relates only to the actual item/items tested.

ACCREDITATION

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation. Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

TÜV SÜD

is a trading name of TUV SUD Ltd Registered in Scotland at East Kilbride, Glasgow G75 0QF, United Kingdom Registered number: SC215164

TÜV SÜD

TUV SUD Ltd is a TÜV SÜD Group Company Phone: +44 (0) 1489 558100 Fax: +44 (0) 1489 558101 www.tuvsud.com/en TÜV SÜD Snitterfield Road Bearley, Stratford upon Avon Warwickshire, CV37 0EX United Kingdom

TÜV

Contents

1	Report Summary	2
1.1	Report Modification Record	2
1.2 1.3	Brief Summary of Results	3
1.4 1.5	Declaration of Build Status Product Information	4
1.6 1.7	Deviations from the Standard EUT Modification Record	11
1.8	Test Location	
2	Test Details	12
2.1	Radiated Disturbance	12
3	Test Equipment Information	22
3.1	General Test Equipment Used	22
4	Incident Reports	23
5	Measurement Uncertainty	24

1 Report Summary

1.1 Report Modification Record

Alterations and additions to this report will be issued to the holders of each copy in the form of a complete document.

Issue	Description of Change	Date of Issue
1	First Issue	19-September-2023

Table 1

1.2 Introduction

Applicant	Sepura Limited
Manufacturer	Sepura Limited
Model Number(s)	SCG2221 Basic
Serial Number(s)	1PR002250GPB2NA
Hardware Version(s)	PLX-8V015550-02 (Hardware Mod State 7)
Software Version(s)	1807 004 10138
Number of Samples Tested	1
Test Specification/Issue/Date	FCC 47 CFR Part 15B:2021 ICES-003 Issue 7: 2020 ISED RSS-GEN: Issue 5 + A2 (2021-02)
Order Number	PLC-PO025039-1
Date	20-February-2023
Date of Receipt of EUT	24-March-2023
Start of Test	23-March-2023
Finish of Test	23-March-2023
Name of Engineer(s)	Ravi Kishore Darshanam
Related Document(s)	ANSI C63.4: 2014

1.3 Brief Summary of Results

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 15B, ICES-003 and ISED RSS is shown below.

Operations	Specification Clause			Test Description	Daradi	
Section	Section FCC ICES ISED Test Description			Result	Comments/Base Standard	
Configuration and Mode: Basic Unit - Configuration 1						
2.1	15.109	3.2	7.1	Radiated Disturbance	Pass	ANSI C63.4: 2014

1.4 Declaration of Build Status

Equipment Description

Technical Description: (Please provide a brief description of the intended use of the equipment including the technologies the product supports)		The SCG2221 is a TETRA mobile radio in the SCG22 series of radios, operating in the VHF band, with TETRA operating frequencies 136-174 MHz. The SCG2221 supports GNSS and a range of accessories and ancillary equipment. The SCG2221 may be installed in a vehicle or in a desk mount unit.			
Manufacturer:		Sepura Limited	b		
Model:		SCG2221 Bas	SCG2221 Basic		
Part Number:		SCG2221			
Hardware Version:		PLX-8V015550-02 (Hardware Mod State 7)			
Software Version:		1807 004 10138			
FCC ID of the product under te	st – <u>see guidar</u>	nce here	XX6SCG2221X		
IC ID of the product under test	– <u>see guidance</u>	<u>e here</u>	8739A-SCG2221X		
Device Category Mobile 🖂			Portable	Fixed 🗆	
Equipment is fitted with an Audio Low Pass Filter			Yes 🖂	No 🗆	

Table 3

Intentional Radiators

Technology	TETRA			
Frequency Range (MHz to MHz)	136-174			
Conducted Declared Output Power (dBm)	40			
Antenna Gain (dBi)	No antenna supplied.			
Supported Bandwidth(s) (MHz) (e.g. 1 MHz, 20 MHz, 40 MHz)	0.025			
Modulation Scheme(s) (e.g. GFSK, QPSK etc)	π/4 DQPSK			
ITU Emission Designator (see guidance here) (not mandatory for Part 15 devices)	20K0DXW			
Bottom Frequency (MHz)	136			
Middle Frequency (MHz)	155			
Top Frequency (MHz)	174			

Un-intentional Radiators

Highest frequency generated or used in the device or on which the device operates or tunes	1610 MHz			
Lowest frequency generated or used in the device or on which the device operates or tunes	32.768 kHz			
Class A Digital Device (Use in commercial, industrial or business environment)				
Class B Digital Device (Use in residential environment only) \Box				

Table 5

AC Power Source

AC supply frequency:	Hz
Voltage	V
Max current:	A
Single Phase \Box Three Phase \boxtimes	

Table 6

DC Power Source

Nominal voltage:	13.6	V
Extreme upper voltage:	15.6	V
Extreme lower voltage:	10.8	V
Max current:	4	A

Table 7

Battery Power Source

Voltage:			V
End-point voltage:			V (Point at which the battery will terminate)
Alkaline 🗆 Leclanche 🗆 Lithium 🗆 Nicke	ulated)		
Other 🗆	Please detail:		

Table 8

Charging

Can the EUT transmit whilst being charged Unit does not charge	Yes □ No □
--	------------

Table 9

Temperature

Minimum temperature:	-20	°C
Maximum temperature:	55	٦°

Cable Loss

Adapter Cable Loss (Conducted sample)	N/A	dB
--	-----	----

Table 11

Antenna Characteristics

Antenna connector 🛛		State impedance	50	Ohm
Temporary antenna conn	ector 🗆	State impedance		Ohm
Integral antenna 🗆	Type:	Gain		dBi
External antenna 🗆	Type:	Gain		dBi

For external antenna only:

Standard Antenna Jack \Box If yes, describe how user is prohibited from changing antenna (if not professional installed):

Equipment is only ever professionally installed \boxtimes

Non-standard Antenna Jack \square

All part 15 applications will need to show how the antenna gain was derived either from a manufacturer data sheet or a measurement. Where the gain of the antenna is inherently accounted for as a result of the measurement, such as field strength measurements on a part 15.249 or 15.231 device, so the gain does not necessarily need to be verified. However, enough information regarding the construction of the antenna shall be provided. Such information maybe photographs, length of wire antenna etc.

Antenna Gains are from

https://www.panorama-antennas.com/site/Mobile-Radio/PMR-Antennas/AFQNT-VAR

Table 12

Ancillaries (if applicable)

Manufacturer:	Panorama Antennas	Part Number:	AFQNT-H5
Model:	TETRA antenna	Country of Origin:	UK
Manufacturer:	Sepura	Part Number:	300-00063
Model:	GNSS Antenna	Country of Origin:	UK
Manufacturer:	Sepura	Part Number:	300-02012 rev001
Model:	Extended SCG Loudspeaker / IO USB Host lead	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-02010
Model:	SCG Power/ignition Lead	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-00069
Model:	Mobile Remote Cable 5.0M	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-00670
Model:	HBC Interface and Hands- free Box	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-00079
Model:	Remote Microphone And Switch Set	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-00292

Model:	Remote Microphone (Handsfree Kit) 3m	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-01801
Model:	Handset Based Console (HBC3)	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-00062
Model:	Fist microphone	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-01808
Model:	SCC3 (colour console)	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-01961
Model:	CC VAC RSM (Long Cable)	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-00719
Model:	Loudspeaker	Country of Origin:	Unknown
Manufacturer:	Sepura	Part Number:	300-02009
Model:	USB Data/Programming Lead	Country of Origin:	UK
Manufacturer:	Sepura	Part Number:	300-02012
Model:	SCG Loudspeaker / IO USB Host lead	Country of Origin:	UK
Manufacturer:	Sepura	Part Number:	300-00784
Model:	AMPS attachments	Country of Origin:	UK
Manufacturer:	Sepura	Part Number:	300-00068
Model:	Mobile Remote Cable 3.0M	Country of Origin:	UK

Table 13

I hereby declare that the information supplied is correct and complete.

Name: Position held: Date: Chris Beecham Conformance Engineer 21/03/2023

1.5 Product Information

1.5.1 Technical Description

The Equipment under test (EUT) was a Sepura Limited Tetra radio, Model: SCG2221 Basic Unit.

It is a TETRA mobile radio in the SCG22 series of radios operating in the VHF band with TETRA operating frequencies of 136 to 174 MHz.

The EUT supports GNSS and a range of accessories and ancillary equipment.

Figure 1 – EUT Overall unit

Figure 2 – EUT Front & LHS view

Figure 3 - EUT Rear & RHS view

Figure 4 – EUT ID Label

1.5.2 EUT Port/Cable Identification

Port	Max Cable Length specified	Usage	Туре	Screened
Tetra Antenna Port	5m	Connection to Tetra Antenna	Data	Coax
AC Power Adapter	2 m	DC Power to EUT	Data	No
Speaker	5 m	Connect to Speaker	Data	No
USB cable	5 m	Connect to USB	Data	No
SCC3 / HBC3 Port	3 m	Connection to SCC3 / HBC3 Port	Data	No
microphone	3m	Connected to SCC3	Data	No
Remote	3m	Connected to SCC3	Data	No

Table 14

1.5.3 Test Configuration

Configuration	Description
Basic Unit	The EUT is powered 13.6V DC through AC adapter The EUT was populated with one SCC3 unit each with a Vehicle RSM connected. Also, a Hands-Free Kit was connected to the SCC3 unit. Loudspeakers of type 300-00719 were connected.

1.5.4 Modes of Operation

Mode	Description
Configuration 1	All transmitters were configured to idle. GPS was set to receive. The SCG2221 was configured in a 155.025 MHz DMO setup with no call operating.

Table 16

1.6 Deviations from the Standard

No deviations from the applicable test standard were made during testing.

1.7 EUT Modification Record

The table below details modifications made to the EUT during the test programme.

The modifications incorporated during each test are recorded on the appropriate test pages.

Modification State Description of Modification still fitted to EUT		Modification Fitted By	Date Modification Fitted
Model: SCG2221 Basic Unit, Serial Number: 1PR002250GPB2NA			
0 As supplied by the customer		Not Applicable	Not Applicable

Table 17

1.8 Test Location

TÜV SÜD conducted the following tests at our Bearley Test Laboratory.

Test Name	Name of Engineer(s)	Accreditation	
Configuration and Mode: Basic Unit - Configuration 1			
Radiated Disturbance	Ravi Kishore Darshanam	UKAS	

Table 18

Office Address:

Snitterfield Road Bearley Warwickshire CV37 OEX United Kingdom

2 Test Details

2.1 Radiated Disturbance

2.1.1 Specification Reference

FCC 47 CFR Part 15B, Clause 15.109 ICES-003, Clause 3.2 ISED RSS-GEN, Clause 7.1

2.1.2 Equipment Under Test and Modification State

SCG2221 Basic, S/N: 1PR002250GPB2NA - Modification State 0

2.1.3 Date of Test

23-March-2023

2.1.4 Test Method

The EUT was set up on a non-conductive table 0.8 m above a reference ground plane within a semi-anechoic chamber on a remotely controlled turntable.

A pre-scan of the EUT emissions profile using a peak detector was made at a 3 m antenna distance whilst varying the antenna-to-EUT azimuth and polarisation.

For an EUT which could reasonable be used in multiple planes, pre-scans were performed with the EUT orientated in Fixed planes with reference to the ground plane.

Using a list of the highest emissions detected during the pre-scan along with their bearing and associated antenna polarisation, the EUT was then formally measured using a Quasi-Peak, Peak or CISPR Average detector as appropriate.

The readings were maximised by adjusting the antenna height, polarisation and turntable azimuth, in accordance with the specification.

2.1.5 Example Calculation

Below 1 GHz:

Quasi-Peak level (dB μ V/m) = Receiver level (dB μ V) + Correction Factor (dB/m) Margin (dB) = Quasi-Peak level (dB μ V/m) - Limit (dB μ V/m)

Above 1 GHz:

CISPR Average level $(dB\mu V/m) = Receiver level (dB\mu V) + Correction Factor (dB/m)$ Margin (dB) = CISPR Average level $(dB\mu V/m) - Limit (dB\mu V/m)$

Peak level $(dB\mu V/m)$ = Receiver level $(dB\mu V)$ + Correction Factor (dB/m)Margin (dB) = Peak level $(dB\mu V/m)$ - Limit $(dB\mu V/m)$

2.1.6 Example Test Setup Diagram

Figure 5 - Radiated Disturbance Example Test Setup

2.1.7 Environmental Conditions

Ambient Temperature	19.5 °C
Relative Humidity	46.3 %
Atmospheric Pressure	1005.0 mbar

2.1.8 Specification Limits

Required Specification Limits, Field Strength - Class B Test Limit at a 3 m Measurement Distance						
Frequency Range (MHz)	Test Limit (μV/m)	Test Limit (dBµV/m)				
30 to 88	100	40.0				
88 to 216	150	43.5				
216 to 960	200	46.0				
Above 960	500	54.0				
Supplementary information: Note 1. A Quasi-peak detector is to be used for measurements below 1 GHz. Note 2. A CISPR Average detector is to be used for measurements above 1 GHz. Note 3. The Peak test limit above 1 GHz is 20 dB higher than the CISPR Average test limit.						

2.1.9 Test Results

Results for Configuration and Mode: Basic Unit - Configuration 1.

This test was performed to the requirements of the Class B limits.

Performance assessment of the EUT made during this test: Pass.

Detailed results are shown below.

Highest frequency generated or used within the EUT:1610MHzWhich necessitates an upper frequency test limit of:13 GHz

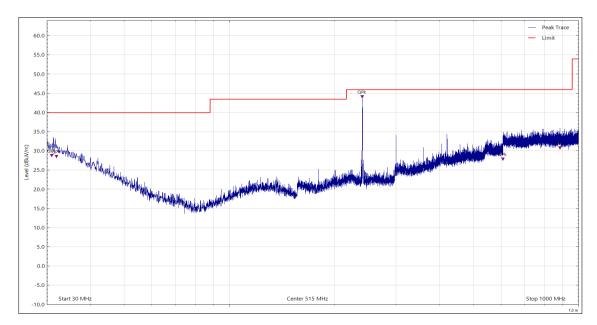


Figure 6 - 30 MHz to 1 GHz, Quasi-Peak, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
30.964	28.17	40.00	-11.83	Q-Peak	146	350	Horizontal
32.000	27.93	40.00	-12.07	Q-Peak	231	258	Horizontal
240.039	43.54	46.00	-2.46	Q-Peak	37	100	Horizontal
607.437	27.30	46.00	-18.70	Q-Peak	9	330	Horizontal
885.494	30.14	46.00	-15.86	Q-Peak	39	386	Horizontal

Table 20

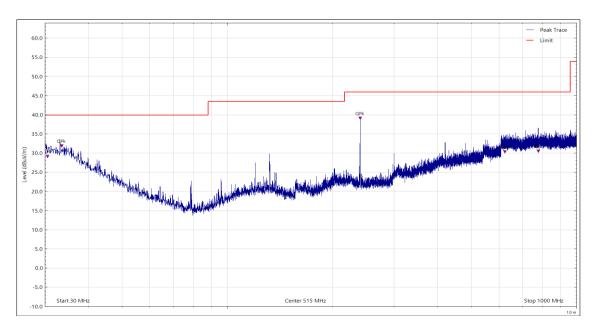
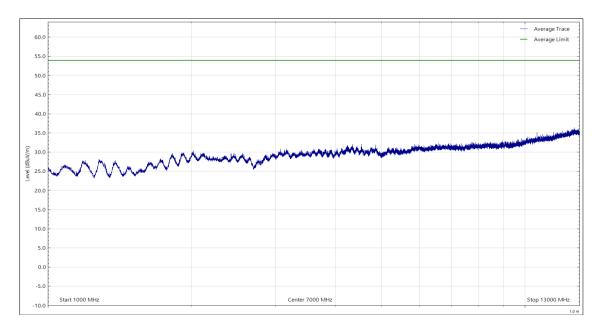



Figure 7 - 30 MHz to 1 GHz, Quasi-Peak, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
30.578	28.51	40.00	-11.49	Q-Peak	360	100	Vertical
33.536	31.33	40.00	-8.67	Q-Peak	0	158	Vertical
240.073	38.48	46.00	-7.52	Q-Peak	6	102	Vertical
624.258	29.75	46.00	-16.25	Q-Peak	125	218	Vertical
777.723	29.93	46.00	-16.07	Q-Peak	23	209	Vertical

Table 21

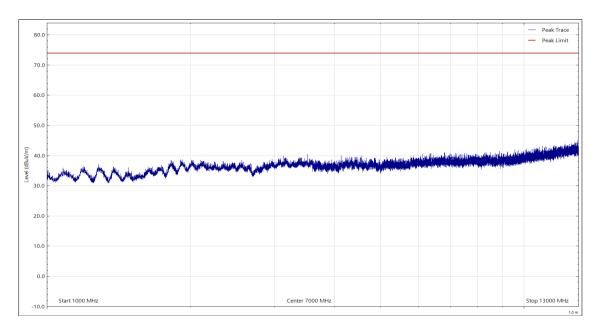


Figure 8 - 1 GHz to 13 GHz, CISPR Average, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 22

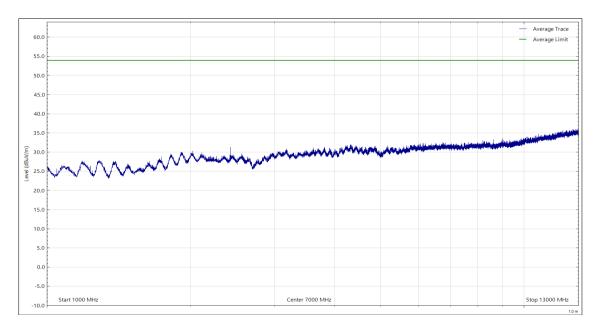


Figure 9 - 1 GHz to 13 GHz, Peak, Horizontal

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 23

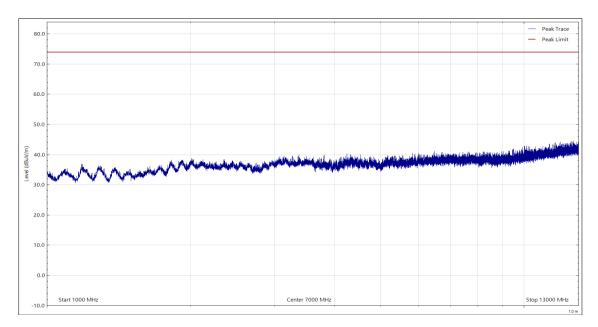


Figure 10 - 1 GHz to 13 GHz, CISPR Average, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 24

Figure 11 - 1 GHz to 13 GHz, Peak, Vertical

Frequency (MHz)	Level (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Detector	Angle (°)	Height (cm)	Polarisation
*							

Table 25

Figure 12 - Test Setup - 30 MHz to 1 GHz

Figure 13 - Test Setup - 1 GHz to 13 GHz

2.1.10 Test Location and Test Equipment Used

This test was carried out in Bearley EMC Chamber 1.

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Expires
Antenna (Bilog, 30 MHz to 3 GHz)	Schaffner	CBL6143	1858	24	30-Apr-2023
Screened Room (1)	Rainford	Hybrid	4160	36	11-Jan-2025
Cable (N-Type to N-Type, 7 m)	Teledyne Storm	SA90-195-7MTR	4173	12	13-Apr-2023
Mast controller	Innco Systems	Controller CO3000	4728	-	TU
Antenna (Double Ridge Guide, 1 GHz to 18 GHz)	ETS-Lindgren	3117	4737	24	11-Mar-2024
Test Receiver	Keysight Technologies	N9038A MXE	4974	12	30-Jan-2024
Emissions Software	TUV SUD	EmX V3.1.10	5125	-	Software
Cable (N-Type to N-Type, 3 m)	Rosenberger	LU7-036-3000	5163	12	18-Dec-2023
Cable (18GHz SMA 1m)	Rosenberger	LU7-071-1000	5165	12	18-Dec-2023
Turntable Controller	Maturo	Maturo NCD	5275	-	TU
Broadband Pre-Amplifier (0.5 - 18 GHz)	Schwarzbeck	BBV 9718 D	5882	12	01-Mar-2024

Table 26

TU - Traceability Unscheduled

3 Test Equipment Information

3.1 General Test Equipment Used

Instrument	Manufacturer	Туре No	TE No	Calibration Period (months)	Calibration Expires
Hygrometer	Rotronic	I-1000	2830	12	13-Oct-2023

4 Incident Reports

No incidents reports were raised.

5 Measurement Uncertainty

For a 95% confidence level, the measurement uncertainties for defined systems are:

Test Name	Measurement Uncertainty
Radiated Disturbance	30 MHz to 1 GHz, Bilog Antenna, ±5.2 dB 1 GHz to 40 GHz, Horn Antenna, ±6.3 dB

Table 28

Worst case error for both Time and Frequency measurement 12 parts in 10⁶.

Measurement Uncertainty Decision Rule

Determination of conformity with the specification limits is based on the decision rule according to IEC Guide 115:2021, Clause 4.4.3 (Procedure 2). The measurement results are directly compared with the test limit to determine conformance with the requirements of the standard.

Risk: The uncertainty of measurement about the measured result is negligible with regard to the final pass/fail decision. The measurement result can be directly compared with the test limit to determine conformance with the requirement (compare IEC Guide 115). The level of risk to falsely accept and falsely reject items is further described in ILAC-G8.