

TEST REPORT

Applicant Name : Address :

Report Number : FCC ID: IC: Meizhou Guo Wei Electronics Co., Ltd AD1 Section, Economic Development Area, Dongsheng Industrial District, Meizhou, Guangdong, China. SZNS221020-48207E-RFA 2ARRB-MB600 20353-MB600

Test Standard (s)

FCC PART 15.247; RSS-GEN ISSUE 5, FEBRUARY 2021 AMENDMENT 2; RSS-247, ISSUE 2, FEBRUARY 2017

Sample Description

Product Type:	TRUE WIRELESS EARBUDS
Model No.:	MOTO BUDS 600 ANC
Multiple Model(s) No.:	N/A
Trade Mark:	Motorola
Date Received:	2022/10/20
Report Date:	2022/11/02

Test Result:

Pass*

* In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Andy. YUL

Andy Yu EMC Engineer

Approved By:

Candy, Li

Candy Li EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "* ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data. This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to

this report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China

 Tel: +86 755-26503290
 Fax: +86 755-26503396
 Web: www.atc-lab.com

Version 15: 2021-11-09

Page 1 of 63

FCC-BT; RSS-BT

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
Test Methodology Measurement Uncertainty	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	6
SPECIAL ACCESSORIES	
EQUIPMENT MODIFICATIONS	
SUPPORT EQUIPMENT LIST AND DETAILS External I/O Cable	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	9
- FCC§15.247 (I), §1.1307 (B) (3) &§2.1093 – RF EXPOSURE	11
Applicable Standard	
RSS-102 § 2.5.1 –EXEMPTION LIMITS FOR ROUTINE EVALUATION-SAR EVALUATION	
APPLICABLE STANDARD	13
TEST RESULT:	
FCC §15.203 & RSS-GEN §6.8 – ANTENNA REQUIREMENT	
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	
FCC §15.209, §15.205 & §15.247(D) & RSS-247§ 5.5 - SPURIOUS EMISSIONS	
APPLICABLE STANDARD	
EUT SETUP EMI Test Receiver & Spectrum Analyzer Setup	
TEST PROCEDURE	
Corrected Factor & Margin Calculation	
TEST DATA	17
FCC §15.247(A) (1) & RSS-247 § 5.1 (B) -CHANNEL SEPARATION TEST	25
APPLICABLE STANDARD	25
Test Procedure	
TEST DATA	25
FCC §15.247(A) (1) & RSS-247 § 5.1 (A), RSS-GEN § 6.7 – 20 DB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH	26
APPLICABLE STANDARD	
Test Procedure	
TEST DATA	27

Version 15: 2021-11-09

FCC §15.247(A) (1) (III) & RSS-247 § 5.1 (D) - QUANTITY OF HOPPING CHANNEL TEST	
APPLICABLE STANDARD	
Test Procedure	28
TEST DATA	28
FCC §15.247(A) (1) (III) & RSS-247 § 5.1 (D) - TIME OF OCCUPANCY (DWELL TIME)	29
APPLICABLE STANDARD	29
Test Procedure	29
TEST DATA	29
FCC §15.247(B) (1) & RSS-247§ 5.1(B) &§ 5.4(B) - PEAK OUTPUT POWER MEASUREMENT	
APPLICABLE STANDARD	30
TEST PROCEDURE	30
TEST DATA	30
FCC §15.247(D) & RSS-247 § 5.5 - BAND EDGES TESTING	31
APPLICABLE STANDARD	
Test Procedure	31
TEST DATA	32
APPENDIX	
APPENDIX A: 20DB EMISSION BANDWIDTH	
APPENDIX B: OCCUPIED CHANNEL BANDWIDTH	
APPENDIX C: MAXIMUM CONDUCTED OUTPUT POWER	41
APPENDIX D: CARRIER FREQUENCY SEPARATION	
APPENDIX E: TIME OF OCCUPANCY	47
APPENDIX F: NUMBER OF HOPPING CHANNELS	
APPENDIX G: BAND EDGE MEASUREMENTS	59

GENERAL INFORMATION

HVIN	MOTO BUDS 600 ANC
Frequency Range	Bluetooth: 2402~2480MHz
Transmit Peak Power	2.43dBm
Modulation Technique	Bluetooth: GFSK, π/4-DQPSK, 8DPSK
Antenna Specification*	-1.98dBi (provided by the applicant)
Voltage Range	DC 3.7V from battery
Sample serial number	1MTU (RF Conducted Test), 1MTX (RF Radiated Test) (Assigned by ATC)
Sample/EUT Status	Good condition

Product Description for Equipment under Test (EUT)

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commissions rules and RSS-247, Issue 2, February 2017, RSS-GEN Issue 5, Feb. 2021Amendment 2 of the Innovation, Science and Economic Development Canada rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and RSS-247, Issue 2, February 2017, RSS-GEN Issue 5, Feb. 2021Amendment 2 of the Innovation, Science and Economic Development Canada rules.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter		Uncertainty	
Occupied Char	nnel Bandwidth	5%	
RF Fre	equency	$0.082^{*}10^{-7}$	
RF output pov	wer, conducted	0.73dB	
Unwanted Emis	ssion, conducted	1.6dB	
AC Power Lines C	onducted Emissions	2.72dB	
	9kHz - 30MHz	2.66dB	
	30MHz - 1GHz	4.28dB	
Emissions, Radiated	1GHz - 18GHz	4.98dB	
Radiated	18GHz - 26.5GHz	5.06dB	
	26.5GHz- 40GHz	4.72dB	
Temperature		1℃	
Hun	nidity	6%	
Supply voltages		0.4%	

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189.

Accredited by American Association for Laboratory Accreditation (A2LA). The Certificate Number is 4297.01

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: CN0016. The Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

"Blue Test3"* exercise software was used to the EUT tested, the power level for BDR(GFSK) is 4 and EDR($\pi/4$ -SQPSK) /EDR(8DPSK) is 3*. The software and power level was provided by the applicant.

Special Accessories

No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number	Specification
/	/	/	/	/

External I/O Cable

Cable Description	Length (m)	From Port	То
/	/	/	/

Report No.: SZNS221020-48207E-RFA

Block Diagram of Test Setup

EUT	▲ 1.0 Meter
Non-Conductive Table 80/150 cm above Ground Plane	
80/150 cm above Ground Plane 4 1.5 Meters	,

SUMMARY OF TEST RESULTS

Rules	Description of Test	Result
FCC§15.247 (i), §1.1307 (b) (3) &§2.1093	RF Exposure	Compliant
RSS-102 § 2.5.1	Exemption Limits For Routine Evaluation- SAR evaluation	Compliant
FCC §15.203 RSS-Gen §6.8	Antenna Requirement	Compliant
FCC §15.207(a) RSS-Gen §8.8	AC Line Conducted Emissions	Not Applicable
FCC §15.205, §15.209, §15.247(d) RSS-247 § 5.5, RSS-GEN § 8.10	Radiated Emissions	Compliant
FCC §15.247(a)(1) RSS-247 § 5.1(a), RSS-GEN § 6.7	20 dB Emission Bandwidth & 99% Occupied Bandwidth	Compliant
FCC §15.247(a)(1) RSS-247 § 5.1 (b)	Channel Separation Test	Compliant
FCC §15.247(a)(1)(iii) RSS-247 § 5.1 (d)	Time of Occupancy (Dwell Time)	Compliant
FCC §15.247(a)(1)(iii) RSS-247 § 5.1 (d)	Quantity of hopping channel Test	Compliant
FCC §15.247(b)(1) RSS-247 § 5.1(b) &§ 5.4(b)	Peak Output Power Measurement	Compliant
FCC §15.247(d) RSS-247 § 5.5	Band edges	Compliant

Not Applicable: The Bluetooth function cannot use when charging..

Note: the left earbud and right earbud are electrical identical, pre-scan the two earbuds, the worst case Right earbud was selected to test.

Report No.: SZNS221020-48207E-RFA

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
Radiated Emissions Test							
Rohde& Schwarz	Test Receiver	ESR	102725	2021/12/13	2022/12/12		
Rohde&Schwarz	Spectrum Analyzer	FSV40	101949	2021/12/13	2022/12/12		
SONOMA INSTRUMENT	Amplifier	310 N	186131	2021/11/09	2022/11/08		
A.H. Systems, inc.	Preamplifier	PAM-0118P	135	2021/11/09	2022/11/08		
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2021/11/11	2022/11/10		
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2021/07/06	2024/07/05		
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04		
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04		
Radiated Emission T	est Software: e3 19821b	(V9)					
Unknown	RF Coaxial Cable	No.10	N050	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.11	N1000	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.12	N040	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.13	N300	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.14	N800	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.15	N600	2021/12/14	2022/12/13		
Unknown	RF Coaxial Cable	No.16	N650	2021/12/14	2022/12/13		
Wainwright	High Pass Filter	WHKX3.6/18 G-10SS	5	2021/12/14	2022/12/13		

Report No.: SZNS221020-48207E-RFA

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
		RF Conducted	d Test		
Rohde&Schwarz	Spectrum Analyzer	FSV-40	101495	2021/12/13	2022/12/12
Tonscend	RF Control Unit	JS0806-2	19G8060182	2022/07/06	2023/07/05
HP	6dB Attenuator	8493B 6dB Attenuator	2708A 04769	2021/12/14	2022/12/13
Unknown	RF Coaxial Cable	No.31	RF-01	Each	time

* **Statement of Traceability:** Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC§15.247 (i), §1.1307 (b) (3) &§2.1093 – RF EXPOSURE

Applicable Standard

According to FCC §2.1093 and §1.1307(b) (3), systems operating under the provisions of this section shall be operated in a manner that ensure that the public is not exposed to radio frequency energy level in excess of the Commission's guideline.

According to KDB 447498 D04 Interim General RF Exposure Guidance

SAR-Based Exemption:

SAR-based thresholds are derived based on frequency, power, and separation distance of the RF source. The formula defines the thresholds in general for either available maximum timeaveraged power or maximum time-averaged ERP, whichever is greater.

Per § 1.1307(b)(3)(i)(B), for single RF sources (i.e., any single fixed RF source, mobile device, or portable device, as defined in paragraph (b)(2) of this section): A single RF source is exempt if:

the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold P_{th} (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). P_{th} is given by:

$$P_{th} (mW) = \begin{cases} ERP_{20 \ cm} (d/20 \ cm)^x & d \le 20 \ cm \\ ERP_{20 \ cm} & 20 \ cm < d \le 40 \ cm \end{cases}$$

Where

 $x = -\log_{10}\left(\frac{60}{ERP_{20} cm\sqrt{f}}\right)$ and f is in GHz;

and

$$ERP_{20\ cm}\ (\text{mW}) = \begin{cases} 2040f & 0.3\ \text{GHz} \le f < 1.5\ \text{GHz} \\ \\ 3060 & 1.5\ \text{GHz} \le f \le 6\ \text{GHz} \end{cases}$$

d = the separation distance (cm);

For worst case:

Exemption limit:

For f=2.48GHz, d=0.5cm, the $P_{th}=2.72$ mW

The higher of the available maximum time-averaged power or effective radiated power (ERP):

The antenna gain is -1.98dBi(-4.13dBd), 0dBd=2.15dBi

The maximum tune-up conducted power is 2.5dBm (1.78mW), which less than 2.72mW@2480MHz exemption limit.

So the stand-alone SAR evaluation can be exempted.

RSS-102 § 2.5.1 – EXEMPTION LIMITS FOR ROUTINE EVALUATION-SAR EVALUATION

Applicable Standard

According to RSS-102 Issue 5 § (2.5.1), SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in Table 1.

Frequency	Exemption Limits (mW)						
(MHz)	At separation	At separation At separation At separation At separat					
	distance of	distance of	distance of	distance of	distance of		
	≤5 mm	10 mm	15 mm	20 mm	25 mm		
≤300	71 mW	101 mW	132 mW	162 mW	193 mW		
450	52 mW	70 mW	88 mW	106 mW	123 mW		
835	17 mW	30 mW	42 mW	55 mW	67 mW		
1900	$7 \mathrm{mW}$	10 mW	18 mW	34 mW	60 mW		
2450	4 mW	7 mW	15 mW	30 mW	52 mW		
3500	2 mW	6 mW	16 mW	32 mW	55 mW		
5800	1 mW	6 mW	15 mW	27 mW	41 mW		

Table 1: SAR evaluation – Exemption limits for routine evaluation based on frequency and separation distance^{4,5}

Frequency		Exemption Limits (mW)						
(MHz)	At separation distance of 30 mm	At separation distance of 35 mm	At separation distance of 40 mm	At separation distance of 45 mm	At separation distance of ≥50 mm			
≤300	223 mW	254 mW	284 mW	315 mW	345 mW			
450	141 mW	159 mW	177 mW	195 mW	213 mW			
835	80 mW	92 mW	105 mW	117 mW	130 mW			
1900	99 mW	153 mW	225 mW	316 mW	431 mW			
2450	83 mW	123 mW	173 mW	235 mW	309 mW			
3500	86 mW	124 mW	170 mW	225 mW	290 mW			
5800	56 mW	71 mW	85 mW	97 mW	106 mW			

4. The exemption limits in Table 1 are based on measurements and simulations of half-wave dipole antennas at separation distances of 5 mm to 25 mm from a flat phantom, providing a SAR value of approximately 0.4 W/kg for 1 g of tissue. For low frequencies (300 MHz to 835 MHz), the exemption limits are derived from a linear fit. For high frequencies (1900 MHz and above), the exemption limits are derived from a third order polynomial fit.

5. Transmitters operating between 0.003-10 MHz, meeting the exemption from routine SAR evaluation, shall demonstrate compliance to the instantaneous limits in Section 4.

Output power level shall be the higher of the maximum conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, time-averaged output power. For controlled use devices where the 8 W/kg for 1 gram of tissue applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 5. For limb-worn devices where the 10 gram value applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 2.5. If the operating frequency of the device is between two frequencies located in Table 1, linear interpolation shall be applied for the applicable separation distance less than 5 mm, the exemption limits for a separation distance of 5 mm can be applied to determine if a routine evaluation is required.

For medical implants devices, the exemption limit for routine evaluation is set at 1 mW. The output power of a medical implants device is defined as the higher of the conducted or e.i.r.p to determine whether the device is exempt from the SAR evaluation.

Test Result:

For worst case:

The higher of the conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, timeaveraged output power:

(2480-2450)/(3500-2450) = (4-P)/(4-2)

The exemption limit of 2480MHz is P= 3.94mW

The antenna gain is -1.98dBi

The maximum tune up conducted power is 2.5dBm (1.78mW), which less than 3.94mW@2480MHz exemption limit

So the stand-alone SAR test is not required.

FCC §15.203 & RSS-GEN §6.8 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

According to FCC § 15.203, the applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list.

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device. Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type.

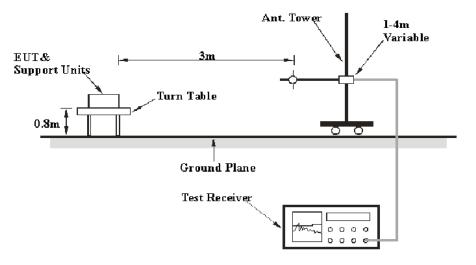
Antenna Connector Construction

The EUT has one internal antenna arrangement which was permanently attached and the maximum antenna gain is -1.98dBi, fulfill the requirement of this section. Please refer to the EUT photos.

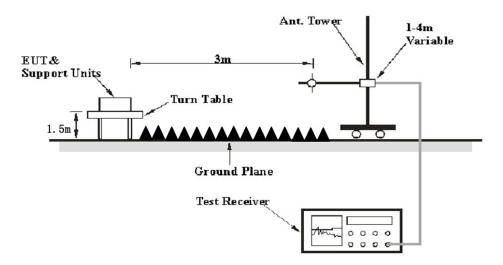
Antenna Type	Antenna Gain	Impedance	Frequency Range	
FPC	-1.98dBi	50 Ω	2.4~2.5GHz	

Result: Compliance

Version 15: 2021-11-09


FCC §15.209, §15.205 & §15.247(D) & RSS-247§ 5.5 - SPURIOUS EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d); RSS-247§ 5.5; RSS-GEN § 8.10

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209, FCC 15.247, RSS-247, RSS-Gen limits.

Version 15: 2021-11-09

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	РК

For average measurement:

Use the duty cycle factor correction factor method per 15.35(c). Duty cycle=On time/100milliseconds, On time=N1*L1+N2*L2+...Nn-1*Ln-1+Nn*Ln, where N1 is number of type 1 pulses, L1 is length of type 1 pulse, etc. Average Emission Level=Peak Emission Level+20*log(Duty cycle)

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Corrected Factor & Margin Calculation

The Corrected Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Corrected Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "**Over Limit or Margin**" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a overlimit/margin of -7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

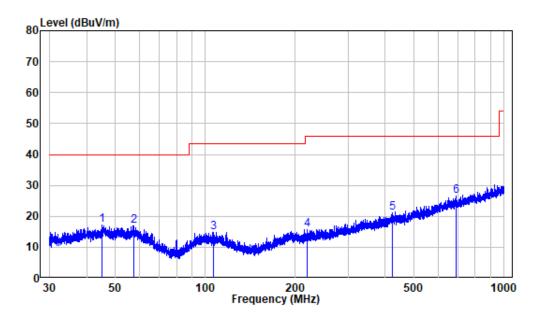
Margin/Over Limit = Corrected Amplitude/Level-Limit Corrected Amplitude/Level = Reading + Corrected Factor

Test Data

Environmental Conditions

Temperature:	24~25.6 °C
Relative Humidity:	50~58 %
ATM Pressure:	101.0 kPa

The testing was performed by Level on 2022-10-26 for below 1GHz, and Zeki Ma from 2022-10-26 to 2022-11-01 for above 1GHz.

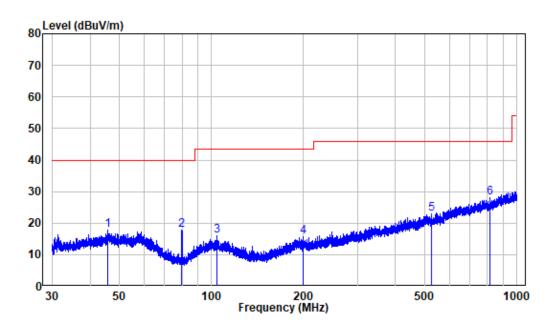

EUT operation mode: Transmitting (Pre-scan in the X,Y and Z axes of orientation, the worst case X-axes orientation was recorded)

Version 15: 2021-11-09

30MHz-1GHz: (worst case is 8DPSK Mode, High channel)

Note: When the test result of peak was less than the limit of QP more than 6dB, just peak value were recorded.

Horizontal



Site : chamber Condition: 3m HORIZONTAL Job No. : SZNS221020-48207E-RF Test Mode: BT Transmitting

	Freq	Factor			Limit Line		Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	44.979	-9.94	27.17	17.23	40.00	-22.77	Peak
2	57.695	-9.94	26.90	16.96	40.00	-23.04	Peak
3	106.106	-11.93	26.79	14.86	43.50	-28.64	Peak
4	219.075	-11.46	27.29	15.83	46.00	-30.17	Peak
5	423.355	-5.95	26.98	21.03	46.00	-24.97	Peak
6	690.775	-1.51	28.02	26.51	46.00	-19.49	Peak

Report No.: SZNS221020-48207E-RFA

Site : chamber Condition: 3m VERTICAL Job No. : SZNS221020-48207E-RF Test Mode: BT Transmitting

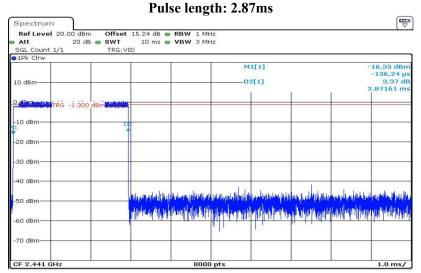
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	45.735	-9.98	27.82	17.84	40.00	-22.16	Peak
2	79.975	-16.79	34.47	17.68	40.00	-22.32	Peak
3	104.307	-11.77	27.89	16.12	43.50	-27.38	Peak
4	199.286	-11.45	27.07	15.62	43.50	-27.88	Peak
5	525.244	-4.38	27.27	22.89	46.00	-23.11	Peak
6	817.400	-0.11	28.27	28.16	46.00	-17.84	Peak

Report No.: SZNS221020-48207E-RFA

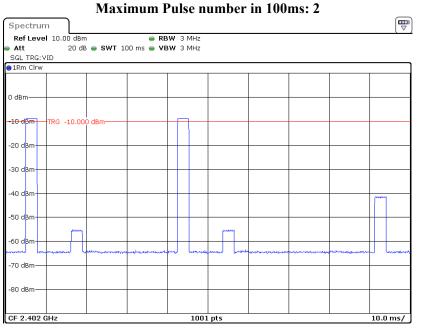
Frequency	Re	ceiver	Turntable	Rx An	tenna	Factor	Absolute	Limit	Margin
Frequency (MHz)	Reading (dBµV)	PK/Ave	Angle Degree	Height (m)	Polar (H/V)	(dB/m)	Level (dBµV/m)	(dBµV/m)	(dB)
			Low C	hannel(2	2402MH	[z)			
2310	61.12	PK	342	2.1	Н	-7.24	53.88	74	-20.12
2310	61.50	PK	154	1.1	V	-7.24	54.26	74	-19.74
2390	62.42	PK	11	1.4	Н	-7.22	55.20	74	-18.80
2390	61.87	PK	278	1.8	V	-7.22	54.65	74	-19.35
4804	60.42	PK	84	1	Н	-3.51	56.91	74	-17.09
4804	57.31	PK	231	1	V	-3.51	53.80	74	-20.20
	Middle Channel(2441MHz)								
4882	56.03	РК	94	2.5	Н	-3.37	52.66	74	-21.34
4882	54.11	РК	310	2.5	V	-3.37	50.74	74	-23.26
			High Cl	hannel(2	2480 MF	Hz)			
2483.5	77.60	РК	219	1.7	Н	-7.20	70.40	74	-3.60
2483.5	71.29	РК	302	2	V	-7.20	64.09	74	-9.91
2500	63.70	PK	356	1.8	Н	-7.18	56.52	74	-17.48
2500	63.74	РК	46	1.3	V	-7.18	56.56	74	-17.44
4960	56.47	РК	333	2.2	Н	-3.01	53.46	74	-20.54
4960	53.56	PK	202	2.2	V	-3.01	50.55	74	-23.45

Above 1GHz: (the worst case is 8DPSK Mode, 3DH5)

Report No.: SZNS221020-48207E-RFA

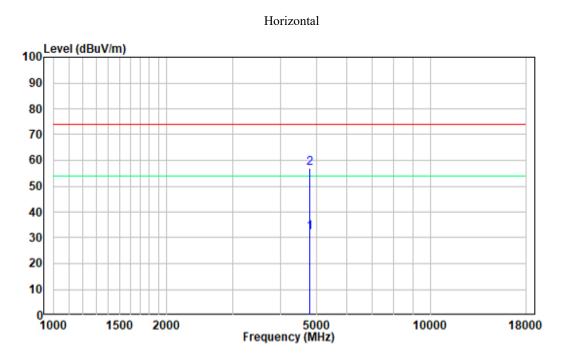

	Field Strength of Average						
Frequency	Peak Measurement	Polar	Duty Cycle Correction	Corrected	FCC Part 15.247		
(MHz)	@3m (dBµV/m)	(H/V)	Factor (dB)	Ampitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
		Lo	w Channel(240	2MHz)			
2310	53.88	Н	-24.82	29.06	54	-24.94	
2310	54.26	V	-24.82	29.44	54	-24.56	
2390	55.20	Н	-24.82	30.38	54	-23.62	
2390	54.65	V	-24.82	29.83	54	-24.17	
4804	56.91	Н	-24.82	32.09	54	-21.91	
4804	53.80	V	-24.82	28.98	54	-25.02	
		Mic	ldle Channel(24	41MHz)	•		
4882	52.66	Н	-24.82	27.84	54	-26.16	
4882	50.74	V	-24.82	25.92	54	-28.08	
		Hi	gh Channel(248	0MHz)	•		
2483.5	70.40	Н	-24.82	45.58	54	-8.42	
2483.5	64.09	V	-24.82	39.27	54	-14.73	
2500	56.52	Н	-24.82	31.70	54	-22.30	
2500	56.56	V	-24.82	31.74	54	-22.26	
4960	53.46	Н	-24.82	28.64	54	-25.36	
4960	50.55	V	-24.82	25.73	54	-28.27	

Note:

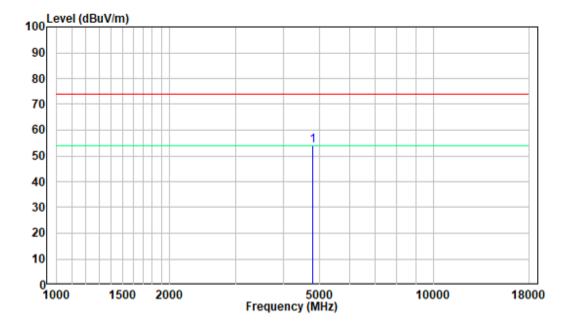

Absolute Level = Corrected Factor + Reading Margin = Corrected. Amplitude - Limit Average level= Peak level+ Duty Cycle Corrected Factor

The worst case duty cycle as below: Duty cycle = Ton/100ms = 2.87*2/100=0.0574Duty Cycle Corrected Factor = 20lg (Duty cycle) = 20lg0.0576 = -24.82

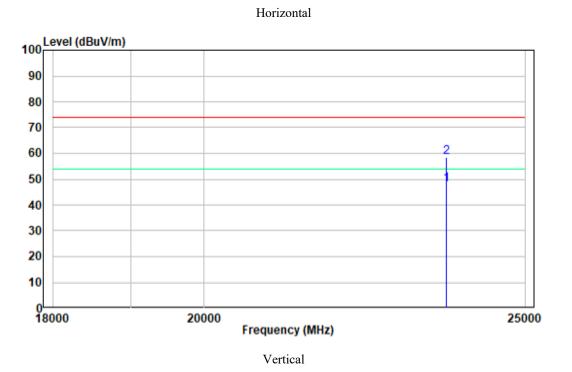
Report No.: SZNS221020-48207E-RFA

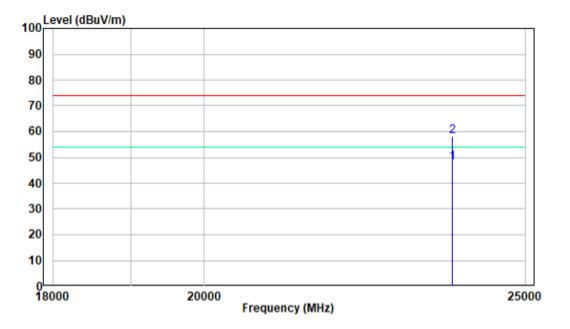


Date: 1.NOV.2022 12:42:22


Date: 26.0CT.2022 15:32:55

1 GHz - 18 GHz: (Pre-Scan plots)


Low channel


Vertical

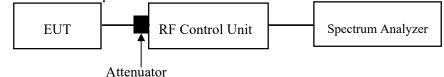
18-25GHz: (Pre-Scan plots)

Low channel

FCC §15.247(a) (1) & RSS-247 § 5.1 (b) -CHANNEL SEPARATION TEST

Applicable Standard

According to FCC §15.247(a) (1):


Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

According to RSS-247 § 5.1 (b):

Frequency hopping systems (FHSs) shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Test Procedure

- 1. Set the EUT in transmitting mode, max hold the channel.
- 2. Set the adjacent channel of the EUT and max hold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	45 %
ATM Pressure:	101.0 kPa

The testing was performed by Andy Yu on 2022-11-01.

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

```
Version 15: 2021-11-09
```

FCC §15.247(a) (1) & RSS-247 § 5.1 (a), RSS-GEN § 6.7 – 20 dB EMISSION BANDWIDTH & 99% OCCUPIED BANDWIDTH

Applicable Standard

According to FCC §15.247(a) (1):

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

According to RSS-247 § 5.1 (a), RSS-GEN § 6.7:

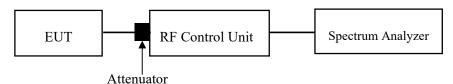
The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

In some cases, the "20 dB bandwidth" is required, which is defined as the frequency range between two points, one at the lowest frequency below and one at the highest frequency above the carrier frequency, at which the maximum power level of the transmitted emission is attenuated 20 dB below the maximum inband power level of the modulated signal, where the two points are on the outskirts of the in-band emission.

Test Procedure

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

• The transmitter shall be operated at its maximum carrier power measured under normal test conditions.


• The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.

• The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.

• The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	45 %
ATM Pressure:	101.0 kPa

The testing was performed by Andy Yu on 2022-11-01.

EUT operation mode: Transmitting

Test Result: Pass

Please refer to the Appendix.

FCC §15.247(a) (1) (iii) & RSS-247 § 5.1 (d) - QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

According to FCC §15.247(a) (1) (iii):

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

According to RSS-247 § 5.1 (d):

Frequency hopping systems (FHSS) operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

Test Procedure

- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Attenuator

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	45 %
ATM Pressure:	101.0 kPa

The testing was performed by Andy Yu on 2022-11-01

EUT operation mode: Transmitting

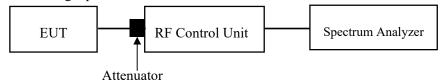
Test Result: Pass. Please refer to the Appendix.

Version 15: 2021-11-09

FCC §15.247(a) (1) (iii) & RSS-247 § 5.1 (d) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

According to FCC §15.247(a) (1) (iii):


Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

According to RSS-247 § 5.1 (d):

Frequency hopping systems (FHSs) operating in the band 2400-2483.5 MHz shall use at least 15 hopping channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds, multiplied by the number of hopping channels employed. Transmissions on particular hopping frequencies may be avoided or suppressed provided that at least 15 hopping channels are used.

Test Procedure

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW $\geq 3 \times RBW$.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Test Data

Environmental Conditions

Temperature:	25 °C
Relative Humidity:	45 %
ATM Pressure:	101.0 kPa

The testing was performed by Andy Yu on 2022-11-01.

EUT operation mode: Transmitting

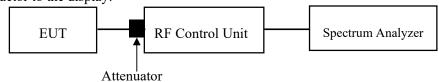
Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(b) (1) & RSS-247§ 5.1(b) &§ 5.4(b) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to FCC §15.247(b) (1):

For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 nonoverlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.


According to RSS-247§ 5.1(b) &§ 5.4(b):

For frequency hopping systems (FHSs) operating in the band 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1.0 W if the hopset uses 75 or more hopping channels; the maximum peak conducted output power shall not exceed 0.125 W if the hopset uses less than 75 hopping channels. The e.i.r.p. shall not exceed 4 W (see Section 5.4(e) for exceptions).

Frequency hopping systems (FHSs) shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the -20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, FHSs operating in the band 2400-2483.5 MHz may have hopping channel carrier frequencies that are separated by 25 kHz or two thirds of the -20 dB bandwidth of the hopping channel, whichever is greater, provided that the systems operate with an output power no greater than 0.125 W.

Test Procedure

- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	45 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Andy Yu on 2022-11-01.

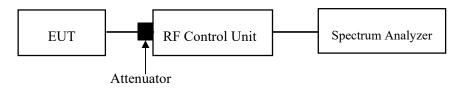
EUT operation mode: Transmitting

Test Result: Compliant. Please refer to the Appendix.

FCC §15.247(d) & RSS-247 § 5.5 - BAND EDGES TESTING

Applicable Standard

According to FCC §15.247(d).


In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to RSS-247 § 5.5.

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under Section 5.4(e), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Data

Environmental Conditions

Temperature:	25 °C	
Relative Humidity:	45 %	
ATM Pressure:	101.0 kPa	

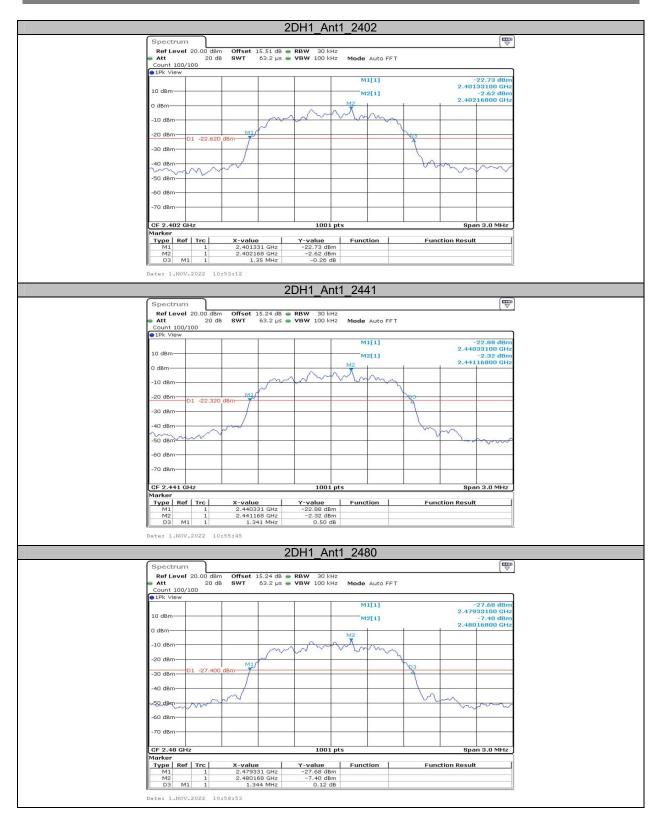
The testing was performed by Andy Yu on 2022-11-01

EUT operation mode: Transmitting

Test Result: Pass

Please refer to the Appendix.

APPENDIX


Appendix A: 20dB Emission Bandwidth Test Result

Test Mode	Antenna	Frequency[MHz]	20db EBW[MHz]	Limit[MHz]	Verdict
DH1 Ant1		2402	0.95		
	Ant1	2441	0.95		
		2480	0.94		
2DH1 Ant		2402	1.35		
	Ant1	2441	1.34		
		2480	1.34		
3DH1 Ar		2402	1.31		
	Ant1	2441	1.31		
		2480	1.30		

Test Graphs

Report No.: SZNS221020-48207E-RFA


Report No.: SZNS221020-48207E-RFA

Appendix B: Occupied Channel Bandwidth Test Result

Test Mode	Antenna	Frequency[MHz]	OCB [MHz]	Limit[MHz]	Verdict
		2402	0.860		
DH1	Ant1	2441	0.863		
		2480	0.857		
		2402	1.187		
2DH1	Ant1	2441	1.181		
		2480	1.184		
		2402	1.166		
3DH1	Ant1	2441	1.169		
		2480	1.169		

Test Graphs

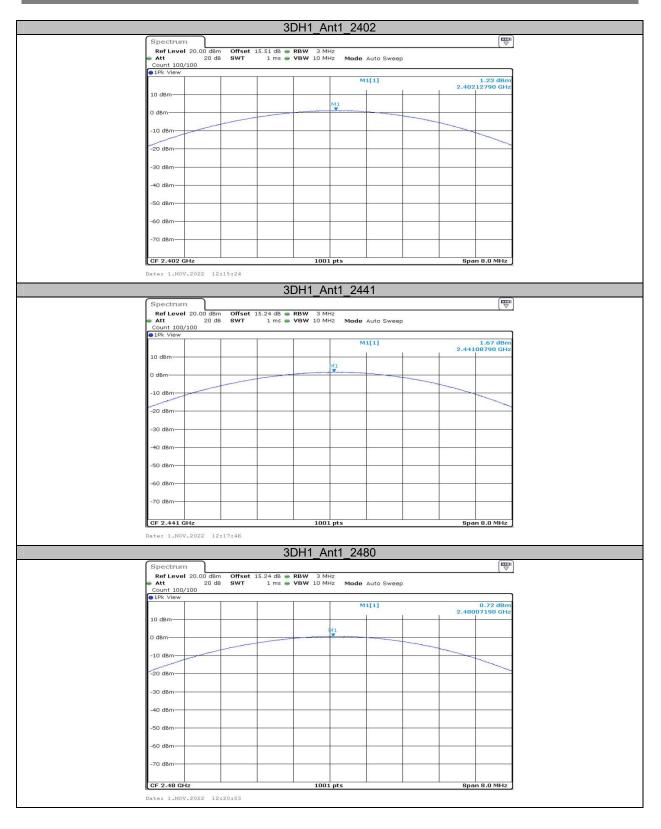
Report No.: SZNS221020-48207E-RFA

Report No.: SZNS221020-48207E-RFA

Appendix C: Maximum conducted output power Test Result

Test Mode	Antenna	Frequency[MHz]	Conducted Peak Power [dBm]	Conducted Limit [dBm]	EIRP [dBm]	EIRP Limit [dBm]	Verdict
		2402	1.92	≤20.97	-0.06	≤36	PASS
DH1	Ant1	2441	2.43	≤20.97	0.45	≤36	PASS
		2480	1.44	≤20.97	-0.54	≤36	PASS
		2402	0.75	≤20.97	-1.23	≤36	PASS
2DH1	Ant1	2441	1.21	≤20.97	-0.77	≤36	PASS
		2480	0.06	≤20.97	-1.92	≤36	PASS
		2402	1.23	≤20.97	-0.75	≤36	PASS
3DH1	Ant1	2441	1.67	≤20.97	-0.31	≤36	PASS
		2480	0.72	≤20.97	-1.26	≤36	PASS

Note: EIRP= Conducted Power + Anntenna Gain, the antenna gain is -1.98 dBi,


Test Graphs

(_	DF	11_Ant	1_240	12			(m)	
Spectrum Ref Level 20	1.00 dBm Offset	15.51 dB 🕳 RB	W 3 MH	z					
 Att Count 100/100 	20 dB SWT	1 ms 👄 VE	3W 10 MH:	z Mode	Auto Sweep	p			
91Pk View				M	1[1]		0.457	1.92 dBm	
10 dBm					-	<u> </u>	2.402	07190 GHz	
0 dBm				1					
-10 dBm									
								1	
-20 dBm									
-30 dBm									
-40 dBm		+ +						—	
-50 dBm		+							
-60 dBm							-		
-70 dBm									
CF 2.402 GHz			1001	pts		1	Spa	n 8.0 MHz	
Date: 1.NOV.20	022 10:49:06								
		DH	I1_Ant	1_244	1				
Spectrum Ref Level 20	LOD dam Officia	15 94 do - 00	W 3 M	2					
Ref Level 20 Att _ Count 100/100	20 dB SWT	15.24 dB 🖷 RE 1 ms 🖷 VE	3W 3 MH		Auto Sweep	p			
● 1Pk View		1 1		N	1[1]			2.43 dBm	
10 dBm				I.	-1-1		2.441	07190 GHz	
			-	11					
0 dBm							/		
-10 dBm									
-20 dBm-		+ +						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-30 dBm									
-40 dBm									
-50 dBm									
-60 dBm									
-70 dBm									
CF 2.441 GHz			1001	nts			Pn-	n 8.0 MHz	
Date: 1.NOV.20			1001				oha		
		٦U	11_Ant	1 249	0				
Spectrum				-1_2 4 0					
Ref Level 20 Att	1.00 dBm Offset 20 dB SWT	15.24 dB 🖷 RE 1 ms 🖷 VE			Auto Sweer	0		(*)	
Count 100/100)		e			e:			
				M	1[1]		2.479	1.44 dBm 97600 GHz	
10 dBm			MI						
		++					-		
0 dBm									
0 dBm									
-10 dBm									
-10 dBm									
-10 dBm									
-10 dBm									
-10 dBm -20 dBm -30 dBm									
-10 dBm -20 dBm -30 dBm -40 dBm									
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm									
-10 dBm -20 dBm -30 dBm -40 dBm -50 dBm									

Report No.: SZNS221020-48207E-RFA

Report No.: SZNS221020-48207E-RFA

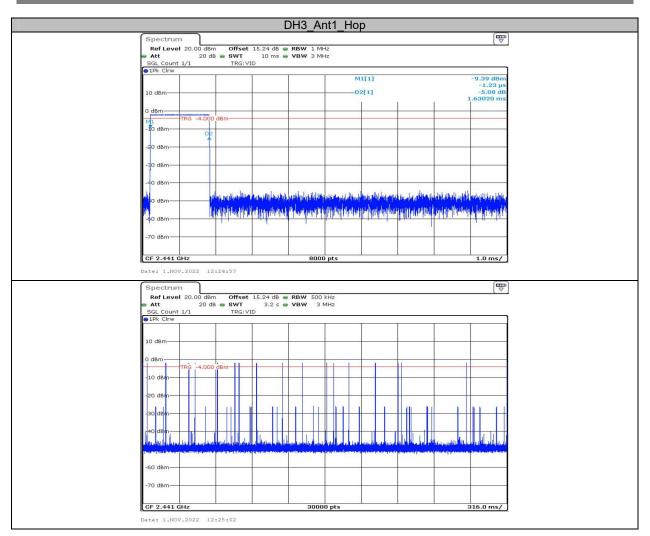
Appendix D: Carrier frequency separation Test Result

Test Mode	Antenna	Frequency[MHz]	Result[MHz]	Limit[MHz]	Verdict
DH1	Ant1	Нор	1.000	≥0.633	PASS
2DH1	Ant1	Нор	1.003	≥0.900	PASS
3DH1	Ant1	Нор	1.003	≥0.873	PASS

Test Graphs

Appendix E: Time of occupancy Test Result

Test Mode	Antenna	Frequency[MHz]	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.38	330	0.125	≤0.4	PASS
DH3	Ant1	Нор	1.63	180	0.293	≤0.4	PASS
DH5	Ant1	Нор	2.87	120	0.344	≤0.4	PASS
2DH1	Ant1	Нор	0.38	320	0.122	≤0.4	PASS
2DH3	Ant1	Нор	1.63	140	0.228	≤0.4	PASS
2DH5	Ant1	Нор	2.87	130	0.373	≤0.4	PASS
3DH1	Ant1	Нор	0.39	330	0.129	≤0.4	PASS
3DH3	Ant1	Нор	1.63	140	0.228	≤0.4	PASS
3DH5	Ant1	Нор	2.87	120	0.344	≤0.4	PASS


Note 1: A period time=0.4*79=31.6(S), Result=Burst Width*Total hops Note 2: Total hops=Hopping Number in 3.16s*10

Note 3: Hopping Number in 3.16s=Total of highest signals in 3.16s (Second high signals were other channel)

Test Graphs

Operation Operation Status 20 db = SWT 10 ms = VBW 3 Met Status 20 db = SWT 10 ms = VBW 3 Met Status 20 db = SWT 10 ms = VBW 3 Met Status 20 db = SWT 10 ms = VBW 3 Met Status 20 db = SWT 10 ms = VBW 3 Met Status 20 db = SWT 10 ms = VBW 3 Met Status 20 db = Met 20 db = Met Status 20 db = Met 20 db = Met Status 10 db = Met 20 db = Met Status 10 db = Met 10 db = Met Status 10 db = Met 10 db = Met Status 10 db = Met 10 db = Met Status 10 db = Met 10 db = Met Status 10 db = Met 10 db = Met Status 10 db = Met 10 db = Met Status 10 db = Met 10 db = Met 10 db = Met Status 20 db = Met 3.2 s = VBW 3 Met 10 db = Met Status 20 db = Met 3.2 s = VBW 3 Met 10 db = Met <		DH1_A	nt1_Hop		
At 20 db 9 SWT 10 ms 9 VBW 2 Mbt Sector 11 TRGVD TRGVD	Spectrum				
Sd. Count 1/1 TG: VID 9 dbm 0.000 dbm 9 dbm 0.000 pts					_
• If X • MI(1) -3.66 dim 10 dBm - 0.00 dBm - 0.00 dBm • dBm - 0.00 dBm - 0.00 dBm			72		
10 dbm -3.3 g H 0 dbm -1.0 db -1.0 db -1.0 db 0 dbm -1.0 db -0 dbm -1.0 db -1.0 dbm	●1Pk Clrw		T		
10 dm -0211 -11.02 db 9 dbm 10 da -0.00 dbm -0.00 dbm -0 dbm -0.00 dbm -0.00 dbm -0.00			M1[1]		
Buttim Bottim	10 dBm		D2[1]	-11.02 d	1B
10 dBm dB			1	381.30	12
10 dm 10 dm <td< td=""><td></td><td></td><td></td><td></td><td></td></td<>					
-0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -20 dbm -0 dbm -0 dbm -0 dbm -0 dbm -20 dbm -0 dbm -0 dbm -0 dbm -0 dbm -20 dbm -0 dbm -0 dbm -0 dbm -0 dbm -20 dbm -0 dbm -0 dbm -0 dbm -0 dbm -20 dbm -0 dbm -0 dbm -0 dbm -0 dbm -20 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm -0 dbm </td <td></td> <td></td> <td></td> <td></td> <td></td>					
-30 dbm	DP				
-0 dbn	-20 dBm				_
-0 dbn					
0 o do data data data data data data data	-30 dBm				-
0 o do data data data data data data data	-40 dBm				
internal		a provide the provide	and a Discourse on the	and set of the set of the set of the	
-70 dBm -00 gm -10 ms/ Date: 1.NOV.2022 12:23:10 -00 gm -00 gm Spectrum -00 gm -00 gm Ref sevel 20.00 dBm Offset 15:24 dB -RBW 500 kHz Att 20 dB -00 gm SGL Count 1/1 TRC:VID -00 gm 10 dBm -00 gm -00 gm 0 dBm -00 gm -00 gm 0 dBm -00 gm -00 gm 10 dBm -00 gm -00 gm 10 dBm -00 gm -00 gm 0 dBm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm <td< td=""><td>O de the second second second</td><td>Mental Annal Annaly</td><td>terile of the produce of the flat</td><td>al destriction of the approach</td><td>And a</td></td<>	O de the second second second	Mental Annal Annaly	terile of the produce of the flat	al destriction of the approach	And a
-70 dBm -00 gm -10 ms/ Date: 1.NOV.2022 12:23:10 -00 gm -00 gm Spectrum -00 gm -00 gm Ref sevel 20.00 dBm Offset 15:24 dB -RBW 500 kHz Att 20 dB -00 gm SGL Count 1/1 TRC:VID -00 gm 10 dBm -00 gm -00 gm 0 dBm -00 gm -00 gm 0 dBm -00 gm -00 gm 10 dBm -00 gm -00 gm 10 dBm -00 gm -00 gm 0 dBm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm -00 gm <td< td=""><td>In a sharke we have a share which a share</td><td></td><td>NOTIONAL AND A BARADA</td><td>ternelis and particulation and the state</td><td>.</td></td<>	In a sharke we have a share which a share		NOTIONAL AND A BARADA	ternelis and particulation and the state	.
Date: 1.0 ms/ Date: 1.000 pts Date: 1.000 pts Spectrum Image: Control of the contro	160 dBm 11 11 11 11	h to the fill			
Date: 1.0 ms/ Date: 1.000 pts Date: 1.000 pts Spectrum Image: Control of the contro	-70 dBm				
Date: 1.NOV.2022 12:23:18 Spectrum Ref Level 20:00 dBm Offset 15:24 dB @ RBW 500 kHz Stc. Count 1/1 TRG: VD 10 dBm 0 1					
Date: 1.NOV.2022 12:23:18 Spectrum Ref Level 20:00 dBm Offset 15:24 dB @ RBW 500 kHz Stc. Count 1/1 TRG: VD 10 dBm 0 1	CE 2 441 CH2	9000	l ntc	1.0 mc	_
Spectrum Image: Construction of the sector of the sect		8000	5 pts	1.0 ms/	
Ref Level 20.00 dBm Offset 15.24 dB @ RBW 500 kHz Att 20 dB @ SWT SGL Count 1/1 TRG:VID I0 dBm Interview 0 dBm Interview 10 dBm Interview <td< td=""><td>Date: 1.NoV.2022 12:23:18</td><td></td><td></td><td></td><td></td></td<>	Date: 1.NoV.2022 12:23:18				
Ref Level 20.00 dBm Offset 15.24 dB @ RBW 500 kHz Att 20 dB @ SWT SGL Count 1/1 TRG:VID I0 dBm Interview 0 dBm Interview 10 dBm Interview <td< td=""><td>Spectrum</td><td></td><td></td><td>E</td><td></td></td<>	Spectrum			E	
SGL Count 1/1 TRG: VID ID dBm ID dBm 0 dBm ID dBm 10 dBm ID dBm -0 dBm ID dBm -70 dBm ID dBm ID dBm					
1Pk Clrw 10 dBm 10 dBm			MHz		
0 dBm ifig. 4.000 dBm i			A3 (31), 3		
0 dBm ifig. 4.000 dBm i					
TPG - 40.000 dBm Image: state st	10 dBm				_
TPG - 40.000 dBm Image: state st					
10 dBm	0 dBm		1 II II II	TT TT TT TT	1
20 dBm					
-50 dBm	+10 dBm				
-50 dBm	-20 dBm				4
-D dBm			111 111 111		
-70 d8m	-30 dBm				
-70 d8m					
-70 d8m					11
-70 d8m	(4) dBm				1
-70 d8m					,0 <u>,</u>
	-60 dBm				
GF 2.441 GHz 30000 pts 316.0 ms/					
CF 2.441 GHz 30000 pts 316.0 ms/					
	-70 dBm				

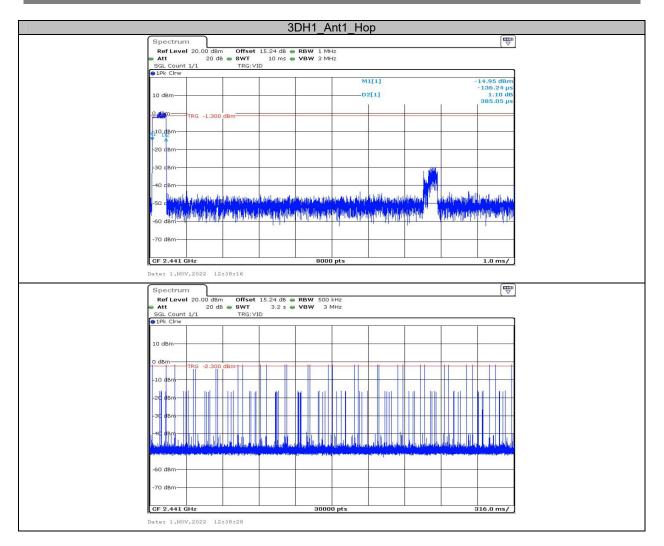
Report No.: SZNS221020-48207E-RFA

Report No.: SZNS221020-48207E-RFA

Spectrum Implementation Ref Level 20.00 dm Offset 15.24 db RRW 1.MHz Status 20 db SWT 10 ms VSW 3.MHz Status 10 db 00 db SWT 10 ms 00 db 0 db 10 db 00 db 00 db 00 db 00 db 1.0 ms 0 db 10 db 00 db 00 db 00 db 00 db 00 db 1.0 ms 0 db 10 db 00 db 00 db 00 db 00 db 1.0 ms 0 db 10 db 10 db 1.0 ms 1.0 ms 1.0 ms 1.0 ms 0 db 10 db 1.0 ms 1.0 ms 1.0 ms 1.0 ms 10 db 1.0 ms 1.0 ms 1.0 ms 1.0 ms 1.0 ms 20 db 00 db 0.0 ms 1.2 ms 1.0 ms 1.0 ms 20 db 0.0 ms 1.2 ms 1.0 ms 1.0 ms 1.0 ms 10 db 1.0 ms 2.2 ms 1.0 ms 1.0 ms 1.0 ms 1.0		DH	5_Ant1_Hop)			
Mer Level 20.00 dbm Offset 15.24 db # RBW 1 10 ms SGL Count 1/1 TBC +VID ID dbm M113 -12.26 dbm ID dbm M114 -12.01 dbm ID	Spectrum					(B)	
SGL Count 1/1 TBC:VID 0 dBm -12.26.0 dBm 0 dBm -0.00 dBm 0 dBm -0.00 dBm -0.00 dBm -0.00 dBm 0 dBm -0.00 dBm 0 dBm -0.00 dBm -0.00 dBm -0.0	Ref Level 20.00 dBm Offset					(v)	
N1[1] -1.2.20 dBm 0 dBm -0.30 dB 0 dBm -0.30 dB 0 dBm -0.30 dB 40 dBm -0.30 dB 50 dBm -0.30 dB 6	SGL Count 1/1 TRG: VI		W 3 MHz				
10 dBm	1Pk Clrw	1	N1:	[1]		-12.36 dBm	
0 dBm 100 - 4.000 dBm 2.97036 ms 15 0 dBm 100 - 4.000 dBm 100 - 4.000 dBm 100 - 4.000 dBm -0 dBm 100 - 4.000 dBm 100 - 4.000 dBm 100 - 4.000 dBm -0 dBm 100 - 4.000 dBm 100 - 4.000 dBm 100 - 4.000 dBm -0 dBm 100 - 4.000 dBm 100 - 4.000 dBm 100 - 4.000 dBm -0 dBm 100 - 4.000 dBm 100 - 4.000 dBm 100 - 4.000 dBm -0 dBm 100 - 4.000 dBm 100 - 4.000 dBm 100 - 4.000 dBm -0 dBm 100 - 4.000 dBm 100 - 4.000 dBm 100 - 4.000 dBm -0 dBm 100 - 4.000 dBm 0 - 4.000 dBm 100 - 4.000 dBm -0 dBm 0 - 4.000 dBm 0 - 4.000 dBm 0 - 4.000 dBm -0 dBm 0 - 4.000 dBm 0 - 4.000 dBm 0 - 4.000 dBm -0 dBm 0 - 4.000 dBm 0 - 4.000 dBm 0 - 4.000 dBm -10 dBm 0 - 4.000 dBm 0 - 4.000 dBm 0 - 4.000 dBm -10 dBm 0 - 4.000 dBm 0 - 4.000 dBm 0 - 4.000 dBm -10 dBm 0 - 4.000 dBm 0 - 4.000 dBm 0 - 4.000 dBm -10 dBm 0 - 4.000 dBm 0 - 4.000 dBm						-1.23 µs	
The 4.000 dBm Image: Construction of the second of the	10 dBm			[1]		2.87036 ms	
Image: Intervent of the second sec							
20 dBm							
-20 dBm	- D dbm	4					
Image: construction of the second of the	-20 dBm						
Image: construction of the construc	-30 dBm						
iii o dBm Iii Die de milie ferenzie de diffet de de manage de diffet de							
Did dBm	-40 dBm		1212 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				
Image: state of the state	0 dBm	(1) Islam determined	alphine and and a straight of the	he paragely	H Hunger stephen dust	ditte in the state is	
I 60 dBm I 60 dBm <td< td=""><td>14¹</td><td>demandabili dal inde</td><td>d Nivelai de la caladara da di</td><td>a trailability</td><td>^{the D}hu is busie in Alling das inte</td><td>a mail a han ditt</td><td></td></td<>	14 ¹	demandabili dal inde	d Nivelai de la caladara da di	a trailability	^{the D} hu is busie in Alling das inte	a mail a han ditt	
Dres: 1.NOV.2022 12:26:02 Spectrum Image: Constraint of the second s	I-60 dBm	1. dulut	1	- Inf and a			
Date: 1.NOV.2022 12:26:02 Spectrum Ref Level 20:00 dBm Offset 15:24 dB RBW 500 kHz Att 20 dB SWT 3:2 s VBW 3 MHz SGL Count 1/1 TRG:VID Image: VID Image: VID ID dBm 0 dBm 0 dBm 0 dBm 0 dBm -0 dBm -0 dBm -0 dBm 0 dBm 0 dBm -0 dBm -0 dBm -0 dBm 0 dBm 0 dBm -0 dBm -0 dBm -0 dBm -0 dBm 0 dBm -0 dBm -0 dBm -0 dBm -0 dBm -0 dBm	-70 dBm						
Date: 1.NOV.2022 12:26:02 Ref Level 20.00 dBm Offset 15.24 dB • RBW 500 kHz Att 20 dB • SWT 3.2 s • VBW 3 MHz SGL Count 1/1 TRG:VID ID dBm 0 dBm 10 dBm 0 dBm -10 dBm 0 dBm -20 dBm 0 dBm -30 dBm 0 dBm -20 dBm 0 dBm -30 dBm 0 dBm -40 dBm 0 dBm -50 dBm 0 dBm -50 dBm 0 dBm							
Spectrum Image: Spectrum Ref Level 20.00 dBm Offset 15.24 dB RBW 500 kHz Att 20 dB SWT 3.2 s VBW 3 MHz SGL Count 1/1 TRG: VID TRG: VID TRG: VID 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm -10 dBm -10 dBm -10 dBm 0 dBm 0 dBm -20 dBm -10 dBm -10 dBm -10 dBm 0 dBm -60 dBm -10 dBm -10 dBm -10 dBm 0 dBm	CF 2.441 GHz		8000 pts			1.0 ms/	
Ref Level 20.00 dBm Offset 15.24 dB = RBW 500 kHz Att 20 dB = SWT SGL Count 1/1 TRG: VID ID dBm ID dBm 10 dBm ID dBm -10 dBm ID dBm -20 dBm ID dBm -10 dBm ID dBm -10 dBm ID dBm -10 dBm ID dBm -20 dBm ID dBm -10 dBm	Date: 1.NOV.2022 12:26:02						
Ref Level 20.00 dBm Offset 15.24 dB @ RBW 500 kHz Att 20 dB @ SWT SGL Count 1/1 TRG: VID @1Pk Cirw	Spectrum						
SGL Count 1/1 TRG: YID IPR: Cirw							
10 dBm 7RG -4.000 dBm 7RG -4.000 dBm 7RG -4.000 dBm -10 dBm 7RG -4.000 dBm 7RG -4.000 dBm 7RG -4.000 dBm -20 dBm 7RG -4.000 dBm 7RG -4.000 dBm 7RG -4.000 dBm -20 dBm 7RG -4.000 dBm 7RG -4.000 dBm 7RG -4.000 dBm -20 dBm 7RG -4.000 dBm 7RG -4.000 dBm 7RG -4.000 dBm -20 dBm 7RG -4.000 dBm 7RG -4.000 dBm 7RG -4.000 dBm -20 dBm 7RG -4.000 dBm 7RG -4.000 dBm 7RG -4.000 dBm -20 dBm 7RG -4.000 dBm 7RG -4.000 dBm 7RG -4.000 dBm -20 dBm 7RG -4.000 dBm 7RG -4.000 dBm 7RG -4.000 dBm -20 dBm 7RG -4.000 dBm 7RG -4.000 dBm 7RG -4.000 dBm -20 dBm 7RG -4.000 dBm 7RG -4.000 dBm 7RG -4.000 dBm -20 dBm 7RG -4.000 dBm 7RG -4.000 dBm 7RG -4.000 dBm -20 dBm 7RG -4.000 dBm 7RG -4.000 dBm 7RG -4.000 dBm -20 dBm 7RG -4.000 dBm 7RG -4.000 dBm 7RG -4.000 dBm -20 dBm 7RG -4.000 dBm 7RG -4.000 dBm 7RG -4.000 dBm -20 dBm 7RG -4.000 dBm 7RG -4.000 dBm 7RG -4.000 dBm -20 dBm 7RG -4.000 dBm 7RG -4.000 dBm 7RG -4.000 dBm <tr< td=""><td>SGL Count 1/1 TRG: VI</td><td></td><td>5 11112</td><td></td><td></td><td></td><td></td></tr<>	SGL Count 1/1 TRG: VI		5 11112				
0 dBm TRG -4.000 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -10 dBm -10 dBm -10 dBm -60 dBm -10 dBm -10 dBm -10 dBm -10 dBm -60 dBm -10 dBm -10 dBm -10 dBm -10 dBm -60 dBm -10 dBm -10 dBm -10 dBm -10 dBm -60 dBm -10 dBm -10 dBm -10 dBm -10 dBm -60 dBm -10 dBm -10 dBm -10 dBm -10 dBm	IPk Cirw						
D dBm TRG -4.000 dBm	10 dBm						
TRG -4,000 dBm -10 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -20 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm -10 dBm							
-10 dBm -20 dBm -20 dBm -20 dBm -0	0 dBm			1 1			
-20 dBm							
	-20 dBm						
	-30 dBm						
	-10 dBm						
	a ya kati ku na pokon kati ku kati ya ku na pokon kati ya ku na pokon ku ku na ku na pokon ku na pokon ku na po Pokon ku na pokon ku na pokon ku ku na pokon ku ku n	terrelative and the left by the		And a physical sector and the sector of the	Man David Inc. Palance [14]		
-70 dBm	-60 dBm						
	-70 dBm						
CF 2.441 GHz 30000 pts 316.0 ms/	CF 2.441 GHz	·	30000 pts			316.0 ms/	

Report No.: SZNS221020-48207E-RFA

	2DH1_A	nt1_Hop		
Spectrum	_			
RefLevel 20.00 dBr Att 20 d	n Offset 15.24 dB		<u>.</u>	
SGL Count 1/1	TRG:VID	16		
1Pk Clrw		M1[1]	-5.27 dBm	
		D2[1]	-134.99 μs -5.72 dB	
10 dBm-			383.80 µs	
.0 dBm TRG -2.000	dBm			
-10 gBm-				
-20 cBm				
-30 cBm				
-50 CBII				
-40 dBm				
-so dall deliver all and	Lange ale both foll i builded black den det	Labor and Market and And Andrew States and Andrew States and and a state of the states	والأروية المرابط والمراب والمرابع والمراجع المراجع المراجع المراجع	
the state has been been been been been been been bee	pilay along to the participant in the	different date in a state of a base of a state of the	dir aktoret, emire eksirilerintet atietaat i	
-60 dBm	the line of the discould be added	and the second of the second of the second of the second s	and the second stands and the second stands and the second stands are second stands and the second stands are s	
-70 dBm				
CF 2.441 GHz	8000	pts	1.0 ms/	
Date: 1.NOV.2022 12	:30:35			
Spectrum				
Ref Level 20.00 dBr				
Att 20 d SGL Count 1/1	8 SWT 3.2 s VBW 31 TRG: VID	1Hz		
● 1Pk Clrw				
10 dBm				
0 dBm				
TRG -3.000	dBm			
-10 dBm				
-20 dam				
-30 dBm				
-40 d3m				
	يحاس الالبطائياتهما الأروعي وقرار فللكا عرمها وريالساني		al an ann a least a least a least a le	
in the second states in the second states are set of the second states are set of the second states are set of	a da a bahar seran ing dan sekiran Matana yan da belara yak da inak		the Second Milling basis in a statement of all providents	
-60 dBm			+	
-70 dBm				
-70 dBm	3000	D pts	316.0 ms/	


Report No.: SZNS221020-48207E-RFA

	_		2	2DH3	_Ant	1_Hc	р			
Spectrum Ref Level 20 Att SGL Count 1/1	20 dB 🕳 SI			RBW VBW						
●1Pk Clrw				1	- 1	M	1[1]			-3.50 dBm
10 dBm		-			_		2[1]			-134.99 µs -7.07 dE 1.62770 ms
10 dBm	3 -2.000 dBm-									
-10 dBm	1									
20 0811										
-30 dBm				1				2		
-40 dBm				-						1 - Contract No.
-50 dBm	ang na tipa	in the second	-hautoped	he had had a	han Hi	taleholli (ing on prophy.	and the second	hangalla	annutulata
-60 dBm	tel a section de la	akiti Alia II.	Lillin and	and de la constantes	A.U. Mail	the alter	I.Hu.Jarkitahi	. Miller Aller	Line halfing and	the officer states of
-70 dBm		_			_					· · · ·
CF 2.441 GHz				1	3000 pt	s				1.0 ms/
Date: 1.NOV.20	022 12:33:27									
Spectrum										
RefLevel 20 Att	0.00 dBm 01 20 dB 🖷 SV		3.2 s	RBW	500 kH: 3 MH;	2				
SGL Count 1/1		RG: VID								
FIPK CITW				T			1	1	1	T
10 dBm								5		
0 dBm										
TRG	3 -3.000 dBm-									
-10 dBm				+						
-20 dBm	II					1				
-30 dBm										
-40 dBm										
Hilly marging the	And Associal to the Institute	del ha	h	the free	. Have	a Maria	والمتداعليها	Let un minute	alle and an	and the second
alaber (bernander and	hampertan en bite en a pier et ar	North of The		and photos and photos	denaliza d	- and party	a to find the spectrum states	inter the state and state	a las dan kanal kalba k	a president and a second
-60 dBm		-		-				-		
		_		-	_					
-70 dBm								1	1	1
-70 dBm CF 2.441 GHz	6			3	0000 p	ts				316.0 ms/

Report No.: SZNS221020-48207E-RFA

Spectrum Spectrum Spectrum Specom Spectru				
Ref Level 20.00 dBm Offset 15.24 dB = RBW 1 MHz SGL Count 1/1 TRG:VID IPk (rw N1[1] 10 dBm -4.57 dBm 10 dBm -2.69 JB 10 dBm -2.60 JB 10 dBm -2.60 JB 10 dBm -2.60 JB 10 dBm -2.60 JB 20 dB -2.60 JB 20 dB -2.60 JB 20 dBm -2.70 JB Ref Level 20.00 dBm Offset 15.24 dB 20 dB -2.7 JB 90 dBm -2.7 JB		2DH5_A	nt1_Hop	
Ref Level 20.00 dBm Offset 15.24 dB = RBW 1 MHz SGL Count 1/1 TRG:VID I 1k Crw MI[1] 10 dBm 02 dB 10 dBm 02 dB 10 dBm 02 dB 20 dB 02 dB 20 dB 02 dB 20 dB 02 dB 20 dBm 02 dB 20 dB 02 dB 20 dB 02 dB 20 dB 0000 pts 20 dB 0000 pts 20 dB 0000 pts 20 dB 0000 pts 10 dBm 00 dBm 10 dBm 00 dBm	Spectrum			
SQL Count 1/1 TRG: VID 919k: Crw -4.57 dBm 10 dBm -9.37 dBm 0 dBm -9.19 dB 0 dBm -9.19 dB 10 dBm -9.10 dB 10 dBm -9.20 dB				
10 d8m -4.57 d8m 0 d8m -02(1) 0 d8m -9.39 d8 0 d8m -9.39 d8 10 d8m -9.39 d8 20 d8m -9.39 d8 40 d8m -9.39 d8 -70 d8m -9.39 d8 -70 d8m -9.39 d8 -70 d8m -9.39 d8 -70 d8m -9.30 d8 -10 d8m -9.30 d8m -10 d8m -9.30 d8m -10 d8m -9.30 d8m -10 d8m -9.40 d8m -20 d8m -9.40 d8m -20 d8m -9.40 d8m -20 d8m <td></td> <td></td> <td>Z</td> <td></td>			Z	
10 dbm -133.99 db 9.10 dbm -2.86011 ms 9.482 cont TRG -2.000 dbm/mm -10 dbm/mm 10 dbm -2.86011 ms 20 dbm/mm -10 dbm/mm 20 dbm/mm -10 dbm/mm 20 dbm/mm -10 dbm/mm 30 dbm/mm -10 dbm/mm 40 dbm/mm -10 dbm/mm 50 dbm/mm -10 dbm/mm 50 dbm/mm -10 dbm/mm 50 dbm/mm -10 dbm/mm -70 dbm/mm -10 ms/mm 70 dbm/mm -10 ms/mm 919k Chw/mm -10 ms/mm 10 dbm/mm -10 ms/mm -20 dbm/mm -10 ms/mm -20 dbm/mm -10 ms/mm	●1Pk Clrw	1 1		
2.6031 ms 2.6031 ms 10 dbm 20 dbm 40 dbm 40 dbm 50 dbm				-134.99 µs
0 dBm C2	10 dBm		D2[1]	-9.19 dB 2.86911 ms
10 dBm C 20 dBm 30 dBm 40 dBm 40 dBm 50 dBm 40 dBm -00 dBm 10 dBm -00 dBm 0 dBm -10 dBm 0 dBm -20 dBm 0 dBm -30 dBm 0 dBm -40 dBm 0 dBm -70 dBm 0 dBm -70 dBm 0 dBm -70 dBm 0 dBm -70 dBm 0 dBm	0.48			
-20 dBm	TRG -2.000 dBm			
30 dBm 40 dBm	-10 dBm	2		
30 dBm 40 dBm				
40 dBm	-20 dBm			
-50 dBm -60 dBm -70 dBm	-30 dBm			
-50 dBm -60 dBm -70 dBm				
-80 dBm -60 dBm -70 dBm -80 dBm -10 ms/ -70 dBm -80 dBm -10 ms/ -80 dBm -10 ms/ Date: 1,NOV.2022 12:34:51 -80 ms/ -80 ms/ Spectrum -80 dBm -90 ms/ -90 ms/ -90 ms/ Ref Level 2:0.00 dBm Offset 15:24 dB RBW 500 kH2 -90 ms/ -90 ms/ SGL Count 1/1 TRG: VID -90 ms/ -90 ms/ -90 ms/ -90 ms/ -10 dBm -10 dBm -90 ms/ -90 ms/ -90 ms/ -90 ms/ -90 ms/ -20 dBm -90 ms/ -90 ms/ -90 ms/ -90 ms/ -90 ms/ -90 ms/ -20 dBm -90 ms/ -20 dBm -90 ms/	-40 dBm-	last and a second	and a second second	in a mericine a mericine
-60 dBm -70 dBm	-50 dBm	the still a star white dealers and	Which which a subscript of the subscript	hand have been and and and a state of the state
-60 dBm -70 dBm		Wellingert, Jahr alubhand Heatracht	di Ni Ninakana kaokana di Kabupatén ang ang	hist de chusent auther auther dataire
GF 2.441 GHz 9000 pts 1.0 ms/ Date: 1.NOV.2022 12:34:51 Spectrum Image: Control of the second secon	-60 dBm	a shi a la la h	tratification and the second	A logarithe of the holes
GF 2.441 GHz 9000 pts 1.0 ms/ Date: 1.NOV.2022 12:34:51 Spectrum Image: Control of the second secon	70 dBm			
Date: 1.NOV.2022 12:34:51 Spectrum Ref Level 20.00 dBm Offset 15:24 dB RBW 500 kHz Att 20 dB SWT 3.2 s VBW 3 MHz SGL count 1/1 TRG: VID IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	-70 dbii			
Date: 1.NOV.2022 12:34:51 Spectrum Ref Level 20.00 dBm Offset 15:24 dB RBW 500 kHz Att 20 dB SWT 3.2 s VBW 3 MHz SGL cont 1/1 TRG: VID IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	CF 2.441 GHz	8000	pts	1.0 ms/
Spectrum Image: Spectrum Ref Level 20.00 dBm Offset 15.24 dB RBW 500 kHz Att 20 dB SWT 3.2 s VBW 3 MHz SGL count 1/1 TRG: VID TRG: VID TRG: VID 10 dBm 0 0 0 0 -20 dBm -30.00 dBm -0 0 0 -30 dBm -0 0 0 0 0 -20 dBm -0 0 0 0 0 0 0 -20 dBm -0 0 </td <td></td> <td></td> <td></td> <td></td>				
Ref Level 20.00 dBm Offset 15.24 dB RBW 500 kHz SGL Count 1/1 TRG VID 3.8 s YBW 3 MHz SGL Count 1/1 TRG VID 10 dBm 10 dBm 0 dBm 0 dBm 0 dBm 0 dBm 0 dBm -10 dBm 0 dBm 0 dBm 0 dBm 0 dBm -20 dBm 0 dBm 0 dBm 0 dBm 0 dBm -20 dBm 0 dBm 0 dBm 0 dBm 0 dBm -20 dBm 0 dBm 0 dBm 0 dBm 0 dBm -20 dBm 0 dBm 0 dBm 0 dBm 0 dBm -20 dBm 0 dBm 0 dBm 0 dBm 0 dBm -20 dBm 0 dBm 0 dBm 0 dBm 0 dBm -20 dBm 0 dBm 0 dBm 0 dBm 0 dBm -20 dBm 0 dBm 0 dBm 0 dBm 0 dBm -20 dBm 0 dBm 0 dBm 0 dBm 0 dBm -20 dBm 0 dBm 0 dBm 0 dBm 0 dBm -20 dBm 0 dBm 0 dBm 0 dBm 0 dBm -20 dBm 0 dBm				
Att 20 dB SWT 3.2 s VBW 3 MHz SGL count J/1 TRG: VID TRG: VID TRG: VID TRG: VID ID dBm 0 </td <td></td> <td>15 01 db - 0000 500</td> <td></td> <td></td>		15 01 db - 0000 500		
	👄 Att 20 dB 👄 SWT	3.2 s 👄 VBW 3 M	(Hz 1Hz	
10 dBm 0 dBm 0		ID		ı
0 dBm TRG -3.000 dBm 1				
0 dBm TRG -3.000 dBm 1	10 dBm			
-10 dBm -20 dBm -20 dBm -30 dBm -30 dBm -30 dBm -40 dBm -30 dBm -50 dBm -30 dBm -60 dBm -30 dBm -70 dBm -30 dBm -70 dBm -30 dBm -70 dBm -30 dBm				
-10 dBm -2d dBm -2d dBm -30 dBm -30 dBm -40 dBm -60 dBm -60 dBm -70	0 dBm			111
-20 dBm -30 dBm -40 dBm -40 dBm -40 dBm -40 dBm -60 dBm -70				
-30 dBm -40 dBm -60 dBm -70 dB	-10 080			
-40 dBm -40 dBm <t< td=""><td>-20 dBm</td><td></td><td></td><td></td></t<>	-20 dBm			
-40 dBm -40 dBm <t< td=""><td></td><td></td><td></td><td></td></t<>				
- Look - John H. and Anna and An Anna anna anna anna anna anna anna a	-30 dBm			
-70 dBm	-40 dBm			
-70 dBm	a to be to be really a star of the starter strategy and	And the part of the state of the party of the	المعاصفا الأسام فقسات الإيراء والمراقيا وروا	ale del tres and de la la second al de
-70 dBm		é ménudéh nérék nyelénépén aléh mad	et en la versa de la la segunda de la construcción de la construcción de la construcción de la construcción de	the spectrum of the street of
-70 dBm	-60 dBm			
GF 2.441 GHz 30000 pts 316.0 ms/				
R. é	-70 dBm			
R				
Date: 1 NOV 2022 12:35:02	8	3000) pts	316.0 ms/
DECOT ENOTIFICE TELESION	Date: 1.NOV.2022 12:35:02			

Report No.: SZNS221020-48207E-RFA

Report No.: SZNS221020-48207E-RFA

		<u>_</u>		nt1 L	2			
		3	DES_P	nt1_Ho	h			(****
SGL Count 1/1	dBm Offset D dB e SWT TRG:VII	10 ms 🖷	RBW 1M					[⊞ ⊽
●1Pk Clrw			1	M	1[1]			-3.33 dBm
10 dBm					2[1]			-134.99 µs -6.12 dB .62645 ms
0 demois TRG -1.	300 dBm							
-10 dBm	2							
-20 dBm								
-30 dBm								
-40 dBm								
-50 dBm	durahan haller h	diameterillitate	ال الاسلال المعالم	and as how a solution	والمرور والمريقا الم	the statistical of	Helding Had has	Manual La Internet
	ilika dalama tarah bahasi	hallatha hata h	a histolicity of	a dinala dibitati	utto And Julion	distance in	Lothe Martin	kara, tada bi
-60 dBm		a refinited	The start W	11.1	<u> </u>	Lost of research		the state
-70 dBm								
CF 2.441 GHz			900	0 pts				1.0 ms/
Date: 1.NOV.2022	12:41:34		000	5 pts				1.0 1137
Spectrum								
Ref Level 20.00			RBW 500					[~
SGL Count 1/1) dB 🐽 SWT TRG: VII		VBW 3	MHz				
●1Pk Clrw			1					
10 dBm	_			-				
0 dBm								
TRG -2.	300 dBm							
-10 dBm								
-20 dBm								
-30 dBm								
-40 dBm								
in all a second second	marker Hardenter	al longer al	and the state	I want in	and so a	in the second	and a Hiller ber	
htte en tel triste en en de soer pourpourt des plates	un al pel han en la lacita an farantita	and Produced States	1	-	and the shares	the state is a support	and the sector of the sector	Contract Constraints
-60 dBm							-	
-70 dBm	_							
CF 2.441 GHz			0000	I0 pts				16.0 ms/

Report No.: SZNS221020-48207E-RFA

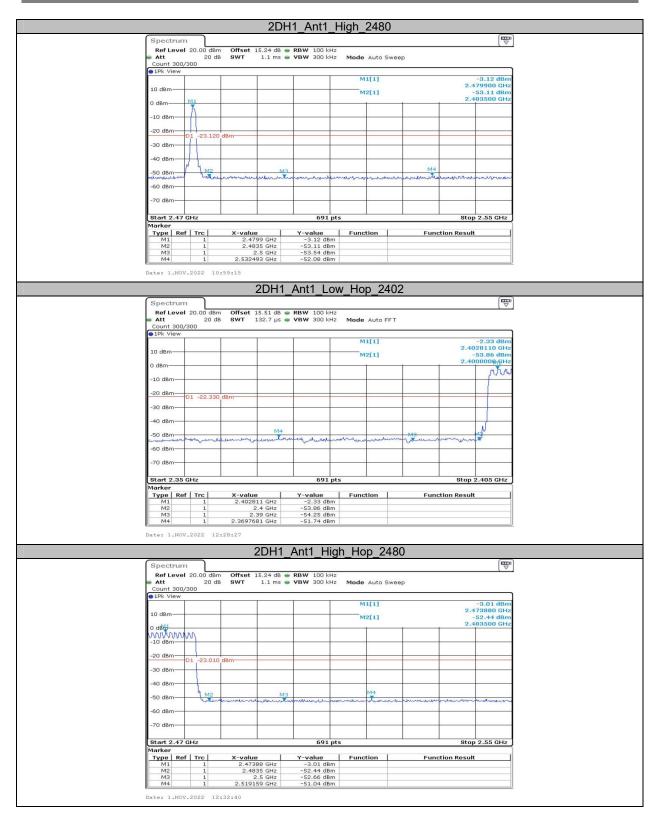
	3DH5_An	t1_Hop	
Att 20 dB S' SGL Count 1/1 T	ffset 15.24 dB ● RBW 1 MHz WT 10 ms ● VBW 3 MHz RG:VID		
●1Pk Clrw		M1[1]	-16.35 dBm
10 dBm		D2[1]	-136.24 µs 3.37 dB 2.87161 ms
O den trig -1.300 dem			
-10 dBm			
-20 dBm			
-30 dBm			
-40 dBm	and a supervise of the plat shares polyteris and put	ale metalle of the and other base is to be a	where are an and a state bard our and a set out of
-60 dBm	defenden her hem i der helter i	international internation	and and we have been and the second
-70 dBm		li li i	
CF 2.441 GHz	8000 p	ts	1.0 ms/
Date: 1.NOV.2022 12:42:22			
Spectrum Ref Level 20.00 dBm O	ffset 15.24 dB 👄 RBW 500 kH	z	
Att 20 dB SGL Count 1/1 T 1Pk Clrw	₩T 3.2 s ● VBW 3 MH RG:VID	z	
10 dBm			
0 dBm			
-20 dBm			
-30 dBm			
-40 dBm			
Last burn benefities at start and starter			ورادا والمساورة والمحاجزة والمحاجزة والمحاجزة والمحاجز
-60 dBm			
-70 dBm			
CF 2.441 GHz	30000	ots	316.0 ms/
Date: 1.NOV.2022 12:42:3			

Appendix F: Number of hopping channels Test Result

Test Mode	Antenna	Channel	Result[Num]	Limit[Num]	Verdict
DH1	Ant1	Нор	79	≥15	PASS
2DH1	Ant1	Нор	79	≥15	PASS
3DH1	Ant1	Нор	79	≥15	PASS

Test Graphs

	DH1_Ant1_Hop
	Spectrum Ref Level 20.00 dBm Offset 15.51 dB RBW 100 kHz
	Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count 1000/1000
	IPk View
	10 dBm
	O dBm
	-10 #Ben
	-50 ggw
	-20 dBm-
	-#0 d8m
	-60 dBm-
	-70 d8m-
	Start 2.4 GHz 691 pts Stop 2.4835 GHz
	Date: 1.NOV.2022 12:23:03
	2DH1_Ant1_Hop
	Spectrum
	Att 20 dB SWT 1 ms VBW 300 kHz Mode Auto Sweep Count 1000/1000
	Płk View
	10 dBm
	-10 dBm
	-20 dBm-
	-30 dBm-
	-40 dBm
	-50 dBm
	-60 dBm
	-70 dBm-
	Start 2.4 GHz 691 pts Stop 2.4835 GHz
	Date: 1.NOV.2022 12:30:20
	3DH1_Ant1_Hop
ſ	Spectrum
	● Att 20 dB SWT 1 ms ● VBW 300 kHz Mode Auto Sweep Count 1000/1000 ● Ifk View
	10 dBm
	o anu wana wana wana wana wana wana wana
	-10 dBm
	-20 dBm-
	-30 dBm-
	740 dBm
	-50 d8m-
	-60 dBm-
	-70 d8m
	Start 2.4 GHz 691 pts Stop 2.4035 GHz
Е	Date: 1.NOV.2022 12:38:01


Appendix G: Band edge measurements Test Graphs

			D	H1_Ant1_L	_ow_2402			
Spec	trum							(₩)
Ref I Att	.evel 20.0			 RBW 100 kHz VBW 300 kHz 				
Count	300/300	20 08 84	νι 132.7 μs		Mode Auto P	F.I.		
⊖1Pk \	iew							
					M1[1]			-0.14 dBm 18560 GHz
10 dBr) 				M2[1]		-	54.32 dBm
0 dBm							2.40	DODOB GHZ
-10 dB								
	22							1
-20-dB	n D1 -2	0.140 dBm						
-30 dB	n							
-40 dB	n							$\langle \rangle$
				M4				$I \setminus I$
-50 dB		and a post of	un un		make a and a	when the when	www.wen	F her
-60 dB		1400 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	- Churchero	· · · · · · · · · · · · · · · · · · ·	- Durlo mar	. Vannoma	- Warne	
-70 dB								
-70 UB								
Start	2.35 GHz			691 pt	s		Stop 2	.405 GHz
Marke								
Type M1	Ref Tr		-value 2.401856 GHz	-0.14 dBm	Function	Fun	ction Result	
M2		1	2.4 GHz	-54.32 dBm				
MB		1	2.39 GHz 3711232 GHz	-55.68 dBm -52.25 dBm				
M4		1 2.	3711232 GHZ	-52.25 dBm				
0				-52.25 dBm				
0		1 2. 2 15:01:0	9					
0			9	H1_Ant1_F				
Date: 1	.NOV.202		9					
Date: Spec	.NOV.202	2 15:01:0	9 D fset 15.24 dB	H1_Ant1_F	ligh_2480			
Date: Spec Refi	.NOV.202	2 15:01:0	9 D fset 15.24 dB	H1_Ant1_H	ligh_2480	weep		
Date: Spec Refi	.NoV.202 trum evel 20.0 300/300	2 15:01:0	9 D fset 15.24 dB	H1_Ant1_F	ligh_2480	weep		
Date: 1	.NoV.202 trum evel 20.0 300/300	2 15:01:0	9 D fset 15.24 dB	H1_Ant1_F	ligh_2480	weep		0.85 dBm
Date: 1	.Nov.202	2 15:01:0	9 D fset 15.24 dB	H1_Ant1_F	High_2480	weep	-	0.85 dBm 79900 GHz 54.13 dBm
Date: 3 Spec Ref I Att Count I D dBr	.Nov.202	2 15:01:0	9 D fset 15.24 dB	H1_Ant1_F	High_2480 Mode Auto S	weep	-	0.85 dBm 79900 GHz
Date: 3 Spec Ref I • Att Count • 1Pk \ 10 dBm • 0 dBm	.NoV.202: trum evel 20.0 300/300 iew	2 15:01:0	9 D fset 15.24 dB	H1_Ant1_F	High_2480 Mode Auto S	weep	-	0.85 dBm 79900 GHz 54.13 dBm
Date: 3 Spec Ref I Att Count I D dBr	.NoV.202: trum evel 20.0 300/300 iew	2 15:01:0	9 D fset 15.24 dB	H1_Ant1_F	High_2480 Mode Auto S	weep	-	0.85 dBm 79900 GHz 54.13 dBm
Date: 3 Spec Ref I • Att Count • 1Pk \ 10 dBm • 0 dBm		2 15:01:0	9 D fset 15.24 dB	H1_Ant1_F	High_2480 Mode Auto S	weep	-	0.85 dBm 79900 GHz 54.13 dBm
Date: 3 Spec Ref Att Count I O dBr -10 dB -20 dB	trum evel 20.0 300/300 iew M1 m11	2 15:01:0	9 D fset 15.24 dB	H1_Ant1_F	High_2480 Mode Auto S	weep	-	0.85 dBm 79900 GHz 54.13 dBm
Date: 3 Specc Ref I • Att Count 10 dBr -10 dB -20 dB -30 dB	trum evel 20.0 300/300 iew 	2 15:01:0	9 D fset 15.24 dB	H1_Ant1_F	High_2480 Mode Auto S	weep	-	0.85 dBm 79900 GHz 54.13 dBm
Date: 3 Spec Ref Att Count I O dBr -10 dB -20 dB	trum evel 20.0 300/300 iew 	2 15:01:0	9 D fset 15.24 dB	H1_Ant1_F	High_2480 Mode Auto S	weep	-	0.85 dBm 79900 GHz 54.13 dBm 33500 GHz
Date: 1 Spec Ref Att Count Cou	trum evel 20.0 300/300 iew M1	2 15:01:0	9 fset 15.24 dB VT 1.1 ms	H1_Ant1_H	High 2480 Mode Auto S M1[1] M2[1]		2.4	0.85 dBm 79900 GHz 54.13 dBm 33500 GHz
Date: i Spect Ref I • Att Count • 1Pk N • 10 dBm • 10 dBm • 10 dBm • 20 dB • 30 dB • 30 dB • 30 dB		2 15:01:0	9 fset 15.24 dB VT 1.1 ms	H1_Ant1_H	High 2480 Mode Auto S M1[1] M2[1]		2.4	0.85 dBm 79900 GHz 54.13 dBm 33500 GHz
Date: 1 Spec Ref Att Count Cou		2 15:01:0	9 fset 15.24 dB VT 1.1 ms	H1_Ant1_H	High 2480 Mode Auto S M1[1] M2[1]		2.4	0.85 dBm 79900 GHz 54.13 dBm 33500 GHz
Date: i Spect Ref I • Att Count • 1Pk N • 10 dBm • 10 dBm • 10 dBm • 20 dB • 30 dB • 30 dB • 30 dB	n 01 01 01 01 01 01 01 01 01 01 01 01 01	2 15:01:0	9 fset 15.24 dB VT 1.1 ms	H1_Ant1_H	High 2480 Mode Auto S M1[1] M2[1]		2.4	0.85 dBm 79900 GHz 54.13 dBm 33500 GHz
Date: 3		2 15:01:0	9 fset 15.24 dB VT 1.1 ms	H1_Ant1_H	High 2480		2.4	0.85 dBm 79900 GHz 4.13 dBm 33500 GHz 33500 GHz Mt Mt
Date: : Spec: Ref [Att Count -10 dB -20 dB -30 dB -30 dB -30 dB -40 dB -50 dB -70 dB Start		2 15:01:0	9 fset 15.24 dB VT 1.1 ms	H1_Ant1_H	High 2480		2.4	0.85 dBm 79900 GHz 54.13 dBm 33500 GHz
Date: 1 Date: 1 Spec Ref f Att Count 10 dBm -10 dB -20 dB -30 dB -40 dB -50 dB -50 dB -70 dB Start Markei Type		2 15:01:0	9 fset 15.24 dB VT 1.1 ms	H1_Ant1_H RBW 100 kHz VBW 300 kHz VBW 300 kHz	High 2480 Mode Auto S M1[1] M2[1]		2.4	0.85 dBm 79900 GHz 4.13 dBm 33500 GHz 33500 GHz Mt Mt
Date: 3 Spec Ref f Att Count 10 dBn -10 dB -20 dB -30 dB -30 dB -30 dB -30 dB -40 dB -50 dB -50 dB -70 dB Start Markei Type Mark	Nov. 202	2 15:01:0 10 dBm of 20 dB sv 19.150 dBm= 1	9 fset 15.24 dB vT 1.1 ms	H1_Ant1_H	High 2480		2.4	0.85 dBm 79900 GHz 4.13 dBm 33500 GHz 33500 GHz Mt Mt
Date: 1 Date: 1 Spec Ref f Att Count 10 dBm -10 dB -20 dB -30 dB -40 dB -50 dB -50 dB -70 dB Start Markei Type		2 15:01:0 10 dBm of 20 dB sv 19.150 dBm= 1 1 1	9 fset 15.24 dB VT 1.1 ms	H1_Ant1_H RBW 100 kHz VBW 300 kHz VBW 300 kHz	High 2480		2.4	0.85 dBm 79900 GHz 4.13 dBm 33500 GHz 33500 GHz Mt Mt

Report No.: SZNS221020-48207E-RFA

Report No.: SZNS221020-48207E-RFA

Report No.: SZNS221020-48207E-RFA

Report No.: SZNS221020-48207E-RFA

Spectru	im						
Ref Lev	el 20.00 dBn	n Offset 15.24 dB	RBW 100 kHz			(*	
🕳 Att	20 de			Mode Auto Swe	ер		
Count 30							
1Pk View	v	, , , , , , , , , , , , , , , , , , , ,					
				M1[1]		-2.81 dBn 2.470870 GH	
10 dBm-	-			M2[1]		-52.19 dBr	
41				total all		2.483500 GH	
dBm-				1			
-10 dBm-	10001						
-10 0611-							
-20 dBm-							
	D1 -22.810	l dBm					
-30 dBm-							
-40 dBm-							
-40 dBm-			222				
-50 dBm-	M2	Ma	3 M4			malautanananananana	
2020/02/2020	Litho	unalle and when the set	and the market was	mas and a second	mannen	maline and have been and the second	
-60 dBm-	-						
-70 dBm-							
				1.			
Start 2.4	7 GHz		691 pts			Stop 2.55 GHz	
Marker	Ref Trc	X-value	Y-value	Function	Error	tion Result	
M1		2.47087 GHz	-2.81 dBm	Function	Func	cion Result	
M2	ĩ	2.4835 GHz	-52.19 dBm				
M3	1	2.5 GHz	-53.09 dBm				
M4	1	2.503507 GHz	-51.12 dBm				

***** END OF REPORT *****