

FCC Part 15.247 RSS-GEN, ISSUE 5, February 2021 Amendment 2 RSS-247, ISSUE 2, February 2017 TEST REPORT

For

Tractive GmbH

Poststrasse 4, Pasching, 4061 Austria

FCC ID: 2AVE6TG5 IC: 25970-TG5

Report Type: Product Type:
Original Report Tractive CAT mini

Report Producer: <u>Jojo Lu</u>

Report Number: RXZ230110032RF02

Report Date: 2023-04-11

Reviewed By: David Hsu

Prepared By: Bay Area Compliance Laboratories Corp.

(New Taipei Laboratory)

70, Lane 169, Sec. 2, Datong Road, Xizhi Dist.,

New Taipei City 22183, Taiwan, R.O.C.

Tel: +886 (2) 2647 6898 Fax: +886 (2) 2647 6895

www.bacl.com.tw

Revision History

Revision	No.	Report Number	Issue Date	Description	Author/ Revised by
0.0	RXZ230110032	RXZ230110032RF02	2023-04-11	Original Report	Jojo Lu

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 2 of 66

TABLE OF CONTENTS

1	Ger	neral Information	. 5
	1.1	Product Description for Equipment under Test (EUT)	. 5
	1.2	Objective	
	1.3	Test Methodology	. 6
	1.4	Statement	. 6
	1.5	Measurement Uncertainty	. 7
	1.6	Environmental Conditions	. 7
	1.7	Test Facility	. 8
2	Sys	tem Test Configuration	.9
	2.1	Description of Test Configuration	9
	2.2	Equipment Modifications	
	2.3	EUT Exercise Software	
	2.4	Support Equipment List and Details	
	2.5	External Cable List and Details	
	2.6	Test Mode	
	2.7	Block Diagram of Test Setup	11
	2.8	Duty Cycle	
3	Sun	nmary of Test Results	14
	æ		
4	Tes	t Equipment List and Details	15
5	FC	C §15.247(i), §1.1307(b)(3)(i) - RF Exposure	17
	5.1	Applicable Standard	17
	5.2	RF Exposure Evaluation Result	
6	RSS	S-102 § 2.5.1 – EXEMPTION LIMITS FROM ROUTINE EVALUATION – S	AR
E	VALU	ATION	18
	6.1	Applicable Standard	18
	6.2	RF Exposure Evaluation Result.	
7		C §15.203 & RSS-GEN §6.8– Antenna Requirements	
′	rc	-	
	7.1	Applicable Standard	20
	7.2	Antenna Information	20
8	FC	C §15.207(a) & RSS-GEN §8.8– AC Line Conducted Emissions	21
	8.1	Applicable Standard	21
	8.2	EUT Setup	
	8.3	EMI Test Receiver Setup	
	8.4	Test Procedure	
	8.5	Corrected Factor & Margin Calculation	23
	8.6	Test Results	24
9	FC	C §15.209, §15.205, §15.247(d) & RSS-GEN §8.9, §8.10 – Spurious Emissions	26
	9.1	Applicable Standard	26
	9.2	EUT Setup	
	9.3	EMI Test Receiver & Spectrum Analyzer Setup	
	9.4	Test Procedure	
	9.5	Corrected Factor & Margin Calculation	29
	9.6		30

13.2

13.3

Test Procedure 62

Test Results 63

1 General Information

1.1 Product Description for Equipment under Test (EUT)

1.1 Product Description for Equipment under Test (EU1)				
Applicant	Tractive GmbH			
Applicant	Poststrasse 4 ,Pasching, 4061 Austria			
Manufacturer	Tractive GmbH			
Manufacturer	Poststrasse 4 ,Pasching, 4061 Austria			
Brand(Trade) Name	N/A			
Product (Equipment)	Tractive CAT mini			
Main Model Name (HVIN)	TG5			
Frequency Range	IEEE 802.11b Mode: 2412 ~ 2462 MHz BLE (1M) Mode: 2402 ~ 2480 MHz			
Transmit Power	IEEE 802.11b Mode: 8.56 dBm BLE (1M) Mode: -5.83 dBm			
Modulation Technique	IEEE 802.11b Mode: DSSS BLE (1M) Mode: GFSK			
Power Operation (Voltage Range)	 AC Adapter By AC Power Cord PoE DC Type Battery 3.8Vdc Brand Name: Tractive GmbH Model: HI9213380677 DC Power Supply External from USB Cable External DC Adapter Host System 			
Received Date	2023/01/10			
Date of Test	2023/01/10~2023/01/13			

^{*}All measurement and test data in this report was gathered from production sample serial number: RXZ230110032 Assigned by BACL, New Taipei Laboratory.

1.2 Objective

This report is prepared on behalf of *Tractive GmbH* in accordance with Part 2, Subpart J, Part 15, Subparts A and C of the Federal Communication Commission's rules and RSS-247, Issue 2, February 2017, RSS Gen, Issue 5, February 2021 Amendment 2 of the Innovation, Science and Economic Development Canada.

No.: RXZ230110032RF02

1.3 Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices and KDB 558074 D01 15.247 Meas Guidance v05r02. And RSS-247, Issue 2, February 2017, RSSGen, Issue 5, February 2021 Amendment 2 of the Innovation, Science and Economic Development Canada.

1.4 Statement

document specification.

Decision Rule: No, (The test results do not include MU judgment)

It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory).

Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. The determination of the test results does not require consideration of the uncertainty of the measurement, unless the assessment is required by customer agreement, regulation or standard

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is not responsible for the authenticity of the information provided by the applicant that affects the test results.

1.5 Measurement Uncertainty

Parameter		Uncertainty
RF output powe	r, conducted	+/- 0.9 dBm
Frequency	stability	+/- 0.02 MHz
Occupied Ba	andwidth	+/- 0.35 MHz
Unwanted Emission	ons, conducted	+/- 1.69 dBm
Emissions	30 MHz~1GHz	+/- 5.22 dB
Emissions,	1 GHz~18 GHz	+/- 6.12 dB
radiated	18 GHz~40 GHz	+/- 4.99 dB
Temperature		+/- 1.27 ℃
Humid	ity	+/- 3 %

1.6 Environmental Conditions

Test Site	Test Data	Temperature (°C)	Relative Humidity (%)	ATM Pressure (hPa)	Test Engineer
AC Line Conducted Emissions	2023/01/12	24.3	69	1010	Andy Cheng
Radiation Spurious Emissions	2023/01/10~2023/01/13	22.3~23.6	65~75	1010	Jim Chen
Conducted Spurious Emissions	2023/01/11~2023/01/13	23.8~24.6	45~59	1010	Andy Cheng
6 dB Emission Bandwidth	2023/01/11~2023/01/13	23.8~24.6	45~59	1010	Andy Cheng
Maximum Output Power	2023/01/11~2023/01/13	23.8~24.6	45~59	1010	Andy Cheng
100 kHz Bandwidth of Frequency Band Edge	2023/01/11~2023/01/13	23.8~24.6	45~59	1010	Andy Cheng
Power Spectral Density	2023/01/11~2023/01/13	23.8~24.6	45~59	1010	Andy Cheng

1.7 Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) to collect test data is located on

No.: RXZ230110032RF02

70, Lane 169, Sec. 2, Datong Road, Xizhi Dist., New Taipei City 22183, Taiwan, R.O.C.

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) is accredited to ISO 17025 by Taiwan Accreditation Foundation (TAF code: 3546) and the FCC designation No.TW3546 under the Mutual Recognition Agreement (MRA) in FCC Test.

The lab has been recognized by Innovation, Science and Economic Development Canada to test to Canadian radio equipment requirements, the CAB identifier: TW3732.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 8 of 66

2 System Test Configuration

2.1 Description of Test Configuration

For WIFI mode, there are totally 11 channels.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
1	2412	7	2442
2	2417	8	2447
3	2422	9	2452
4	2427	10	2457
5	2432	11	2462
6	2437		

No.: RXZ230110032RF02

For 802.11 b Modes were tested with channel 1, 6 and 11. (data rate:1M)

For BLE mode, there are totally 40 channels.

Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2442
1	2404		
2	2406		
3	2408	37	2476
		38	2478
19	2440	39	2480

For BLE Modes were tested with channel 0, 19 and 39. (data rate:1Mbps)

The system was configured for testing in engineering mode, which was provided by manufacturer.

2.2 Equipment Modifications

No modification was made to the EUT.

2.3 EUT Exercise Software

The 2.4G WiFi test software uses "teraterm-4.106", BLE does not use test software.

Test Frequency		Low	Mid	High
Down Lovel Catting	B Mode	default	default	default
Power Level Setting	BLE Mode	default	default	default

2.4 Support Equipment List and Details

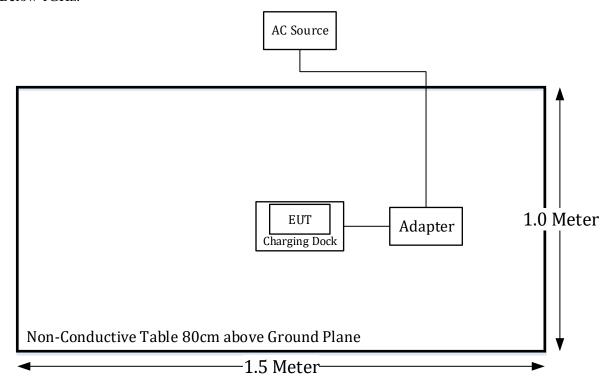
NO.	Description	Manufacturer	Model Number
1	Charging Dock	Tractive	N/A
2	Adapter	Opro9	FMP205

2.5 External Cable List and Details

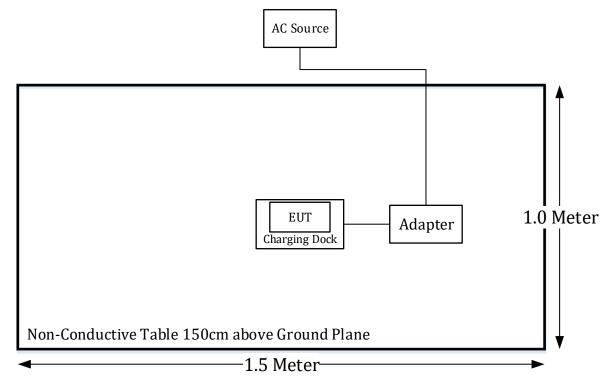
NO.	Cable Description	Length	From	То
A	USB Cable	0.8	Charging dock	Adapter

2.6 Test Mode

Full System (model: TG5) test item.

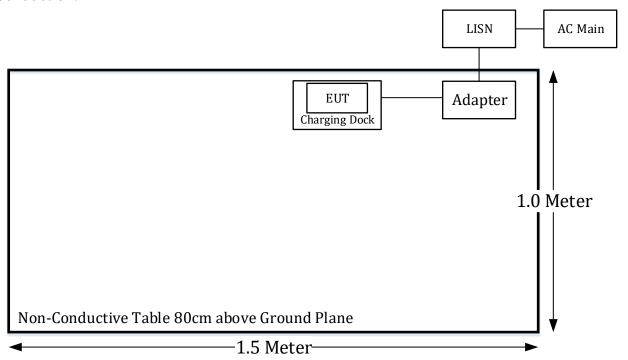

2.7 Block Diagram of Test Setup

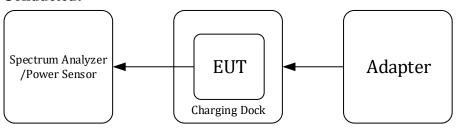
See test photographs attached in setup photos for the actual connections between EUT and support equipment.


No.: RXZ230110032RF02

Radiation:

Below 1GHz:


Above 1GHz:


Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

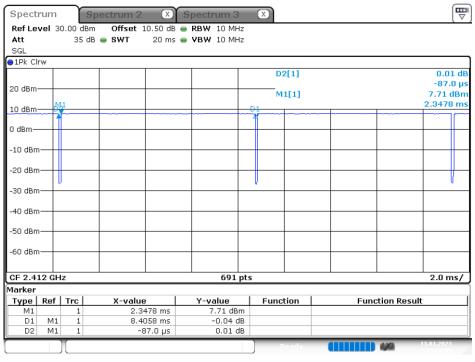
Page 11 of 66

Conduction:

Conducted:

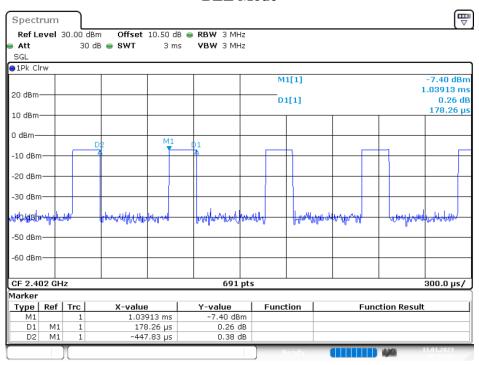
2.8 Duty Cycle

The duty cycle as below:


Radio Mode	On Time	Off Time	Duty Cycle	Duty Cycle Correction Factor
Radio Mode	(ms)	(ms)	(%)	(dB)
802.11b	8.4058	0.087	0.99	0.04
BLE (1M)	0.178	0.447	0.28	5.53

B MODE: 1/T=1/8.4058=0.1189 VBW=200Hz BLE MODE: 1/T=1/0.178= 5.617 VBW=10KHz

No.: RXZ230110032RF02


Please refer to the following plots.

Date: 13.JAN.2023 14:07:05

BLE Mode

Date: 11.JAN.2023 07:55:17

3 Summary of Test Results

Rules	Description of Test	Results
FCC §15.247(i), §1.1307(b)(3)(i)	RF Exposure	Compliance
RSS-102 §2.5.1	Exemption Limits from Routine Evaluation – SAR Evaluation	Compliance
FCC §15.203 RSS-Gen §6.8	Antenna Requirements	Compliance
FCC §15.207(a) RSS-Gen §8.8	AC Line Conducted Emissions	Compliance
FCC §15.209, §15.205, §15.247(d) & RSS-GEN §8.9, §8.10	Spurious Emissions	Compliance
FCC §15.247(a)(2) RSS-247 §5.2 (a) RSS-Gen §6.7	6 dB Emission Bandwidth & Occupied Bandwidth	Compliance
FCC §15.247(b)(3) RSS-247 §5.4 (d)	Maximum Output Power	Compliance
FCC §15.247(d) RSS-247 §5.5	100 kHz Bandwidth of Frequency Band Edge	Compliance
FCC §15.247(e) RSS-247 §5.2 (b)	Power Spectral Density	Compliance

4 Test Equipment List and Details

Description	Manufacturer	Model	Serial Number	Calibration Date	Calibration Due Date	
		AC Line Conduction Ro	om (CON-A)			
LISN	Rohde & Schwarz	ENV216	101248	2022/6/22	2023/6/21	
EMI Test Receiver	Rohde & Schwarz	ESR3	102099	2022/6/16	2023/6/15	
Pulse Limiter	Rohde & Schwarz	ESH3Z2	TXZEM104	2022/7/19	2023/7/18	
RF Cable	EMEC	EM-CB5D	1	2022/6/7	2023/6/6	
Software	AUDIX	E3	V9.150826k	N.C.R	N.C.R	
		Radiation 3M Room	(966-A)	,		
Spectrum Analyzer	Rohde & Schwarz	FSV40	101435	2023/1/6	2024/1/13	
Bilog Antenna with 6 dB Attenuator	SUNOL SCIENCES & MINI- CIRCUITS	JB6/UNAT-6+	A050115/15542_01	2022/2/14	2023/2/13	
EMI Test Receiver	Rohde & Schwarz	ESR7	101419	2022/11/2	2023/11/1	
Horn Antenna	EMCO	SAS-571	1020	2022/5/25	2023/5/24	
Horn Antenna	ETS-Lindgren	3116	62638	2022/8/18	2023/8/17	
Preamplifier	Sonoma	310N	130602	2022/6/16	2023/6/15	
Microware Preamplifier	EM Electronics Corporation	EM18G40G	60656	2023/1/6	2024/1/5	
Micro flex Cable	UTIFLEX	UFB197C-1-2362-70U- 70U	225757-001	2022/1/24	2023/1/23	
Coaxial Cable	COMMATE	PEWC	8Dr	2022/12/24	2023/12/23	
Coaxial Cable	UTIFLEX	UFB311A-Q-1440- 300300	220490-006	2022/1/24	2023/1/23	
Coaxial Cable	JUNFLON	J12J102248-00-B-5	AUG-07-15-044	2022/12/24	2023/12/23	
Cable	EMC	EMC105-SM-SM- 10000	201003	2022/1/24	2023/1/23	
Preamplifier	A.H. system Inc.	PAM-0118P	470	2022/3/28	2023/3/27	
Software	Farad	EZ_EMC	BACL-03A1	N.C.R	N.C.R	
	T	Conducted Ro	om	I	T	
Spectrum Analyzer	Rohde & Schwarz	FSV40	101140	2022/2/18	2023/2/17	
Cable	UTIFLEX	UFA210A	9435	2022/10/3	2023/10/2	

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 15 of 66

Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) No.: RXZ230110032RF02

Power Sensor	KEYSIGHT	U2021XA	MY54080018	2022/1/24	2023/1/23
Attenuator	MINI- CIRCUITS	BW-S10W5+	1419	2022/2/11	2023/2/10

*Statement of Traceability: BACL Corp. attests that all of the calibrations on the equipment items listed above were traceable to the SI System of Units via the R.O.C. Center for Measurement Standards of the Electronics Testing Center, Taiwan (ETC) or to another internationally recognized National Metrology Institute (NMI), and were compliant with the current Taiwan Accreditation Foundation (TAF) requirements.

5 FCC §15.247(i), §1.1307(b)(3)(i) - RF Exposure

5.1 Applicable Standard

According to subpart 15.247(i) and subpart §1.1307(b)(3)(i), systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy level in excess of the Commission's guidelines.

No.: RXZ230110032RF02

For single RF sources (i.e., any single fixed RF source, mobile device, or portable device, as defined in paragraph (b)(2) of this section): A single RF source is exempt if:

(A) The available maximum time-averaged power is no more than 1 mW, regardless of separation distance. This exemption may not be used in conjunction with other exemption criteria other than those in paragraph (b)(3)(ii)(A) of this section. Medical implant devices may only use this exemption and that in paragraph (b)(3)(ii)(A);

The sequence to apply for single portable RF sources includes the following steps:

- 1) determination of 1 mW blanket exemption under § 1.1307(b)(3)(i)(A)
- 2) determination of exemption under the MPE-based § 1.1307(b)(3)(i)(C) if 1) is not met
- 3) determination of exemption under the SAR-based § 1.1307(b)(3)(i)(B) if both 1) and 2) are not met

5.2 RF Exposure Evaluation Result

Project info

Band	Freq (MHz)	Turn-up Average Power (dBm)	Ant Gain (dBi)	Distances (mm)	Turn-up (mW)	ERP (dBm)	ERP (mW)
BLE	2480	-5.5	2.29	5	0.28	-5.36	0.29

 $\S 1.1307(b)(3)(i)(A)$ method is applicable.

Option A The available maximum time-averaged power is no more than 1 mW

Dand	Freq	Result
Band	(MHz)	Option A
BLE	2480	exempt

Result: The EUT meets exemption requirement for BLE

RF Exposure Evaluation Result for WIF

Please refer to the SAR report, report No.: RXZ230110032SA01

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 17 of 66

6 RSS-102 § 2.5.1 – EXEMPTION LIMITS FROM ROUTINE EVALUATION – SAR EVALUATION

No.: RXZ230110032RF02

6.1 Applicable Standard

SAR evaluation is required if the separation distance between the user and/or bystander and the antenna and/or radiating element of the device is less than or equal to 20 cm, except when the device operates at or below the applicable output power level (adjusted for tune-up tolerance) for the specified separation distance defined in Table 1.

Table 1: SAR	evaluation — Exer	-	outine evaluation b	ased on frequency	and separation									
		Exemption Limits (mW)												
Frequency	At separation	At separation	At separation	At separation	At separation									
(MHz)	distance of	distance of	distance of	distance of	distance of									
	≤5 mm	10 mm	15 mm	20 mm	25 mm									
≤300	71 mW	101 mW	132 mW	162 mW	193 mW									
450	52 mW	70 mW	88 mW	106 mW	123 mW									
835	17 mW	30 mW	42 mW	55 mW	67 mW									
1900	7 mW	10 mW	18 mW	34 mW	60 mW									
2450	4 mW	7 mW	15 mW	30 mW	52 mW									
3500	2 mW	6 mW	16 mW	32 mW	55 mW									
5800	1 mW	6 mW	15 mW	27 mW	41 mW									
		Ex	emption Limits (m	W)										
Frequency	At separation	At separation	At separation	At separation	At separation									
(MHz)	distance of	distance of	distance of	distance of	distance of									
	30 mm	35 mm	40 mm	45 mm	≥50 mm									
≤300	223 mW	254 mW	284 mW	315 mW	345 mW									
450	141 mW	159 mW	177 mW	195 mW	213 mW									
835	80 mW	92 mW	105 mW	117 mW	130 mW									
1900	99 mW	153 mW	225 mW	316 mW	431 mW									
2450	83 mW	123 mW	173 mW	235 mW	309 mW									
3500	86 mW	124 mW	170 mW	225 mW	290 mW									
5800	56 mW	71 mW	85 mW	97 mW	106 mW									

Output power level shall be the higher of the maximum conducted or equivalent isotropically radiated power (e.i.r.p.) source-based, time-averaged output power. For controlled use devices where the W/kg for 1 gram of tissue applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 5. For limb-worn devices where the 10 gram value applies, the exemption limits for routine evaluation in Table 1 are multiplied by a factor of 2.5.

If the operating frequency of the device is between two frequencies located in Table 1, linear interpolation shall be applied for the applicable separation distance. For test separation distance less than 5 mm, the exemption limits for a separation distance of 5 mm can be applied to determine if a routine evaluation is required. For medical implants devices, the exemption limit for routine evaluation is set at 1 mW. The output power of a medical implants device is defined as the higher of the conducted or e.i.r.p to determine whether the device is exempt from the SAR evaluation.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 18 of 66

No.: RXZ230110032RF02

6.2 RF Exposure Evaluation Result

BLE

Tune-up power = -5.5dBm

EIRP = -3.21 dBm = 0.478 mW

Exemption from Routine Evaluation Limit is:

$$1.31 \times 10^{-2} f^{0.6834} = 1.31 \times 10^{-2} 2402^{0.6834} = 2.68W > 0.478mW$$

Result: The device meets the exemption requirement for BLE

RF Exposure Evaluation Result for WIF

Please refer to the SAR report, report No.: RXZ230110032SA02

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 19 of 66

7 FCC §15.203 & RSS-GEN §6.8– Antenna Requirements

7.1 Applicable Standard

According to § 15.203,

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the user of a standard antenna jack or electrical connector is prohibited.

No.: RXZ230110032RF02

According to RSS-Gen 6.8:

The applicant for equipment certification shall provide a list of all antenna types that may be used with the transmitter, where applicable (i.e. for transmitters with detachable antenna), indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna. The test report shall demonstrate the compliance of the transmitter with the limit for maximum equivalent isotropically radiated power (e.i.r.p.) specified in the applicable RSS, when the transmitter is equipped with any antenna type, selected from this list

For expediting the testing, measurements may be performed using only the antenna with highest gain of each combination of transmitter and antenna type, with the transmitter output power set at the maximum level. However, the transmitter shall comply with the applicable requirements under all operational conditions and when in combination with any type of antenna from the list provided in the test report (and in the notice to be included in the user manual, provided below).

When measurements at the antenna port are used to determine the RF output power, the effective gain of the device's antenna shall be stated, based on a measurement or on data from the antenna's manufacturer.

The test report shall state the RF power, output power setting and spurious emission measurements with each antenna type that is used with the transmitter being tested.

For licence-exempt equipment with detachable antennas, the user manual shall also contain the following notice in a conspicuous location:

This radio transmitter [enter the device's ISED certification number] has been approved by Innovation, Science and Economic Development Canada to operate with the antenna types listed below, with the maximum permissible gain indicated. Antenna types not included in this list that have a gain greater than the maximum gain indicated for any type listed are strictly prohibited for use with this device.

Immediately following the above notice, the manufacturer shall provide a list of all antenna types which can be used with the transmitter, indicating the maximum permissible antenna gain (in dBi) and the required impedance for each antenna type

7.2 Antenna Information

Manufacturer	Туре	Antenna Gain	Impedance
ZHEJIANG JIAKANG ELETRONICS	Chip Antenna	2.29 dBi	50Ω

Result: Compliance

8 FCC §15.207(a) & RSS-GEN §8.8–AC Line Conducted Emissions

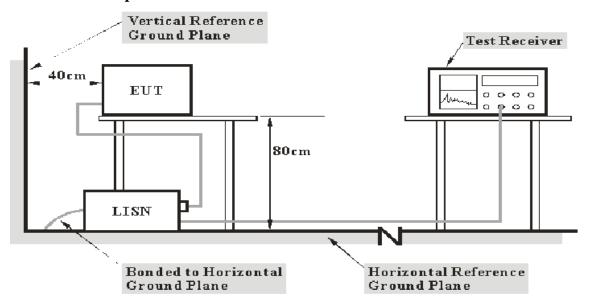
No.: RXZ230110032RF02

8.1 Applicable Standard

According to §15.207

For an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table, as measured using a $50 \mu \text{H/}50 \text{ ohms}$ line impedance stabilization network (LISN). Compliance with the provisions of this paragraph shall be based on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower limit applies at the boundary between the frequencies ranges.

According to RSS-GEN §8.8


Unless stated otherwise in the applicable RSS, for radio apparatus that are designed to be connected to the public utility AC power network, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the range 150 kHz to 30 MHz shall not exceed the limits in table 4, as measured using a 50 μH / 50 Ω line impedance stabilization network. This requirement applies for the radio frequency voltage measured between each power line and the ground terminal of each AC power-line mains cable of the EUT.

For an EUT that connects to the AC power lines indirectly, through another device, the requirement for compliance with the limits in table 4 shall apply at the terminals of the AC power-line mains cable of a representative support device, while it provides power to the EUT. The lower limit applies at the boundary between the frequency ranges. The device used to power the EUT shall be representative of typical applications.

Frequency of Emission	Conducted Limit (dBuV)						
(MHz)	Quasi-Peak	Average					
0.15-0.5	66 to 56 Note 1	56 to 46 Note 1					
0.5-5	56	46					
5-30	60	50					

Note 1: Decreases with the logarithm of the frequency.

8.2 EUT Setup

No.: RXZ230110032RF02

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMIN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 and RSS-GEN limits.

8.3 EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150kHz to 30MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations

Frequency Range	IF B/W
150kHz – 30MHz	9kHz

8.4 Test Procedure

During the conducted emission test, the adapter was connected to the outlet of the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

8.5 Corrected Factor & Margin Calculation

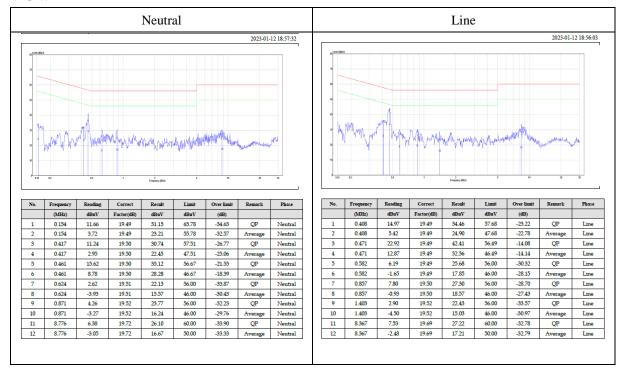
The factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

No.: RXZ230110032RF02

Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "Over Limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an over limit of -7 dB means the emission is 7 dB below the limit. The equation for Over Limit calculation is as follows:

Over Limit = Level – Limit Line


Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

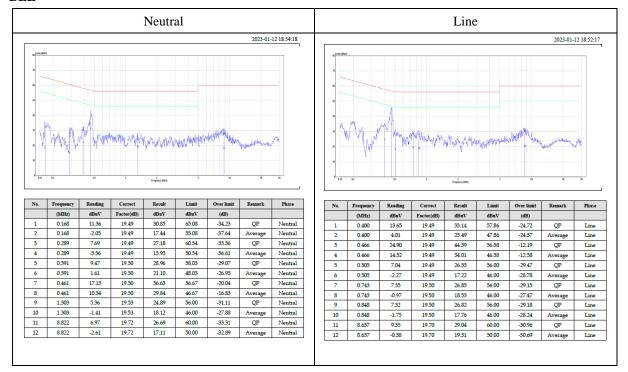
Page 23 of 66

8.6 Test Results

Main: AC120 V, 60 Hz,

2.4G WiFi

No.: RXZ230110032RF02


Note:

Level = Read Level + Factor

Over Limit = Level – Limit Line

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

BLE

Note:

Level = Read Level + Factor

Over Limit = Level – Limit Line

Factor = (LISN, ISN, PLC or current probe) Factor + Cable Loss + Attenuator

9 FCC §15.209, §15.205, §15.247(d) & RSS-GEN §8.9, §8.10 – Spurious Emissions

No.: RXZ230110032RF02

9.1 Applicable Standard

As per FCC §15.35(d): Unless otherwise specified, on any frequency or frequencies above 1000 MHz, the radiated emission limits are based on the use of measurement instrumentation employing an average detector function. Unless otherwise specified, measurements above 1000 MHz shall be performed using a minimum resolution bandwidth of 1MHz.

As per RSS-Gen 8.10,

Restricted frequency bands, identified in table 7, are designated primarily for safety-of-life services (distress calling and certain aeronautical activities), certain satellite downlinks, radio astronomy and some government uses. Except where otherwise indicated, the following conditions related to the restricted frequency bands apply: (a)The transmit frequency, including fundamental components of modulation, of licence-exempt radio apparatus shall not fall within the restricted frequency bands listed in table 7 except for apparatus compliant with RSS-287, Emergency Position Indicating Radio Beacons (EPIRB), Emergency Locator Transmitters (ELT), Personal Locator Beacons (PLB), and Maritime Survivor Locator Devices (MSLD).

- (b)Unwanted emissions that fall into restricted frequency bands listed in table 7 shall comply with the limits specified in table 5 and table 6.
- (c)Unwanted emissions that do not fall within the restricted frequency bands listed in table 7 shall comply either with the limits specified in the applicable RSS or with those specified in table 5 and table 6.

As Per FCC §15.205(a) except as show in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 – 16.423	608 – 614	4. 5 – 5. 15
0.495 - 0.505	16.69475 – 16.69525	960 - 1240	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	1300 - 1427	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1435 - 1626.5	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1645.5 - 1646.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1660 - 1710	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1718.8 - 1722.2	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	2200 - 2300	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2310 - 2390	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2483.5 - 2500	15.35 - 16.2
8.362 - 8.366	156.52475 – 156.52525	2690 - 2900	17.7 - 21.4
8.37625 - 8.38675	156.7 – 156.9	3260 - 3267	22.01 - 23.12
8.41425 - 8.41475	162.0125 –167.17	3.332 - 3.339	23.6 - 24.0
12.29 - 12.293	167.72 – 173.2	3 3458 – 3 358	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3.600 - 4.400	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4		Above 38.6
13.36 – 13.41	399.9 – 410		

As per FCC §15.209(a) and RSS-GEN §8.9: Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

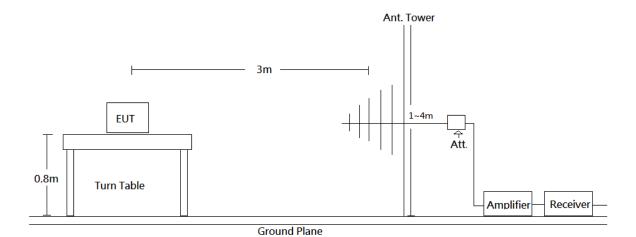
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 26 of 66

Frequency (MHz)	Field Strength (micro volts/meter)	Measurement Distance (meters)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100**	3
88 - 216	150**	3
216 - 960	200**	3
Above 960	500	3

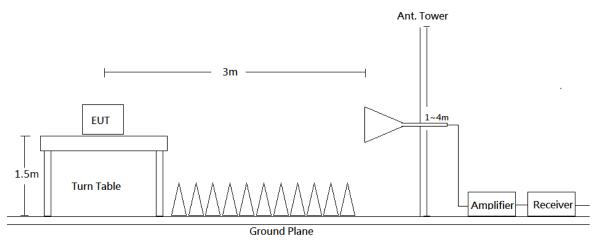
No.: RXZ230110032RF02

As per FCC §15.247 (d) In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c).


As per RSS-247 5.5,

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241.


9.2 EUT Setup

Below 1 GHz:

No.: RXZ230110032RF02

Above 1 GHz:

Radiated emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC Part 15.209, FCC 15.247 and RSS-Gen, RSS-247 Limits.

9.3 EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 30 MHz to 26.5 GHz. During the radiated emission test, the EMI test receiver was set with the following configurations measurement method 6.3 in ANSI C63.10.

Frequency Range	RBW	VBW	Duty cycle	Measurement method
30-1000 MHz	120 kHz	/	/	QP
	1 MHz	3 MHz	/	PK
Above 1 GHz	1 MHz	10 Hz	>98%	Ave
	1 MHz	1/T	<98%	Ave

Note: T is minimum transmission duration

9.4 Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

No.: RXZ230110032RF02

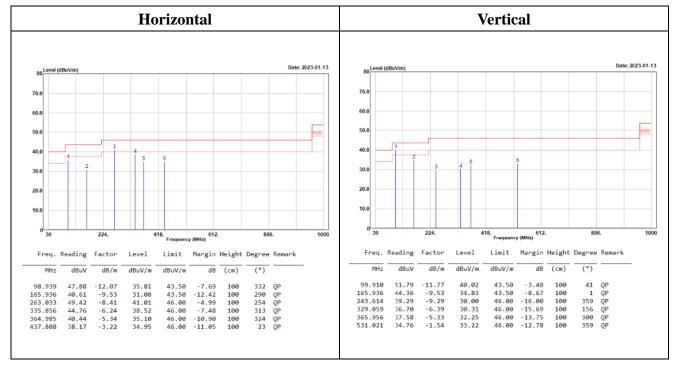
All data was recorded in the Quasi-peak detector mode from 30 MHz to 1 GHz and PK and average detector modes for frequencies above 1 GHz.

9.5 Corrected Factor & Margin Calculation

The Correct Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Correct Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:


Margin = Result - Limit

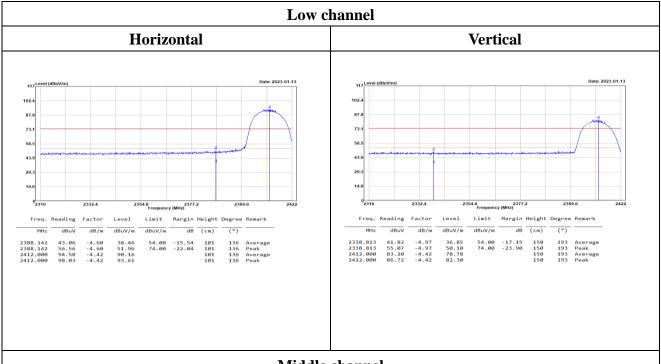
9.6 Test Results

Test Mode: Transmitting **Power: AC120/60Hz**

WiFi Mode (Pre-scan with three orthogonal axis, and worse case as Y axis.)

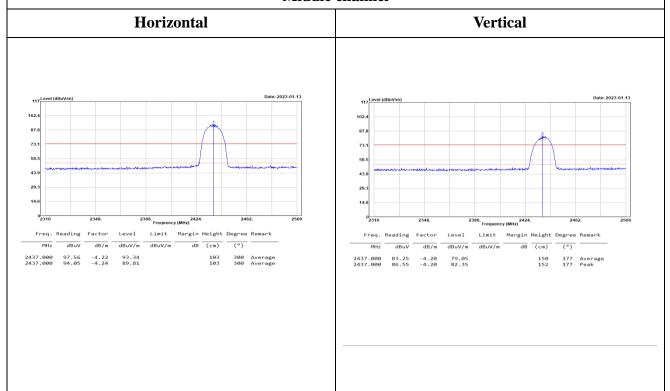
30MHz-1GHz:

No.: RXZ230110032RF02


Level (Result) = Reading + Factor.

Over Limit = Level - Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.


Spurious emissions more than 20 dB below the limit were not reported.

Fundamental:

No.: RXZ230110032RF02

Middle channel

 $Level\ (Result) = Reading + Factor.$

Over Limit = Level - Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

Spurious emissions more than 20 dB below the limit were not reported.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 31 of 66

No.: RXZ230110032RF02

Level (Result) = Reading + Factor.

Over Limit = Level - Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

Spurious emissions more than 20 dB below the limit were not reported.

1GHz~18GHz

Low channel Vertical **Horizontal** 37.5 25.0 Freq. Reading Factor Limit Margin Height Degree Remark Limit Margin Height Degree Remark (°) dBuV dB/m dBuV/m dBuV/m dB (cm) MHz dBuV dB/m dBuV/m dB (cm)

No.: RXZ230110032RF02

	Horizontal							Vertical											
	0.16-1							Date: 20	23-01-13									Date: 20	23-01-13
100 Level (dE	ou v/m)									100 L	vel (dBuV/m)								
87.5										87.5									
75.0										75.0									
62.5										62.5									
50.0		2	4							50.0		2	4						
37.5		- II								37.5		— ↓ į							
25.0										25.0									
12.5										12.5									
1000		4400.	71	BOO. Frequenc	11200 y (MHz)).	146	100.	18000	010	00	4400.	7	800. Frequenc	1120 y (MHz)	0.	146	00.	18000
Freq. R		Factor	Level		Margin			Remark			q. Reading	Factor	Level	Limit				Remark	
MHz	dBuV	dB/m	dBuV/m	dBuV/m		(cm)	(°)				Hz dBuV	dB/m	dBuV/m	dBuV/m		(cm)	(°)		
874.000 874.000	31.10 41.61	3.54 3.54	34.64 45.15	74.00	-19.36 -28.85	156 156	350	Average Peak		4874.6 4874.6	99 41.32	3.54 3.54	34.41 44.86	54.00 74.00	-19.59 -29.14	148	2	Average Peak	
311.000 311.000	27.69 39.31	9.25 9.25	36.94 48.56	54.00 74.00	-17.06 -25.44	154 154	213 213	Average Peak		7311.6 7311.6		9.25 9.25	36.92 49.46	54.00 74.00	-17.08 -24.54	145 145	317 317	Average Peak	

Level (Result) = Reading + Factor.

Over Limit = Level - Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

Spurious emissions more than 20 dB below the limit were not reported.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

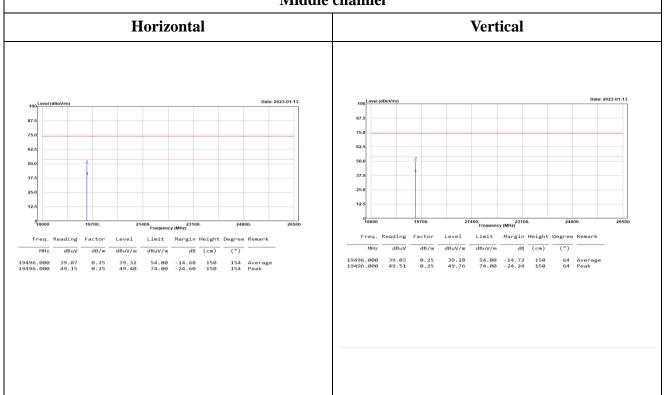
Page 33 of 66

No.: RXZ230110032RF02

Level (Result) = Reading + Factor.

Over Limit = Level - Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.


Spurious emissions more than 20 dB below the limit were not reported.

18GHz~26.5GHz

Low channel **Horizontal Vertical** 25.0 dB (cm) (°) MHz dBuV dB/m dBuV/m dB (cm) (°) dB/m dBuV/m dBuV/m 19296.000 40.66 -0.24 19296.000 51.00 -0.24 54.00 -13.58 150 217 Average 74.00 -23.24 150 217 Peak 19296.000 40.79 -0.24 40.55 19296.000 51.43 -0.24 51.19 54.00 -13.45 150 74.00 -22.81 150

No.: RXZ230110032RF02

Middle channel

Level (Result) = Reading + Factor.

Over Limit = Level - Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

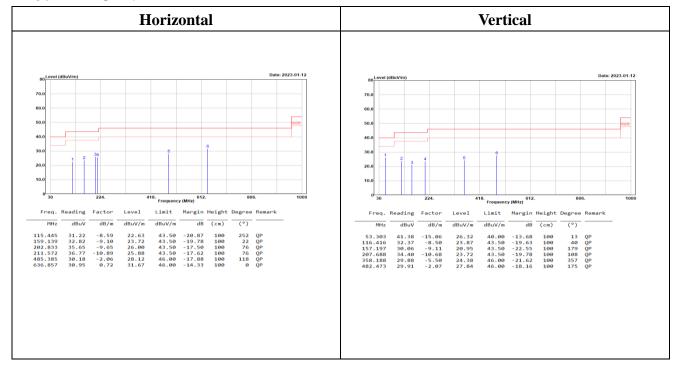
Spurious emissions more than 20 dB below the limit were not reported.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 35 of 66

No.: RXZ230110032RF02

Level (Result) = Reading + Factor.


Over Limit = Level - Limit.

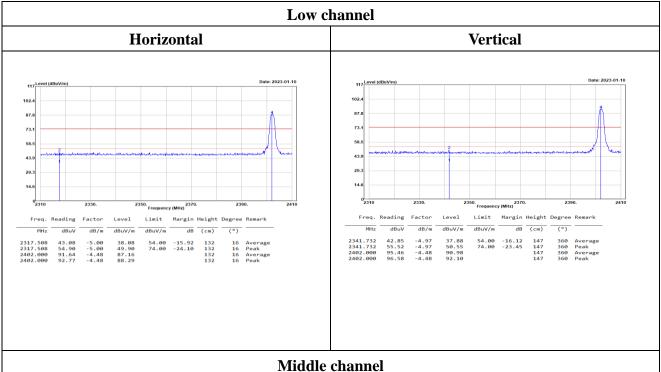
Factor = Antenna Factor + Cable Loss - Amplifier Gain.

Spurious emissions more than 20 dB below the limit were not reported.

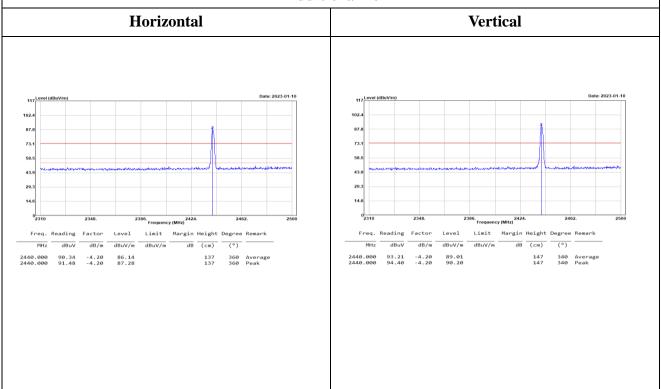
BLE Mode (Pre-scan with three orthogonal axis, and worse case as Y axis.)

30MHz-1GHz:

No.: RXZ230110032RF02


Level (Result) = Reading + Factor.

Over Limit = Level - Limit.


Factor = Antenna Factor + Cable Loss - Amplifier Gain.

Spurious emissions more than 20 dB below the limit were not reported.

Fundamental:

No.: RXZ230110032RF02

 $Level\ (Result) = Reading + Factor.$

Over Limit = Level - Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

Spurious emissions more than 20 dB below the limit were not reported.

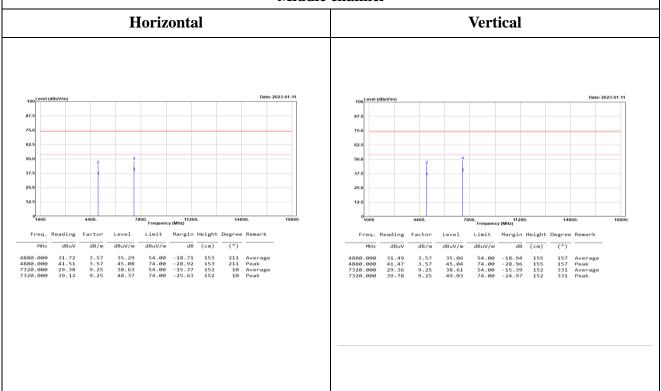
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 38 of 66

No.: RXZ230110032RF02

Level (Result) = Reading + Factor.

Over Limit = Level - Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.


Spurious emissions more than 20 dB below the limit were not reported.

1GHz-18GHz:

| Companies | Comp

No.: RXZ230110032RF02

Middle channel

Level (Result) = Reading + Factor.

Over Limit = Level - Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

Spurious emissions more than 20 dB below the limit were not reported.

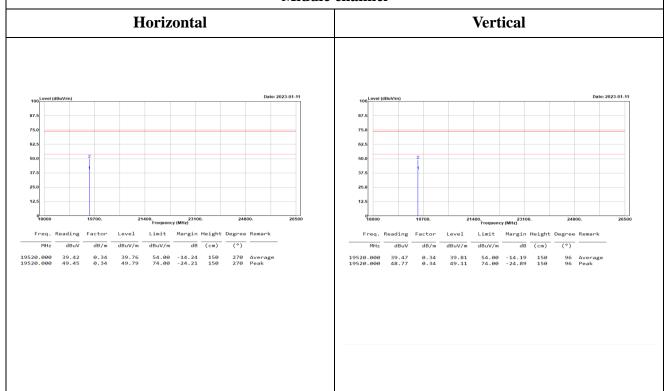
Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory) Page 40 of 66

No.: RXZ230110032RF02

Level (Result) = Reading + Factor.

Over Limit = Level - Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.


Spurious emissions more than 20 dB below the limit were not reported.

18GHz-26.5GHz:

No.: RXZ230110032RF02

Middle channel

 $Level\ (Result) = Reading + Factor.$

Over Limit = Level - Limit.

Factor = Antenna Factor + Cable Loss - Amplifier Gain.

Spurious emissions more than 20 dB below the limit were not reported.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

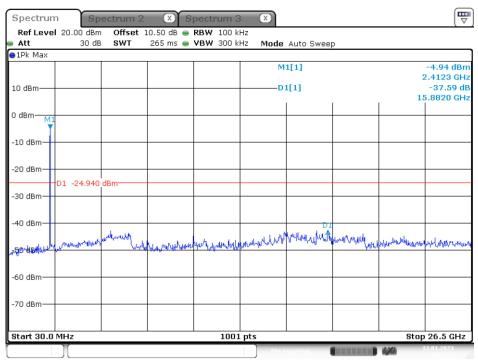
Page 42 of 66

No.: RXZ230110032RF02

Level (Result) = Reading + Factor.

Over Limit = Level - Limit.

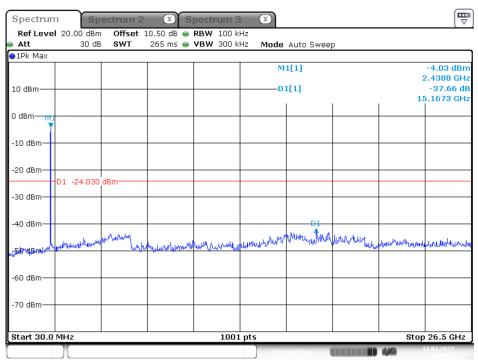
Factor = Antenna Factor + Cable Loss - Amplifier Gain.


Spurious emissions more than 20 dB below the limit were not reported.

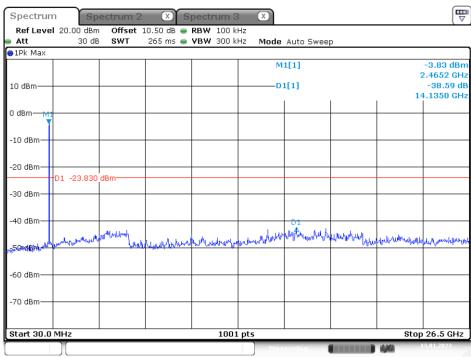
Conducted Spurious Emissions:

Channel	Frequency (MHz)	Delta Peak to Band Emission (dBc)	Limit (dBc)	Result			
	B Mode						
Low	2412	37.59	≥ 20	PASS			
Middle	2437	37.66	≥ 20	PASS			
High	2462	38.59	≥ 20	PASS			
BLE Mode							
Low	2402	31.05	≥ 20	PASS			
Mid	2440	30.91	≥ 20	PASS			
High	2480	31.23	≥ 20	PASS			

No.: RXZ230110032RF02


B Mode Low Channel

Date: 13.JAN.2023 13:29:00

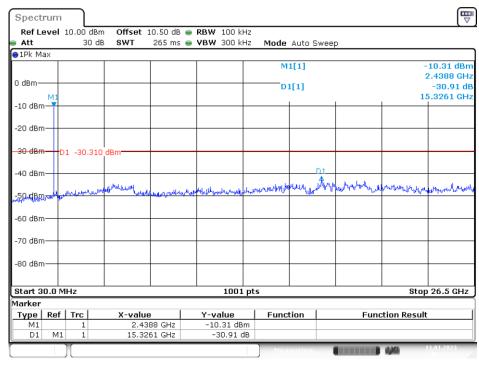

Middle Channel

No.: RXZ230110032RF02

Date: 13.JAN.2023 13:43:08

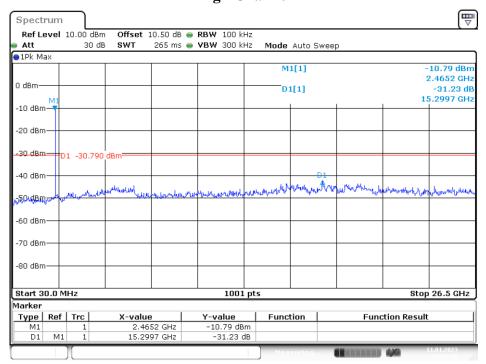
High Channel

Date: 13.JAN.2023 13:37:24


BLE Mode Low Channel

No.: RXZ230110032RF02

Date: 11.JAN.2023 08:33:01


Middle Channel

Date: 11.JAN.2023 08:21:44

High Channel

No.: RXZ230110032RF02

Date: 11.JAN.2023 08:24:01

10 FCC §15.247(a)(2) & RSS-247 §5.2(a), RSS-GEN §6.7 – 6 dB Emission Bandwidth & Occupied Bandwidth

No.: RXZ230110032RF02

10.1 Applicable Standard

According to FCC §15.247(a)(2).

Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

According to RSS-247 §5.2 (a)

The minimum 6 dB bandwidth shall be 500 kHz.

According to RSS-GEN §6.7

The occupied bandwidth or the "99% emission bandwidth" is defined as the frequency range between two points, one above and the other below the carrier frequency, within which 99% of the total transmitted power of the fundamental transmitted emission is contained. The occupied bandwidth shall be reported for all equipment in addition to the specified bandwidth required in the applicable RSSs.

10.2 Test Procedure

The steps for the first option are as follows:

- a) Set RBW = 100 kHz.
- b) Set the VBW \geq [3 × RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

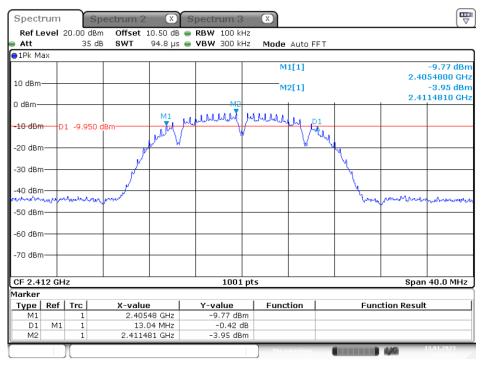
For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 48 of 66

10.3 Test Results

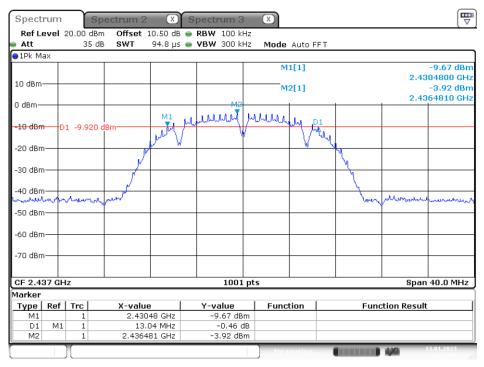
Channel	Frequency (MHz)	6 dB Emission Bandwidth (MHz)	99% Bandwidth (MHz)	Limit (kHz)	Result		
	B Mode						
Low	2412	13.04	15.34	> 500	PASS		
Middle	2437	13.04	15.34	> 500	PASS		
High	2462	13.04	15.38	> 500	PASS		
BLE Mode							
Low	2402	0.723	1.04	≥500	PASS		
Mid	2440	0.723	1.05	≥500	PASS		
High	2480	0.726	1.05	≥500	PASS		


No.: RXZ230110032RF02

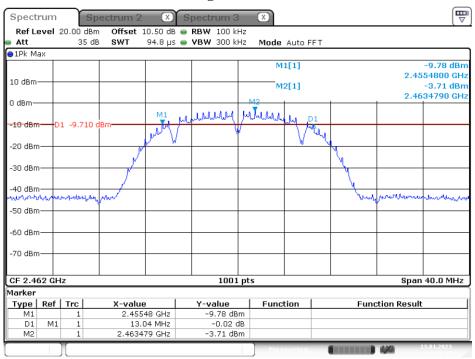
Please refer to the following plots

B Mode

6 dB Emission Bandwidth


Low Channel

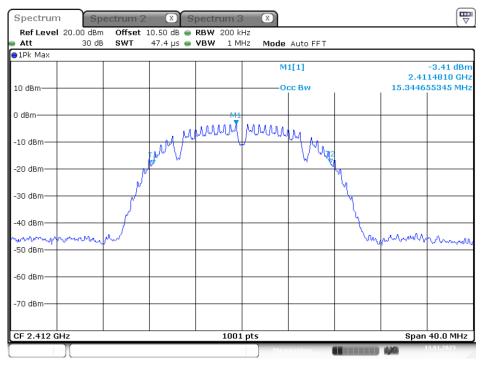
Date: 13.JAN.2023 13:28:19


Middle Channel

No.: RXZ230110032RF02

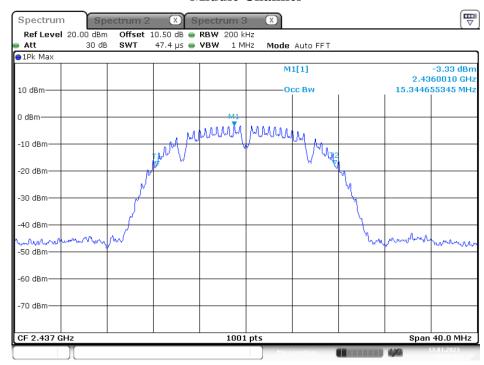
Date: 13.JAN.2023 13:33:03

High Channel



Date: 13.JAN.2023 13:36:44

99% Bandwidth


Low Channel

No.: RXZ230110032RF02

Date: 13.JAN.2023 13:29:15

Middle Channel

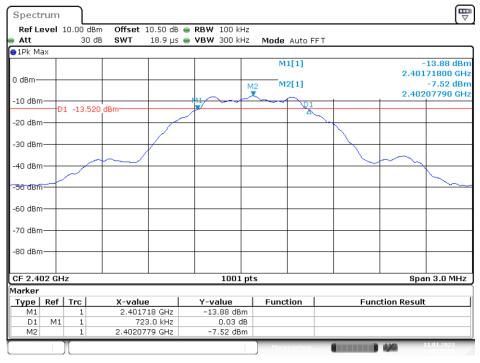
Date: 13.JAN.2023 13:33:43

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 51 of 66

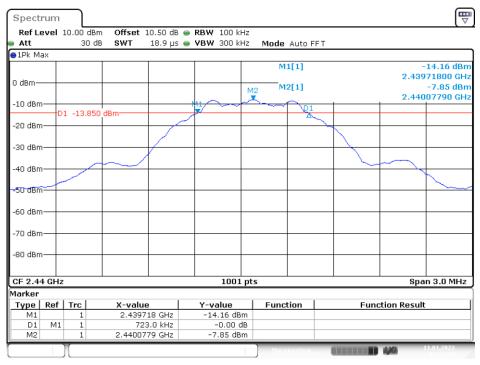
High Channel

No.: RXZ230110032RF02


Date: 13.JAN.2023 13:37:39

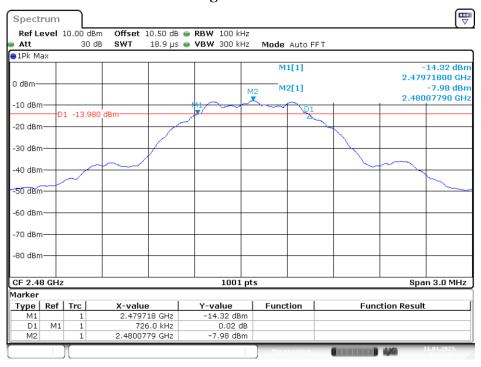
BLE

No.: RXZ230110032RF02


6 dB Emission Bandwidth

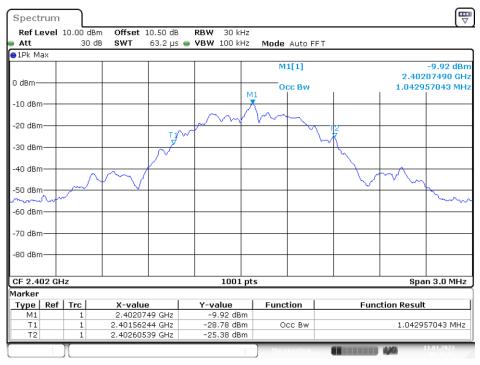
Low Channel

Date: 11.JAN.2023 08:19:27


Middle Channel

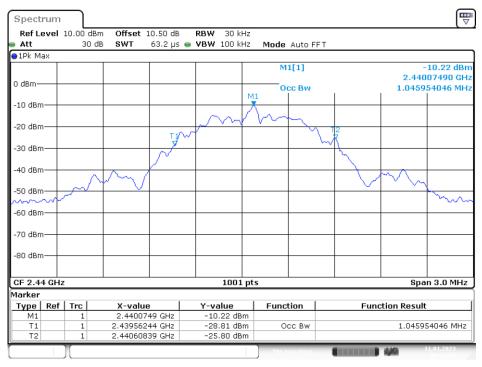
Date: 11.JAN.2023 08:21:04

High Channel

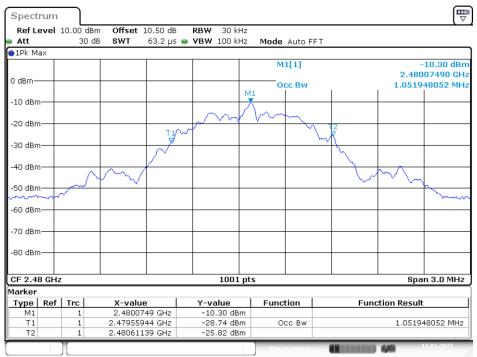

No.: RXZ230110032RF02

Date: 11.JAN.2023 08:23:05

99% Bandwidth


Low Channel

Date: 11.JAN.2023 08:19:51


Middle Channel

No.: RXZ230110032RF02

Date: 11.JAN.2023 08:21:29

High Channel

Date: 11.JAN.2023 08:23:29

11 FCC §15.247(b)(3) & RSS-247 §5.4(d) – Maximum Output Power

No.: RXZ230110032RF02

11.1 Applicable Standard

According to FCC §15.247(b) (3).

Systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.

According to RSS-247 §5.4(d).

For DTSs employing digital modulation techniques operating in the bands 902-928 MHz and 2400-2483.5 MHz, the maximum peak conducted output power shall not exceed 1 W. The e.i.r.p. shall not exceed 4 W, except as provided in section 5.4(e).

As an alternative to a peak power measurement, compliance can be based on a measurement of the maximum conducted output power. The maximum conducted output power is the total transmit power delivered to all antennas and antenna elements, averaged across all symbols in the signalling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or transmitting at a reduced power level. If multiple modes of operation are implemented, the maximum conducted output power is the highest total transmit power occurring in any mode.

11.2 Test Procedure

- 1. Place the EUT on a bench and set it in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to measuring equipment.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

Page 56 of 66

11.3 Test Results

Conducted Peak Output Power

Channel	Frequency (MHz)	Power (dBm)	Limit (dBm)	Antenna Gain (dBi)	EIRP Power (dBm)	EIRP Power Limit (dBm)
	B Mode					
Low	2412	8.36	30	2.29	10.650	36
Middle	2437	8.48	30	2.29	10.770	36
High	2462	8.56	30	2.29	10.850	36
BLE Mode						
Low	2402	-5.83	30	2.29	-3.540	36
Mid	2440	-5.91	30	2.29	-3.620	36
High	2480	-6.12	30	2.29	-3.830	36

No.: RXZ230110032RF02

12 FCC §15.247(d) & RSS-247 §5.5 – 100 kHz Bandwidth of Frequency Band Edge

No.: RXZ230110032RF02

12.1 Applicable Standard

According to FCC §15.247(d).

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

According to RSS-247 §5.5.

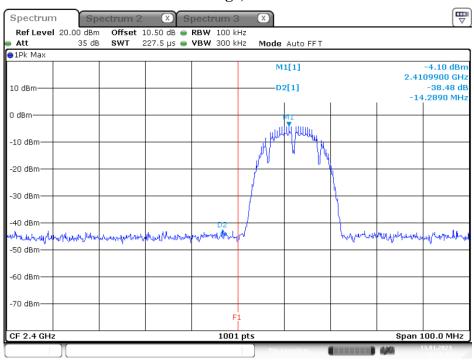
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

12.2 Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Note: It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp. (New Taipei Laboratory)

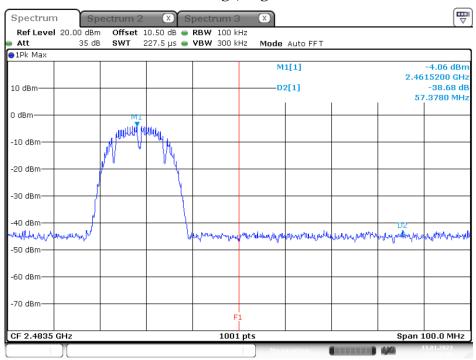
Page 58 of 66


12.3 Test Results

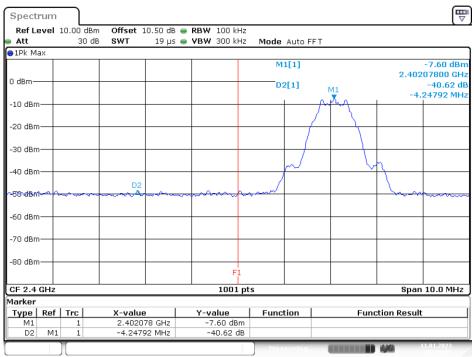
Channel	Frequency (MHz)	Delta Peak to Band Emission (dBc)	Limit (dBc)	Result		
B Mode						
Low	2412	38.48	≥ 20	PASS		
High	2462	38.68	≥ 20	PASS		
BLE						
Low	2402	40.62	≥ 20	PASS		
High	2480	39.78	≥ 20	PASS		

No.: RXZ230110032RF02

Please refer to the following plots

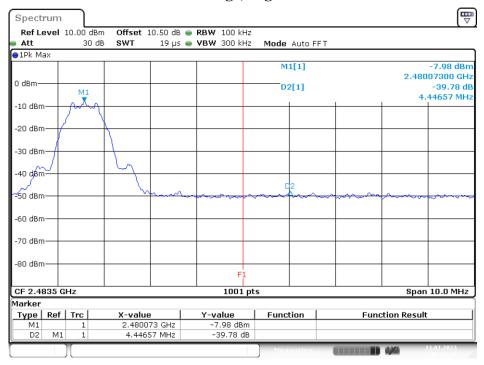

B Mode Band Edge, Left Side

Date: 13.JAN.2023 13:28:44


Band Edge, Right Side

No.: RXZ230110032RF02

Date: 13.JAN.2023 13:37:09


BLE Mode Band Edge, Left Side

Date: 11.JAN.2023 08:20:07

Band Edge, Right Side

No.: RXZ230110032RF02

Date: 11.JAN.2023 08:23:45

13 FCC §15.247(e) & RSS-247 §5.2(b) – Power Spectral Density

No.: RXZ230110032RF02

13.1Applicable Standard

According to FCC §15.247(e).

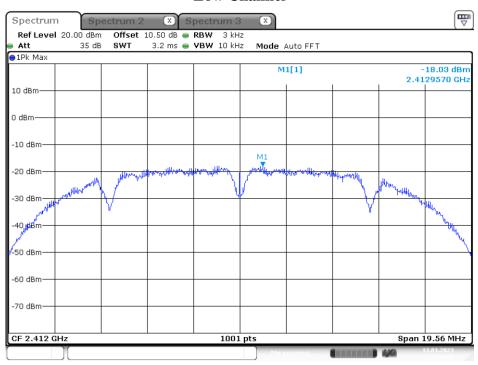
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

According to RSS-247 §5.2(b).

The transmitter power spectral density conducted from the transmitter to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of section 5.4(d), (i.e. the power spectral density shall be determined using the same method as is used to determine the conducted output power).

13.2Test Procedure

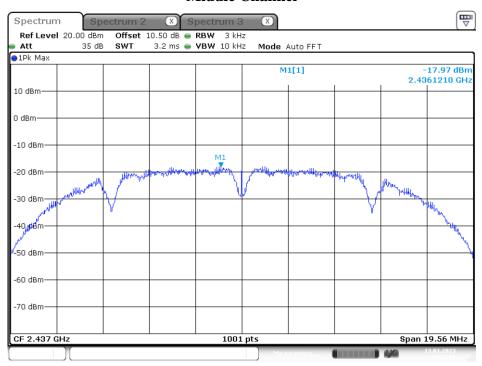
- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz \leq RBW \leq 100 kHz.
- d) Set the VBW \geq [3 × RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum amplitude level within the RBW.
- j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat


13.3Test Results

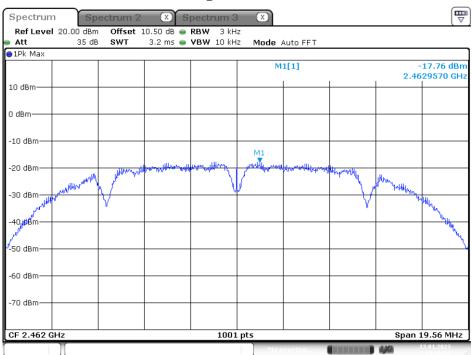
Channel	Frequency (MHz)	Power Spectral Density (dBm/3 kHz)	Limit (dBm/3 kHz)	Result		
B Mode						
Low	2412	-18.03	8	PASS		
Mid	2437	-17.97	8	PASS		
High	2462	-17.76	8	PASS		
BLE Mode						
Low	2402	-24.76	8	PASS		
Mid	2440	-25.04	8	PASS		
High	2480	-25.22	8	PASS		

No.: RXZ230110032RF02

Please refer to the following plots

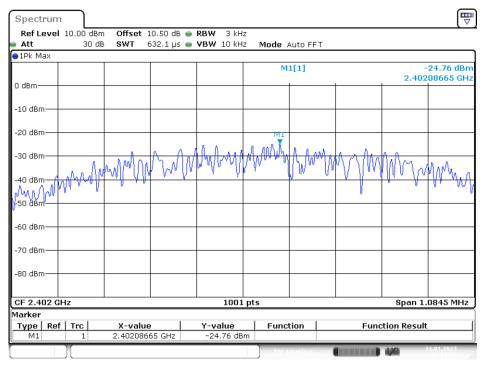

B Mode Low Channel

Date: 13.JAN.2023 13:28:28

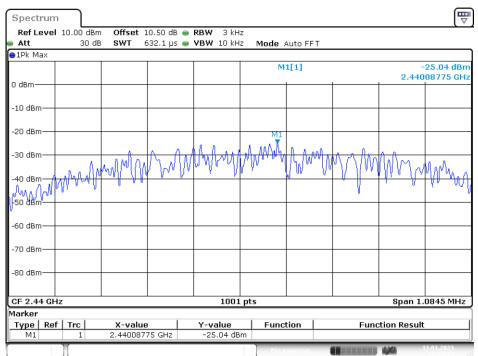

Middle Channel

No.: RXZ230110032RF02

Date: 13.JAN.2023 13:33:12

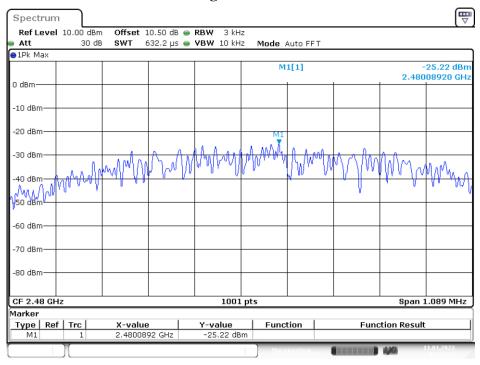

High Channel

Date: 13.JAN.2023 13:36:53


BLE Mode Low Channel

No.: RXZ230110032RF02

Date: 11.JAN.2023 08:19:36


Middle Channel

Date: 11.JAN.2023 08:21:13

High Channel

No.: RXZ230110032RF02

Date: 11.JAN.2023 08:23:14

***** END OF REPORT *****