ENGINEERING TEST REPORT

VHF Digital Transceiver Model No.: IC-F3400DT/DS/D FCC ID: AFJ376600

Applicant:

ICOM Incorporated 1-1-32, Kamiminami, Hirano-ku Osaka, Japan, 547-0003

Tested in Accordance With

Federal Communications Commission (FCC) 47 CFR, Parts 2, 22, 74, 80 and 90 (Subpart I)

UltraTech's File No.: 16ICOM435_FCC90

This Test report is Issued under the Authority of Tri M. Luu, Professional Engineer, Vice President of Engineering UltraTech Group of Labs

Date: September 02, 2016

Report Prepared by: Dharmajit Solanki

Issued Date: September 02, 2016

Tested by: Wei Wu

Test Dates: August 08 -18, 2016

The results in this Test Report apply only to the sample(s) tested, and the sample tested is randomly selected.

This report must not be used by the client to claim product endorsement by NVLAP or any agency of the US Government.

UltraTech

TABLE OF CONTENTS

EXHIBI	(T 1.	INTRODUCTION	1
1.1.	SCOP	Е	1
1.2.		TED SUBMITTAL(S)/GRANT(S)	
1.3.	NORM	IATIVE REFERENCES	1
EXHIBI	(T 2.	PERFORMANCE ASSESSMENT	2
2.1.	CLIEN	JT INFORMATION	\mathbf{r}
2.1.		PMENT UNDER TEST (EUT) INFORMATION	
2.2.		S TECHNICAL SPECIFICATIONS	
2.4.		OF EUT'S PORTS	
2.5.		LLARY EQUIPMENT	
2.6.		RAL TEST SETUP	
EXHIBI	(T 3.	EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS	5
3.1.	CLIM	ATE TEST CONDITIONS	5
3.2.		ATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS	
EXHIBI		SUMMARY OF TEST RESULTS	4
4.1.		TION OF TESTS	
4.2.		ICABILITY & SUMMARY OF EMISSION TEST RESULTS	
4.3.	MODI	FICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES	
EXHIBI	(T 5.	MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS	7
5.1.		PROCEDURES	
5.2.		SUREMENT UNCERTAINTIES	
5.3.		SUREMENT EQUIPMENT USED	
5.4.		NTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER	
5.5.		WER OUTPUT [§§ 2.1046, 22.565, 74.461, 80.215 & 90.205]	
5.6.		O FREQUENCY RESPONSE [§ 2.1047(A), 80.213(E) & 90.242(B)(8)]	
5.7.		JLATION LIMITING [§§ 2.1047 (B), 74.463, 80.213 & 90.210]	
5.8. 5.9.	TDAN	IPIED BANDWIDTH & EMISSION MASK [§§ 2.1049, 74.462, 80.211(F), 90.209 & 90.210]	.9
5.9.		5, 80.211(F)(3) & 90.210]	
5.10.	TRAN	(\$0.211(F)(5) & 90.210]	'
0.10.)]	
5.11.		UENCY STABILITY [§§ 2.1055, 22.355, 74.464, 80.209 & 90.213]	
5.12.	TRAN	SIENT FREQUENCY BEHAVIOR [§ 90.214 & 74.462(C)]	'4
EXHIBI	(T 6.	TEST EQUIPMENT LIST	;2
EXHIBI	(T 7.	MEASUREMENT UNCERTAINTY	13
7.1.	RADL	ATED EMISSION MEASUREMENT UNCERTAINTY	33
EXHIBI	(T 8.	MEASUREMENT METHODS	\$4
8.1.	CONE	DUCTED POWER MEASUREMENTS	34
8.2.		ATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD	
8.3.		UENCY STABILITY	
8.4.		SION MASK	
8.5.		IOUS EMISSIONS (CONDUCTED)	
8.6.	TRAN	SIENT FREQUENCY BEHAVIOR	0

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 16ICOM435_FCC90 September 02, 2016

EXHIBIT 1. INTRODUCTION

1.1. SCOPE

Reference:	FCC Parts 2, 22, 74, 80 and 90 (Subpart I)
Title:	Code of Federal Regulations (CFR), Title 47 Telecommunication – Parts 2, 22, 74, 80 and 90 (Subpart I)
Purpose of Test:	To obtain FCC Certification Authorization for Radio operating in the Frequency Band 136-174 MHz (25 kHz, 12.5 kHz and 6.25 kHz Channel Spacing).
Test Procedures:	Both conducted and radiated emissions measurements were conducted in accordance with TIA/EIA Standard TIA/EIA-603-D Land Mobile FM or PM Communications Equipment Measurement and performance Standards.

1.2. RELATED SUBMITTAL(S)/GRANT(S)

None

1.3. NORMATIVE REFERENCES

Publication	Year	Title
FCC CFR Parts 0-19, 80-End	2016	Code of Federal Regulations – Telecommunication
ANSI C63.4	2014	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz
TIA/EIA 603, Edition D	2010	Land Mobile FM or PM Communications Equipment Measurement and Performance Standards
ANSI C63.26	2015	American National Standard for Compliance Testing of Transmitters used in Licensed Radio Services
CISPR 22 & EN 55022	2008-09 Ed 6 2006	Information Technology Equipment - Radio Disturbance Characteristics - Limits and Methods of Measurement
CISPR 16-1-1 +A1 +A2	2006 2006 2007	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-1: Measuring Apparatus
CISPR 16-1-2 +A1 +A2	2003 2004 2006	Specification for radio disturbance and immunity measuring apparatus and methods. Part 1-2: Conducted disturbances

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

EXHIBIT 2. PERFORMANCE ASSESSMENT

2.1. CLIENT INFORMATION

APPLICANT		
Name:	Icom Incorporated	
Address:	1-1-32, Kamiminami Hirano-ku, Osaka Japan, 547-0003	
Contact Person:	Mr. Hideji Fujishima Phone #: +81 6 6793 5302 Fax #: +81 6 6793 0013 Email Address: world_support@icom.co.jp	

MANUFACTURER		
Name:	Icom Incorporated	
Address:	1-1-32, Kamiminami Hirano-ku, Osaka Japan, 547-0003	
Contact Person:	Mr. Hideji Fujishima Phone #: +81 6 6793 5302 Fax #: +81 6 6793 0013 Email Address: world_support@icom.co.jp	

2.2. EQUIPMENT UNDER TEST (EUT) INFORMATION

The applicant has supplied the following information (with the exception of the Date of Receipt).

Brand Name:	ICOM Incorporated
Product Name:	VHF Digital Transceiver
Model Name or Number:	IC-F3400DT
Serial Number:	01000152
Type of Equipment:	Licensed Non-Broadcast Transmitter Held to Face
Power Supply Requirement:	7.5 VDC nominal
Transmitting/Receiving Antenna Type:	Non-integral
Primary User Functions of EUT:	2-Way Wireless Voice & Data Communication

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

2.3. EUT'S TECHNICAL SPECIFICATIONS

TRANSMITTER		
Equipment Type:	Portable	
Intended Operating Environment:	Restricted to Occupational Use only	
Power Supply Requirement:	7.5 VDC nominal	
RF Output Power Rating:	5 Watt (High) / 1 Watt (Low)	
Operating Frequency Range:	136-174 MHz	
RF Output Impedance:	50 Ω	
Channel Spacing:	25 kHz, 12.5 kHz, 6.25 kHz	
Occupied Bandwidth (99%):	15.34 kHz (for 25 kHz Analog) 10.38 kHz (for 12.5 kHz Analog) 7.76 kHz (for 12.5 kHz Digital) 3.62 kHz (for 6.25 kHz Digital)	
Emission Designation*:	16K0F3E**, 11K0F3E, 8K30F1E, 8K30F1D, 4K00F1E, 4K00F1D	

* For an average case of commercial telephony, the Necessary Bandwidth is calculated as follows:

For FM Voice Modulation:

Channel Spacing = 25 KHz, D = 5 KHz max, K = 1, M = 3 KHz B_n = 2M + 2DK = 2(3) + 2(5)(1) = <u>16 KHz</u> Emission designation: 16K0F3E

Channel Spacing = 12.5 KHz, D = 2.5 KHz max, K = 1, M = 3 KHz $B_n = 2M + 2DK = 2(3) + 2(2.5)(1) = 11 \text{ KHz}$ Emission designation: 11K0F3E

****Note:** The emission designation 16K0F3E with 25 KHz Channel bandwidth is only applied to the device operated in FCC Rules Part 22, 74 & 80 frequencies. The operation of 16K0F3E emission will be disabled in the firmware by the manufacturer for device that operates in FCC Rules Part 90 frequencies (Private Land Mobile) as declared by the applicant.

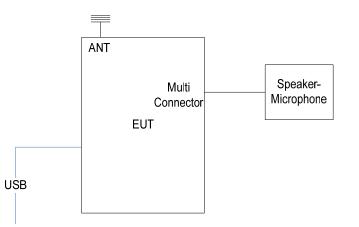
2.4. LIST OF EUT'S PORTS

Port Number	EUT's Port Description	Number of Identical Ports	Connector Type	Terminated with
1	Multi-connector	1	ICOM Multi-connector Jack	Speaker-Microphone or Headset
2	Antenna Connector	1	ICOM Special type	50 Ohm Load
3	USB	1	Micro USB	USB wire

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com


File #: 16ICOM435_FCC90 September 02, 2016

2.5. ANCILLARY EQUIPMENT

The EUT was tested while connected to the following representative configuration of ancillary equipment necessary to exercise the ports during tests:

Ancillary Equipment # 1		
Description:	Speaker Microphone	
Brand Name:	Icom Inc.	
Model Name or Number:	HM-222	
Serial Number:	N/A	

2.6. GENERAL TEST SETUP

EXHIBIT 3. EUT OPERATING CONDITIONS AND CONFIGURATIONS DURING TESTS

3.1. CLIMATE TEST CONDITIONS

The climate conditions of the test environment are as follows:

Temperature:	21°C - 24°C
Humidity:	45% to 58%
Pressure:	102 kPa
Power Input Source:	7.5 VDC Nominal

3.2. OPERATIONAL TEST CONDITIONS & ARRANGEMENT FOR TEST SIGNALS

Operating Modes:	The transmitter was operated in a continuous transmission mode with the carrier modulated as specified in the Test Data.
Special Test Software:	N/A
Special Hardware Used:	N/A
Transmitter Test Antenna:	The EUT is tested with the antenna port terminated to a 50 Ohm RF Load.

Transmitter Test Signals	
Frequency Band(s):	136-174 MHz
Test Frequencies: (Near lowest, near middle & near highest frequencies in the frequency range of operation.)	138.1 MHz, 151.1 MHz, 173.3 MHz
Transmitter Wanted Output Test Signals:	
Transmitter Power (measured maximum output power):	5.04 W High and 1.01 W Low
Normal Test Modulation:	FM Voice/Digital
Modulating signal source:	External

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

EXHIBIT 4. SUMMARY OF TEST RESULTS

4.1. LOCATION OF TESTS

2.1049.74.462.80.211(f).

80.211(f)(3), & 90.210

80.211(f)(3), & 90.210 2.1055, 22.355, 74.464

2.1053, 2.1057, 22.359,

90.209 & 90.210 2.1051, 2.1057,

80.209 & 90.213 74.462(c) & 90.214

All of the measurements described in this report were performed at Ultratech Group of Labs located in the city of Oakville, Province of Ontario, Canada.

Radiated Emissions were performed at the Ultratech's 3-10 TDK Semi-Anechoic Chamber situated in the Town of Oakville, province of Ontario. This test site been calibrated in accordance with ANSI C63.4, and found to be in compliance with the requirements of Sec. 2.948 of the FCC Rules. The descriptions and site measurement data of the Oakville 3-10 TDK Semi-Anechoic Chamber has been filed with FCC office (FCC File No.: 91038) and Industry Canada office (Industry Canada File No.: 2049A-3). Expiry Date: 2017-04-02.

FCC Section(s) Applicability (Yes/No) **Test Requirements** 1.1307, 1.1310, 2.1091 & **RF Exposure Limit** Yes. Refer to SAR 2.1093 Report 2.1046, 22.565, 74.461, **RF** Power Output Yes 80.215 & 90.205 2.1047(a), 80.213(e) & Audio Frequency Response Not applicable to new 90.242(b)(8) standard. However, tests are conducted under FCC's recommendation. 2.1047(b), 74.463, 80.213 Modulation Limiting Yes & 90.210

Emission Limitation & Emission Mask

4.2. APPLICABILITY & SUMMARY OF EMISSION TEST RESULTS

VHF Digital Transceiver, Model No.: IC-F3400DT, by ICOM Incorporated has also been tested and found to comply with FCC Part 15, Subpart B - Radio Receivers and Class B Digital Devices. The engineering test report has been documented and kept on file and is available upon request.

Emission Limits - Spurious Emissions at Antenna

Emission Limits - Field Strength of Spurious Emissions

4.3. MODIFICATIONS INCORPORATED IN THE EUT FOR COMPLIANCE PURPOSES

None

4.3.1. DEVIATION OF STANDARD TEST PROCEDURES

Terminal

Frequency Stability

Transient Frequency Behavior

None

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> Yes

Yes

Yes

Yes

Yes

EXHIBIT 5. MEASUREMENTS, EXAMINATIONS & TEST DATA FOR EMC EMISSIONS

5.1. TEST PROCEDURES

This section contains test results only. Details of test methods and procedures can be found in EXHIBIT 8 of this report.

5.2. MEASUREMENT UNCERTAINTIES

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement. Refer to Exhibit 7 for Measurement Uncertainties.

5.3. MEASUREMENT EQUIPMENT USED

The measurement equipment used complied with the requirements of the Standards referenced in the Methods & Procedures ANSI C63.4 and CISPR 16-1-1.

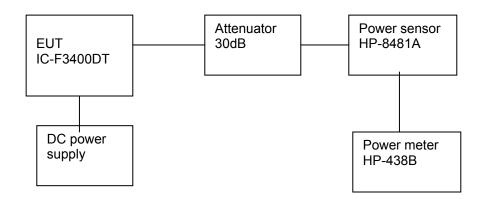
5.4. ESSENTIAL/PRIMARY FUNCTIONS AS DECLARED BY THE MANUFACTURER

The essential function of the EUT is to communicate to and from radios over RF link.

File #: 16ICOM435 FCC90

September 02, 2016

5.5. RF POWER OUTPUT [§§ 2.1046, 22.565, 74.461, 80.215 & 90.205]


5.5.1. Limits

Please refer to FCC 47 CFR 90.205, 74.461, 80.215 & 22.565 for specification details.

5.5.2. Method of Measurements

Refer to Section 8.1 (Conducted) and 8.2 (Radiated) of this report for measurement details

5.5.3. Test Arrangement

5.5.4. Test Data

Fundamental Frequency (MHz)	Measured (Average) Power (W)	Power Rating (W)
	High Power Level, 5 W	
138.1	4.97	5.00
151.1	4.70	5.00
173.3	5.04	5.00
	Low Power Level, 1 W	
138.1	1.01	1.00
151.1	1.01	1.00
173.3	1.01	1.00

ULTRATECH GROUP OF LABS

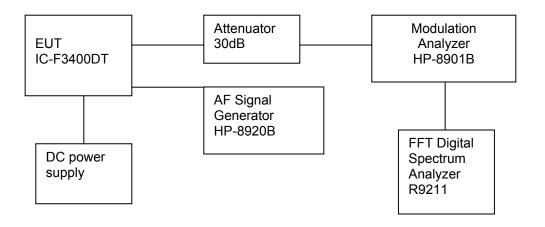
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

5.6. AUDIO FREQUENCY RESPONSE [§ 2.1047(a), 80.213(e) & 90.242(b)(8)]

5.6.1. Limits

§ 2.1047(a): Voice modulated communication equipment. A curve or equivalent data showing the frequency response of the audio modulating circuit over a range of 100 to 5000 Hz shall be submitted. For equipment required to have an audio low-pass filter, a curve showing the frequency response of the filter or of all circuitry installed between the modulation limiter and the modulated stage shall be submitted.


§ 90.242(b)(8): Recommended audio filter attenuation characteristics are given below:

Audio band	Minimum Attenuation Rel. to 1 kHz Attenuation		
3 –20 KHz	60 log ₁₀ (f/3) dB where f is in kHz		
20 – 30 KHz	50dB		

5.6.2. Method of Measurements

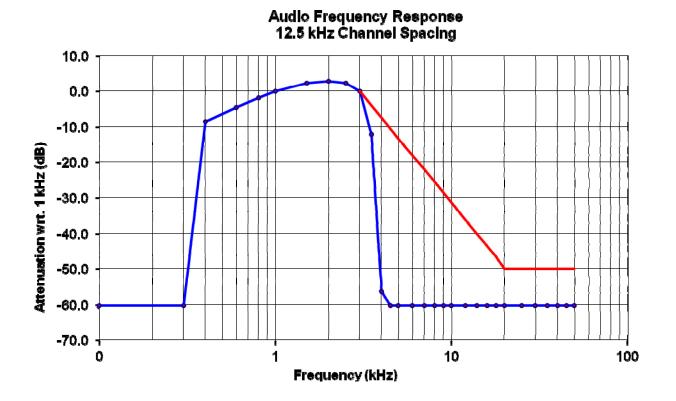
The rated audio input signal was applied to the input of the audio low-pass filter (or of all modulation stages) using an audio oscillator, this input signal level and its corresponding output signal were then measured and recorded using the FFT Digital Spectrum Analyzer. Tests were repeated at different audio signal frequencies from 0 to 50 KHz.

5.6.3. Test Arrangement

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

5.6.4. Test Data

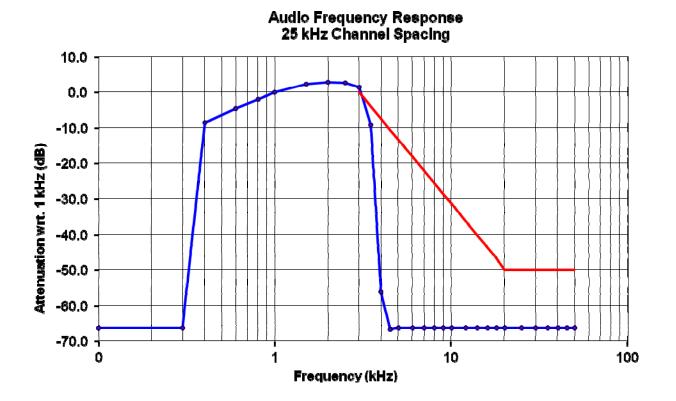

5.6.4.1. 12.5 KHz Channel Spacing, F3E, Frequency of All Modulation States

Remark: Due to the difficulty of measuring the Frequency Response of the internal low-pass filter, the Frequency Response of All Modulation States is performed to show the roll-off at 3 kHz in comparison with the recommended audio filter attenuation.

Frequency (KHz)	Audio In (dBV)	Audio Out (dBV)	Attenuation (Out - In) (dB)	Attenuation Rel. to 1 KHz (dB)	Recommended Attenuation (dB)
0.1	-36.54	-60.00	-23.5	-60.4	
0.2	-36.54	-60.00	-23.5	-60.4	
0.4	-36.54	-8.19	28.4	-8.6	
0.6	-36.54	-4.08	32.5	-4.5	
0.8	-36.54	-1.45	35.1	-1.8	
1.0	-36.54	0.37	36.9	0.0	
1.5	-36.54	2.74	39.3	2.4	
2.0	-36.54	3.14	39.7	2.8	
2.5	-36.54	2.59	39.1	2.2	
3.0	-36.54	0.39	36.9	0.0	0
3.5	-36.54	-11.69	24.9	-12.1	-4
4.0	-36.54	-56.07	-19.5	-56.4	-7
4.5	-36.54	-60.00	-23.5	-60.4	-11
5.0	-36.54	-60.00	-23.5	-60.4	-13
6.0	-36.54	-60.00	-23.5	-60.4	-18
7.0	-36.54	-60.00	-23.5	-60.4	-22
8.0	-36.54	-60.00	-23.5	-60.4	-26
9.0	-36.54	-60.00	-23.5	-60.4	-29
10.0	-36.54	-60.00	-23.5	-60.4	-31
12.0	-36.54	-60.00	-23.5	-60.4	-36
14.0	-36.54	-60.00	-23.5	-60.4	-40
16.0	-36.54	-60.00	-23.5	-60.4	-44
18.0	-36.54	-60.00	-23.5	-60.4	-47
20.0	-36.54	-60.00	-23.5	-60.4	-50
25.0	-36.54	-60.00	-23.5	-60.4	-50
30.0	-36.54	-60.00	-23.5	-60.4	-50
35.0	-36.54	-60.00	-23.5	-60.4	-50
40.0	-36.54	-60.00	-23.5	-60.4	-50
45.0	-36.54	-60.00	-23.5	-60.4	-50
50.0	-36.54	-60.00	-23.5	-60.4	-50

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>


5.6.4.2. 25 KHz Channel Spacing, F3E, Frequency of All Modulation States

<u>Note</u>: Due to the difficulty of measuring the Frequency Response of the internal low-pass filter, the Frequency Response of All Modulation States is performed to show the roll-off at 3 KHz in comparison with the recommended audio filter attenuation.

Frequency (KHz)	Audio In (dBV)	Audio Out (dBV)	Attenuation (Out - In) (dB)	Attenuation Rel. to 1 KHz (dB)	Recommended Attenuation (dB)
0.1	-36.49	-60.00	-23.5	-66.3	
0.2	-36.49	-60.00	-23.5	-66.3	
0.4	-36.49	-2.29	34.2	-8.6	
0.6	-36.49	1.71	38.2	-4.6	
0.8	-36.49	4.32	40.8	-2.0	
1.0	-36.49	6.28	42.8	0.0	
1.5	-36.49	8.63	45.1	2.4	
2.0	-36.49	9.07	45.6	2.8	
2.5	-36.49	8.87	45.4	2.6	
3.0	-36.49	7.62	44.1	1.3	0
3.5	-36.49	-2.92	33.6	-9.2	-4
4.0	-36.49	-49.98	-13.5	-56.3	-7
4.5	-36.49	-60.29	-23.8	-66.6	-11
5.0	-36.49	-60.00	-23.5	-66.3	-13
6.0	-36.49	-60.00	-23.5	-66.3	-18
7.0	-36.49	-60.00	-23.5	-66.3	-22
8.0	-36.49	-60.00	-23.5	-66.3	-26
9.0	-36.49	-60.00	-23.5	-66.3	-29
10.0	-36.49	-60.00	-23.5	-66.3	-31
12.0	-36.49	-60.00	-23.5	-66.3	-36
14.0	-36.49	-60.00	-23.5	-66.3	-40
16.0	-36.49	-60.00	-23.5	-66.3	-44
18.0	-36.49	-60.00	-23.5	-66.3	-47
20.0	-36.49	-60.00	-23.5	-66.3	-50
25.0	-36.49	-60.00	-23.5	-66.3	-50
30.0	-36.49	-60.00	-23.5	-66.3	-50
35.0	-36.49	-60.00	-23.5	-66.3	-50
40.0	-36.49	-60.00	-23.5	-66.3	-50
45.0	-36.49	-60.00	-23.5	-66.3	-50
50.0	-36.49	-60.00	-23.5	-66.3	-50

ULTRATECH GROUP OF LABS

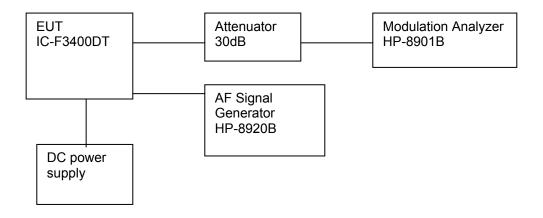
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

5.7. MODULATION LIMITING [§§ 2.1047 (b), 74.463, 80.213 & 90.210]

5.7.1. Limits

§ 2.1047(b): Equipment which employs modulation limiting. A curve or family of curves showing the percentage of modulation versus the modulation input voltage shall be supplied. The information submitted shall be sufficient to show modulation limiting capability throughout the range of modulating frequencies and input modulating signal levels employed.

Recommended frequency deviation characteristics are given below:


- 1.25 kHz for 6.25 kHz Channel Spacing System
- 2.5 KHz for 12.5 kHz Channel Spacing System

5.7.2. Method of Measurements

For Audio Transmitter: The carrier frequency deviation was measured with the tone input signal level varied from 0 Vp to audio input rating level plus 16 dB at frequencies 0.1, 0.5, 1.0, 3.0 and 5.0 kHz. The maximum deviation was recorded at each test condition.

For Data Transmitter with Maximum Frequency Deviation set by Factory: The EUT was set at maximum frequency deviation, and its peak frequency deviation was then measured using EUT's internal random data source.

5.7.3. Test Arrangement

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

5.7.4. Test Data

5.7.4.1. Voice Modulation Limiting for 12.5 KHz Channel Spacing Operation

Modulating Signal Level	Peak Frequency Deviation (kHz) at the following modulating frequency:					Maximum Limit
(mVrms)	0.1 kHz	0.5 kHz	1.0 kHz	3.0 kHz	5.0 kHz	(kHz)
2	0.03	0.11	0.22	0.37	0.03	2.5
4	0.03	0.21	0.42	0.71	0.03	2.5
6	0.03	0.31	0.63	1.08	0.03	2.5
8	0.03	0.41	0.84	1.35	0.03	2.5
10	0.03	0.49	1.02	1.41	0.03	2.5
15	0.03	0.73	1.52	1.51	0.03	2.5
20	0.03	0.99	1.64	1.52	0.03	2.5
25	0.03	1.22	1.89	1.54	0.03	2.5
30	0.03	1.46	1.95	1.56	0.03	2.5
35	0.03	1.70	1.98	1.56	0.03	2.5
40	0.03	1.87	2.01	1.56	0.03	2.5
45	0.03	1.96	2.04	1.56	0.03	2.5
50	0.03	2.02	2.05	1.56	0.03	2.5
60	0.03	2.08	2.07	1.56	0.03	2.5
70	0.03	2.11	2.07	1.56	0.03	2.5
80	0.03	2.11	2.07	1.56	0.03	2.5
90	0.03	2.11	2.07	1.56	0.03	2.5
100	0.03	2.11	2.07	1.56	0.03	2.5

Voice Signal Input Level	= STD MOD Level + 16 dB = 23.46 dB(mVrms) + 16 dB = 39.46 dB(mVrms) = 94.01 mVrms	
Modulation Frequency (kHz)	Peak Deviation (kHz)	Maximum Limit (kHz)
0.1	0.03	2.5
0.2	0.04	2.5
0.4	2.08	2.5
0.6	2.12	2.5
0.8	2.14	2.5
1.0	2.07	2.5
1.2	2.03	2.5
1.4	2.13	2.5
1.6	2.18	2.5
1.8	2.18	2.5
2.0	2.15	2.5
2.5	2.03	2.5
3.0	1.56	2.5
3.5	0.94	2.5
4.0	0.03	2.5
4.5	0.03	2.5
5.0	0.03	2.5
6.0	0.04	2.5
7.0	0.04	2.5
8.0	0.04	2.5
9.0	0.04	2.5
10.0	0.05	2.5

5.7.4.2. Digital Modulation

Max Deviation measured for 6.25 KHz Channel Spacing F13 & F1D = 1.46 kHz Max Deviation measured for 12.5 KHz Channel Spacing F13 & F1D = 3.19 kHz

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

File #: 16ICOM435_FCC90 September 02, 2016

Modulating Signal Level	Peak Frequency Deviation (kHz) at the following modulating frequency:				Maximum Limit	
(mVrms)	0.1 kHz	0.5 kHz	1.0 kHz	3.0 kHz	5.0 kHz	(kHz)
2	0.11	0.28	0.48	0.86	0.11	5.0
4	0.11	0.44	0.86	1.68	0.11	5.0
6	0.11	0.65	1.28	2.48	0.11	5.0
8	0.11	0.85	1.71	3.11	0.11	5.0
10	0.11	0.97	2.03	3.26	0.11	5.0
15	0.11	1.46	3.03	3.45	0.11	5.0
20	0.11	1.98	3.64	3.53	0.11	5.0
25	0.11	2.47	3.74	3.54	0.11	5.0
30	0.11	2.89	3.86	3.54	0.11	5.0
35	0.11	3.38	3.96	3.56	0.11	5.0
40	0.11	3.72	4.03	3.60	0.11	5.0
45	0.11	3.89	4.09	3.60	0.11	5.0
50	0.11	4.00	4.12	3.60	0.11	5.0
60	0.11	4.11	4.16	3.60	0.11	5.0
70	0.11	4.15	4.16	3.60	0.11	5.0
80	0.11	4.15	4.16	3.60	0.11	5.0
90	0.11	4.15	4.16	3.60	0.11	5.0
100	0.11	4.15	4.16	3.60	0.11	5.0

5.7.4.3. Voice Modulation Limiting for 25 KHz Channel Spacing Operation (Not for FCC Part 90 Certification)

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

Voice Signal Input Level = STD MOD Level + 16 dB = 39.52 dB(mVrms) = 94.64 mVrms

Modulation Frequency (KHz)	Peak Deviation (KHz)	Maximum Limit (KHz)
0.1	0.11	5.0
0.2	0.11	5.0
0.4	4.10	5.0
0.6	4.13	5.0
0.8	4.20	5.0
1.0	4.16	5.0
1.2	4.00	5.0
1.4	4.10	5.0
1.6	4.31	5.0
1.8	4.31	5.0
2.0	4.28	5.0
2.5	4.17	5.0
3.0	3.60	5.0
3.5	2.52	5.0
4.0	0.09	5.0
4.5	0.09	5.0
5.0	0.11	5.0
6.0	0.09	5.0
7.0	0.11	5.0
8.0	0.10	5.0
9.0	0.11	5.0
10.0	0.12	5.0

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

5.8. OCCUPIED BANDWIDTH & EMISSION MASK [§§ 2.1049, 74.462, 80.211(f), 90.209 & 90.210]

5.8.1. Limits

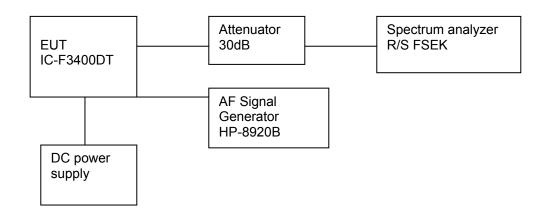
Emissions shall be attenuated below the mean output power of the transmitter as follows:

Frequency Range (MHz)	Maximum Authorized BW (KHz)	Channel Spacing (KHz)	Recommended Frequency Deviation (KHz)	FCC Applicable Mask
156-174, 421-512	11.25	12.5	2.5	Mask D – Voice & Data
156-174, 421-512	20	25	5.0	Mask B – Voice & Data
150-174, 421-512	6	6.25	1.25	Mask E – Voice & Data

§80.211(f) Emission limitations

Emissions shall be attenuated below the mean output power of the transmitter as follows:

(1) On any frequency removed from the assigned frequency by more than 50 percent up to and including 100 percent of the authorized bandwidth: At least 25 dB;


(2) On any frequency removed from the assigned frequency by more than 100 percent up to and including 250 percent of the authorized bandwidth: At least 35 dB; and

(3) On any frequency removed from the assigned frequency by more than 250 percent of the authorized bandwidth: At least 43 plus $10\log_{10}$ (mean power in watts) dB.

5.8.2. Method of Measurements

Refer to Section 8.4 of this report for measurement details.

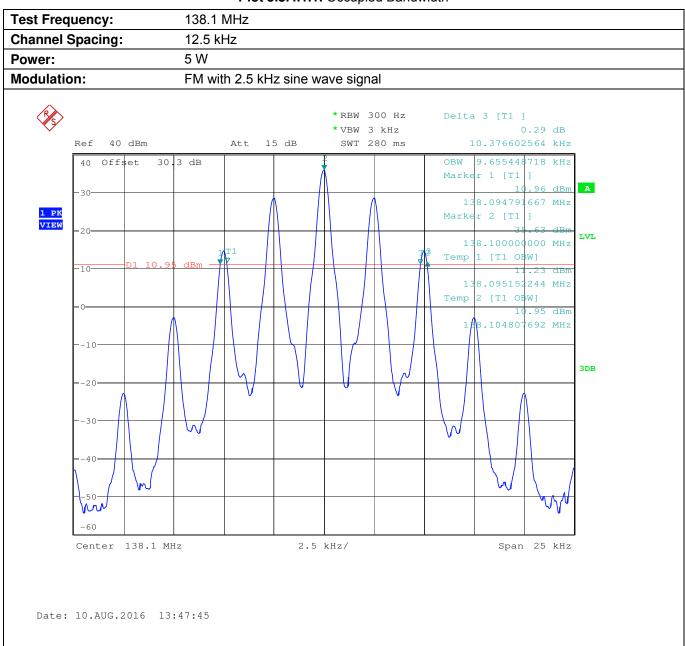
5.8.3. Test Arrangement

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

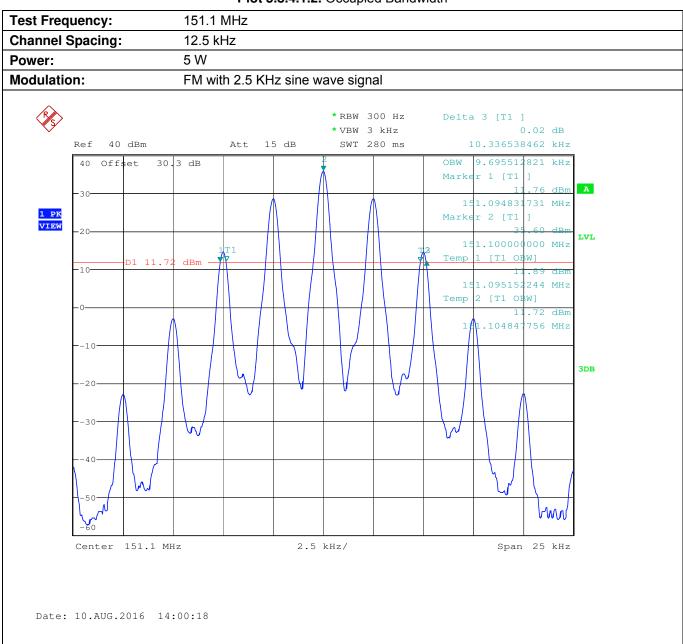
5.8.4. Test Data


5.8.4.1. 99% Occupied Bandwidth

Frequency (MHz)	Channel Spacing (kHz)	Modulation	*Measured 99% OBW at Maximum Freq. Deviation (kHz)	Maximum Authorized Bandwidth (kHz)
138.1	12.5	FM with 2.5 KHz sine wave signal	10.38	11.25
151.1	12.5	FM with 2.5 KHz sine wave signal	10.34	11.25
173.3	12.5	FM with 2.5 KHz sine wave signal	10.38	11.25
138.1	25.0*	FM with 2.5 KHz sine wave signal	15.34	20.0
151.1	25.0*	FM with 2.5 KHz sine wave signal	15.24	20.0
173.3	25.0*	FM with 2.5 KHz sine wave signal	15.34	20.0
138.1	12.5	Digital Voice & Data	7.66	11.25
151.1	12.5	Digital Voice & Data	7.56	11.25
173.3	12.5	Digital Voice & Data	7.76	11.25
138.1	6.25	Digital Voice & Data	3.51	6.0
151.1	6.25	Digital Voice & Data	3.54	6.0
173.3	6.25	Digital Voice & Data	3.62	6.0

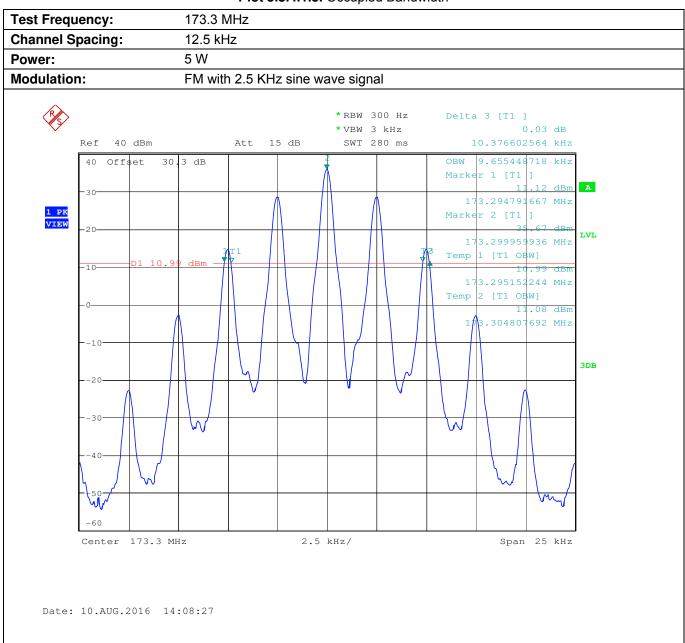
* Not for FCC Part 90 Certification, refer to cover letter for details.

Note: 99% Occupied Bandwidth measurements were done using the built-in auto function of the analyzer.


Refer to the following test data plots (1 through 12) for details.

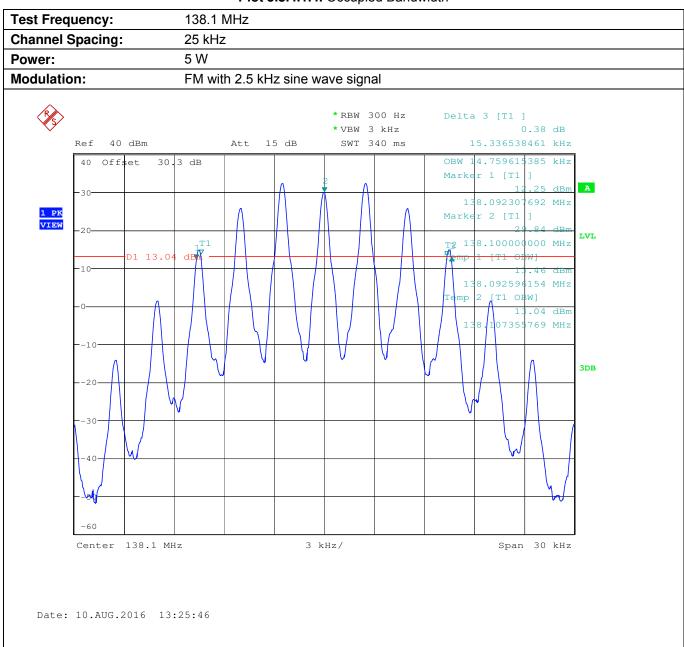
Plot 5.8.4.1.1. Occupied Bandwidth

ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 16ICOM435_FCC90 September 02, 2016

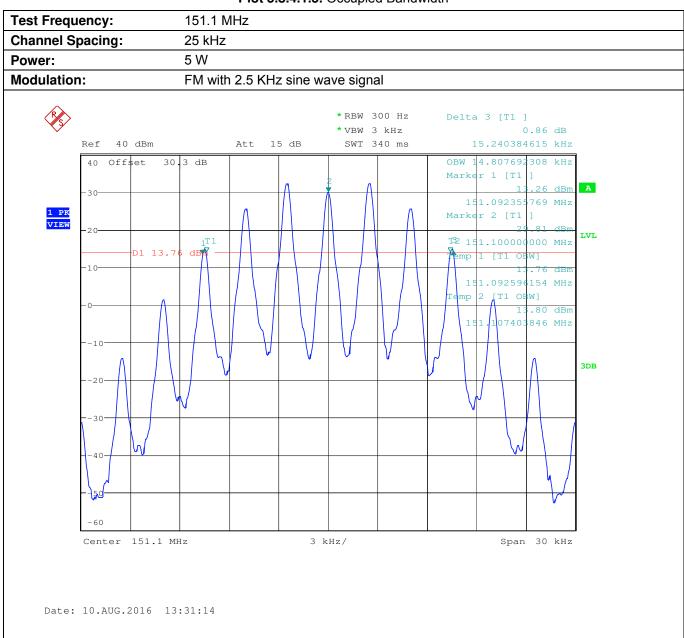
Plot 5.8.4.1.2. Occupied Bandwidth

ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 16ICOM435_FCC90 September 02, 2016

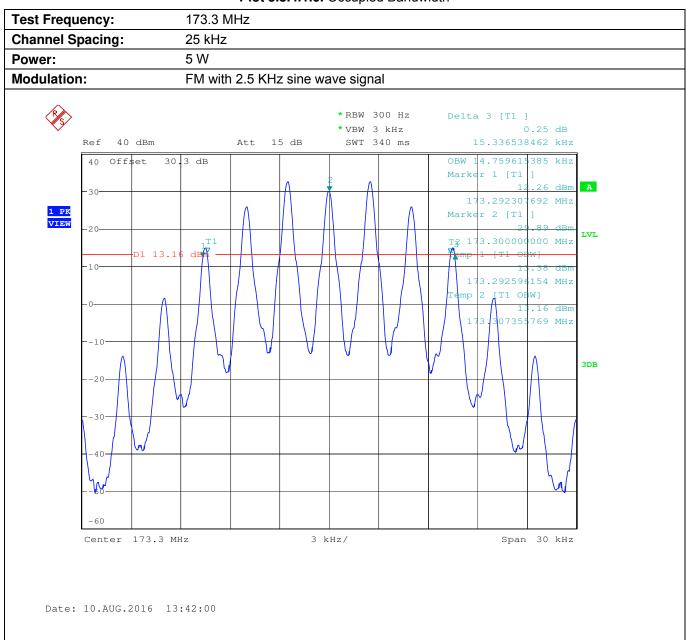
Plot 5.8.4.1.3. Occupied Bandwidth

ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 16ICOM435_FCC90 September 02, 2016

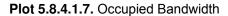
Plot 5.8.4.1.4. Occupied Bandwidth

ULTRATECH GROUP OF LABS

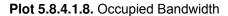

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 16ICOM435_FCC90 September 02, 2016

Plot 5.8.4.1.5. Occupied Bandwidth

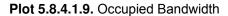
ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 16ICOM435_FCC90 September 02, 2016

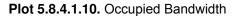
Plot 5.8.4.1.6. Occupied Bandwidth


ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 16ICOM435_FCC90 September 02, 2016



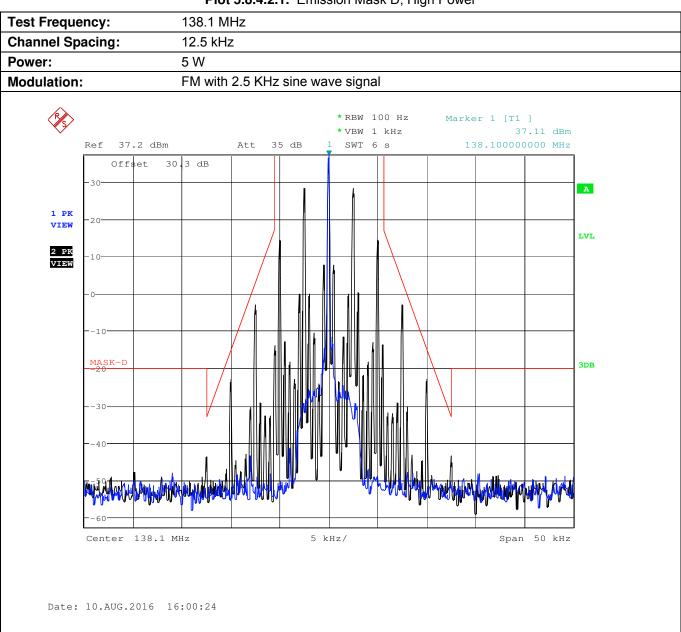
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 16ICOM435_FCC90 September 02, 2016



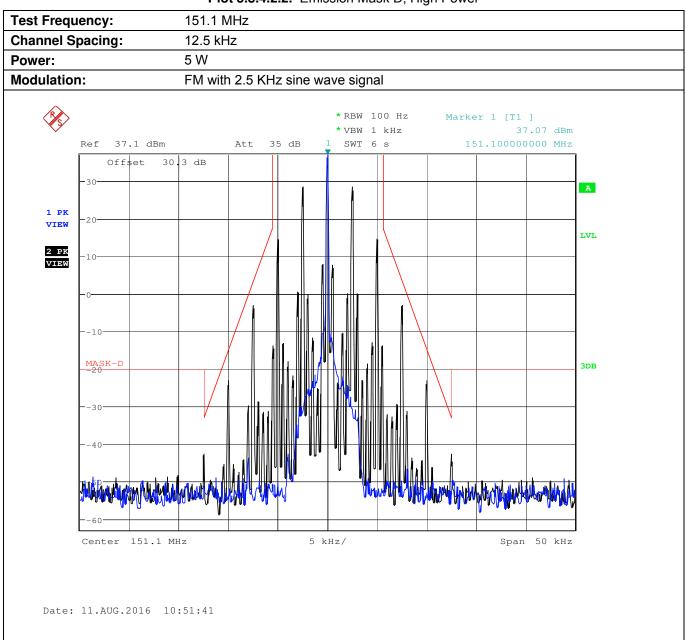
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 16ICOM435_FCC90 September 02, 2016

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 16ICOM435_FCC90 September 02, 2016

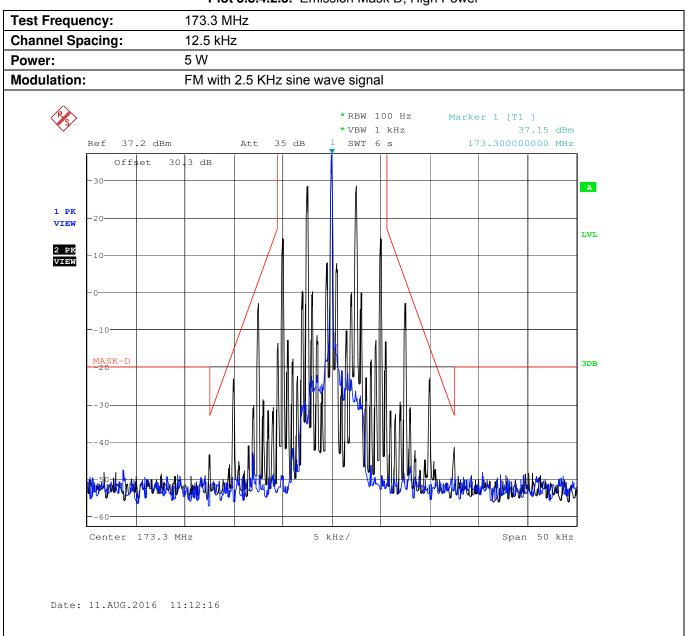
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 16ICOM435_FCC90 September 02, 2016


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 16ICOM435_FCC90 September 02, 2016

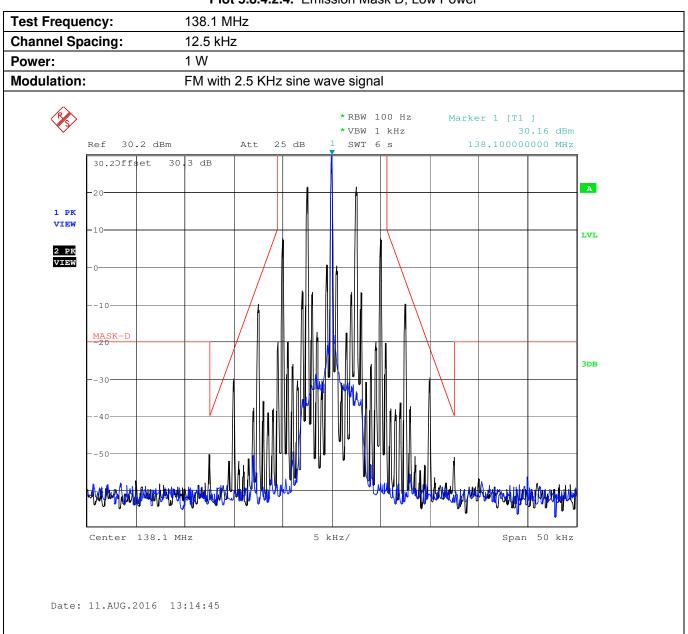
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 16ICOM435_FCC90 September 02, 2016


5.8.4.2. Emission Mask D

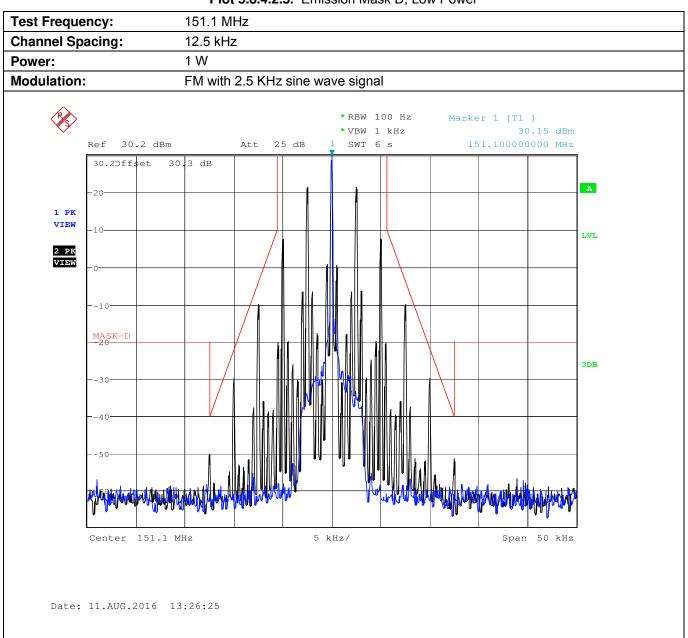
Plot 5.8.4.2.1. Emission Mask D, High Power


ULTRATECH GROUP OF LABS

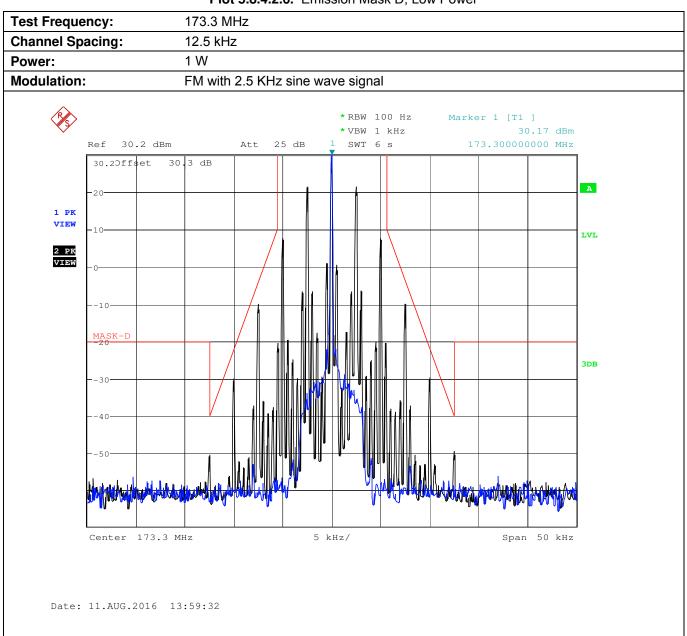
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 16ICOM435_FCC90 September 02, 2016


Plot 5.8.4.2.2. Emission Mask D, High Power

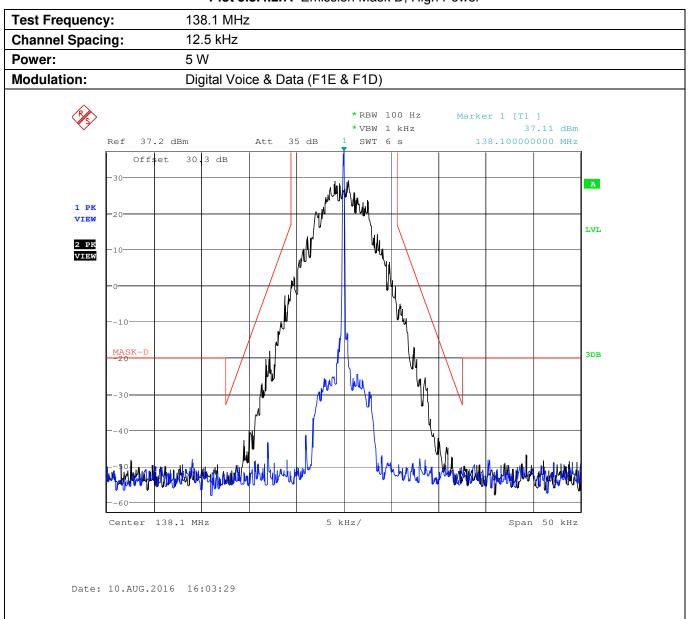
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 16ICOM435_FCC90 September 02, 2016


Plot 5.8.4.2.3. Emission Mask D, High Power

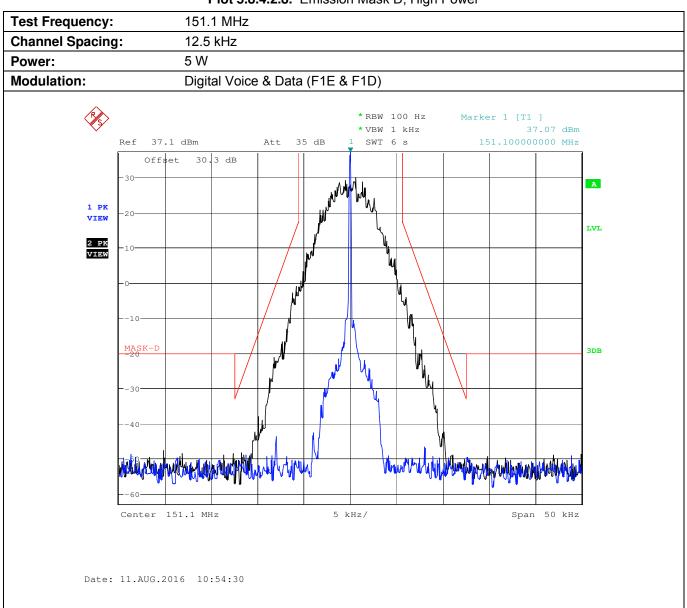
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>


Plot 5.8.4.2.4. Emission Mask D, Low Power

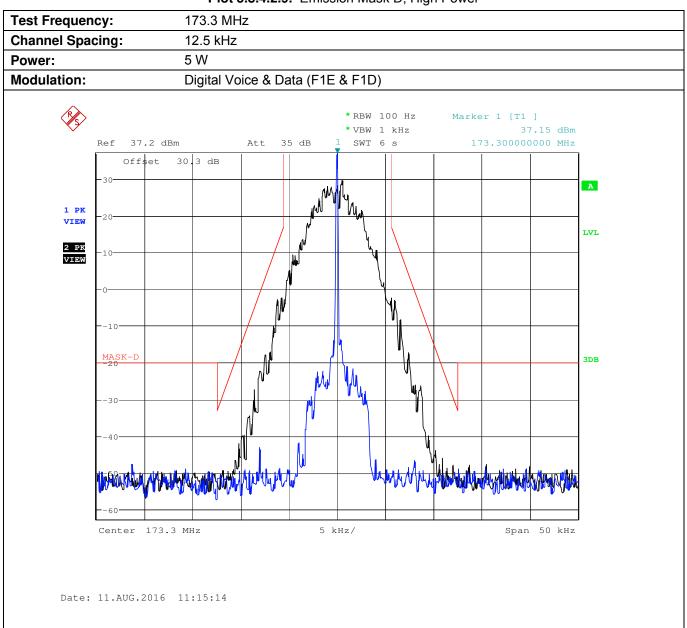
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>


Plot 5.8.4.2.5. Emission Mask D, Low Power

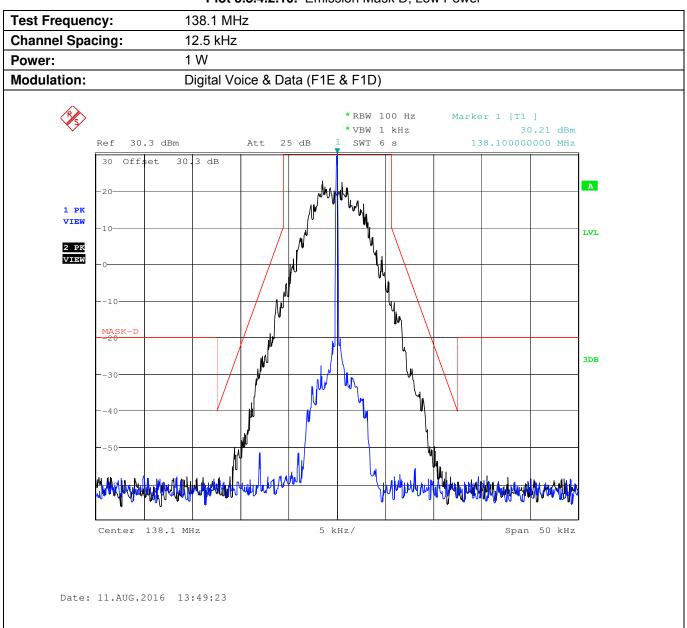
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>


Plot 5.8.4.2.6. Emission Mask D, Low Power

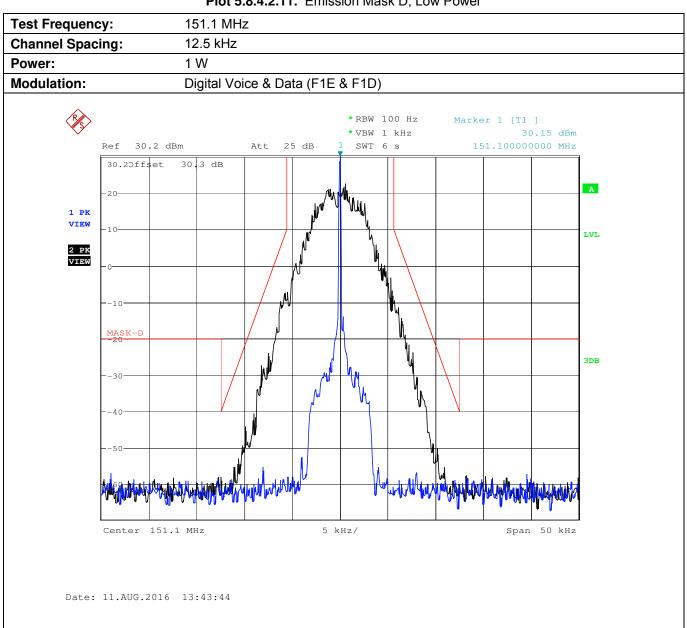
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>


Plot 5.8.4.2.7. Emission Mask D, High Power

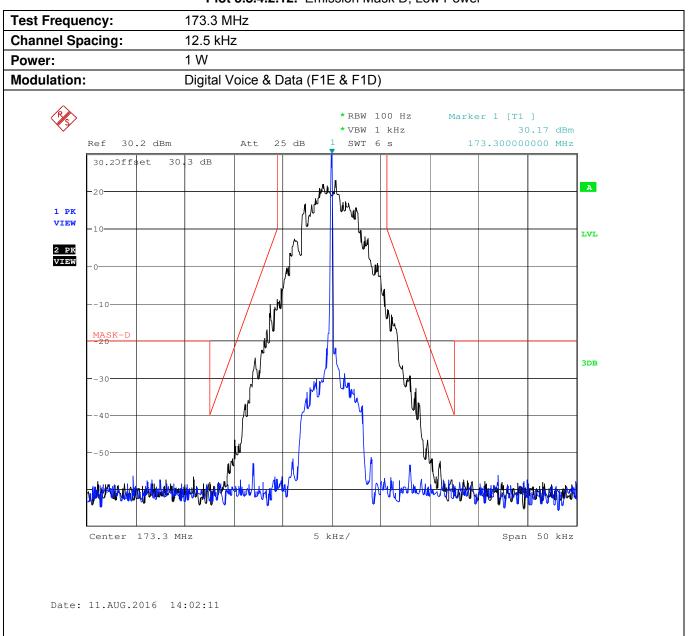
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>


Plot 5.8.4.2.8. Emission Mask D, High Power

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

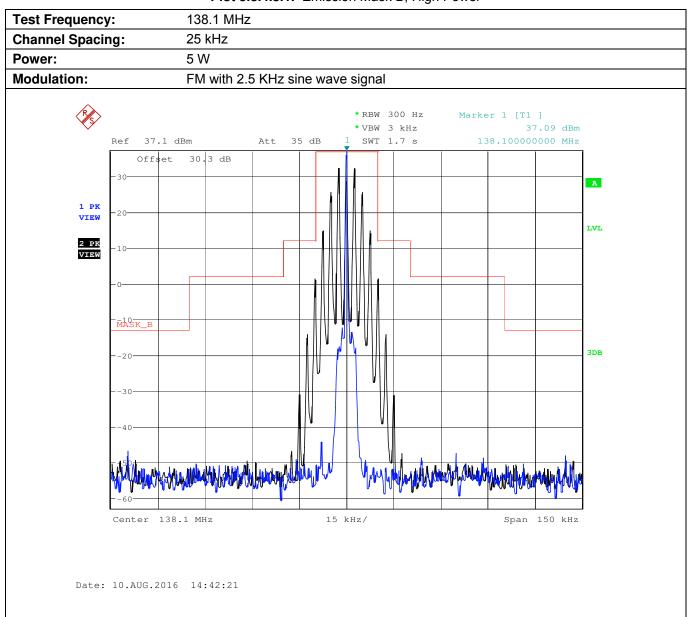

Plot 5.8.4.2.9. Emission Mask D, High Power

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>


Plot 5.8.4.2.10. Emission Mask D, Low Power

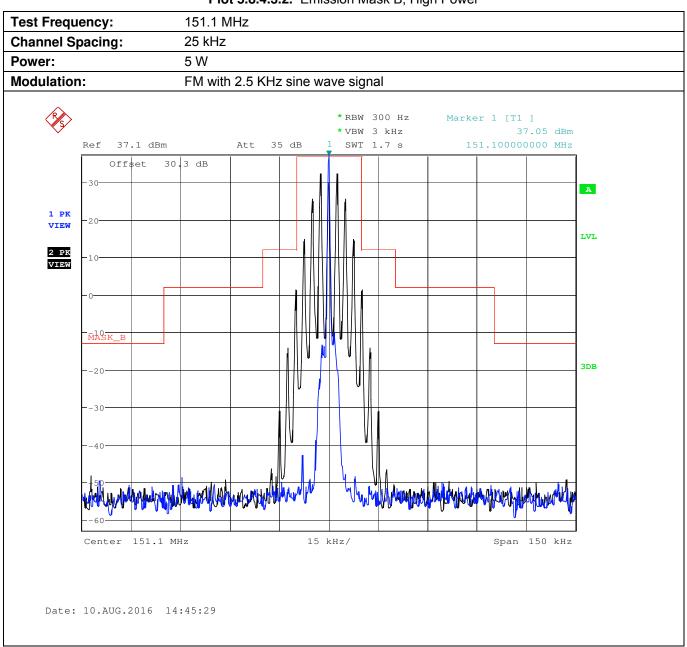
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

Plot 5.8.4.2.11. Emission Mask D, Low Power


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

Plot 5.8.4.2.12. Emission Mask D, Low Power

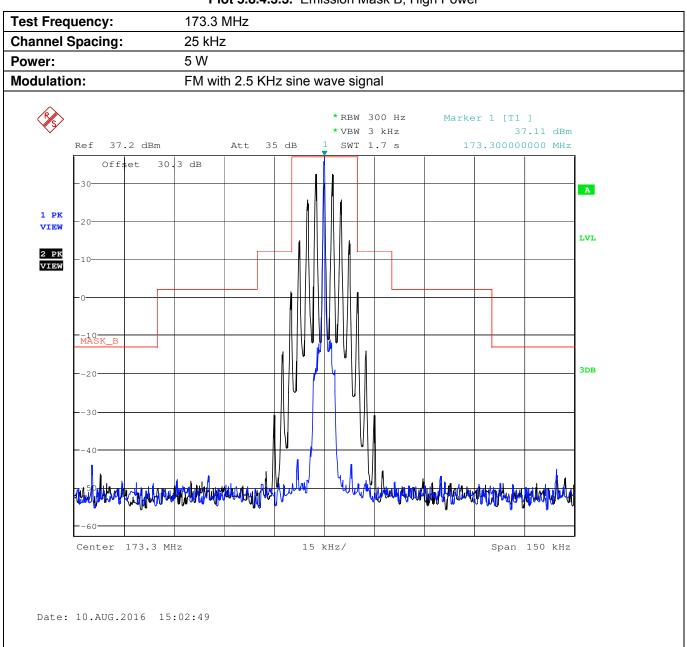
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>


5.8.4.3. Emission Mask B

Plot 5.8.4.3.1. Emission Mask B, High Power

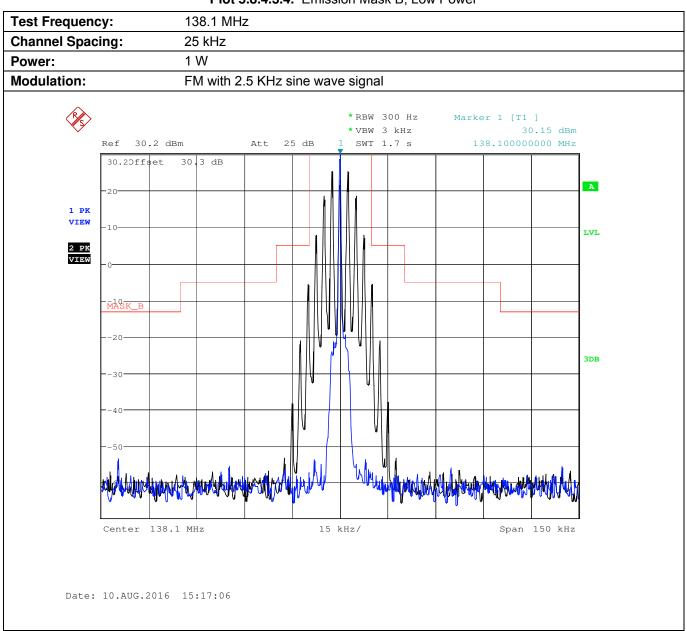
ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

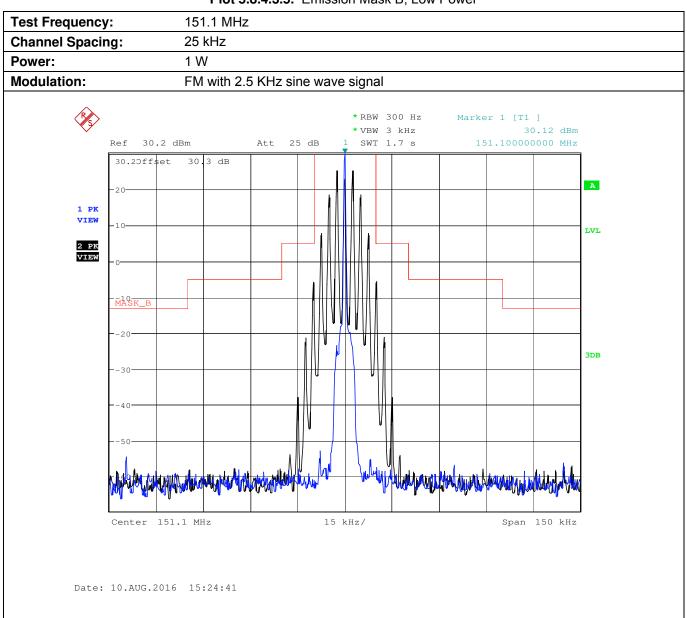


Plot 5.8.4.3.2. Emission Mask B, High Power

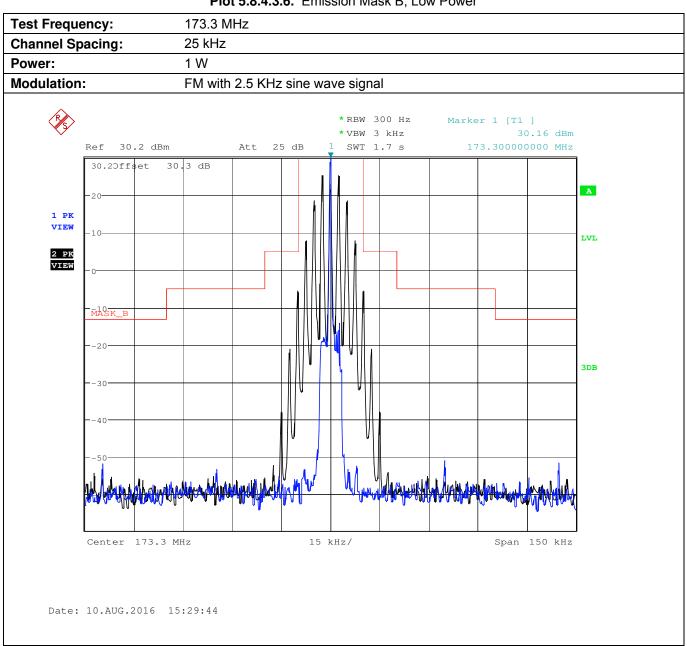
ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 16ICOM435_FCC90 September 02, 2016

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)


Plot 5.8.4.3.3. Emission Mask B, High Power

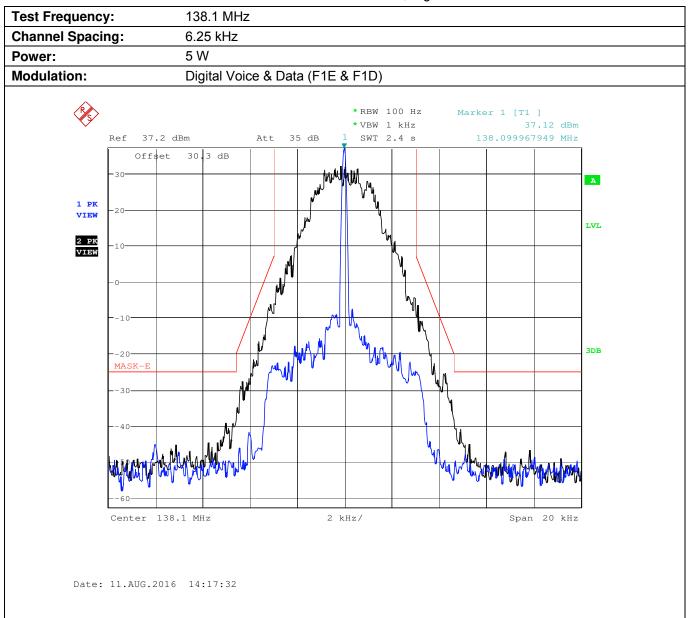
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>


Plot 5.8.4.3.4. Emission Mask B, Low Power

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

Plot 5.8.4.3.5. Emission Mask B, Low Power

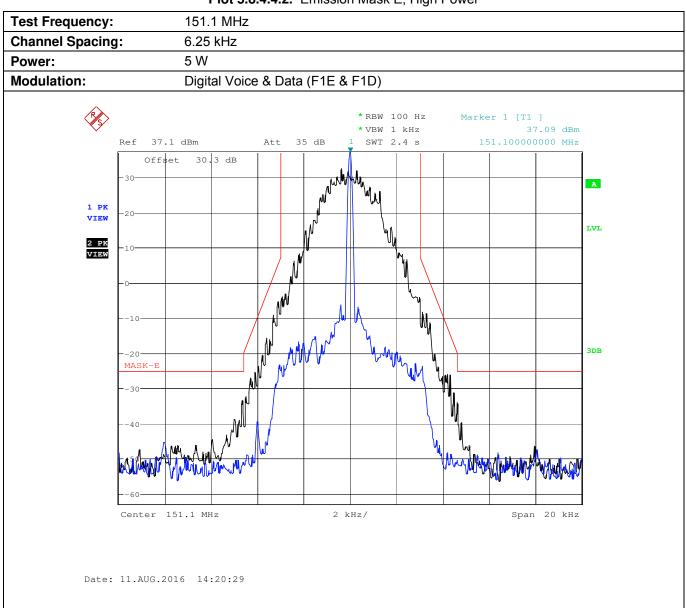
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>



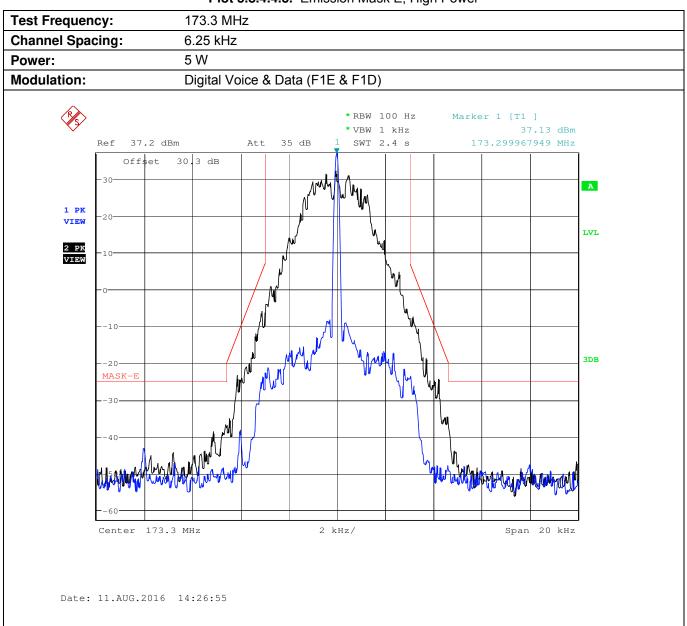
Plot 5.8.4.3.6. Emission Mask B, Low Power

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

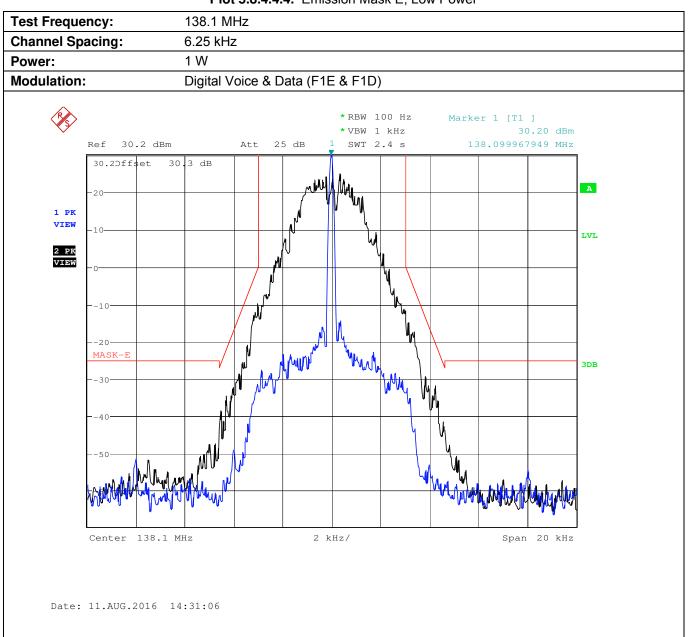
5.8.4.4. Emission Mask E


Plot 5.8.4.4.1. Emission Mask E, High Power

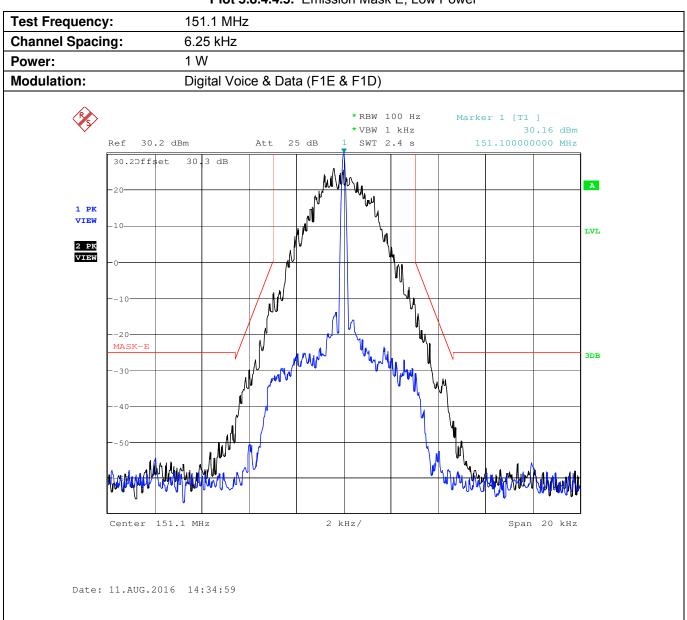
ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 16ICOM435_FCC90 September 02, 2016

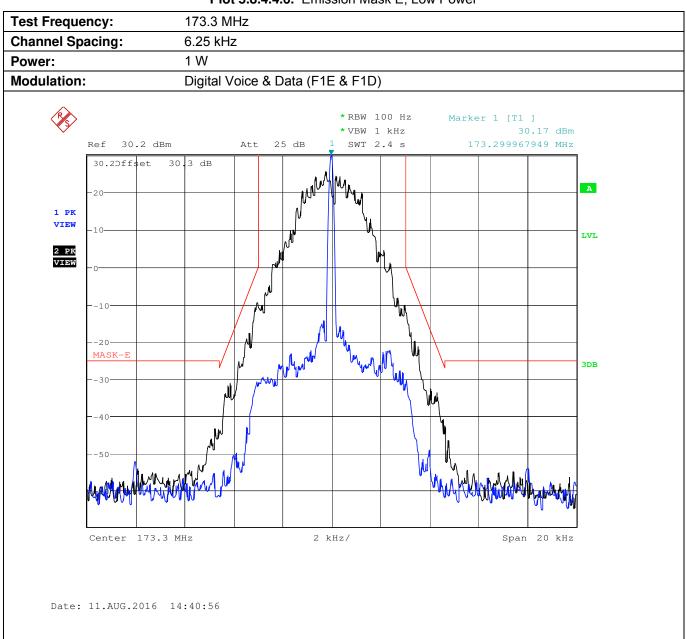
All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)


Plot 5.8.4.4.2. Emission Mask E, High Power

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>


Plot 5.8.4.4.3. Emission Mask E, High Power

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>


Plot 5.8.4.4.4. Emission Mask E, Low Power

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

Plot 5.8.4.4.5. Emission Mask E, Low Power

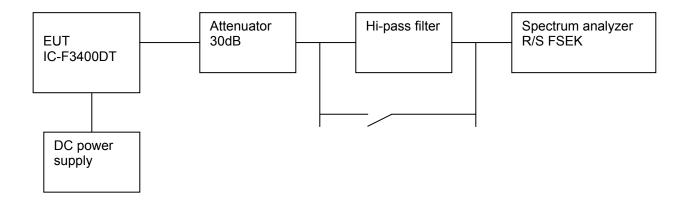
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

Plot 5.8.4.4.6. Emission Mask E, Low Power

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

5.9. TRANSMITTER ANTENNA POWER SPURIOUS/HARMONIC CONDUCTED EMISSIONS [§§ 2.1051, 2.1057, 22.359, 80.211(f)(3) & 90.210]

5.9.1. Limits


Emissions shall be attenuated below the mean output power of the transmitter as follows:

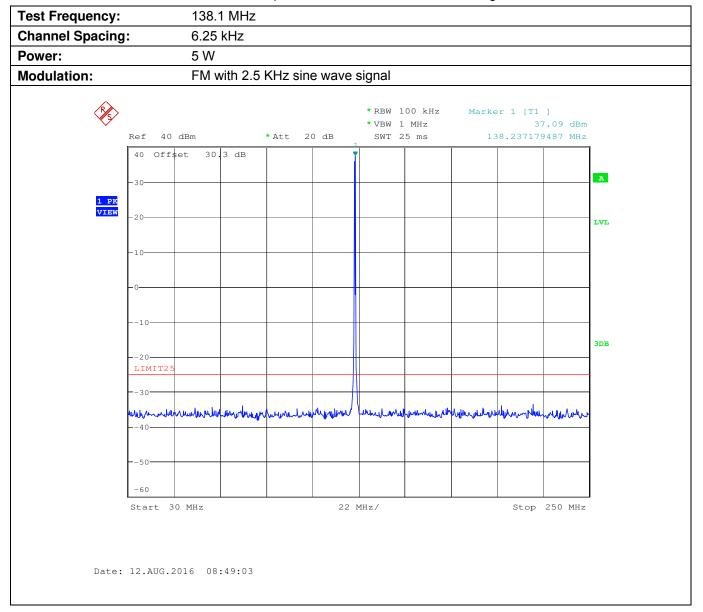
FCC Rules	Attenuation Limit (dBc)
§ 22.359	At least 43 + 10 log (P) dB.
§ 80.211(f)(3),	At least 43 +10log ₁₀ (mean power in watts) dB
§ 90.210(b)	At least 43 + 10 log (P) dB
§ 90.210(d)	At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.
§ 90.210(e)	At least 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.

5.9.2. Method of Measurements

Refer to Section 8.5 of this report for measurement details

5.9.3. Test Arrangement

ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

5.9.4. Test Data

<u>Note</u>: There was no difference in spurious/harmonic emissions on the pre-scans for different channel spacing and modulation types. Therefore, the rf spurious/harmonic emissions in this section would be performed for 6.25 kHz channel spacing and the more stringent limit of 55 + 10*log(P) would be applied for worst case.

5.9.4.1. Near Lowest Frequency (138.1 MHz)

Plot 5.9.4.1.1. Conducted Transmitter Spurious Emissions for 138.1 MHz, High Power, 30 MHz - 250 MHz

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

wer: 5 W odulation: FM with 2.5 KHz sine wave signal * RBW 100 kHz Marker 1 [T1] * VBW 1 MHz -51.35 dBm SWT 75 ms 276.442307622 MHz 10 offset 30 3 dB Markef 2 [T1] 10 Markef 2 [T1] 10 Markef 2 [T1] 10 Markef 2 [T1] 20 Image: Comparison of the c	Test Frequency:		138.	1 MH	z								
Adulation: FM with 2.5 KHz sine wave signal Image: signal s	Channel Spacing:		6.25	kHz									
Hundrich of the set of th	Power:		5 W										
Hundrich of the set of th	Modulation:		FM۱	with 2	.5 KI	Hz s	ine w	ave s	signa				
Ber 10 dm Att 5 dB BWT 7 m 20.4227029 Met Ber 10 off et 30 a 40 1 <th< td=""><td></td><td>×\$</td><td></td><td></td><td></td><td></td><td></td><td>* RBW</td><td>100 kHz</td><td></td><td></td><td></td><td></td></th<>		×\$						* RBW	100 kHz				
Image: state 120 Mix * NM 1 Mix Marker 1 [1] Image: state 120 Mix * NM 1 Mix Marker 1 [1] Image: state 120 Mix * NM 1 Mix Marker 1 [1] Image: state 120 Mix * NM 1 Mix Marker 1 [1] Image: state 120 Mix * NM 1 Mix Marker 1 [1] Image: state 120 Mix * NM 1 Mix Marker 1 [1] Image: state 120 Mix * NM 1 Mix Marker 1 [1] Image: state 120 Mix * NM 1 Mix Marker 1 [1] Image: state 120 Mix * NM 1 Mix Marker 1 [1] Image: state 120 Mix * NM 1 Mix Marker 1 [1] Image: state 120 Mix * NM 1 Mix Marker 1 [1] Image: state 120 Mix * NM 1 Mix Marker 1 [1] Image: state 120 Mix * NM 1 Mix Marker 1 [1] Image: state 120 Mix * NM 1 Mix Marker 1 [1] Image: state 120 Mix * NM 1 Mix Marker 1 [1] Image: state 120 Mix * NM 1 Mix Marker 1 [1] Image: state 120 Mix * NM 1 Mix Marker 1 [1] Image: state 120 Mix * NM 1 Mix Marker 1 [1] Image: state 120 Mix * NM 1 Mix		1				tt 5	dB				76.442307	692 MHz	
Image: 1 Image: 1 <td< td=""><td></td><td></td><td>10 Offset</td><td>30.3 c</td><td>IB</td><td></td><td></td><td></td><td></td><td>Marke</td><td>-41</td><td>.74 dBm</td><td></td></td<>			10 Offset	30.3 c	IB					Marke	-41	.74 dBm	
1 1		1 PK	0							4.	4.663461	.538 MHZ	
1.1MIT25 1<		VIEW	-10										LVL
1.1MIT25 1<			- 20										
-40 -2 -40 -4													
			-30										1
-0 -0 <td< td=""><td></td><td></td><td>-40</td><td>2</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			-40	2									
-60 -70 -10 -			,										3DB
-60 -70 -10 -			- 50 ymelyden a blee.	L. Marine	nonendan		an Markal stran	all and a	undun	Milloundha.	manu	maniples	
											4		-
			70										
			/0										1
Start 250 MHz 75 MHz/ Stop 1 GHz Date: 12.AUG.2016 13:39:39 Marker 1 [T] * RBW 1 MHz Marker 1 [T] * VBW 3 MHz -45.17 dBm Ref 10 dBm Att 5 dB SWT 2.5 ms 10 Offset 30 3 dB 1 -10 -10 -20 -10 -11 -10 -20 -10 -30 -10 -40 1 -40 1 -30 1 -40 1 -40		-	-80										
Date: 12.AUG.2016 13:39:39 Image: Control of the state of			-90										
* RW 1 MHz Marker 1 (T1) * VEW 3 MHz -45.17 dBm Ref 10 dBm Att 5 dB SW 2.5 ms 1.407051282 GBz Image: Comparison of the target of			Start 250 I	4H z			75	MHz/			Sto	p 1 GHz	
		R R	ef 10 dBm		At	t 5	dB	* VBW	3 MHz		- 4	5.17 dBr	
-10 -20 LIMIT25 -30 -40 -40 -40 -40 -40 -40 -40 -4		Γ	10 Offset	30.3 d	в								1
-10 -20 LIMIT25 -30 -40 -40 -40 -40 -40 -40 -40 -4		-	0		_								A
-10 -20 LIMIT25 -30 -40 -40 -40 -40 -40 -40 -40 -4		1 PK VIEW	-10										
LIMIT25		Γ											LVI
30		ŀ											1
													1
		ŀ					1						
		Ā	Mar Mar Carlo	Alunan	chow bellevelle	puplat	hindhow	percent	manna	n Multiler ma	- un nonally	Workerwork	^{3D1}
70 80 90													
-80		F	- 60										1
-90		ŀ	-70										-
-90													
		ŀ	-80							1			1
Start 1 GHZ 100 MHZ/ Stop 2 GHZ		L					100	MH ~ /					
		5	scart I GHz				100	ruHZ/			Sto	νρ ∠ GH:	4
		Date: 1	2.AUG.2016	13:53:	13								
Date: 12.AUG.2016 13:53:13													

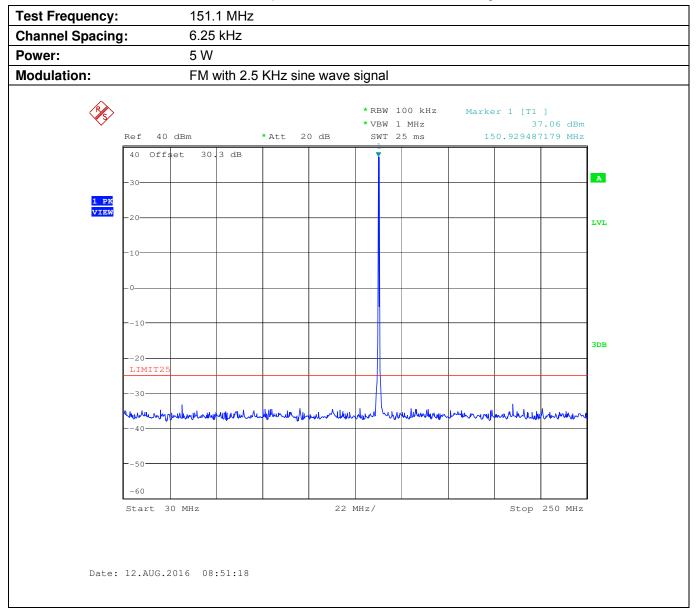
Plot 5.9.4.1.2. Conducted Transmitter Spurious Emissions for 138.1 MHz, High Power, 250 MHz - 2 GHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

Test Frequency:	138.1 MF	Ηz			
Channel Spacing	: 6.25 kHz				
Power:	1 W				
Modulation:	FM with 2	2.5 KHz sine wave	e signal		
×,	Ref 40 dBm 40 Offset 30.3 di	*Att 20 dB	* RBW 100 kHz * VBW 1 MHz SWT 25 ms	Marker 1 [T1] 30.16 dBm 138.237179487 MHz	
_	-30	5	1		A
<mark>1 PK</mark> View	-20				IVL
	-0				
	-10				3db
	20				
		mollow was well	and many many many	million and almon applied the second	-
	-60 Start 30 MHz	2:	2 MHz/	Stop 250 MHz	
Date:	Start 30 MHz 12.AUG.2016 08:56:		2 MHz/	Stop 250 MHz	

Plot 5.9.4.1.3. Conducted Transmitter Spurious Emissions for 138.1 MHz, Low Power, 30 MHz - 250 MHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>


Test Frequency:	138.1 MHz
Channel Spacing:	6.25 kHz
Power:	1 W
Modulation:	FM with 2.5 KHz sine wave signal
	* RBW 100 kHz Marker 1 [T1] * VBW 1 MHz -48.83 dBm
	Ref 10 dBm Att 5 dB SWT 75 ms 276.442307692 MHz 10 0ff\$et 30 3 dB Markdr 2 [T1]
	-0
	-20- LIMIT25
	-40 2
	1 3DB
	a Tradactor war approximation and war and war and war and a service of a second provide the second
	60
	-70
	80
	-90
	Start 250 MHz 75 MHz/ Stop 1 GHz
	* RBW 1 MHz Marker 1 [T1] * VBW 3 MHz -45.20 dBm Ref 10 dBm Att 5 dB SWT 2.5 ms 1.991987179 GHz Hz
	10 Offset 30 3 dB
	20 LIMIT25
	30
	-40-11
	My on the second and a second and the second and the second and the second of the seco
	60
	70
	-90
	Start 1 GHz 100 MHz/ Stop 2 GHz
	Date: 12.AUG.2016 14:37:46

Plot 5.9.4.1.4. Conducted Transmitter Spurious Emissions for 138.1 MHz, Low Power, 250 MHz - 2 GHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

5.9.4.2. Near Middle Frequency (151.1 MHz)

Plot 5.9.4.2.1. Conducted Transmitter Spurious Emissions for 151.1 MHz, High Power, 30 MHz - 250 MHz

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

Test Frequency:		151	1.1 M	lHz									
Channel Spacing:		6.2	5 kH	z									
Power:		5 V	V										
Modulation:		FM	l with	2.5 k	۲Hz s	sine w	vave s	signa					
	R S							00 kHz		er 1 (T1 -4] 8.65 dBm		
	Ť	Ref 10			Att	5 dB	SWT 1			01.68269	2308 MHz	7	
		10 Of:	fset 3	0.3 dB					Marke	r 2 [T1 -4 3.12500	.00 dBm		
	1 PK	-0							43	3.12500	0000 MHz		
	1 PK VIEW	10										LVL	
		20		_									
		LIMIT2	25										
				2									
		50-										3DB	
		prevention	dolownesson	when when	undance	here where	authin	anholdh	happened	when when	manu		
		-60											
		70										-	
		-90											
		-90 Start	250 MHz	3:41:20		75	MHz/			Sto	op 1 GHz		
	X	-90 Start 12.AUG.	.2016 1	3:41:20	Att 5		* RBW : * VBW :	3 MHz	Marl	ker 1 [1	`1] -44.68 d	Sm	
	Re	-90 Start	.2016 1 dBm	3:41:20 3 dB	Att 5		* RBW : * VBW :		Marl	ker 1 [1	°1 j	Sm	
	Re	-90 Start 12.AUG. f 10 c	.2016 1 dBm		Att 5		* RBW : * VBW :	3 MHz	Marl	ker 1 [1	`1] -44.68 d	Sm	
	Re 1 PK VIEW	-90 Start 12.AUG. f 10 c	.2016 1 dBm		Att 5		* RBW : * VBW :	3 MHz	Mar)	ker 1 [1	`1] -44.68 d	Bm Hz	
	Re 1 PK VIEW	-90 Start 12.AUG. f 10 c	.2016 1 dBm		Att 5		* RBW : * VBW :	3 MHz	Marl	ker 1 [1	`1] -44.68 d	Bm Hz	
	Re I PK VIEW	-90 Start 12.AUG. <u>f</u> 10 c 0 Offae	.2016 1 dBm		Att 5		* RBW : * VBW :	3 MHz	Mari	ker 1 [1	`1] -44.68 d	Bm Hz ■	
	Re 1 PS VIEW	_90 Start 12.AUG.	.2016 1 dBm		Att 5		* RBW : * VBW :	3 MHz	Marl	ker 1 [1	`1] -44.68 d	Bm Hz ■	
	Re 1 PS VIEW	-90 Start 12.AUG. f 10 c 0 Offse 10 20 IMIT25	.2016 1 dBm		Att 5		* RBW : * VBW :	3 MHz	Mar)	ker 1 [1	`1] -44.68 d	Bm Hz ■	
	Re -0- -1- 	-90 Start 12.AUG. f 10 c 0 Offee 10 10 10 10 10 10 10 10 10 10 10 10 10	.2016 1 dBm et 30.	3 dB		dB	* RBW : * VBW : SWT :	3 MHz 2.5 ms		ker 1 [1 	1] 44.68 d 92308 G	Bm Hz ↓ ↓ ↓ ↓ ↓ ↓ ↓	
	Re -0- -1- 	-90 Start 12.AUG. f 10 c 0 Offee 10 10 10 10 10 10 10 10 10 10 10 10 10	.2016 1 dBm et 30.	3 dB			* RBW : * VBW : SWT :	3 MHz 2.5 ms		ker 1 [1 	1] 44.68 d 92308 G	Bm Hz ↓ ↓ ↓ ↓ ↓ ↓ ↓	
	Re -0- -1- 	-90 Start 12.AUG. f 10 c 0 Offee 10 10 10 10 10 10 10 10 10 10 10 10 10	.2016 1 dBm et 30.	3 dB		dB	* RBW : * VBW : SWT :	3 MHz 2.5 ms		ker 1 [1 	1] 44.68 d 92308 G	Bm Hz ↓ ↓ ↓ ↓ ↓ ↓ ↓	
	Re -0- -1- 	-90 Start 12.AUG. f 10 c 0 Offee 10 10 10 10 10 10 10 10 10 10 10 10 10	.2016 1 dBm et 30.	3 dB		dB	* RBW : * VBW : SWT :	3 MHz 2.5 ms		ker 1 [1 	1] 44.68 d 92308 G	Bm Hz ↓ ↓ ↓ ↓ ↓ ↓ ↓	
	Re -0- -1- 	-90 Start 12.AUG. f 10 c 0 Offee 10 10 10 10 10 10 10 10 10 10 10 10 10	.2016 1 dBm et 30.	3 dB		dB	* RBW : * VBW : SWT :	3 MHz 2.5 ms		ker 1 [1 	1] 44.68 d 92308 G	Bm Hz ↓ ↓ ↓ ↓ ↓ ↓ ↓	
	Re 1 0 0 0 0 0 0 0 0 0 0 0 0 0	-90 Start 12.AUG. f 10 c 0 Offee 10 10 10 10 10 10 10 10 10 10 10 10 10	.2016 1 dBm et 30.	3 dB		dB	* RBW : * VBW : SWT :	3 MHz 2.5 ms		ker 1 [1 	1] 44.68 d 92308 G	Bm Hz ↓ ↓ ↓ ↓ ↓ ↓ ↓	
	Re 1 1 -	-90 Start 12.AUG.	.2016 1 dBm et 30.	3 dB		dB	* RBW : * VBW : SWT :	3 MHz 2.5 ms		ker 1 [1 	1] 44.68 d 92308 G	Bm Hz ↓ ↓ ↓ ↓ ↓ ↓ ↓	

Plot 5.9.4.2.2. Conducted Transmitter Spurious Emissions for 151.1 MHz, High Power, 250 MHz - 2 GHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 16ICOM435_FCC90 September 02, 2016

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

Test Frequency:		1 MHz							
Channel Spacing	6.25	kHz							
Power:	1 W								
Modulation:	FM	with 2.5 KHz s	sine wave s	ignal					
	Ref 40 dBm	* Att] D.13 dBm 7179 MHz	۵
	- 20								LVL
	10 20 LIMIT25 30								3DB
	-40 -50 -60			when the				JARA JALANA	
Date:	Start 30 MHz	3:31:39	22 1	MHz/	1	<u> </u>	Stop	250 MHz	

Plot 5.9.4.2.3. Conducted Transmitter Spurious Emissions for 151.1 MHz, Low Power, 30 MHz - 250 MHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

Test Frequency:		15	51.1 I	MHz								
Channel Spacing:		6.	25 kl	Ηz								
Power:		1	W									
Modulation:		F	M wit	h 2.5	KHz :	sine v	vaves	signa				
	R						* RBW	100 kHz		er 1 (T1		
		Ref 10) dBm		Att	5 dB	* VBW SWT		4	-5 53.12500	0.63 dBm 0000 MHz	
		10 Off	set 3	0.3 dB								
		-0										A
	1 PK VIEW	-10										LVL
		-20 LIMIT2	5									
						-						
		-40										
		-40										3DB
		50	م المالية			ب العداد			www.	un contro de	date had a set	
			olderhon	10- 4 Marin	mandaur	ALL ON ONO		-0.000.00	Annalue de au			
		70										
		-80										
		-90										
	Date:	-90 Start :	250 MHz 2016 1	3:48:02		75	MHz/			Sto	op 1 GHz]
	Date:	-90 Start :	2016 1		Att 5		* RBW * VBW		Mark	er 1 [T] -4		m
	Date:	-90 Start : 12.AUG. ef 10	2016 1	3:48:02	Att :		* RBW * VBW	3 MHz	Mark	er 1 [T] -4	L] 14.68 dB	m
	Date:	-90 Start : 12.AUG. ef 10	2016 1 dBm	3:48:02	Att 5		* RBW * VBW	3 MHz	Mark	er 1 [T] -4	L] 14.68 dB	m
	Date:	-90 Start : 12.AUG. ef 10 10 Offs	2016 1 dBm	3:48:02	Att 5		* RBW * VBW	3 MHz	Mark	er 1 [T] -4	L] 14.68 dB	m Z
	Date:	-90 Start : 12.AUG. ef 10	2016 1 dBm	3:48:02	Att 5		* RBW * VBW	3 MHz	Mark	er 1 [T] -4	L] 14.68 dB	m
	Date:	-90 Start 3 12.AUG. = f 10 0 Offs -10	2016 1 dBm	3:48:02	Att 5		* RBW * VBW	3 MHz	Mark	er 1 [T] -4	L] 14.68 dB	m Z
	Date:	-90 Start : 12.AUG. af 10 10 Offa -10 -20 -20 -11725	2016 1 dBm	3:48:02	Att 5		* RBW * VBW	3 MHz	Mark	er 1 [T] -4	L] 14.68 dB	m Z
	Date:	-90 Start 3 12.AUG. = f 10 0 Offs -10	2016 1 dBm	3:48:02	Att 5		* RBW * VBW	3 MHz	Mark	er 1 [T] -4	L] 14.68 dB	m Z
	Date:	-90 Start : 12.AUG. af 10 10 Offs -10 -20 -20 -10 -30 -40	2016 1 dBm et 30	3:48:02		5 dB	* RBW * VEW SWT	3 MHz 2.5 ms		er 1 [T] -4 1.41500	L] 14.68 dB 54103 GH	m z IV
	Date:	-90 Start : 12.AUG. af 10 10 Offs -10 -20 -20 -10 -30 -40	2016 1 dBm et 30	3:48:02		5 dB	* RBW * VEW SWT	3 MHz 2.5 ms		er 1 [T] -4 1.41500	L] 14.68 dB 54103 GH	m z IV
	Date:	-90 Start : 12.AUG. 12.AUG. 10.0 Offs -20.	2016 1 dBm et 30	3:48:02		5 dB	* RBW * VEW SWT	3 MHz 2.5 ms		er 1 [T] -4 1.41500	L] 14.68 dB 54103 GH	m z IV
	Date:	-90 Start : 12.AUG. af 10 10 Offs -10 -20 -20 -10 -30 -40	2016 1 dBm et 30	3:48:02		5 dB	* RBW * VEW SWT	3 MHz 2.5 ms		er 1 [T] -4 1.41500	L] 14.68 dB 54103 GH	m z IV
	Date:	-90 Start : 12.AUG. 12.AUG. 10.0 Offs -20.	2016 1 dBm et 30	3:48:02		5 dB	* RBW * VEW SWT	3 MHz 2.5 ms		er 1 [T] -4 1.41500	L] 14.68 dB 54103 GH	m z IV
	Date:	-90 Start 1 12.AUG. 12.AUG. 12.AUG. 10.0 offe -20.0	2016 1 dBm et 30	3:48:02		5 dB	* RBW * VEW SWT	3 MHz 2.5 ms		er 1 [T] -4 1.41500	L] 14.68 dB 54103 GH	m z IV
	Date:	-90 12.AUG. 212.AUG. 212.AUG. 210.0 Offs 210.0 Of	2016 1 dBm et 30	3:48:02		5 dB	* RBW * VEW SWT	3 MHz 2.5 ms		er 1 [T] -4 1.41500	L] 14.68 dB 54103 GH	m z IV
	Date:	-90 Start 1 12.AUG. 12.AUG. 12.AUG. 10.0 offe -20.0	2016 1 dBm vet 30	3:48:02			* RBW * VEW SWT	3 MHz 2.5 ms		er 1 [T] 	L] 14.68 dB 54103 GH	

Plot 5.9.4.2.4. Conducted Transmitter Spurious Emissions for 151.1 MHz, Low Power, 250 MHz – 2 GHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

5.9.4.3. Near Highest Frequency (173.3 MHz)

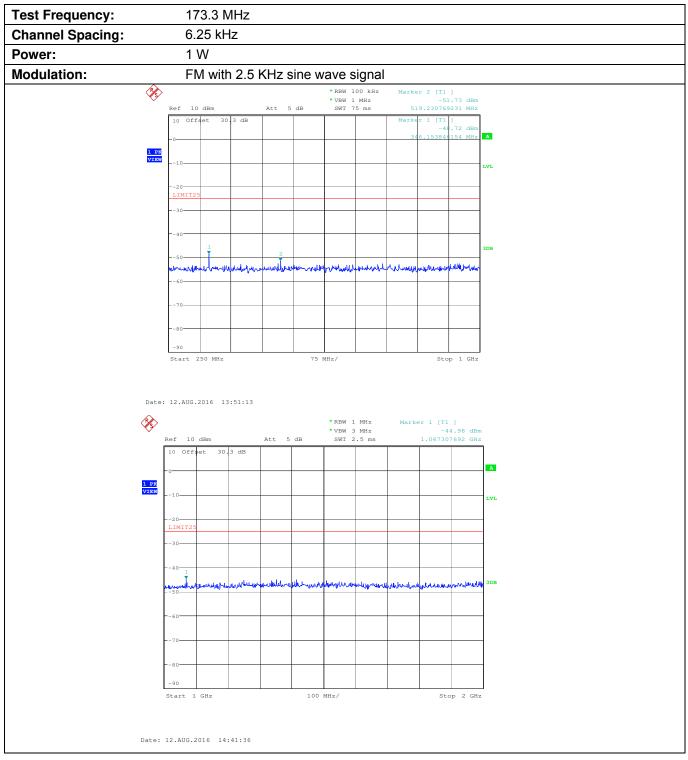
Plot 5.9.4.3.1. Conducted Transmitter Spurious Emissions for 173.3 MHz, High Power, 30 MHz - 250 MHz

Channel Spacin	g: 6.2	5 kHz								
Power:	5 V									
Modulation:	FM	with 2.5	KHz sir	ne wave	signal					
					0					
							Marke			
\checkmark	Ref 40 dBm		*Att 2	0 dB	* VBW 1 SWT 2		17		7.16 dBm 9744 MHz	
).3 dB				1]
										A
	-30									
1 PK View	-20									
	20									LVL
	-10									
	-0									
	10									
										3DB
	-20 LIMIT25									
	marthermound	ما مال ما مال	ا بد م دواما		م دها، ا	1	ور الله در م الله	المناه الم		
	40		hand	- marine	and the	67 Unit	and Manada.	and the		
	-60									
	Start 30 MHz			22 1	MHz/			Stop	250 MHz	J
								1		
Date	12.AUG.2016 0	8:54:59								

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

Test Frequency:		17	3.3 N	1Hz								
Channel Spacing:		6.2	25 kH	z								
Power:		5١	Ν									
Modulation:		F٨	/I with	1 2.5 I	KHz s	sine w	vave s	signa				
	×\$						* RBW 1 * VBW 1	LOO kHz L MHz	Mark	er 1 [T1 -4] 1.49 dBm	
		Ref 10		2 10	Att 5	dB	SWT			46.15384	5154 MHz	
		10 Off	set 30	.3 dB					Marke	er 2 [T1 -5		
	1 PK VIEW	- 0								19.23070	251 MIZ	
	VIEW	10										LVL
												-
		LIMIT2	5									-
		-40	1									-
					2							3DB
		elenciphical	habberrow	"Hotor Ma	lare-minel	ann mirnn	ndun mul	ustendered	dununun	a holding	whentyre	9
		-70										-
												-
		-90										
		Start 3	250 MHz			75	MHz/	1		Sto	p 1 GHz	
	×\$	Ref 10	dBm		Att 5	dB	* RBW 1 * VBW 3 SWT 2		Mark] 4.65 dBm 4872 GHz	
		10 Off	set 30	.3 dB								7
	_	-0										- A
	1 PK VIEW	10										LVL
		-20 LIMIT25	5									1
												-
		40			1							-
			molecularet	hunderly	Junder	unterner	aderan	unerman	Manuel	undrikke	weller Miler We	L 3DB
		-50		ĺ								1
		-60										-
		70										
		-80										1
	l	-90 Start 1	GHZ			100	MHz/			Q+ /	pp 2 GHz	
		Juart 1	. 9112			100				ato	rp ∠ GHZ	~


Plot 5.9.4.3.2. Conducted Transmitter Spurious Emissions for 173.3 MHz, High Power, 250 MHz - 2 GHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

<u>a</u> 1.a 1		173.3 M⊦											
Channel Spacin	ng:	6.25 kHz											
Power:		1 W											
Modulation:		FM with 2.5 KHz sine wave signal											
Ref.	Ref 40 dBn	ı	* Att 2	5 dB	* RBW 1 * VBW 1 SWT 2	MHz]).19 dBm 9744 MHz			
	40 Offset	30.3 dB					1				A		
1 PK VIEW	-20										LVL		
	-10												
	-0												
	10										3DB		
	LIMIT25												
	-40	whenthe	Munulm	white the server of	underent	www	hore	rumuhruyh	unantwology	handlande			
	50												
	-60				AHz/				Ot an	250 MIL-			
Date:	Start 30 MM			22 1	un∠/				scop	250 MHz			

Plot 5.9.4.3.3. Conducted Transmitter Spurious Emissions for 173.3 MHz, Low Power, 30 MHz - 250 MHz

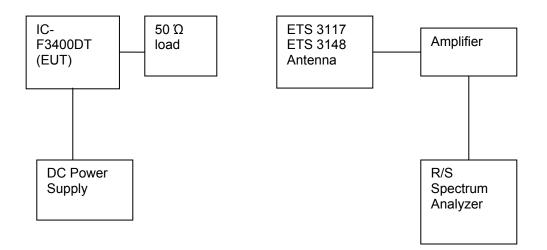
3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

Plot 5.9.4.3.4. Conducted Transmitter Spurious Emissions for 173.3 MHz, Low Power, 600 MHz - 2 GHz

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

5.10. TRANSMITTER SPURIOUS/HARMONIC RADIATED EMISSIONS [§§ 2.1053, 2.1057, 22.359, 80.211(f)(3) & 90.210]

5.10.1. Limits


The spurious/harmonic ERP measurements are using substitution method specified in Section 8.2 of this report.

FCC Rules	Attenuation Limit (dBc)
§ 22.359	At least 43 + 10 log (P) dB.
§ 80.211(f)(3),	At least 43 + 10log ₁₀ (mean power in watts) dB
§ 90.210(b)	At least 43 + 10 log (P) dB
§ 90.210(d)	At least 50 + 10 log (P) dB or 70 dB, whichever is the lesser attenuation.
§ 90.210(e)	At least 55 + 10 log (P) or 65 dB, whichever is the lesser attenuation.

5.10.2. Method of Measurements

The spurious/harmonic ERP measurements are using substitution method specified in Section 8.2 of this report.

5.10.3. Test Arrangement

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

5.10.4. Test Data

Remarks:

- The RF spurious/harmonic emission characteristics for different channel spacing are indistinguishable. Therefore, the following radiated emissions were performed at 6.25 kHz channel spacing, Digital Modulation operation, and the results were compared with the more stringent limit for the worst-case.
- The radiated emissions were performed with high power setting (5 Watts) at 3 m distance to represents the worst-case test configuration and were scanned from 30 MHz to 10th harmonics (2 GHz); all spurious emissions that are in excess of 20dB below the specified limit shall be recorded.

Test Frequenc	y (MHz):	138.1				
Power conducted	(dBm):	36.96				
Limit (dBm):		-25.0				
Frequency (MHz)	E-Field (dBµV/m)	EMI Detector (Peak/QP)	Antenna Polarization (H/V)	ERP Measured (dBm)	Limit (dBm)	Margin (dB)
30-2000	< 50.0	Peak	V		-25.00	> 20
30-2000	< 50.0	Peak	Н		-25.00	> 20
All other spurio	us emissions ar	e more than 20d	B below the spec	ified limit.		

5.10.4.1. Near Lowest Frequency (138.1 MHz)

5.10.4.2. Near Middle Frequency (151.1 MHz)

36.72				
-25.0				
EMI Detector (Peak/QP)	Antenna Polarization (H/V)	ERP measured (dBm)	Limit (dBm)	Margin (dB)
Peak	V		-25.00	> 20
Peak	Н		-25.00	> 20
	-25.0 EMI Detector (Peak/QP) Peak Peak	-25.0 Antenna Polarization (H/V) Peak V Peak H	-25.0 EMI Detector (Peak/QP) Antenna ERP measured (H/V) (dBm) 	-25.0a)EMI Detector (Peak/QP)Antenna Polarization (H/V)ERP measured (dBm)Limit (dBm)PeakV25.00PeakH25.00

All other spurious emissions are more than 20dB below the specified

5.10.4.3. Near Highest Frequency (173.3 MHz)

Test Frequenc	y (MHz):	173.3				
Power conducted	(dBm):	37.02				
Limit (dBm):		-25.0				
Frequency (MHz)	E-Field (dBµV/m)	EMI Detector (Peak/QP)	Antenna Polarization (H/V)	ERP measured (dBm)	Limit (dBm)	Margin (dB)
30-2000	< 50.0	Peak	V		-25.00	> 20
30-2000	< 50.0	Peak	Н		-25.00	> 20
All other spurior	us emissions are	e more than 20d	3 below the spec	ified limit.		_

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

5.11. FREQUENCY STABILITY [§§ 2.1055, 22.355, 74.464, 80.209 & 90.213]

5.11.1. Limits

§ 90.213 Tr	ansmitters used must have minimum free	quency stability as s	specified in the following table.
-------------	--	-----------------------	-----------------------------------

		Frequency Tolerance (ppm)			
Frequency Range (MHz)	Channel Bandwidth (KHz)	Fixed and Base Stations	Mobile Stations		
(10112)			> 2 W	<u><</u> 2 W	
150-174 MHz	6.25 12.5 25	1.0 2.5 5.0	2.0 5.0 5.0	2.0 5.0 50.0*	
421-512 MHz	6.25 12.5 25	0.5 1.5 2.5	1.0 2.5 5.0	1.0 2.5 5.0	

• Stations operating in the 154.45 to 154.49 MHz or the 173.2 to 173.4 MHz bands must have a frequency stability of 5 ppm.

• Paging transmitters operating on paging-only frequencies must operate with frequency stability of 5 ppm in the 150-174 MHz band and 2.5 ppm in the 421-512 MHz band.

§ 22.355 Transmitters used must have minimum frequency stability as specified in the following table.

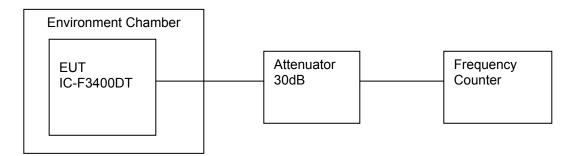
TABLE C-1—FREQUENCY TOLERANCE FOR TRANSMITTERS IN THE PUBLIC MOBILE SERVICES

Frequency range (MHz)	Base, fixed (ppm)	Mobile ≤3 watts (ppm)	Mobile ≤3 watts (ppm)
25 to 50	20.0	20.0	50.0
50 to 450	5.0	5.0	50.0
450 to 512	2.5	5.0	5.0
821 to 896	1.5	2.5	2.5
928 to 929	5.0	n/a	n/a
929 to 960	1.5	n/a	n/a
2110 to 2220	10.0	n/a	n/a

§ 74.464 - For operations on frequencies above 25 MHz using authorized bandwidths up to 30 kHz, the licensee of a remote pickup broadcast station or system shall maintain the operating frequency of each station in compliance with the frequency tolerance requirements of §90.213 of this chapter. For all other operations, the licensee of a remote pickup broadcast station or system shall maintain the operating frequency of each station in accordance with the following:

	Tolerance (percent)		
Frequency range	Base sta- tion	Mobile sta- tion	
25 to 30 MHz:			
3 W or less	.002	.005	
Over 3 W	.002	.002	
30 to 300 MHz:			
3 W or less	.0005	.005	
Over 3 W	.0005	.0005	
300 to 500 MHz, all powers	.00025	.0005	

ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 16ICOM435_FCC90 September 02, 2016

All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)

5.11.2. Method of Measurements

Refer to Section 8.3 of this report for measurement details

5.11.3. Test Arrangement

5.11.4. Test Data

Ambient Temperature	Supply Voltage (Nominal)	Supply Voltage (Battery End Point)	Supply Voltage (Battery Fully Charged)			
	Frequency Drift (Hz)					
Input Voltage Rat	ing:	7.5 VDC (nominal)				
Max. Frequency T	olerance Measured:	leasured: 58 Hz or 0.42 ppm				
Frequency Tolerance Limit:		<u>+</u> 1.0 ppm or <u>+</u> 138 Hz				
Full Power Level:		36.96 dBm				
Test Frequency:		138.1 MHz				

Temperature (°C)	Supply Voltage (Nominal) 7.5 VDC	(Battery End Point) 5.8 VDC	(Battery Fully Charged) (Battery Fully Charged) 8.51 VDC
-30	39		
-20	27		
-10	27		
0	21		
+10	10		
+20	-11	-8	-10
+30	13		
+40	29		
+50	58		-
+60	57		

ULTRATECH GROUP OF LABS

5.12. TRANSIENT FREQUENCY BEHAVIOR [§ 90.214 & 74.462(c)]

5.12.1. Limits

Transient frequencies must be within the maximum frequency difference limits during the time intervals indicated:

Time intervals ^{1, 2}	Maximum frequency	All equ	lipment			
	difference ³	150 to 174 MHz	421 to 512MHz			
Transient Frequency Behavior for Equipment Designed to Operate on 25 KHz Channels						
t ₁ ⁴	± 25.0 KHz	5.0 ms	10.0 ms			
t ₂	± 12.5 KHz	20.0 ms	25.0 ms			
t ₃ ⁴	± 25.0 KHz	5.0 ms	10.0 ms			
Transient Frequence	y Behavior for Equipment De	signed to Operate on 12	5 KHz Channels			
t ₁ ⁴	± 12.5 KHz	5.0 ms	10.0 ms			
t ₂	± 6.25 KHz	20.0 ms	25.0 ms			
t ₃ ⁴	± 12.5 KHz	5.0 ms	10.0 ms			
Transient Frequence	Transient Frequency Behavior for Equipment Designed to Operate on 6.25 KHz Channels					
t ₁ ⁴ t ₂	±6.25 KHz	5.0 ms	10.0 ms			
2	±3.125 KHz	20.0 ms	25.0 ms			
t ₃ ⁴	±6.25 KHz	5.0 ms	10.0 ms			

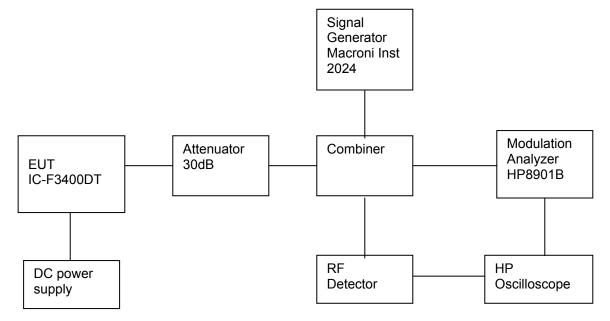
1. t_{on} is the instant when a 1 kHz test signal is completely suppressed, including any capture time due to phasing. t_1 is the time period immediately following t_{on} .

 t_2 is the time period immediately following t_1 .

 t_3 is the time period from the instant when the transmitter is turned off until $t_{\text{off.}}$

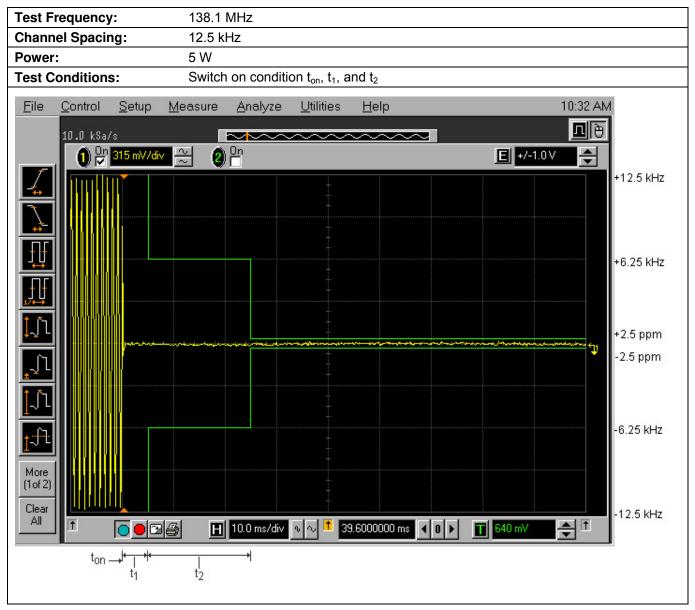
t_{off} is the instant when the 1 kHz test signal starts to rise.

2. During the time from the end of t_2 to the beginning of t_3 , the frequency difference must not exceed the limits specified in § 90.213.


3. Difference between the actual transmitter frequency and the assigned transmitter frequency.

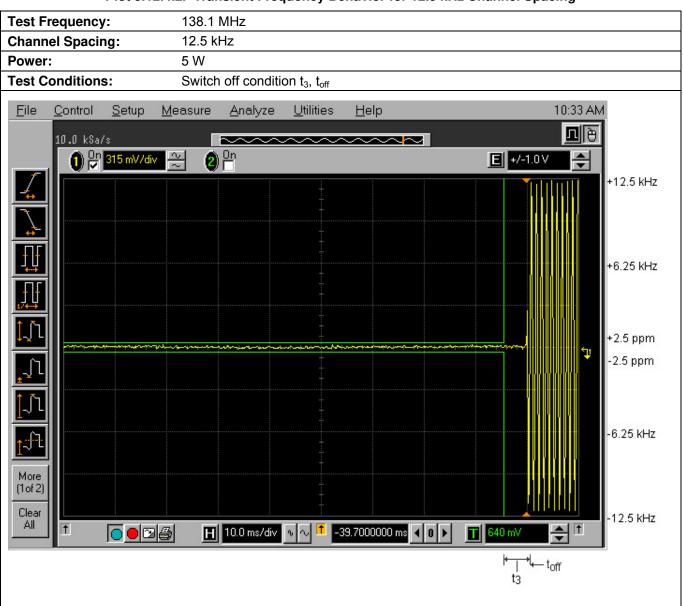
4. If the transmitter carrier output power rating is 6 Watts or less, the frequency difference during this time period may exceed the maximum frequency difference for this time period.

5.12.2. Method of Measurements

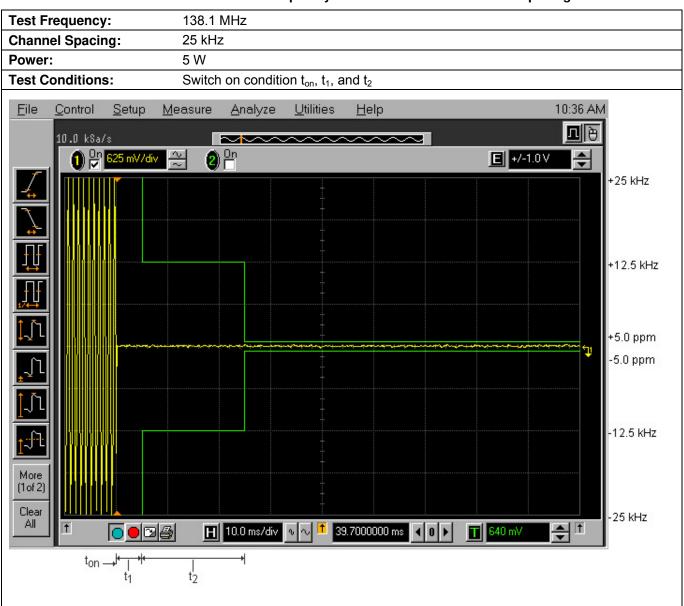

Refer to Section 8.6 of this test report and ANSI/TIA/EIA-603-D-2010, Section 2.

5.12.3. Test Arrangement

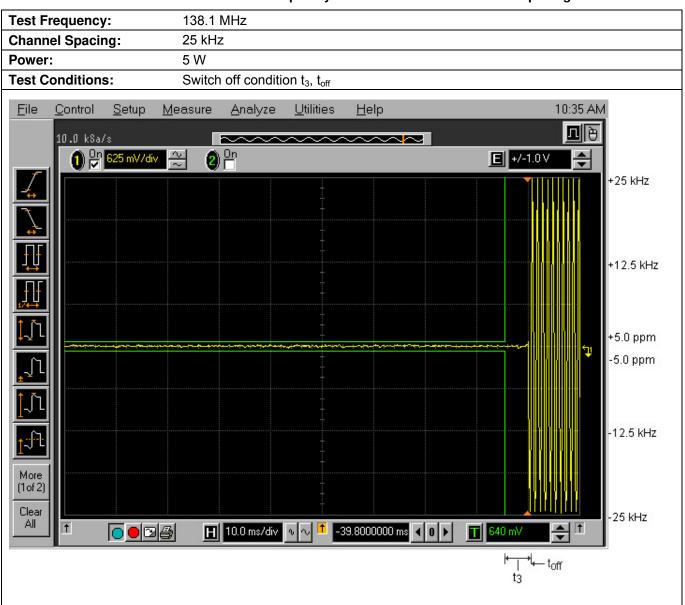
5.12.4. Test Data



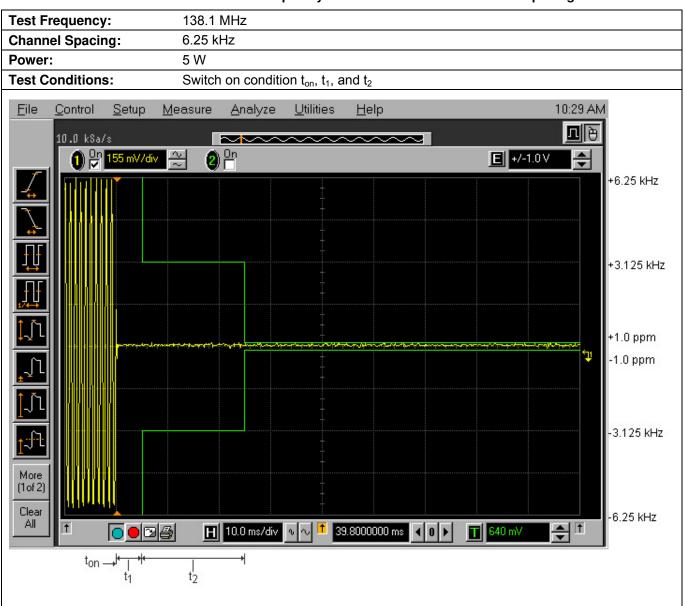
ULTRATECH GROUP OF LABS


3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u> File #: 16ICOM435_FCC90 September 02, 2016

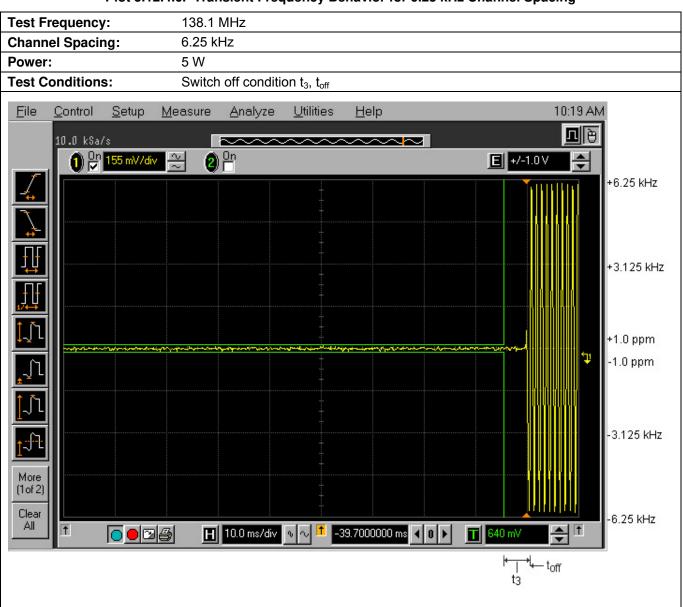
All test results contained in this engineering test report are traceable to National Institute of Standards and Technology (NIST)


Plot 5.12.4.2. Transient Frequency Behavior for 12.5 kHz Channel Spacing

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>


Plot 5.12.4.3. Transient Frequency Behavior for 25 kHz Channel Spacing

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>


Plot 5.12.4.4. Transient Frequency Behavior for 25 kHz Channel Spacing

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

Plot 5.12.4.5. Transient Frequency Behavior for 6.25 kHz Channel Spacing

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

Plot 5.12.4.6. Transient Frequency Behavior for 6.25 kHz Channel Spacing

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

EXHIBIT 6. TEST EQUIPMENT LIST

Test Instruments	Manufacturer	Model No.	Serial No.	Operating Range	Calibration Due Date
Spectrum Apolyzor	Rohde & Schwarz	FSU	100398	20Hz – 40GHz	15-Sep-17
Spectrum Analyzer		46-30-34	BR9127	DC-18 GHz	
Attenuator (30dB)	Aeroflex/Weinschel				Note 1*
High Pass Filter	Mini Circuit	SHP 250		Cut off 250 MHz	Note 1*
Power Meter	Hewlett Packard	438A	3513U04639	100K50G sensor dependent	29-Sep-16
Power Sensor	Hewlett Packard	8481A	1550A15145	100KHz-4.2GHz	29-Sep-16
Modulation Analyzer	Hewlett Packard	8901B	3226A04606	150KHz-1300MHz	03-Feb-17
Frequency Counter	Hewlett Packard	5352	3049A04423	10Hz-40 GHz	12-May-17
Combiner	Mini Circuit	ZFSC-3-4	15542	1MHz - 1GHz	Note 1*
RF Detector	Pasternack	PE8000-50		10M1G Hz	Note 1*
Infinium Digital Oscilloscope	Hewlett-Packard	54801A	US38380192	DC - 500 MHz 1G sampling	10-Aug-17
Environment Chamber	Envirotronics	SSH32C	11994847-S- 11059	-60 to 177 degree C	02-June-17
RF Signal Generator	Hewlett Packard	8648C	3343U00391	100K-3200MHz AM/ FM/ PM	02-Feb-17
Power supply	Tenma	72-7295	490300297	1-40V DC 5A	Note 1*
FFT Digital Spectrum Analyzer	Advantest	R9211E	8202336	10mHz100KHz	27-Jan-17
RF Communication Test Set	Hewlett Packard	8920B	US39064699	30MHz-1GHz	30-Jan-17
Horn antenna	ETS-LINDGREN	3117	119425	1-18GHz	17-Jun-17
Preamplifier	Hewlett Packard	8449B	3008A00769	1-26.5GHz	06-Aug-17
High Pass Filter	Mini Circuit	SHP 250		Cut off 230 MHz	Note 1*
Power supply	XANTREX	XKW 60-50	26509	0-60V 0-50A DC	Note 1*
High Pass Filter	Mini Circuit	SHP 800		Cut off 750 MHz	Note 1*
Attenuator	Aeroflex/Weinschel	23-20-34	BH7876	DC-18 GHz	Note 1*
Antenna	ETS	3148	1101	200-2000 MHz	14-July-17
Antenna	EMCO	3110B	3379	20-200 MHz	09-Sep-16
EMI Receiver	R/S	ESU 40	100037	20 Hz-40 GHz	08-May-17
Preamplifier	Com-Power	PAM-0118A	551016	500MHz-18GHz	14-July-17
Tunable Band-Reject Filter	K&L	3TFNF- 30/76-N-N	36	28-300 MHz	Note 1

*Note 1: Internal Verification/Calibration check

ULTRATECH GROUP OF LABS

EXHIBIT 7. MEASUREMENT UNCERTAINTY

The measurement uncertainties stated were calculated in accordance with the requirements of CISPR 16-4-2 @ IEC:2003 and JCGM 100:2008 (GUM 1995) – Guide to the Expression of Uncertainty in Measurement.

7.1. RADIATED EMISSION MEASUREMENT UNCERTAINTY

	Radiated Emission Measurement Uncertainty @ 3m, Horizontal (30-1000 MHz):	Measured	Limit
Uc	Combined standard uncertainty: $u_c(y) = \sqrt{m \sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 2.15	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.30	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3m, Vertical (30-1000 MHz):	Measured	Limit
Uc	Combined standard uncertainty: $u_c(y) = \sqrt{m \sum_{i=1}^{m} u_i^2(y)}$	<u>+</u> 2.39	<u>+</u> 2.6
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 4.78	<u>+</u> 5.2

	Radiated Emission Measurement Uncertainty @ 3 m, Horizontal & Vertical (1 – 18 GHz):	Measured	Limit
u _c	Combined standard uncertainty: $u_c(y) = \sqrt{\sum_{l=1}^{m} u_i^2(y)}$	<u>+</u> 1.87	Under consideration
U	Expanded uncertainty U: U = 2u _c (y)	<u>+</u> 3.75	Under consideration

ULTRATECH GROUP OF LABS

EXHIBIT 8. MEASUREMENT METHODS

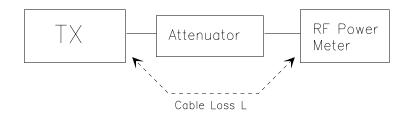
8.1. CONDUCTED POWER MEASUREMENTS

- The following shall be applied to the combination(s) of the radio device and its intended antenna(e).
- If the RF level is user adjustable, all measurements shall be made with the highest power level available to the user for that combination.
- The following method of measurement shall apply to both conducted and radiated measurements.
- The radiated measurements are performed at the Ultratech Calibrated Open Field Test Site.
- The measurement shall be performed using normal operation of the equipment with modulation.

Test procedure shall be as follows:

Step 1: Duty Cycle measurements if the transmitter's transmission is transient

- Using a EMI Receiver with the frequency span set to 0 Hz and the sweep time set at a suitable value to capture the envelope peaks and the duty cycle of the transmitter output signal;
- The duty cycle of the transmitter, x = Tx on / (Tx on + Tx off) with 0<x<1, is measure and recorded in the test report. For the purpose of testing, the equipment shall be operated with a duty cycle that is equal or more than 0.1.</p>


Step 2: Calculation of Average EIRP. See Figure 1

- The average output power of the transmitter shall be determined using a wideband, calibrated RF average power meter with the power sensor with an integration period that exceeds the repetition period of the transmitter by a factor 5 or more. The observed value shall be recorded as "A" (in dBm);
- The e.i.r.p. shall be calculated from the above measured power output "A", the observed duty cycle x, and the applicable antenna assembly gain "G" in dBi, according to the formula:

EIRP = A + G + 10log(1/x)

{X = 1 for continuous transmission \Rightarrow 10log(1/x) = 0 dB}

Figure 1.

ULTRATECH GROUP OF LABS

8.2. **RADIATED POWER MEASUREMENTS (ERP & EIRP) USING SUBSTITUTION METHOD**

8.2.1. MAXIMIZING RF EMISSION LEVEL (E-FIELD)

- (a) The measurements were performed with full rf output power and modulation.
- (b) Test was performed at listed 3m open area test site (listed with FCC, IC, ITI, NVLAP, ACA & VCCI).
- (c) The transmitter under test was placed at the specified height on a non-conducting turntable (80 cm height)
- (d) The BICONILOG antenna (20 MHz to 1 GHz) or HORN antenna (1 GHz to 18 GHz) was used for measuring.
- (e) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor $E (dB\mu V/m) = Reading (dB\mu V) + Total Correction Factor (dB/m)$

(f) Set the EMI Receiver and #2 as follows:

Center Frequency:	test frequency
Resolution BW:	100 KHz
Video BW:	same
Detector Mode:	positive
Average:	off
Span:	3 x the signal bandwidth

- (g) The test antenna was lowered or raised from 1 to 4 meters until the maximum signal level was detected.
 (h) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.
- (i) The test antenna was lowered or raised again from 1 to 4 meters until a maximum was obtained. This level was recorded.
- (j) The recorded reading was corrected to the true field strength level by adding the antenna factor, cable loss and subtracting the pre-amplifier gain.
- (k) The above steps were repeated with both transmitters' antenna and test receiving antenna placed in vertical and horizontal polarization. Both readings with the antennas placed in vertical and horizontal polarization shall be recorded.
- Repeat for all different test signal frequencies. (\mathbf{I})

ULTRATECH GROUP OF LABS

8.2.2. Measuring the EIRP of Spurious/Harmonic Emissions using Substitution Method

(a) Set the EMI Receiver (for measuring E-Field) and Receiver #2 (for measuring EIRP) as follows:

Center Frequency:	equal to the signal source
Resolution BW:	100 KHz
Video BW:	VBW > RBW
Detector Mode:	positive
Average:	off
Span:	3 x the signal bandwidth

(b) Load an appropriate correction factors file in EMI Receiver for correcting the field strength reading level

Total Correction Factor recorded in the EMI Receiver = Cable Loss + Antenna Factor E (dBuV/m) = Reading (dBuV) + Total Correction Factor (dB/m)

- (c) Select the frequency and E-field levels obtained in the Section 8.2.1 for ERP/EIRP measurements.
- (d) Substitute the EUT by a signal generator and one of the following transmitting antenna (substitution antenna):
 - ٠ DIPÓLE antenna for frequency from 30-1000 MHz or
- HORN antenna for frequency above 1 GHz }.
 (e) Mount the transmitting antenna at 1.5 meter high from the ground plane.
 - Use one of the following antenna as a receiving antenna:
 - DIPOLE antenna for frequency from 30-1000 MHz or
 - HORN antenna for frequency above 1 GHz }.
- (g) If the DIPOLE antenna is used, tune it's elements to the frequency as specified in the calibration manual.
- (h) Adjust both transmitting and receiving antenna in a VERTICAL polarization.
- (i) Tune the EMI Receivers to the test frequency.
- (j) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (\check{k}) The transmitter was rotated through 360° about a vertical axis until a higher maximum signal was received.
- (I) Lower or raise the test antenna from 1 to 4 meters until the maximum signal level was detected.
- (m) Adjust input signal to the substitution antenna until an equal or a known related level to that detected from the transmitter was obtained in the test receiver.
- (n) Record the power level read from the Average Power Meter and calculate the ERP/EIRP as follows:

P = P1 - L1 = (P2 + L2) - L1 = P3 + A + L2 - L1EIRP = P + G1 = P3 + L2 - L1 + A + G1ERP = EIRP - 2.15 dB

Total Correction factor in EMI Receiver # 2 = L2 – L1 + G1

- Where: P: Actual RF Power fed into the substitution antenna port after corrected.
 - P1: Power output from the signal generator
 - P2: Power measured at attenuator A input
 - P3: Power reading on the Average Power Meter
 - EIRP: EIRP after correction
 - ERP: ERP after correction
- (o) Adjust both transmitting and receiving antenna in a HORIZONTAL polarization, then repeat step (k) to (o)(p) Repeat step (d) to (o) for different test frequency

- (q) Repeat steps (c) to (j) with the substitution antenna oriented in horizontal polarization.
 (r) Actual gain of the EUT's antenna is the difference of the measured EIRP and measured RF power at the RF port. Correct the antenna gain if necessary.

ULTRATECH GROUP OF LABS

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4

Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: vic@ultratech-labs.com, Website: http://www.ultratech-labs.com

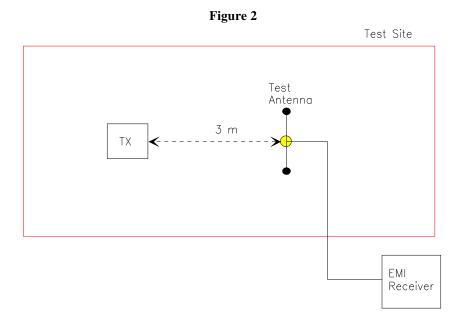
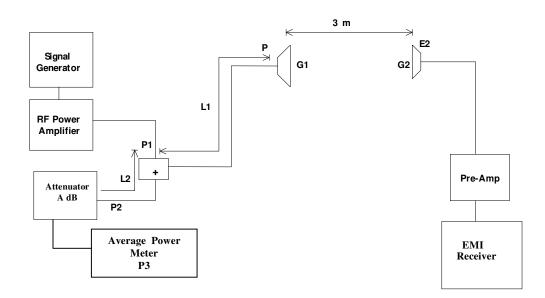



Figure 3

3000 Bristol Circle, Oakville, Ontario, Canada L6H 6G4 Tel. #: 905-829-1570, Fax. #: 905-829-8050, Email: <u>vic@ultratech-labs.com</u>, Website: <u>http://www.ultratech-labs.com</u>

8.3. FREQUENCY STABILITY

Refer to FCC @ 2.1055.

- (a) The frequency stability shall be measured with variation of ambient temperature as follows: From -30 to +50 centigrade except that specified in subparagraph (2) & (3) of this paragraph.
- (b) Frequency measurements shall be made at extremes of the specified temperature range and at intervals of not more than 10 centigrade through the range. A period of time sufficient to stabilize all of the components of the oscillator circuit at each temperature level shall be allowed prior to frequency measurement. The shortterm transient effects on the frequency of the transmitter due to keying (except for broadcast transmitters) and any heating element cycling normally occurring at each ambient temperature level also shall be shown. Only the portion or portions of the transmitter containing the frequency determining and stability circuitry need be subjected to the temperature variation test.
- (d) The frequency stability supply shall be measured with variation of primary supply voltage as follows:
 - (1) Vary primary supply voltage from 85 to 115 percent of the nominal value for other than hand carried battery equipment.
 - (2) For hand carried, battery powered equipment, reduce primary supply voltage to the battery operating end point which shall be specified by the manufacturer.
 - (3) The supply voltage shall be measured at the input to the cable normally provide with the equipment, or at the power supply terminals if cables are not normally provided. Effects on frequency of transmitter keying (except for broadcast transmitters) and any heating element cycling at the nominal supply voltage and at each extreme also shall be shown.
- (e) When deemed necessary, the Commission may require tests of frequency stability under conditions in addition to those specifically set out in paragraphs (a), (b), (c) and (d) of this section. (For example, measurements showing the effect of proximity to large metal objects, or of various types of antennas, may be required for portable equipment).

8.4. EMISSION MASK

<u>Voice or Digital Modulation Through a Voice Input Port @ 2.1049(c)(i)</u>:- The transmitter was modulated by a 2.5 KHz tone signal at an input level 16 dB greater than that required to produce 50% modulation (e.g.: <u>+</u>2.5 KHz peak deviation at 1 KHz modulating frequency). The input level was established at the frequency of maximum response of the audio modulating circuit.

Digital Modulation Through a Data Input Port @ **2.1049(h)**:- Transmitters employing digital modulation techniques - when modulated by an input signal such that its amplitude and symbol rate represent the maximum rated conditions under which the equipment will be operated. The signal shall be applied through any filter networks, pseudo-random generators or other devices required in normal service. Additionally, the Emission Masks shall be shown for operation with any devices used for modifying the spectrum when such devices are operational at the discretion of the user.

The following EMI Receiver bandwidth shall be used for measurement of Emission Mask/Out-of-Band Emission Measurements:

- (1) For 25 KHz Channel Spacing: RBW = 300 Hz
- (2) For 12.5 KHz or 6.25 KHz Channel Spacings: RBW = 100 Hz

The all cases the Video Bandwidth shall be equal or greater than the measuring bandwidth.

8.5. SPURIOUS EMISSIONS (CONDUCTED)

With transmitter modulation characteristics described in Out-of-Band Emissions measurements @ 2.1049, the transmitter spurious and harmonic emissions were scanned. The spurious and harmonic emissions were measured with the EMI Receiver controls set as RBW = 30 KHz minimum, VBW \geq RBW and SWEEP TIME = AUTO). The transmitter was operated at a full rated power output, and modulated as follows:

FCC 47 CFR 2.1057 - Frequency spectrum to be investigated: The spectrum was investigated from the lowest radio generated in the equipment up to at least the 10th harmonic of the carrier frequency or to the highest frequency practicable in the present state of the art of measuring techniques, whichever is lower. Particular attention should be paid to harmonics and subharmonics of the carrier frequency. Radiation at the frequencies of multiplier stages should be checked. The

amplitude of spurious emissions which are attenuated more than 20 dB below the permissible value need not be reported.

FCC 47 CFR 2.1051 - Spurious Emissions at Antenna Terminal: The radio frequency voltage or powers generated within the equipment and appearing on a spurious frequency shall be checked at the equipment output terminals when properly loaded with a suitable artificial antenna. Curves or equivalent data shall show the magnitude of the harmonic and other spurious emission that can be detected when the equipment is operated under the conditions specified in 2.1049 as appropriate. The magnitude of spurious emissions, which are attenuated more than 20 dB below the permissible value, need not be specified.

8.6. TRANSIENT FREQUENCY BEHAVIOR

- 1. Connect the transmitter under tests as shown in the above block diagram
- 2. Set the signal generator to the assigned frequency and modulate with a 1 KHz tone at <u>+</u>12.5 KHz deviation and its output level to be 50 dB below the transmitter rf output at the test receiver end.
- Set the horizontal sweep rate on the storage scope to 10 milliseconds per division and adjust the display to continuously view the 1000 Hz tone from the Demodulator Output Port (DOP) of the Test Receiver. Adjust the vertical scale amplitude control of the scope to display the 1000 Hz at <u>+</u>4 divisions vertical Center at the display.
- 4. Adjust the scope so it will trigger on an increasing magnitude from the RF trigger signal of the transmitter under test when the transmitter was turned on. Set the controls to store the display.
- 5. The output at the DOP, due to the change in the ratio of the power between the signal generator input power and transmitter output power will, because of the capture effect of the test receiver, produce a change in display: For the first part of the sweep it will show the 1 KHz test signal. Then once the receiver's demodulator has been captured by the transmitter power, the display will show the frequency difference from the assigned frequency to the actual transmitter frequency versus time. The instant when the 1 KHz test signal is completely suppressed (including any capture time due to phasing) is considered to be t_{on}. The trace should be maintained within the allowed divisions during the period t₁ and t₂.
- 6. During the time from the end of t_2 to the beginning of t_3 the frequency difference should not exceed the limits set by the FCC in Part 90.214 and the outlined in the Carrier Frequency Stability sections. The allowed limit is equal to FCC frequency tolerance limits specified in FCC 90.213.
- 7. Repeat the above steps when the transmitter was turned off for measuring t_3 .