EMC TEST REPORT

NVLAP Lab Code 200033-0

Standard(s):

47 CFR FCC Part 15.247 RSS 247, Issue 2, 2017

FCC ID:DGFPSDPIC100NA IC:458A-PSDPIC100NA

Product: 3M™ PELTOR™ Professional In-Ear Communication Headset

Model(s): PIC-100NA

Company Name: 3M Company

Address: 7911 Zionsville Rd, Indianapolis, IN 46268

Report Number: RE1910211-2 Report Issue Date: July 19, 2022

Report Prepared by:

Signature: Yuriy Litvinov Lead EMC Engineer

Tested by: 3M EMC Laboratory 410 E. Fillmore Avenue, Building 76-01-1 St. Paul, Minnesota 55107-1000, USA

This report is the confidential property for the exclusive internal use of 3M Company and applies only to the specific item tested under the stated test conditions. This test report shall not be reproduced except in full, without written approval of the 3M EMC laboratory and must not be used to claim product certification, approval, or endorsement by NVLAP, NIST, or any agency of the U.S. Government. Any changes impacting the attributes, functionality or operational characteristics documented in this report shall be communicated to the body responsible for approving (certifying) the subject equipment.

		TABLE OF CONTENTS	
Iter	n	Description	Page
1.0		Test Summary	3
	1.1	Measurement Uncertainty	3
2.0		Equipment Description	3
	2.1	Equipment Under Test	3
3.0		EUT Configuration	5
	3.1	System Configuration	5
	3.2	Input/Output Ports of EUT	5
	3.3	Cables	5
	3.4	Measurement Arrangements of EUT	5
	3.5	Primary functions(s) of EUT	5
	3.6	Exercising of EUT and Interfaces	5
4.0		Test Conditions and Results	6
	4.1	20dB Bandwidth	6
	4.2	Maximum Peak Conducted Output Power	8
	4.3	Channel Separation	9
	4.4	Number of Channels	11
	4.5	Time of Occupancy	19
	4.6	Radiated Emissions in restricted band	21
	4.7	Radiated Emissions in non-restricted band	33
	4.8	Band-edge Emissions Measurements	35
	4.9	Conducted Emissions	36
5.0		Test Equipment	39
6.0		Revision History	39

1.0 Test Summary

Based on the results of our investigation, we have concluded the product tested **comply** with the requirements of the standard(s) indicated. The results obtained in this test report pertain only to the item(s) tested.

4.1 4.2	FCC Part 15.247(a)(1)/ RSS-247(5.1(1)) FCC Part 15.247(b)(1)/	20dB Bandwidth		
4.2	ECC Part 15 2/7(b)(1)/		pass	
	RSS-247(5.4(2))	Maximum Peak Conducted Output Power	pass	
4.3	FCC Part 15.247(a)(1)/ RSS-247(5.1(2))	Channel Separation	pass	
4.4	FCC Part 15.247(a)(1)/ RSS-247(5.1(4))	Number of Channels	pass	
4.5	FCC Part 15.247(a)(1)/ RSS-247(5.1(4))	Time of Occupancy	pass	
4.6	FCC Part 15.209 RSS-Gen, 8.9	Radiated Emissions in restricted band	pass	
4.7	FCC Part 15.247(d)/ RSS-247(5.5)	Radiated Emissions in non-restricted band	pass	
4.8	FCC Part 15.247(d)(1)/ RSS-247(5.5)	Band-edge Emissions Measurements	pass	
4.9	FCC Part 15.207/ RSS-Gen (8.8)	Conducted Emissions	pass	

Note:

1.1 Measurement Uncertainty

The measured value related to the corresponding limit will be used to decide whether the equipment meets the requirements. The measurement uncertainty figures were calculated and correspond to a coverage factor of k=2, providing a confidence level of respectively 95.45 % in the case where the distributions characterizing the actual measurement uncertainties are normal (Gaussian).

Radiated emissions 30MHz to 1000MHz	4.9 dB
Radiated emissions 1GHz to 18GHz	4.6 dB
Conducted emissions 150KHz to 30MHz (AMN)	2.7 dB
Conducted emissions 150KHz to 30MHz (AAN)	1.92 dB
RF frequency	±3 × 10 ⁻⁸
RF power, conducted	1.4 dB
RF Power Spectral Density	0.96 dB

2.0 Equipment Description

2.1 Equipment Under Test				
Description:	Body worn radio headset with a battery pack operating in two frequency bands			
Model(s):	PIC-100NA			
Serial number:	N/A			
3M Division:	Personal Safety			
Modifications and Special Measures:	none			
Frequency Range:	2402.0-2480.0 M	Hz		
Channel No.:	79			
Modulation Type:	GFSK, π/4-DQPS	SK and 8DPSK		
FCC Classification:	Spread Spectrum Transmitter (DSS)			
Output Power EIRP:	P: 10.7dBm (11.7mW)			
Antenna Type and Antenna Assembly	External	☐ Integral PCB Antenna		Dedicated
Gain:	🛛 2.3dBi	Declared by the Manufacturer		Measured
Test Deviations or Exclusions	Yes	🖂 No		
	Voltage:	🖾 120VAC	230VAC	3.7VDC
Rated Power:	Phase:	🛛 1ph	🗌 3ph	Battery
Raleu Fower.	Frequency:	🖾 50Hz	⊠ 60Hz	
	Current: 0.5Amps			
Test Dates:	s: 08/13/2021-07/18/2022			
Received Date:	ate: 08/13/2021			
Received Conditions:	Poor	Sood		
Received Collutions.	Prototype	Prototype Production		

3.0 EUT Configuration

3.1 System Configuration

No.	Product Type	Manufacturer	Model	Comments
1	Headset	3M	PIC-100	
2	Battery Pack	3M	PIC-100BA	
3	USB Charger	Samsung	ETA-U90AWS	Support Equipment

3.2 Input/Output Ports of EUT

No.	Description	Туре	Comments
1	DC Power	USB-C	
2			

3.3 Cables

No.	Description	Туре	Length	Shielding	Comments
1	USB-C	USB 2.0	1m	Yes	
2					

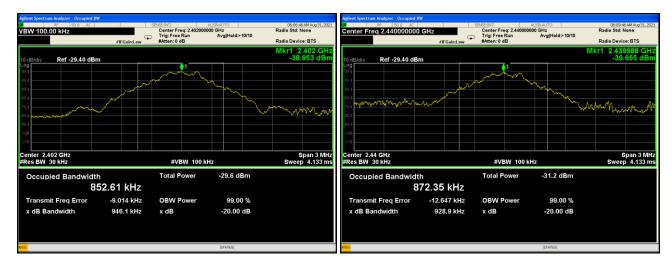
3.4 Measurement Arrangements of EUT

	Intended Operational Arrangement(s)	Comments
\square	Table-top only	
	Floor-standing only	
	Floor-standing or table-top	
\square	Other	Body-worn

3.5 Exercising of EUT and Interfaces

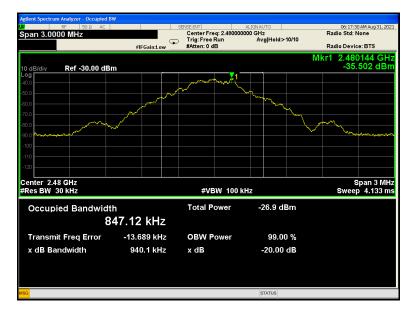
No.	Mode of Operation
1	Transmitting at lowest, middle, and highest channels of operation with unmodulated CW carrier and/or hopping channels enabled
2	Device programming using Qualcomm BlueTest3 software and Anvil Radio Tester ver. 1.3 software for continuous transmission at maximum rated RF output power and Duty Cycle.
3	

4.0 Test Conditions and Results


4.1	20dB Bandwidt	20dB Bandwidth			
		Laboratory Ambient Temperature:	23°C		
		Relative Humidity:	48%		
		Atmospheric Pressure:	1011 mbars		
Referer	nce Standard(s):	 ☑ ANSI C63.10:2013 ☑ FCC Part 15.247/RSS 247 ☑ KDB 558074 	Measurement Point Conducted Radiated		
Frequency Range:		2402.0-2480.0 MHz	RBW = 30KHz VBW ≥ 3 x RBW		
Nominal Voltage: 120VAC 🛛 3.7VDC					
	Test Personnel:	Yuriy Litvinov	Date: 08/31/2021		

Frequency (MHz)	Data Rate	Modulations	99% Bandwidth (KHz)	20dB Bandwidth (KHz)	Results
2402	1 Mbps	GFSK	852.6	946.1	pass
2441	1 Mbps	GFSK	872.4	928.9	pass
2480	1 Mbps	GFSK	847.1	940.1	pass
2402	2 Mbps	π/4-DQPSK	1225	1341	pass
2441	2 Mbps	π/4-DQPSK	1210	1336	pass
2480	2 Mbps	π/4-DQPSK	1196	1313	pass
2402	3 Mbps	8DPSK	1137	1184	pass
2441	3 Mbps	8DPSK	1160	1190	pass
2480	3 Mbps	8DPSK	1139	1228	pass

3M EMC Laboratory


Report Number: RE1910211-2 Date: July 19, 2022

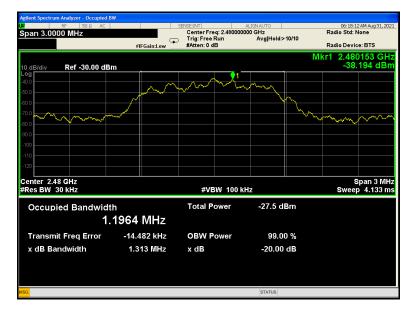
Page 7 of 39

OBW –Low Channel (1Mbps)

OBW – Mid Channel (1Mbps)

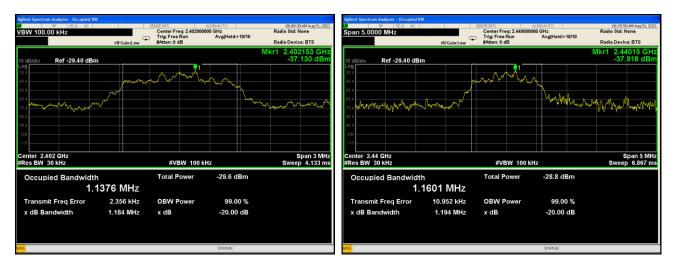
OBW – High Channel (1Mbps)

3M EMC Laboratory


Report Number: RE1910211-2 **Date:** July 19, 2022

Page 8 of 39

OBW –Low Channel (2Mbps)



OBW – High Channel (2Mbps)

3M EMC Laboratory

Report Number: RE1910211-2 Date: July 19, 2022

Page 9 of 39

OBW –Low Channel (3Mbps)

OBW – High Channel (3Mbps)

Note:

4.2	Maximum Output Power				
Method:	Measurements was performed with CW carrier at the highest power level at which the transmitter is intended to operate. The analyzer offset was adjusted to compensate for the attenuator and other losses.				
		Laboratory Ambient Temperature:	23°C		
		Relative Humidity:	48%		
		Atmospheric Pressure:	1011 mbars		
Reference Standard(s):		 ANSI C63.10:2013 FCC Part 15.247/RSS 247 KDB 558074 	Measurement Point		
Frequency Range:		⊠ 2402.0 – 2480.0 MHz	Radiated at 3 meters		
	Antenna Gain:	2.3dBi	Maximum Conducted Power (EIRP):		
Limit:		30 dBm	10.7dBm		
Nominal Voltage:		□ 120VAC 🛛 3.7VDC			
Test Personnel:		Yuriy Litvinov You'y divino	Date: 08/31/2021		

EIRP (dBm) = Conducted Power (dBm) +Antenna Gain (dBi)= 8.4+2.3= 10.7dBm. All modes of operation and data were investigated. The results shown represent the worst case.

Frequency (MHz)	Data Rate	Modulations	RMS Conducted Power (dBm)	Limit (dBm)	Results
2402	1 Mbps	GFSK	5.6	30	pass
2440	1 Mbps	GFSK	5.2	30	pass
2480	1 Mbps	GFSK	4.8	30	pass
2402	2 Mbps	π/4-DQPSK	7.7	30	pass
2440	2 Mbps	π/4-DQPSK	7.5	30	pass
2480	2 Mbps	π/4-DQPSK	7.2	30	pass
2402	3 Mbps	8DPSK	8.4	30	pass
2440	3 Mbps	8DPSK	8.2	30	pass
2480	3 Mbps	8DPSK	8.0	30	pass

3M EMC Laboratory

Report Number: RE1910211-2 Date: July 19, 2022

Page 11 of 39

Peak Power Low Channel (1Mbps)

Peak Power Mid Channel (1Mbps)

Peak Power Low Channel (2Mbps)

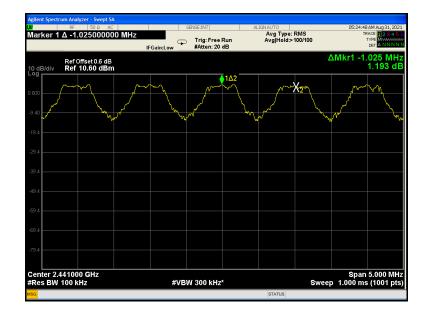
Peak Power Mid Channel (2Mbps)

Peak Power High Channel (2Mbps)

3M EMC Laboratory

Peak Power Low Channel (3Mbps)

Peak Power Mid Channel (3Mbps)


X Markor 1	RF 50 Q AC		SENSE:INT		ALIGNAUTO Avg Type: F	MS		AM Sep 01, 202 RACE 1 2 8 4 5
Marker	2.400101233004	IFGain:Lo		ree Run :20 dB	Avg Hold>1	00/100		DET A NN NN
10 dB/div	Ref Offset 0.6 dB Ref 10.60 dBm					Mkr	1 2.480 1 7.	01 3 GH 968 dBr
.600								
9.40								
19.4								
29.4								
39.4								
49.4								
59.4								
69.4								
-79.4								
Center 2.4	480000 GHz						Span	10.00 MF
Res BW			#VBW 50 M	Hz*		Sweep	1.333 ms	(20000 pt

Peak Power High Channel (3Mbps)

4.3	Carrier Frequency	v Separation	
Method:	The measurements w	vere made with transmitter set to transmit a con	tinuously with hopping function enabled.
		Laboratory Ambient Temperature:	23°C
		Relative Humidity:	48%
		Atmospheric Pressure:	1011 mbars
Re	ference Standard:	 ☑ ANSI C63.10:2013 ☑ FCC Part 15.247/RSS 247 ☑ KDB 558074 	Measurement Point
	Frequency Range:	2401-2480MHz	
	Antenna Gain:	⊠ 2.3dBi	Result
	Limit:	 ⇒25KHz ≥2/3 the value of the 20dB Bandwidth 	1.025MHz
	Nominal Voltage:	230VAC 🛛 3.7VDC	
	Test Personnel:	Yuriy Litvinov	Date: 08/31/2021
		The FUT complete the description of the second	concration requirement when it is operating in 1x/EDP

The EUT complies with the minimum channel separation requirement when it is operating in 1x/EDR mode using 79 channels.
 All modes of operation and data were investigated. The results shown represent the worst case.

4.4	Number of Hoppin	g Frequencies						
Method:	The measurements	The measurements were made with transmitter set to transmit a continuously with hopping function enabled.						
		Laboratory Ambient Temperature:	23°C					
		Relative Humidity:	48%					
		Atmospheric Pressure:	1011 mbars					
Refe	rence Standard(s): Frequency Range:	KDB 558074	Measurement Point ☑ Conducted ☐ Radiated at 3 meters					
	Antenna Gain:	2.3dBi	Result					
	Limit:	Signature State Stat	79					
	Nominal Voltage:	□ 120VAC 🛛 3.7VDC						
	Test Personnel:	Yuriy Litvinov Ynig diwinor	Date: 08/31/2021					

Note:

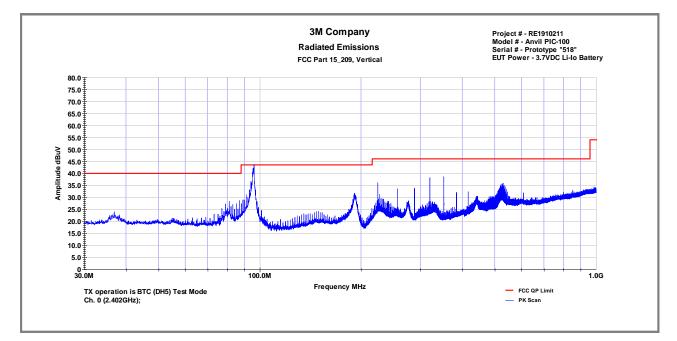
The frequency spectrum was broken up into two subranges to clearly show all the hopping frequencies.

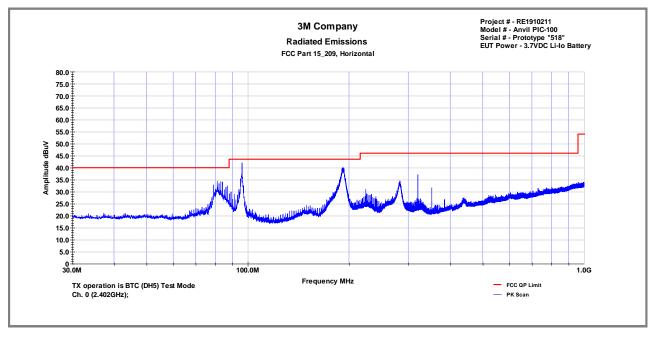
Low End Spectrum

High End Spectrum

4.5	Time of Occupanc	у		
Method:	The measurements	were made with transmitter set to transmit a cor	ntinuously with hopping function enabled.	
		Laboratory Ambient Temperature:	23°C	
		Relative Humidity:	48%	
		Atmospheric Pressure:	1011 mbars	
Refe	rence Standard(s):	 ☑ ANSI C63.10:2013 ☑ FCC Part 15.247/RSS 247 ☑ KDB 558074 	Measurement Point ⊠ Conducted □ Radiated at 3 meters	
	Frequency Range:	⊠ 2402.0 – 2480.0 MHz		
	Antenna Gain:	2.3dBi	Result	
	Limit (dwell time):	\boxtimes <0.4 sec within a period of 0.4 sec x N hopping channels	62ms/channel	
	Nominal Voltage: 🗌 120VAC 🛛 3.7VDC			
	Test Personnel:	Yuriy Litvinov Yuriy divino	Date: 08/31/2021	

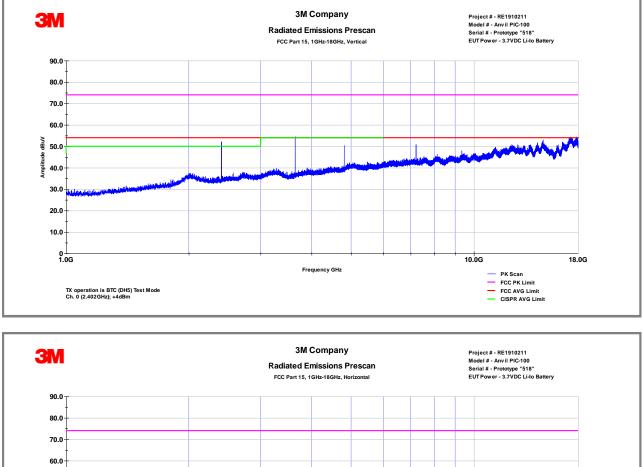
	Typically, Bluetooth 1x/EDR mode has a channel hopping rate of 1600hops/s. Since 1x/EDR use
	5 transmit and 1 receive slot the actual hopping rate 1600/6=266.67 hops/slot.
	 400ms x 79 channels=31.6 (Time of Occupancy).
Note:	 Worst case BT has 266.67 hops/second 1x/(EDR modes DH5 operation).
	 266.67/79 = 3.38 hops/second (#of hops/second on one channel).
	 3.38 x 31.6=106.67 (#hops over a 31.6 second period).
	 106.67x 2.824 /channel=301.2ms (worst case dwell time for one channel in 1x/EDR)

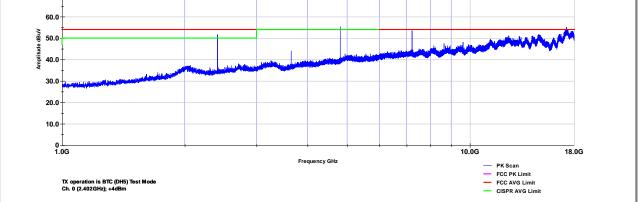

Aarker 1 Δ 2.82414 ms	SENSE::INT // Trig Delay-6.539 ms Trig: Line Gain:Low #Atten: 20 dB	Avg Type: Log-Pwr	01:44:18 AM Jul06, 202 TRACE 2 3 4 TYPE WANAGE DET P. NN NR
odB/div Ref 10.00 dBm			∆Mkr1 2.824 m -5.55 d
10.0			l la
20.0			۳Ľ.
310			
49.0			
50.0			
	a la triba de la triba	<mark>, and a state and a superior s</mark>	demarks the trade
	the state of the s		ng walangan
Center 2.442900000 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep	Span 0 H 10.00 ms (20000 pf

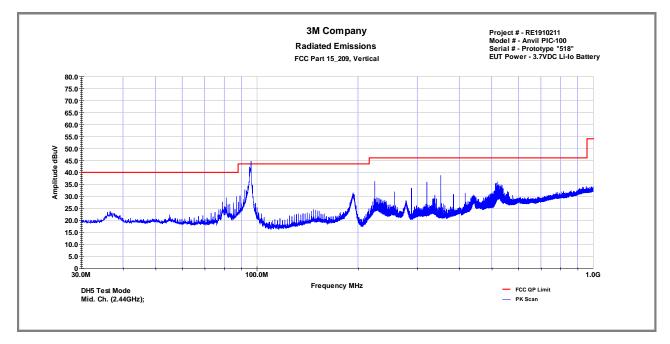


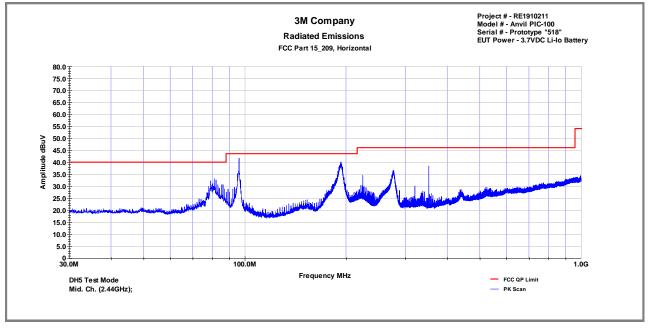
4.6	Radiated Emissions in r	estricted band							
Method:	Measurements were made in a 3-meter semi-anechoic chamber that complies to CISPR 16/ANSI C63.4 standards. EUT was rotated through three orthogonal axes to determine which attitude (orientation) and arrangement produces the highest emission relative to the limit; the attitude and device arrangement that produces the highest emission relative to the limit was used in making final radiated emission measurements. Spurious Radiated emissions measurements ware performed with external preamp and a high pass filter. Final measurements were then performed by rotating the EUT 360° and adjusting the receive antenna height from 1 to 4 m. All frequencies were investigated in both horizontal and vertical antenna polarity, where applicable.								
		Laborator	y Ambient Temper	rature:		23°C			
Tes	t Verification: 🛛		Relative Hu	midity:		55%			
			Atmospheric Pre	ssure:		1011 mb	oars		
	Reference Standard(s):		:2013, Section 11.	12.1		Measurement	Distance		
		 ☑ FCC Part 15.2 ☑ KDB 558074 	247/RSS 247		🛛 3 Meters 🗌				
	Frequency Range:	☑ 30 MHz to 1 GHz ☑ 1 GHz to 25 GHz							
	Nominal Voltage:	□ 120VAC 🖂 :	3.7VDC						
	Test Personnel:	Keith Schwartz	KS		Date: ()9/09/2021			
		Limits –15.	.209 and RSS Ger	า					
-	requency (MHz)	Limit dB (µV/m)							
		Quasi-Peak	Average	Pe	eak	Distance	Results		
	0.009-0.490		2400/F(KHz)			300	N/A		
	0.490-1.705	24000/F(KHz)				30	N/A		
	1.705-30	30				30	N/A		
	30 to 88	40			3	pass			
	88 to 216	43.5				3	pass		
	216 to 960	46				3	pass		
	Above 960		54	7	74	3	pass		

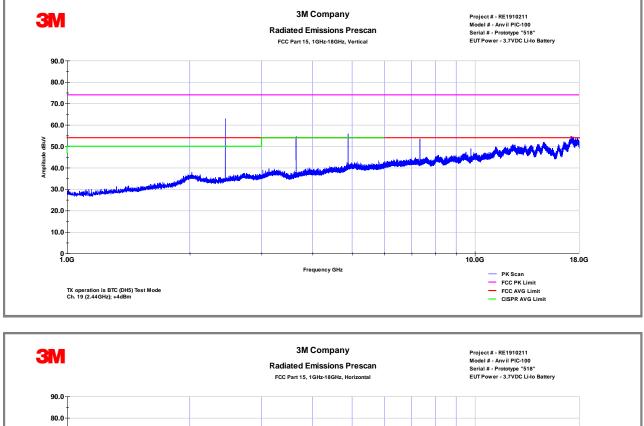
Modifications:	
Note:	The lower limit applies at the transition frequency. An inverse proportionality factor of 20 dB per decade has been used to normalize the measured data to the specified distance for determining compliance. All modes of operation and data were investigated. The results shown represent the worst case. No radiated spurious emissions were detected above 18GHz. No significant radiated emissions were found in the 2310-2390 restricted band. DCCF was used for the measurements above 1GHz in the restricted band. DH5 (worst case) mode adjusted channel hope rate = 133.33hops/second Time per channel hop = 1/133.33 hops/second=7.5ms Time to cycle through all channels +7.5x20 channels = 150ms Number of times transmitter hits on one channel = 100ms/150ms = 1 time (worst dwell =7.5ms) Duty cycle correction factor 20 log (7.5ms/100ms) = -22.5dB

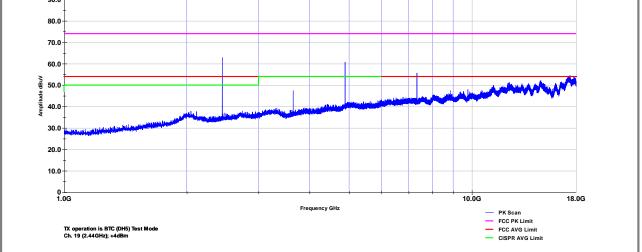


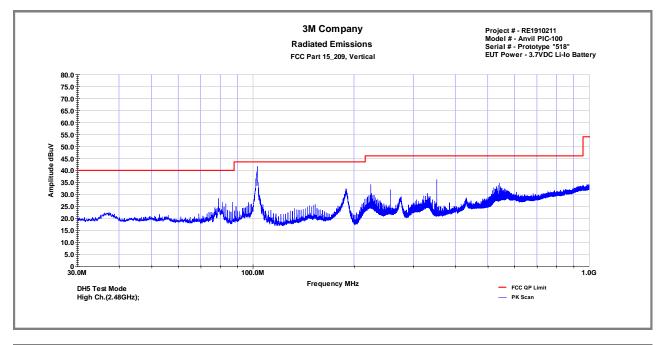


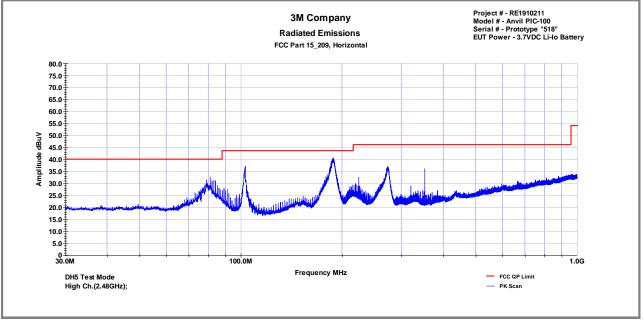


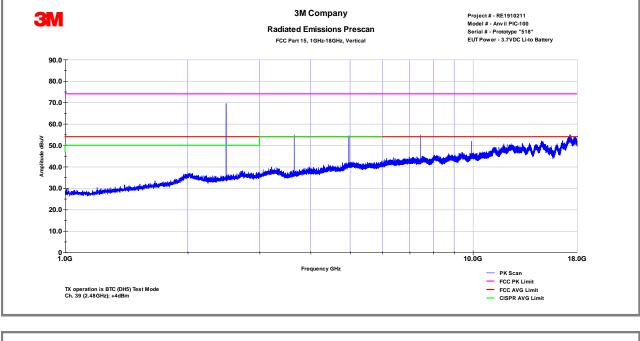


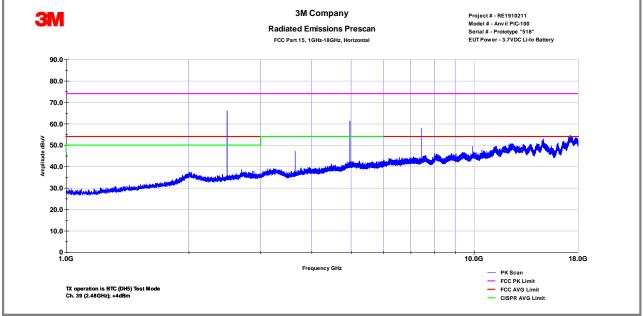












FCC Part 15.209 Radiated Emissions in restricted band – High Channel (DH5)

FCC Part 15.209 Radiated Emissions in restricted band – High Channel (DH5)

Tables - Radiated Emissions in restricted band

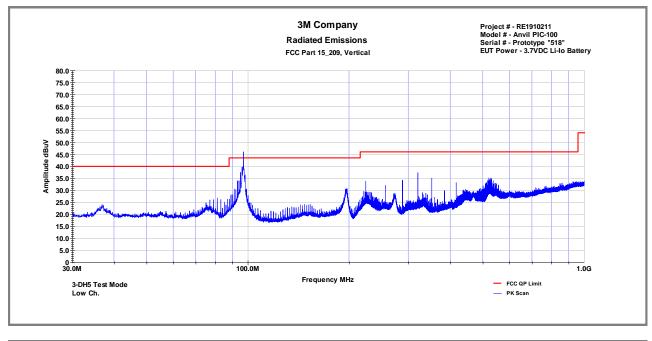
Frequency (MHz)	Pol.	QP Reading dBµV/m	Total CF dB	Net at 3 m dBµV/m	Limit (dBµV/m)	Margin dB		
80.99	Н	16.8	13.7	30.5	40	-9.5		
96.02	V	27.7	13.3	41	43.5	-2.5		
190.97	Н	20.2	15.8	36	43.5	-7.5		
282.32	Н	10.6	18.4	29	46	-17		
351.86	н	4	19.9	24	46	-22.1		
528.74	н	4.5	24	28.5	46	-17.5		
Notes:		let Reading (dBuV) = Reading (dBμV) + Antenna CF(dB)+Cable CF(dB) – Amp Gain(dB) ow Channel-DH5						

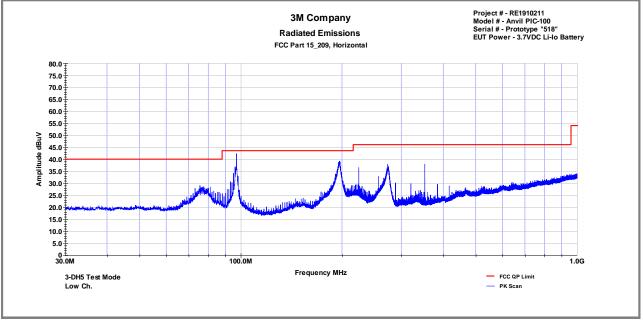
Frequency (MHz)	Pol.	QP Reading dBµV/m	Total CF dB	Net at 3 m dBµV/m	Limit (dBµV/m)	Margin dB	
80.99	н	14.9	13.7	28.6	40	-11.4	
95.99	V	27.7	13.3	41	43.5	-2.6	
193.46	Н	18	15.6	33.6	43.5	-9.9	
223.01	н	12	14.9	27	46	-19	
275	Н	14.2	18.1	32.3	46	-13.8	
352.55	V	4	19.9	24	46	-22	
Notes:	Notes: Net Reading (dBuV) = Reading (dBµV) + Antenna CF(dB)+Cable CF(dB) – Amp Gain(dB) Mid Channel-DH5						

Frequency (MHz)	Pol.	QP Reading dBµV/m	Total CF dB	Net at 3 m dBµV/m	Limit (dBµV/m)	Margin dB				
80.99	Н	13.8	13.7	27.5	40	-12.5				
103.01	V	19.4	14	33.4	43.5	-10.1				
187.01	Н	19.5	16.1	35.5	43.5	-8				
223.01	Н	11.7	14.9	26.6	46	-19.4				
272.54	Н	13.6	17.9	31.5	46	-14.5				
351.47	V	4	19.9	23.9	46	-22.1				
Notes:		Net Reading (dBuV) = Reading (dBµV) + Antenna CF(dB)+Cable CF(dB) – Amp Gain(dB) High Channel-DH5								

3M EMC Laboratory

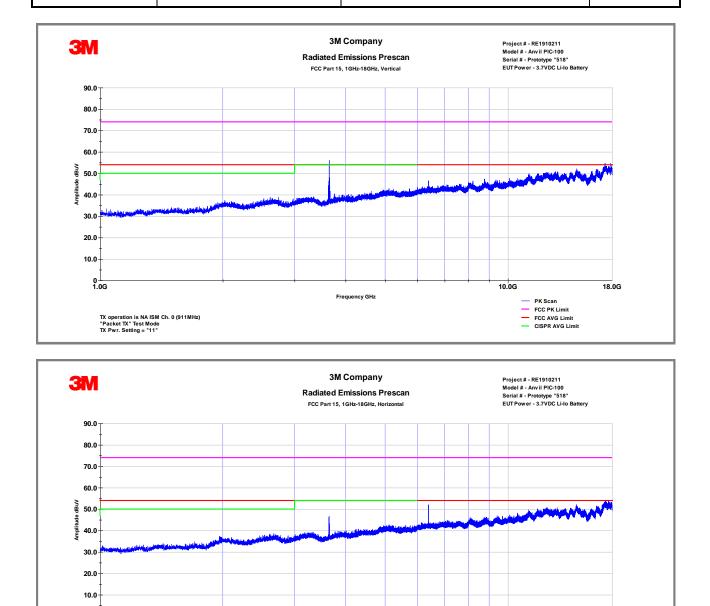
Report Number: RE1910211-2 Date: July 19, 2022


Page 24 of 39


Pol	Frequency (MHz)	Peak dBµV/m	AVG dBµV/m	Total CF dB	Net Peak dBµV/m	Net AVE dBµV/m	PK Limit dBµV/m	AVE Limit dBµV/m	PK Margin dB	AVG Margin dB
V	3642.00*	71.17	37.2	-11.24	59.93	25.93	74.00	54.00	-14.07	-28.07
н	3642.00*	61.42	27.4	-11.24	50.18	16.18	74.00	54.00	-23.82	-37.82
V	4804.00	58.01	49.2	-6.22	51.79	42.99	74.00	54.00	-22.21	-11.01
н	4804.00	62.54	53.7	-6.22	56.32	47.52	74.00	54.00	-17.68	-6.48
V	7630.00	49.84		-3.69	46.15		74.00	54.00	-27.85	
н	7630.00	49.39		-3.69	45.70		74.00	54.00	-28.30	
V	9608.00	51.50		-1.60	49.90		74.00	54.00	-24.10	
Н	9608.00	51.25		-1.60	49.65		74.00	54.00	-24.35	
	Notes:	Low Chanr	Net Reading (dBuV) = Reading (dBµV) + (Antenna with amp CF(dB)+Cable CF(dB)) Low Channel-DH5 *Device beacon. Transmit 2ms every 1s interval (DCCF -34dB)							

Pol	Frequency (MHz)	Peak dBµV/m	AVG dBµV/m	Total CF dB	Net Peak dBµV/m	Net AVE dBµV/m	PK Limit dBµV/m	AVE Limit dBµV/m	PK Margin dB	AVG Margin dB
V	4882.00	63.10	54.3	-5.30	57.80	49.00	74.00	54.00	-16.20	-5.00
Н	4882.00	65.24	56.4	-5.30	59.94	51.14	74.00	54.00	-14.06	-2.86
V	7323.00	57.54	48.7	-3.60	53.94	45.14	74.00	54.00	-20.06	-8.86
н	7323.00	58.39	49.6	-3.60	54.79	45.99	74.00	54.00	-19.21	-8.01
V	12200.00	46.59		3.27	49.86		74.00	54.00	-24.14	
н	12200.00	46.55		3.27	49.82		74.00	54.00	-24.18	
	Notes:		Net Reading (dBuV) = Reading (dBµV) + (Antenna with amp CF(dB)+Cable CF(dB)) Mid Channel-DH5							

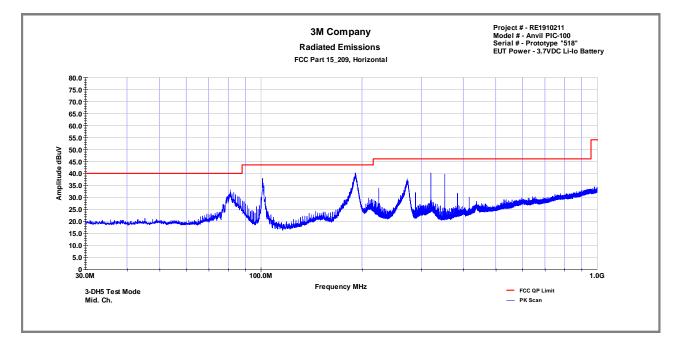
Pol	Frequency (MHz)	Peak dBµV/m	AVG dBµV/m	Total CF dB	Net Peak dBµV/m	Net AVE dBµV/m	PK Limit dBµV/m	AVE Limit dBµV/m	PK Margin dB	AVG Margin dB
V	2700.00	47.95		-5.01	42.94		74.00	54.00	-31.06	
н	2700.00	47.70		-5.01	42.69		74.00	54.00	-31.31	
V	4960.00	60.73	51.9	-5.01	55.72	46.92	74.00	54.00	-18.28	-7.08
н	4960.00	66.46	57.7	-5.01	61.45	52.65	74.00	54.00	-12.55	-1.35
V	7439.40	59.10	50.3	-2.90	56.20	47.40	74.00	54.00	-17.80	-6.60
н	7439.40	60.40	51.6	-2.90	57.50	48.70	74.00	54.00	-16.50	-5.30
V	12240.00	46.47		3.59	50.06		74.00	54.00	-23.94	
н	12240.00	46.56		3.59	50.15		74.00	54.00	-23.85	
	Notes:		Net AVG VBW>1/T=2KHz Reading (dBuV) = Reading (dBµV) + (Antenna with amp CF(dB)+Cable CF(dB)) High Channel-DH5							

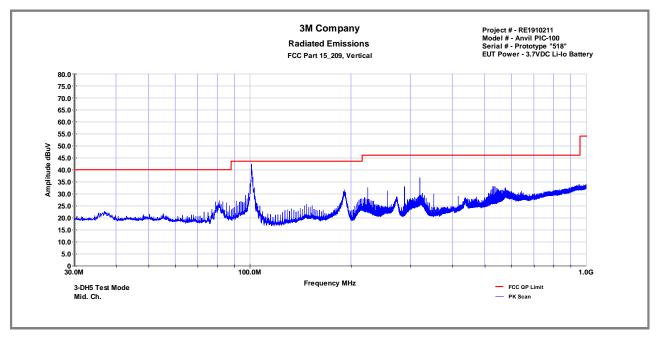


0 1.0G

> TX operation is NA ISM Ch. 0 (911MHz) "Packet TX" Test Mode TX Pwr. Setting = "11"

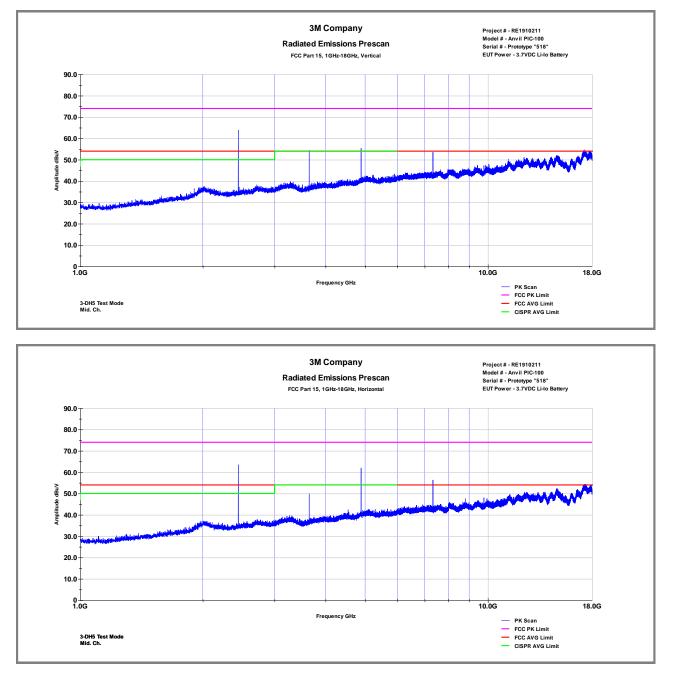
Report Number: RE1910211-2 **Date:** July 19, 2022

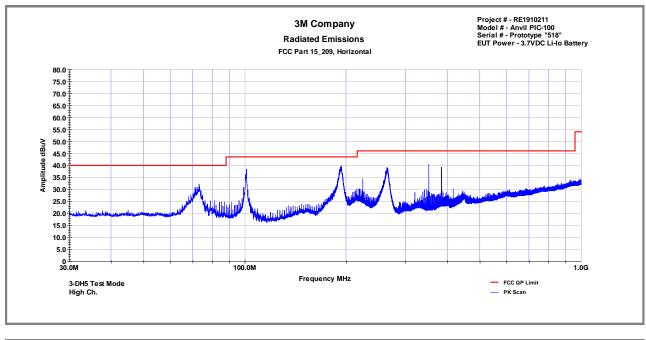

Frequency GHz

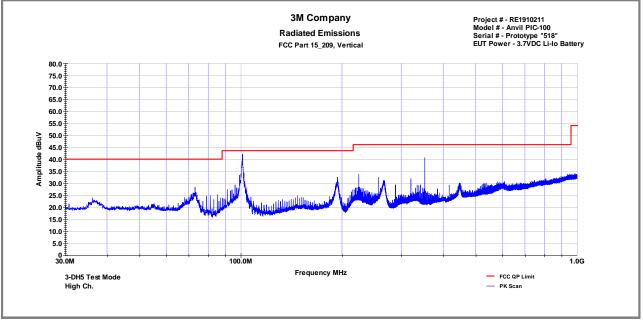

10.0G

PK Scan
 FCC PK Limit
 FCC AVG Limit
 CISPR AVG Limit

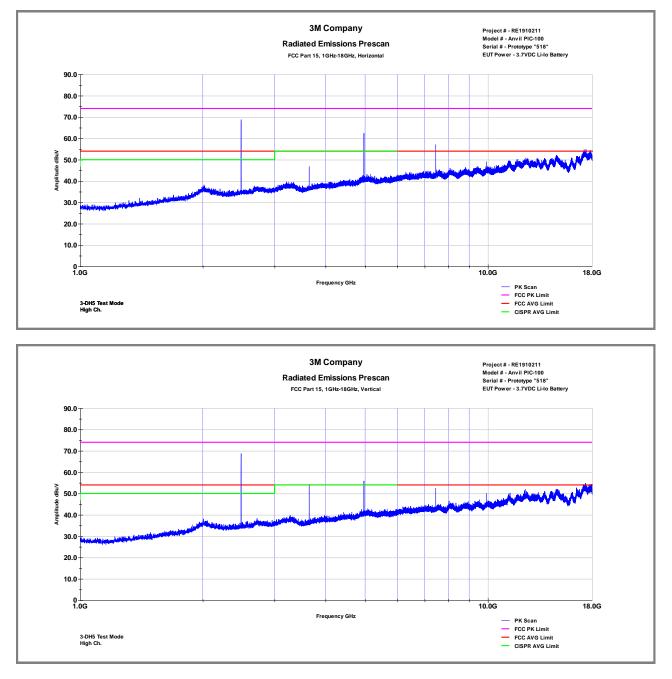
18.0G




FCC Part 15.209 Radiated Emissions in restricted band – Mid Channel (3-DH5)



FCC Part 15.209 Radiated Emissions in restricted band – Mid Channel (3-DH5)



FCC Part 15.209 Radiated Emissions in restricted band -High Channel (3-DH5)

FCC Part 15.209 Radiated Emissions in restricted band –High Channel (3-DH5)

Tables - Radiated	Emissions in	restricted band
-------------------	--------------	-----------------

Frequency (MHz)	Pol.	QP Reading dBµV/m	Total CF dB	Net at 3 m dBµV/m	Limit (dBµV/m)	Margin dB				
96.98	V	28.1	13.4	41.5	43.5	-2.1				
196.94	Н	18.3	15.2	33.5	43.5	-10				
223.01	Н	11.9	14.9	26.9	46	-19.1				
272.39	Н	11.8	17.9	29.7	46	-16.3				
320	V	4.9	19.5	24.4	46	-21.6				
352.13	V	4.1	19.9	24	46	-22				
Notes:		Net Reading (dBuV) = Reading (dBµV) + Antenna CF(dB)+Cable CF(dB) – Amp Gain(dB) Low Channel-3DH5								

Frequency (MHz)	Pol.	QP Reading dBµV/m	Total CF dB	Net at 3 m dBµV/m	Limit (dBµV/m)	Margin dB				
81.05	Н	12.4	13.7	26.1	40	-13.9				
101.42	V	19	13.8	32.8	43.5	-10.7				
190.76	Н	18.4	15.8	34.2	43.5	-9.4				
272.24	Н	12.9	17.9	30.8	46	-15.2				
320.99	V	7.7	19.5	27.1	46	-18.9				
352.01	Н	4.9	19.9	24.8	46	-21.2				
Notes:		Net Reading (dBuV) = Reading (dBµV) + Antenna CF(dB)+Cable CF(dB) – Amp Gain(dB) Mid Channel-3DH5								

Frequency (MHz)	Pol.	QP Reading dBµV/m	Total CF dB	Net at 3 m dBµV/m	Limit (dBµV/m)	Margin dB				
73.04	Н	10.5	15.8	26.3	40	-13.7				
101	V	24	13.8	37.8	43.5	-5.7				
193.73	Н	16.1	15.6	31.7	43.5	-11.8				
265.61	н	11.6	17.5	29.1	46	-16.9				
352.01	V	7.3	19.9	27.3	46	-18.8				
384.47	Н	4.2	21	25.2	46	-20.8				
Notes:		Net Reading (dBuV) = Reading (dBµV) + Antenna CF(dB)+Cable CF(dB) – Amp Gain(dB) Mid Channel-3DH5								

3M EMC Laboratory

Report Number: RE1910211-2 Date: July 19, 2022

Page 32 of 39

Pol	Frequency (MHz)	Peak dBµV/m	AVG dBµV/m	Total CF dB	Net Peak dBµV/m	Net AVE dBµV/m	PK Limit dBµV/m	AVE Limit dBµV/m	PK Margin dB	AVG Margin dB
V	3642.00*	71.43	37.4	-11.24	60.19	26.19	74.00	54.00	-13.81	-27.81
н	3642.00*	62.15	28.2	-11.24	50.91	16.91	74.00	54.00	-23.09	-37.09
V	4804.00	66.40	43.9	-6.22	60.18	37.68	74.00	54.00	-13.82	-16.32
н	4804.00	67.07	44.6	-6.22	60.85	38.35	74.00	54.00	-13.15	-15.65
V	7630.00	48.42		-3.69	44.73		74.00	54.00	-29.27	
н	7630.00	48.58		-3.69	44.89		74.00	54.00	-29.11	
V	9608.00	52.83	30.3	-1.60	51.23	28.73	74.00	54.00	-22.77	-25.27
н	9608.00	52.37	29.9	-1.60	50.77	28.27	74.00	54.00	-23.23	-25.73
	Notes:	Low Chanr	Net Reading (dBuV) = Reading (dBµV) + (Antenna with amp CF(dB)+Cable CF(dB)) Low Channel-3DH5 *Device beacon. Transmit 2ms every 1s interval (DCCF -34dB)							

Pol	Frequency (MHz)	Peak dBµV/m	AVG dBµV/m	Total CF dB	Net Peak dBµV/m	Net AVE dBµV/m	PK Limit dBµV/m	AVE Limit dBµV/m	PK Margin dB	AVG Margin dB
V	4882.00	61.03	38.5	-5.30	55.73	33.23	74.00	54.00	-18.27	-20.77
Н	4882.00	62.20	39.7	-5.30	56.90	34.40	74.00	54.00	-17.10	-19.60
V	7323.00	59.47	37.0	-3.60	55.87	33.37	74.00	54.00	-18.13	-20.63
Н	7323.00	60.93	38.4	-3.60	57.33	34.83	74.00	54.00	-16.67	-19.17
V	12200.00	47.68		3.27	50.95		74.00	54.00	-23.05	
н	12200.00	46.36		3.27	49.63		74.00	54.00	-24.37	
	Notes:		Net Reading (dBuV) = Reading (dBµV) + (Antenna with amp CF(dB)+Cable CF(dB)) Mid Channel-3DH5							

Pol	Frequency (MHz)	Peak dBµV/m	AVG dBµV/m	Total CF dB	Net Peak dBµV/m	Net AVE dBµV/m	PK Limit dBµV/m	AVE Limit dBµV/m	PK Margin dB	AVG Margin dB
V	2700.00	50.52		-5.01	45.51		74.00	54.00	-28.49	
н	2700.00	51.13		-5.01	46.12		74.00	54.00	-27.88	
V	4960.00	64.57	42.1	-5.01	59.56	37.06	74.00	54.00	-14.44	-16.94
н	4960.00	68.37	45.9	-5.01	63.36	40.86	74.00	54.00	-10.64	-13.14
V	7440.00	61.50	39.0	-2.90	58.60	36.10	74.00	54.00	-15.40	-17.90
н	7440.00	62.81	40.3	-2.90	59.91	37.41	74.00	54.00	-14.09	-16.59
V	12240.00	46.91		3.59	50.50		74.00	54.00	-23.50	
н	12240.00	46.78		3.59	50.37		74.00	54.00	-23.63	
	Notes:	U V	Reading (dBuV) = Reading (dBµV) + (Antenna with amp CF(dB)+Cable CF(dB)) High Channel-3DH5							

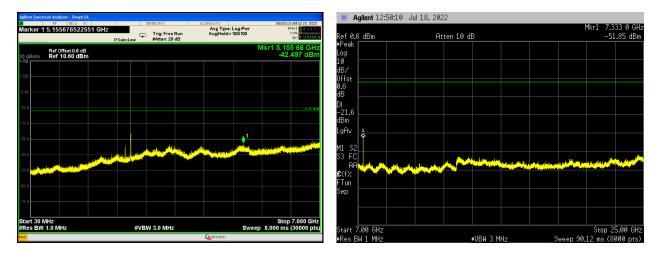
4.7	Radiated Emissio	ns in non-restricted band			
Method:		nd spurious emissions were investigated from 30M made with transmitter set to transmit continuously at			
		Laboratory Ambient Temperature:	23°C		
		Relative Humidity:	48%		
		Atmospheric Pressure:	1011 mbars		
Refei	ence Standard(s):	 ☑ ANSI C63.10:2013, Section 7.8.8 ☑ FCC Part 15.247/RSS 247 ☑ KDB 558074 	Measurement Point ⊠ Conducted □ Radiated		
	Frequency Range:	⊠ 2402.0-2480.0MHz			
In-band	power in 100KHz:	⊠ 8.4dBm	Results:		
	Limit:	☐ -21.6dBm (30dBc below in-band power)	>51dBc		
	Nominal Voltage:	□ 120VAC ⊠ 3.7VDC			
	Test Personnel:	Yuriy Litvinov Guriy divinas	Date: 07/18/2022		

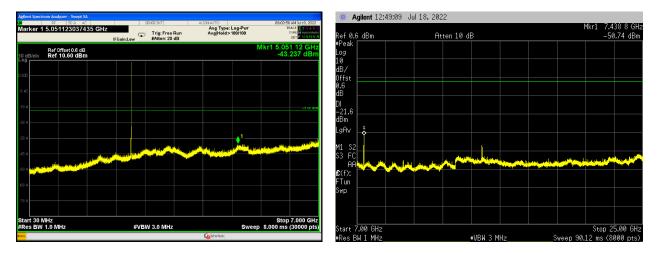
Note: Out-of -the band conducted spurious emissions were investigated for all data rates and the worstcase emissions were found with the EUT transmitting at 3mbps. The traces on the plots were measured with 1MHz RBW to reduce test time. The display line shown on the plots is the limit at 30dB below the fundamental emissions measured in a 100KHz bandwidth.

Start 30 MHz #Res BW 1.0 MHz

#VBW 3.0 MHz

Page 34 of 39

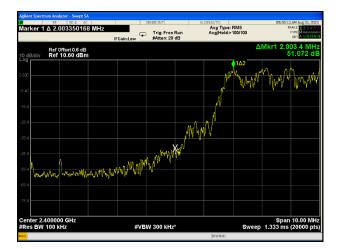

Stop 25.00 GHz



Start 7.00 GHz #Res BW 1 MHz

Stop 7.000 GHz Sweep 8.000 ms (30000 pts)

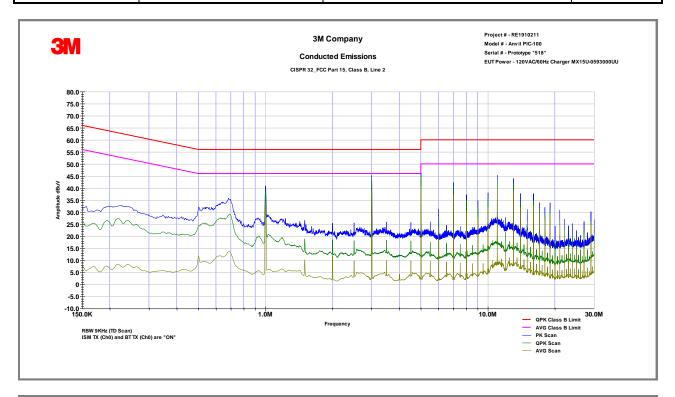
Conducted Spurious – Mid Channel (3-DH5)

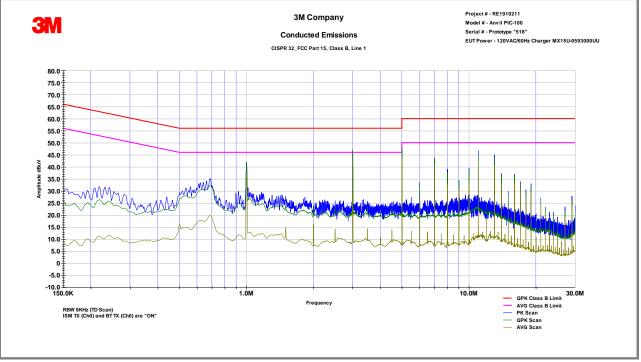

Conducted Spurious – High Channel (3-DH5)

4.8	Band-Edge Compliance			
Method:	The measurements were made with transmitter set to transmit continuously with modulated signal at low and high channels.			
		Laboratory Ambient Temperature:	23°C	
		Relative Humidity:	48%	
		Atmospheric Pressure:	1011 mbars	
Reference Standard(s):		 ☑ ANSI C63.10:2013, Section 11.13.2 ☑ FCC Part 15.247/RSS 247 ☑ KDB 558074 	Measurement Point	
Frequency Range:		🔀 2402.0-2480.0 MHz	Results	
Limit:		⊠ >20dBc	Low Ch., 2402 MHz > 51dBc High Ch., 2480 MHz > 62dBc	
Nominal Voltage: 120VAC 🛛 3.7VDC				
Test Personnel:		Yuriy Litvinov Jury divinor	Date: 08/31/2021	

Note:

Out-of-band conducted spurious emissions at the band edge were investigated for all data rates in hopping and no-hopping modes. The worst-case emissions were found with the EUT transmitting at 3mbps. Plots of the worst-case emissions are shown below.





In the

4.9	Conducted Emissions Data					
	was betwee 0.8 m from	en the closest points of the the AMN. All power was	boundary of the unit under test and bonded to a ground reference plane. This distance e AMN and the EUT. All other units of the EUT and associated equipment was at least connected to the system through Artificial Mains Network (AMN). Conducted voltage made at the output of the AMN.			
Method:	All power was connected to the system through Artificial Mains Network (AMN). All tested telecommunications lines were connected to an Asymmetric Artificial Network (AAN) and conducted voltage measurements on telecommunications lines were made at the output of the ISN. Where an AAN was not appropriate or available measurements were made using a Capacitive Voltage Probe.					
Test Verification: 🖂			Laboratory Ambient	Temperature:	23°C	
			Rela	tive Humidity:	48%	
			Atmosphe	eric Pressure:	1011 mbars	
Reference Standard(s):			 ☑ RSS GEN/FCC 15.207 ☑ ANSI C63.4:2014 ☑ ANSI C63.10:2013 		Measurement Point Mains Telecommunication ports	
Nominal Voltage:			□ 120VAC □ 230VAC □ 3.7VDC			
Test Personnel:			Keith Schwartz KS	Date: 08/24/2021		
Limits – Part 15.207/RSS Gen – AC Mains						
Frequenc			Limit dB (μV)			
		Quasi-Peak	Average	Result	Comments	
0.15 to	0.50	66 to 56	56 to 46 pass		Time Domain Scan	
0.50	to 5	56	46	pass	Time Domain Scan	
5 to	5 to 30 60		50 pass		Time Domain Scan	

Modifications:	
Note:	

3M EMC Laboratory

Report Number: RE1910211-2 Date: July 19, 2022

Page 38 of 39

Frequency (MHz)	QP Line 1 dBµV	AVG Line 1 dBµV	QP Limit dBµV	AVG Limit dBµV	QP Margin dB	AVG Margin dB	
1	41.97	37.3	56	46	-14.03	-8.7	
2.999	47.18	42.79	56	46	-8.82	-3.21	
5.001	48.09	43.9	60	50	-11.91	-6.1	
7	43.96	40.03	60	50	-16.04	-9.97	
8.001	37.46	32.66	60	50	-22.54	-17.34	
10	37.9	33.7	60	50	-22.1	-16.3	
10.999	45.12	41.71	60	50	-14.88	-8.29	
13.001	43.37	40.19	60	50	-16.63	-9.81	
Frequency (MHz)	QP Line 2 dBµV	AVG Line 2 dBµV	QP Limit dBµV	AVG Limit dBµV	QP Margin dB	AVG Margin dB	
1	38.73	32.85	56	46	-17.27	-13.15	
2.999	44.24	38.86	56	46	-11.76	-7.14	
5.001	45.31	40.35	60	50	-14.69	-9.65	
7	41.38	36.96	60	50	-18.62	-13.04	
8.001	34.56	29.88	60	50	-25.44	-20.12	
10	35.36	31.35	60	50	-24.64	-18.65	
10.999	42.94	39.67	60	50	-17.06	-10.33	
13.001	41.42	38.66	60	50	-18.58	-11.34	
Volt	Voltage		⊠ 120VAC □ 230VAC □				
Not	es	Net Reading (dBuV) = Reading (dBµV)+AMN CF(dB)+Cable CF(dB) RBW 9KHz					

5.0	Test Equipment					
Test Equipment Used						
Description	Manufacturer	Model	Identifier	Last Cal. Date	Check	
Biconilog Antenna	Schwarzbeck	VULB 9168	9168-1070	10/20/2020	\boxtimes	
Horn Antenna	A.H. Systems	SAS 571	1010	10/20/2020	\boxtimes	
Loop Antenna	A.H. Systems	EHA-51B	1213E	10/20/2020		
EMI Receiver	Rohde & Schwarz	ESW26	101412	10/20/2020		
Signal Analyzer	Agilent	N9000A	MY53031040	10/20/2020		
EMI Receiver	Agilent	E4448A	1530975	10/20/2020		
LISN	TESEQ	NNB51	1130	10/20/2020		
Coaxial Cable	Insulated Wire	2803	CBL2039	10/20/2020		
EMC Software	ETS-Lindgren	TILE 7		N/A	\boxtimes	
Equipment C	alibration Interval:		12 months	24 months		

6.0	Report revision history					
Revision Level		Date	Report Number	Notes		
0		07/19/2022	RE1910211-2	Original Issue		