

MRT Technology (Suzhou) Co., Ltd

Phone: +86-512-66308358 Fax: +86-512-66308368 Web: www.mrt-cert.com Report No.: 1512RSU00309 Report Version: V04 Issue Date: 02-17-2016

RF Exposure Evaluation Declaration

FCC ID: H8N-RG8000W

APPLICANT: ASKEY COMPUTER CORP

Application Type: Certification

Product: Gateway

Model No.: QB-GW-TAC

Trademark: ASKEY

FCC Classification: Digital Transmission System (DTS)

Unlicensed National Information Infrastructure (UNII)

FCC Part 15 Spread Spectrum Transmitter(DSS)

KDB 447498 D01v06

Reviewed By : Robin Wu

(Robin Wu)

Approved By : Marlinchen

(Marlin Chen)

The test results relate only to the samples tested.

The test results shown in the test report are traceable to the national/international standards through the calibration of the equipment and evaluated measurement uncertainty herein.

The test report shall not be reproduced except in full without the written approval of MRT Technology (Suzhou) Co., Ltd.

FCC ID: H8N-RG8000W Page Number: 1 of 7

Revision History

Report No.	Version	Description	Issue Date
1512RSU00309	Rev. 01	Initial report	01-19-2016
1512RSU00309	Rev. 02	Added MPE of Bluetooth module	01-29-2016
1512RSU00309	Rev. 03	Measure the MPE	02-04-2016
1512RSU00309	Rev. 04	Revised the FCC ID	02-17-2016

FCC ID: H8N-RG8000W Page Number: 2 of 7

1. PRODUCT INFORMATION

1.1. Equipment Description

Product Name	Gateway
Model No.	QB-GW-TAC
Brand Name	ASKEY
Wi-Fi Specification	802.11a/b/g/n/ac
Frequency Range	2.4GHz:
	For 802.11b/g/n-HT20:
	2412 ~ 2462 MHz
	For 802.11n-HT40:
	2422 ~ 2452 MHz
	<u>5GHz:</u>
	For 802.11a/n-HT20/ac-VHT20:
	5180~5240MHz, 5745~5825MHz
	For 802.11n-HT40/ac-VHT40:
	5190~5230MHz, 5755~5795MHz
	For 802.11ac-VHT80:
	5210MHz, 5775MHz
Type of Modulation	802.11b: DSSS
	802.11g/a/n/ac: OFDM
Maximum Average Output	For 2.4GHz Band:
Power	802.11b: 26.60dBm
	802.11g: 25.80dBm
	802.11n-HT20: 25.44dBm
	802.11n-HT40: 26.72dBm
	For 5GHz Band:
	802.11a: 24.91dBm
	802.11n-HT20: 25.00dBm
	802.11n-HT40: 24.57dBm
	802.11ac-VHT20: 24.93dBm
	802.11ac-VHT40: 25.03dBm
	802.11ac-VHT80: 24.22dBm
Bluetooth Module Maximum	Bluetooth v3.0+HS: 6.90(Peak)
Output Power	Bluetooth v4.0: 8.83(Average)

FCC ID: H8N-RG8000W Page Number: 3 of 7

1.2. Antenna Description

Antenna Type	Frequency Band (MHz)	Tx Paths	Per Chain Max Antenna Gain (dBi) Ant 0 Ant 1 Ant 2			Beam Forming & CDD Directional Gain (dBi)
PCB Antenna	2412 ~2462	3	5.41	2.62	1.99	8.24

Antenna	Frequency Band	Tx Paths	Per Chain Max Antenna Gain (dBi)			Beam Forming & CDD Directional	
Туре	(MHz)	Pauls	Ant 0	Ant 1	Ant 2	Ant 3	Gain (dBi)
РСВ	5150 ~ 5250	4	4.84	5.12	4.34	5.41	10.96
Antenna	5725 ~ 5850	4	4.28	5.14	3.48	5.11	10.55

- 1. The EUT supports Cyclic Delay Diversity (CDD) technology, and that CDD technology is correlated.
- (1) Correlated signals include, but are not limited to, signals transmitted in any of the following modes:
 - Unequal Antenna gains, with equal transmit powers. For Antenna gains given by G₁, G₂, ..., G_N dBi transmit signals are correlated, then
 - Directional gain = 10*log[(10^{G1/20} + 10^{G2/20} + ... + 10^{GN/20})²/N_{ANT}] dBi [Note the "20"s in the denominator of each exponent and the square of the sum of terms; the object is to combine the signal levels coherently.]

For example: 2.4GHz Directional Gain = $10*log[(10^{5.41/20} + 10^{2.62/20} + 10^{1.99/20})^2/2] = 8.24$ dBi $5150 \sim 5250$ MHz Directional Gain = $10*log[(10^{4.84/20} + 10^{5.12/20} + 10^{4.34/20} + 10^{5.41/20})^2/4] = 10.96$ dBi

FCC ID: H8N-RG8000W Page Number: 4 of 7

2. RF Exposure Evaluation

2.1. Limits

According to FCC 1.1310: The criteria listed in the following table shall be used to evaluate the environment impact of human exposure to radio frequency (RF) radiation as specified in 1.1307(b)

LIMITS FOR MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Frequency Range	Electric Field	Magnetic Field	Power Density	Average Time	
(MHz)	Strength (V/m)	Strength (A/m)	(mW/cm ²)	(Minutes)	
	(A) Limits for	Occupational/ Contr	ol Exposures		
300-1500			f/300	6	
1500-100,000			5	6	
	(B) Limits for General Population/ Uncontrolled Exposures				
300-1500			f/1500	6	
1500-100,000			1	30	

f= Frequency in MHz

Calculation Formula: $Pd = (Pout*G)/(4*pi*r^2)$

Where

Pd = power density in mW/cm²

Pout = output power to antenna in mW

G = gain of antenna in linear scale

Pi = 3.1416

r = distance between observation point and center of the radiator in cm

Pd is the limit of MPE, 1mW/cm². If we know the maximum gain of the antenna and the total power input to the antenna, through the calculation, we will know the distance r where the MPE limit is reached.

2.2. Test Procedure Used

- 1. Setup the EUT and simulators as shown in the test setup photo;
- 2. Make the EUT transmit at Max Power(refer section 1.1) in each band;
- 3. Move the Field Strength Meter to find position of each face which the Max Field Strength, and keep distance 20cm between the probe with EUT;
- 4. Rotating the Field Strength Meter to X, Y, Z axial, and record the Max Field Strength in each position of each face.

FCC ID: H8N-RG8000W Page Number: 5 of 7

Instrument	Manufacturer	71	Measurement Range	Cali. Interval	Cali. Due Date
Field Strength Meter	AR	FL7006	100kHz ~ 6GHz	1 year	2016/09/09

2.3. Test Result of RF Exposure Evaluation

Product	Gateway
Test Item	RF Exposure Evaluation

Antenna Gain: refer to the section 1.2; the maximum Gain measured in fully anechoic chamber is 1dBi for Bluetooth Module.

For 2.4GHz ISM Band:

Test Mode	Frequency Band (MHz)	Maximum Average Output Power (dBm)
802.11b/g/n-HT20/ n-HT40	2412 ~ 2462	26.72

For 5GHz UNII Band:

Test Mode	Frequency Band (MHz)	Maximum Average Output Power (dBm)
802.11a/n-HT20/	5180 ~ 5240	24.62
n-H40/ac-VHT20 ac-VHT40/ac-VHT80	5745 ~ 5825	25.03

Bluetooth Module

Test Mode	Frequency Band	Maximum Average Power Density at		Limit
	(MHz)	Output Power	R = 20 cm	(mW/cm ²)
		(dBm)	(mW/cm ²)	
Bluetooth v4.0	2402 ~ 2480	8.83	0.0019	1

FCC ID: H8N-RG8000W Page Number: 6 of 7

Report No.: 1512RSU00309

MPE Measurement Result

Test Mode	Frequency Band	Position	Field Strength
	(MHz)		(V/m)
		Front	15.84
000 115/2/2 11700/		Back	20.17
802.11b/g/n-HT20/	2412 ~ 2462	Left	14.97
n-HT40		Right	22.47
		Тор	24.78

Test Mode	Frequency Band (MHz)	Position	Field Strength (V/m)
		Front	21.88
802.11a/n-HT20/		Back	21.34
n-H40/ac-VHT20	5180 ~ 5240	Left	26.17
ac-VHT40/ac-VHT80		Right	16.74
		Тор	22.06

Test Mode	Frequency Band (MHz)	Position	Field Strength (V/m)
	, ,	Front	17.79
802.11a/n-HT20/		Back	16.03
n-H40/ac-VHT20	5745 ~ 5825	Left	24.07
ac-VHT40/ac-VHT80		Right	18.40
		Тор	18.99

Both of the WLAN 2.4GHz Band, WLAN 5GHz Band & Bluetooth Module can transmit simultaneously.

Therefore, $Max P_d = (V/m)^2/3770 \text{ mW/cm}^2$

 $\label{eq:maxPd} \begin{aligned} &\text{Max P}_{\text{d}} = \{(2.4 \text{GHz Max Field Strength})^2 + (5 \text{GHz Max Field Strength})^2\} \ / \ 3770 \ + \ P_{\text{d}}(\text{Bluetooth Module}) \\ &\text{Module}) = (24.78^2 + 26.17^2)/377 \ + \ 0.0019 = 0.3464 \text{mW/cm}^2 < 1 \ \text{mW/cm}^2 \end{aligned}$

Note: The detail Measurement result can refer to the Test Setup Photos.

——— The End	

FCC ID: H8N-RG8000W Page Number: 7 of 7