		CTC advanced						
Bundesnetzagentur	Bundesnetzagentur TEST REPORT							
BNetzA-CAB-02/21-102	Test report no.	: 1-9100/19-02-11						
Testing I								
CTC advanced GmbH Untertuerkheimer Strasse 6 66117 Saarbruecken / Germ Phone: + 49 681 5 98 - 0 Fax: + 49 681 5 98 - 9 Internet: https://www.ctcad e-mail: mail@ctcadvance Accredited Testing Labora The testing laboratory (are according to DIN EN ISO/I Deutsche Akkreditierungsste The accreditation is valid procedures as stated in starting with the registration	 – 10 nany 075 lvanced.com ad.com atory: ea of testing) is accredited IEC 17025 (2018-03) by the elle GmbH (DAkkS) I for the scope of testing the accreditation certificate number: D-PL-12076-01. 	Hexagon Geosystems Services AG Baarerstrasse 133 6300 Zug / SWITZERLAND Phone: Contact: André Reichmuth e-mail: andre.reichmuth@hexagon.com Manufacturer Hexagon Geosystems Services AG Baarerstrasse 133 6300 Zug / SWITZERLAND						
FCC - Title 47 CFR Part	Test s 15 FCC - Title 47 of the C	t andard/s ode of Federal Regulations; Chapter I; Part 15 - Radio						
RSS - 247 Issue 2	frequency devices RSS - 247 Issue 2 Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE-LAN) Devices							
For further applied test stand	dards please refer to section 3 of	of this test report.						
	Tes	t Item						
Kind of test item:	Next Generation CAS Multi	Functional Antenna						
Model name:	QC1000 Rev. B							
FCC ID:	ZKSQC1000B							
ISED certification number:	9849A-QC1000B							
Frequency range:	902.4 MHz – 922.0 MHz							
Technology tested:	Proprietary FHSS							
Antenna:	Integrated antenna							
Power supply: 24 V DC by external power supply								

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

-30°C to +70°C

Test report authorized:

Christoph Schneider Lab Manager Radio Communications

Temperature range:

Test performed:

Tobias Wittenmeier Testing Manager Radio Communications

Table of contents 1

1	Table	of contents	2
2	Gener	al information	3
	2.1 2.2 2.3	Notes and disclaimer Application details Test laboratories sub-contracted	3 3 3
3	Test s	tandard/s, references and accreditations	4
4	Repo	ting statements of conformity – decision rule	5
5	Test e	nvironment	6
6	Test i	em	6
	6.1 6.2	General description Additional information	6
7	Descr	iption of the test setup	7
	7.1 7.2 7.3	Shielded semi anechoic chamber Shielded fully anechoic chamber Conducted measurements	8 10 12
8	Seque	ence of testing	13
	8.1 8.2 8.3	Sequence of testing radiated spurious 9 kHz to 30 MHz Sequence of testing radiated spurious 30 MHz to 1 GHz Sequence of testing radiated spurious 1 GHz to 12.75 GHz	13 14 15
9	Meas	urement uncertainty	16
10	Sur	nmary of measurement results	17
11	RF	measurements	
	11.1	Additional comments	
12	Mea	surement results	
12	12.1	Antenna gain	
	12.2 12.3	Number of Hopping Channels	20 22
	12.4	Average Time of Occupancy (dwell time)	24
	12.5	Spectrum bandwidth of a FHSS system	26
	12.0	Detailed spurious emissions @ the band edge – conducted and radiated	
	12.8	Spurious Emissions Conducted	37
	12.9	Spurious Emissions Radiated < 30 MHz	40
	12.10	Spurious emissions radiated > 30 MHz to 1 GHz	43 //3
	12.10.	2 Spurious emissions radiated above 1 GHz.	40
13	Obs	ervations	51
14	Glo	ssary	52
15	Doc	- sument history	53
16	Aco	reditation Certificate – D-PL-12076-01-04	
17	Acc	reditation Certificate – D-PL-12076-01-05	

2 General information

2.1 Notes and disclaimer

The test results of this test report relate exclusively to the test item specified in this test report. CTC advanced GmbH does not assume responsibility for any conclusions and generalizations drawn from the test results with regard to other specimens or samples of the type of the equipment represented by the test item.

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written approval of CTC advanced GmbH.

The testing service provided by CTC advanced GmbH has been rendered under the current "General Terms and Conditions for CTC advanced GmbH".

CTC advanced GmbH will not be liable for any loss or damage resulting from false, inaccurate, inappropriate or incomplete product information provided by the customer.

Under no circumstances does the CTC advanced GmbH test report include any endorsement or warranty regarding the functionality, quality or performance of any other product or service provided.

Under no circumstances does the CTC advanced GmbH test report include or imply any product or service warranties from CTC advanced GmbH, including, without limitation, any implied warranties of merchantability, fitness for purpose, or non-infringement, all of which are expressly disclaimed by CTC advanced GmbH.

All rights and remedies regarding vendor's products and services for which CTC advanced GmbH has prepared this test report shall be provided by the party offering such products or services and not by CTC advanced GmbH. In no case this test report can be considered as a Letter of Approval.

This test report is electronically signed and valid without handwritten signature. For verification of the electronic signatures, the public keys can be requested at the testing laboratory.

2.2 Application details

Date of receipt of order:	2022-04-01
Date of receipt of test item:	2022-04-11
Start of test:*	2022-04-11
End of test:*	2022-05-30
Person(s) present during the test:	-/-

*Date of each measurement, if not shown in the plot, can be requested. Dates are stored in the measurement software.

2.3 Test laboratories sub-contracted

None

3 Test standard/s, references and accreditations

Test standard	Date	Description				
FCC - Title 47 CFR Part 15		FCC - Title 47 of the Code of Federal Regulations; Chapter I; Part 15 - Radio frequency devices				
RSS - 247 Issue 2	February 2017	Digital Transmission Systems (DTSs), Frequency Hopping Systems (FHSs) and Licence - Exempt Local Area Network (LE- LAN) Devices				
RSS - Gen Issue 5 incl. Amendment 1 & 2	February 2021	Spectrum Management and Telecommunications Radio Standards Specification - General Requirements for Compliance of Radio Apparatus				
Guidance	Version	Description				
ANSI C63.4-2014 ANSI C63.10-2013	-/- -/-	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices				
Accreditation	Description	n				
D-PL-12076-01-04	Telecommu https://www.da	unication and EMC Canada akks.de/as/ast/d/D-PL-12076-01-04e.pdf				
D-PL-12076-01-05	Telecommu https://www.da	unication FCC requirements akks.de/as/ast/d/D-PL-12076-01-05e.pdf				

ISED Testing Laboratory Recognized Listing Number: DE0001 FCC designation number: DE0002

Only the measured values related to their corresponding limits will be used to decide whether the equipment under test meets the requirements of the test standards listed in chapter 3.

The measurement uncertainty is mentioned in this test report, see chapter 9, but is not taken into account - neither to the limits nor to the measurement results. Measurement results with a smaller margin to the corresponding limits than the measurement uncertainty have a potential risk of more than 5% that the decision might be wrong."

5 **Test environment**

Temperature	:	T _{nom} T _{max} T _{min}	+22 °C during room temperature tests No tests under extreme environmental conditions required. No tests under extreme environmental conditions required.
Relative humidity content	:		55 %
Barometric pressure	:		1021 hpa
		V _{nom}	24.0 V DC by external power supply
Power supply	:	V_{max}	No tests under extreme environmental conditions required.
		V_{min}	No tests under extreme environmental conditions required.

6 **Test item**

6.1 **General description**

Kind of test item :	Next Generation CAS Multi Functional Antenna
Model name :	QC1000 Rev. B
HMN :	n/a
PMN :	QC1000
HVIN :	QC1000 Rev.B
FVIN :	n/a
S/N serial number :	902712
Hardware status :	B
Software status :	-/-
Firmware status :	-/-
Frequency band :	902 MHz – 928 MHz
Type of radio transmission : Use of frequency spectrum :	FHSS
Type of modulation :	GFSK
Number of channels :	50
Antenna :	Integrated antenna
Power supply :	24 V DC by external power supply
Temperature range :	-30°C to +70°C

6.2 Additional information

The content of the following annexes is defined in the QA. It may be that not all of the listed annexes are necessary for this report, thus some values in between may be missing.

Test setup and EUT photos are included in test report:

1-9100/19-02-01_AnnexA 1-9100/19-02-01 AnnexB 1-9100/19-02-01_AnnexD

7 Description of the test setup

Typically, the calibrations of the test apparatus are commissioned to and performed by an accredited calibration laboratory. The calibration intervals are determined in accordance with the DIN EN ISO/IEC 17025. In addition to the external calibrations, the laboratory executes comparison measurements with other calibrated test systems or effective verifications. Weekly chamber inspections and range calibrations are performed. Where possible, RF generating and signaling equipment as well as measuring receivers and analyzers are connected to an external high-precision 10 MHz reference (GPS-based or rubidium frequency standard).

In order to simplify the identification of the equipment used at some special tests, some items of test equipment and ancillaries can be provided with an identifier or number in the equipment list below (Lab/Item).

Each block diagram listed can contain several test setup configurations. All devices belonging to a test setup are identified with the same letter syntax. For example: Column Setup and all devices with an A.

Agenda: Kind of Calibration

- k calibration / calibrated
- ne not required (k, ev, izw, zw not required)
- ev periodic self verification
- Ve long-term stability recognized
- vlkl! Attention: extended calibration interval
- NK! Attention: not calibrated

- EK limited calibration
- zw cyclical maintenance (external cyclical maintenance)
- izw internal cyclical maintenance
- g blocked for accredited testing
- *) next calibration ordered / currently in progress

7.1 Shielded semi anechoic chamber

The radiated measurements are performed in vertical and horizontal plane in the frequency range from 30 MHz to 1 GHz in semi-anechoic chambers. The EUT is positioned on a non-conductive support with a height of 0.80 m above a conductive ground plane that covers the whole chamber. The receiving antennas are conform to specifications ANSI C63. These antennas can be moved over the height range between 1.0 m and 4.0 m in order to search for maximum field strength emitted from EUT. The measurement distances between EUT and receiving antennas are indicated in the test setups for the various frequency ranges. For each measurement, the EUT is rotated in all three axes until the maximum field strength is received. The wanted and unwanted emissions are received by spectrum analyzers where the detector modes and resolution bandwidths over various frequency ranges are set according to requirement ANSI C63.

CTC | advanced

Measurement distance: tri-log antenna 10 meter EMC32 software version: 10.59.00

FS = UR + CL + AF

(FS-field strength; UR-voltage at the receiver; CL-loss of the cable; AF-antenna factor)

Example calculation:

 $FS [dB\mu V/m] = 12.35 [dB\mu V/m] + 1.90 [dB] + 16.80 [dB/m] = 31.05 [dB\mu V/m] (35.69 \mu V/m)$

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	Α	Switch-Unit	3488A	HP	2719A14505	300000368	ev	-/-	-/-
2	А	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2920A04466	300000580	ne	-/-	-/-
3	А	Semi anechoic chamber	3000023	MWB AG		300000551	ne	-/-	-/-
4	А	Analyzer-Reference- System (Harmonics and Flicker)	ARS 16/1	SPS	A3509 07/0 0205	300003314	vIKI!	29.12.2021	31.12.2023
5	A	Antenna Tower	Model 2175	ETS-Lindgren	64762	300003745	izw	-/-	-/-
6	А	Positioning Controller	Model 2090	ETS-Lindgren	64672	300003746	izw	-/-	-/-
7	A	Turntable Interface- Box	Model 105637	ETS-Lindgren	44583	300003747	izw	-/-	-/-
8	A	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vIKI!	30.09.2021	29.09.2023
9	A	Turntable	2089-4.0	EMCO		300004394	ne	-/-	-/-
10	A	PC	TecLine	F+W		300004388	ne	-/-	-/-
11	A	EMI Test Receiver	ESR3	Rohde & Schwarz	102587	300005771	k	20.05.2022	19.05.2023

7.2 Shielded fully anechoic chamber

Measurement distance: tri-log antenna and horn antenna 3 meter; loop antenna 3 meter

FS = UR + CA + AF (FS-field strength; UR-voltage at the receiver; CA-loss of the signal path; AF-antenna factor)

<u>Example calculation</u>: FS [dB μ V/m] = 40.0 [dB μ V/m] + (-35.8) [dB] + 32.9 [dB/m] = 37.1 [dB μ V/m] (71.61 μ V/m)

OP = AV + D - G + CA

(OP-radiated output power; AV-analyzer value; D-free field attenuation of measurement distance; G-antenna gain+amplifier gain; CA-loss signal path)

<u>Example calculation:</u> OP [dBm] = -65.0 [dBm] + 50 [dB] - 20 [dBi] + 5 [dB] = -30 [dBm] (1 μW)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	A,B,C	DC power supply, 60Vdc, 50A, 1200 W	6032A	HP	2818A03450	300001040	viKi!	09.12.2020	08.12.2023
2	А	Active Loop Antenna 9 kHz to 30 MHz	6502	EMCO	2210	300001015	viKi!	01.07.2021	31.07.2023
3	A,B,C	Anechoic chamber	FAC 3/5m	MWB / TDK	87400/02	300000996	ev	-/-	-/-
4	A,B,C	Switch / Control Unit	3488A	HP	*	300000199	ne	-/-	-/-
5	A037	Double-Ridged Waveguide Horn Antenna 1-18.0GHz	3115	EMCO	8812-3089	300000307	vIKI!	11.02.2022	29.02.2024
6	С	Highpass Filter	WHKX2.9/18G- 12SS	Wainwright	1	300003492	ev	-/-	-/-
7	A,B,C	EMI Test Receiver 20Hz- 26,5GHz	ESU26	R&S	100037	300003555	k	09.12.2021	31.12.2022
8	С	Highpass Filter	WHK1.1/15G-10SS	Wainwright	3	300003255	ev	-/-	-/-
9	С	Highpass Filter	WHKX7.0/18G-8SS	Wainwright	19	300003790	ne	-/-	-/-
10	В	TRILOG Broadband Test-Antenna 30 MHz - 3 GHz	VULB9163	Schwarzbeck Mess - Elektronik	318	300003696	vIKI!	30.09.2021	29.09.2023
11	С	Broadband Amplifier 0.5-18 GHz	CBLU5184540	CERNEX	22049	300004481	ev	-/-	-/-
12	A,B,C	4U RF Switch Platform	L4491A	Agilent Technologies	MY50000037	300004509	ne	-/-	-/-
13	A,B,C	NEXIO EMV- Software	BAT EMC V3.21.0.32	EMCO		300004682	ne	-/-	-/-
14	A,B,C	Open Switch and Control Unit and Power Sensors	OSP120 incl. B157	Rohde & Schwarz	101274, 100877	300004825	viKI!	16.12.2020	15.12.2022
15	A,B,C	PC	ExOne	F+W		300004703	ne	-/-	-/-

7.3 **Conducted measurements**

OP = AV + CA(OP-output power; AV-analyzer value; CA-loss signal path)

<u>Example calculation:</u> OP [dBm] = 6.0 [dBm] + 11.7 [dB] = 17.7 [dBm] (58.88 mW)

Equipment table:

No.	Setup	Equipment	Туре	Manufacturer	Serial No.	INV. No.	Kind of Calibration	Last Calibration	Next Calibration
1	n. a.	Signal analyzer	FSV40	Rohde&Schwarz	101353	300004819	k	10.12.2021	31.12.2022
2	L021- C09	RF-Cable SRD021 No. 9	Enviroflex 316 D	Huber & Suhner		400001319	ev	-/-	-/-
3	n. a.	Power Supply	HMP2020	Rohde & Schwarz	101961	300006102	k	04.08.2020	31.08.2022

8 Sequence of testing

8.1 Sequence of testing radiated spurious 9 kHz to 30 MHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, it is placed on a table with 0.8 m height.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement*

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna height is 1 m.
- At each turntable position the analyzer sweeps with positive-peak detector to find the maximum of all emissions.

Final measurement

- Identified emissions during the pre-measurement are maximized by the software by rotating the turntable from 0° to 360°.
- Loop antenna is rotated about its vertical axis for maximum response at each azimuth about the EUT. (For certain applications, the loop antenna plane may also need to be positioned horizontally at the specified distance from the EUT)
- The final measurement is done in the position (turntable and elevation) causing the highest emissions with quasi-peak (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, correction factor, margin to the limit and limit will be recorded. A plot with the graph of the premeasurement and the limit is stored.

*)Note: The sequence will be repeated three times with different EUT orientations.

8.2 Sequence of testing radiated spurious 30 MHz to 1 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a table with 0.8 m height is used, which is placed on the ground plane.
- If the EUT is a floor standing device, it is placed on the ground plane with insulation between both.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 10 m or 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height changes from 1 m to 3 m.
- At each turntable position, antenna polarization and height the analyzer sweeps three times in peak to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximize the peaks by changing turntable position ± 45° and antenna height between 1 and 4 m.
- The final measurement is done with quasi-peak detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, antenna height, antenna polarization, turntable angle, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

8.3 Sequence of testing radiated spurious 1 GHz to 12.75 GHz

Setup

- The equipment is set up to simulate normal operation mode as described in the user manual or defined by the manufacturer.
- If the EUT is a tabletop system, a 2-axis positioner with 1.5 m height is used.
- If the EUT is a floor standing device, it is placed directly on the turn table.
- Auxiliary equipment and cables are positioned to simulate normal operation conditions as described in ANSI C 63.4.
- The AC power port of the EUT (if available) is connected to a power outlet below the turntable.
- Measurement distance is 3 m (see ANSI C 63.4) see test details.
- EUT is set into operation.

Premeasurement

- The turntable rotates from 0° to 315° using 45° steps.
- The antenna is polarized vertical and horizontal.
- The antenna height is 1.5 m.
- At each turntable position and antenna polarization the analyzer sweeps with positive peak detector to find the maximum of all emissions.

Final measurement

- The final measurement is performed for at least six highest peaks according to the requirements of the ANSI C63.4.
- Based on antenna and turntable positions at which the peak values are measured the software maximizes the peaks by rotating the turntable from 0° to 360°. This measurement is repeated for different EUT-table positions (0° to 150° in 30°-steps) and for both antenna polarizations.
- The final measurement is done in the position (turntable, EUT-table and antenna polarization) causing the highest emissions with Peak and RMS detector (as described in ANSI C 63.4).
- Final levels, frequency, measuring time, bandwidth, turntable position, EUT-table position, antenna polarization, correction factor, margin to the limit and limit are recorded. A plot with the graph of the premeasurement with marked maximum final results and the limit is stored.

Measurement uncertainty					
Test case	Uncertainty				
Antenna gain	± 3 dB				
Carrier frequency separation	± 21.5 kHz				
Number of hopping channels	-/-				
Spectrum bandwidth	± 21.5 kHz absolute; ± 15.0 kHz relative				
Maximum output power	± 1 dB				
Detailed conducted spurious emissions @ the band edge	± 1 dB				
Band edge compliance radiated	± 3 dB				
Spurious emissions conducted	± 3 dB				
Spurious emissions radiated below 30 MHz	± 3 dB				
Spurious emissions radiated 30 MHz to 1 GHz	± 3 dB				
Spurious emissions radiated 1 GHz to 12.75 GHz	± 3.7 dB				
Spurious emissions radiated above 12.75 GHz	± 4.5 dB				

10 Summary of measurement results

\boxtimes	No deviations from the technical specifications were ascertained
	There were deviations from the technical specifications ascertained
	This test report is only a partial test report. The content and verdict of the performed test cases are listed below.

CTC I advanced

TC Identifier	Description	Verdict	Date	Remark
RF-Testing	CFR Part 15 RSS - 247, Issue 2	Passed	2022-06-01	-/-

Test specification clause	Test case	Temperature conditions	Power source voltages	Mode	с	NC	NA	NP	Remark
§15.247(b)(4) RSS - 247 / 5.4 (d)	Antenna gain	Nominal	Nominal	TX single channel	\boxtimes				-/-
§15.247(a)(1) RSS - 247 / 5.1 (b)	Carrier frequency separation	Nominal	Nominal	FHSS	\boxtimes				-/-
§15.247(a)(1) RSS - 247 / 5.1 (d)	Number of hopping channels	Nominal	Nominal	FHSS	\boxtimes				-/-
§15.247(a)(1) (iii) RSS - 247 / 5.1 (d)	Time of occupancy (dwell time)	Nominal	Nominal	FHSS	\boxtimes				-/-
§15.247(a)(1) RSS - 247 / 5.1 (a)	Spectrum bandwidth of a FHSS system bandwidth	Nominal	Nominal	TX single channel	\boxtimes				-/-
§15.247(b)(1) RSS - 247 / 5.4 (b)	Maximum output power	Nominal	Nominal	TX single channel	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	Detailed spurious emissions @ the band edge - conducted	Nominal	Nominal	TX single channel and FHSS	\boxtimes				-/-
§15.205 RSS - 247 / 5.5 RSS - Gen	Band edge compliance radiated	Nominal	Nominal	-/-	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5	Spurious emissions conducted	Nominal	Nominal	TX single channel	\boxtimes				-/-
§15.209(a) RSS - Gen	Spurious emissions radiated below 30 MHz	Nominal	Nominal	TX single channel	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated 30 MHz to 1 GHz	Nominal	Nominal	TX single channel	\boxtimes				-/-
§15.247(d) RSS - 247 / 5.5 §15.109 RSS - Gen	Spurious emissions radiated above 1 GHz	Nominal	Nominal	TX single channel	\boxtimes				-/-
§15.107(a) §15.207	Conducted emissions below 30 MHz (AC conducted)	Nominal	Nominal	-/-			\boxtimes		-/-

<u>Note:</u> C = Compliant; NC = Not compliant; NA = Not applicable; NP = Not performed

11 RF measurements

11.1 Additional commer	its	
Reference documents:	None	
Special test descriptions:	None	
Configuration descriptions:	FHSS:	50 channels with a nominal bandwidth of 200 kHz and 400 kHz channel spacing.
		lowest channel 902.4 MHz middle channel 915.2 MHz highest channel 921.6 MHz
Test mode:	\boxtimes	Special software is used. EUT is transmitting pseudo random data by itself

12 Measurement results

12.1 Antenna gain

Description:

The antenna gain of the complete system is calculated by the difference of radiated power in EIRP and the conducted power of the module.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	1 MHz	
Video bandwidth	3 MHz	
Span	5 MHz	
Trace mode	Max hold	
Test setup	See sub clause 7.2 B (radiated) See sub clause 7.3 A (conducted)	
Measurement uncertainty	See sub clause 9	

Limits:

FCC	IC	
Antenr	na gain	
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.		

Results:

	Low channel	Middle channel	High channel
Conducted power	18.7 dBm	18.1 dBm	19.0 dBm
Radiated power	17.0 dBm	18.9 dBm	17.1 dBm
Gain Calculated	-0.7 dBi	+0.8 dBi	-1.9 dBi

12.2 Carrier Frequency Separation

Description:

Measurement of the carrier frequency separation of a hopping system. The carrier frequency separation is constant for all modulation-modes. We use DBPSK-modulation to show compliance. EUT in hopping mode.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	10 kHz	
Video bandwidth	30 kHz	
Span	See plots	
Trace mode	Max hold	
Test setup	See sub clause 7.3 A	
Measurement uncertainty	See sub clause 9	

Limits:

FCC	IC			
Carrier frequency separation				
Minimum 25 kHz or two-thirds of the 20 dB bandwidth of the hopping system whichever is greater. The two-thirds of the 20 dB bandwidth for IC is only valid for the ISM band 2400 – 2483.5 MHz.				

Result: The channel separation is 399.95 kHz.

Plots:

Date: 12.MAY.2022 05:52:50

12.3 Number of Hopping Channels

Description:

Measurement of the total number of used hopping channels. The number of hopping channels is constant for all modulation-modes. We use DBPSK -modulation to show compliance. EUT in hopping mode.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	See plots	
Video bandwidth	See plots	
Span	See plots	
Trace mode	Max hold	
Test setup	See sub clause 7.3 A	
Measurement uncertainty	See sub clause 9	

Limits:

FCC	IC	
Number of hopping channels		
At least 25 non overlapping hopping channels. If the 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping channels.		

Result: In summary, the EUT uses 50 channels.

Plots:

Plot 1: Number of macro channels

Date: 11.MAY.2022 13:04:42

12.4 Average Time of Occupancy (dwell time)

Description:

The measurement is performed in zero span mode to show that none of the 54 used channels is allocated more than 0.4 seconds within a 10 seconds interval (54 channels times 0.4s).

Limits:

FCC	IC
Average time	of occupancy
For frequency hopping systems operating in the 902-s channel is less than 250 kHz, the system shall use at occupancy on any frequency shall not be greater tha bandwidth of the hopping channel is 250 kHz or greate and the average time of occupancy on any frequency s period.	928 MHz band: If the 20 dB bandwidth of the hopping least 50 hopping frequencies and the average time of an 0.4 seconds within 20 second period; if the 20 dB er, the system shall use at least 25 hopping frequencies shall not be greater than 0.4 seconds within 10 second

<u>Result:</u> The time slot length is = 5.16 ms Number of hops / channel @ 20s = 1

Within 20 s period, the average time of occupancy in 20 s: 5.16 ms

 \rightarrow The average time of occupancy = 5.16 ms

Plots:

Plot 1: Time slot length = 5.16 ms

Date: 12.MAY.2022 07:56:46

Plot 2: hops / channel @ 20s = 1

Date: 12.MAY.2022 06:07:06

12.5 Spectrum bandwidth of a FHSS system

Description:

Measurement of the 20dB bandwidth and 99% bandwidth of the modulated signal. The measurement is performed according to the "Measurement Guidelines" (DA 00-705, March 30, 2000). EUT in single channel mode.

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	10 kHz	
Video bandwidth	30 kHz	
Span	See plots	
Trace mode	Max hold	
Test setup	See sub clause 7.3 A	
Measurement uncertainty	See sub clause 9	

Limits:

FCC	IC		
Spectrum bandwidth of a FHSS system			
< 1500 kHz			

Result:

Test Conditions		20dB BANDWIDTH		
		Low channel	Middle channel	High channel
T _{nom}	V _{nom}	212.7 kHz	211.3 kHz	212.7 kHz

Test Conditions		99% BANDWIDTH		
		Low channel	Middle channel	High channel
T _{nom}	V _{nom}	198.3 kHz	196.8 kHz	199.7 kHz

Plots: 20 dB bandwidth

Plot 1: Low Channel

Date: 5.MAY.2022 13:59:13

Plot 2: Middle Channel

Date: 5.MAY.2022 14:01:53

Plot 3: High Channel

Date: 5.MAY.2022 14:04:11

Plots: OBW 99

Plot 1: Low Channel

Date: 5.MAY.2022 13:58:38

Plot 2: Middle Channel

Date: 5.MAY.2022 14:02:19

Plot 3: High Channel

Date: 5.MAY.2022 14:04:39

12.6 Maximum Output Power

Measurement:

Measurement parameter		
Detector:	Peak	
Sweep time:	Auto	
Resolution bandwidth:	1 MHz	
Video bandwidth:	3 MHz	
Span:	5 MHz	
Trace-Mode:	Max Hold	
Used equipment:	See chapter 7.3 A	
Measurement uncertainty:	See chapter 8	

Limits:

FCC	IC	
Maximum Output	Power Conducted	
For frequency hopping systems operating in the 902–928 MHz band: 1 watt (30 dBm) for systems employing at least 50 hopping channels; and, 0.25 watts (24 dBm) for systems employing less than 50 hopping channels, but at least 25 hopping channels, as permitted under paragraph (a)(1)(i) of this section.		

Result:

Test Conditions		Maximum Output Power Conducted		
		Low channel	Middle channel	High channel
T _{nom}	V _{nom}	18.7 dBm	18.1 dBm	19.0 dBm

Test Conditions		ERP		
		Low channel	Middle channel	High channel
T _{nom}	V _{nom}	17.0 dBm	18.9 dBm	17.1 dBm

Plots:

Plot 1: Low Channel

Date: 5.MAY.2022 13:51:38

Plot 2: Middle Channel

Date: 5.MAY.2022 14:01:22

Plot 3: High Channel

Date: 5.MAY.2022 14:03:37

12.7 Detailed spurious emissions @ the band edge - conducted and radiated

Description:

Measurement of the conducted band edge compliance. EUT is measured at the lower and upper band edge in single channel and hopping mode. The measurement is repeated for all modulations.

CTC I advanced

Measurement parameters		
Detector	Peak	
Sweep time	Auto	
Resolution bandwidth	100 kHz	
Video bandwidth	300 kHz	
Span	Lower Band Edge: 902 MHz Upper Band Edge: 928 MHz	
Trace mode	Max hold	
Test setup	See sub clause 7.3 A	
Measurement uncertainty	See sub clause 9	

Limits:

FCC	IC
In any 100 kHz bandwidth outside the frequency band in v	which the spread spectrum or digitally modulated intentional
radiator is operating, the radio frequency power that is produ	uced by the intentional radiator shall be at least 20 dB below
that in the 100 kHz bandwidth within the band that contains t	the highest level of the desired power, based on either an RF
conducted or a radiated measurement. Attenuation below the	e general limits specified in Section 15.209(a) is not required.

Results conducted:

Scenario	Spurious band edge conducted		
Modulation	lowest channel	middle channel	highest channel
Lower band edge – hopping on	> 20 dB	> 20 dB	> 20 dB
Upper band edge – hopping on	> 20 dB	> 20 dB	> 20 dB

Plots:

Date: 11.MAY,2022 05:55:26

Plot 2: 20 dB - hopping off, lowest channel lower bandedge

Results radiated:

No restricted band in the range ± 2 channel bandwidths of the Band-edges of the specified emission band! (608 MHz – 614 MHz and 960 MHz – 1240 MHz).

Section 15.205 Restricted bands of operation.

(a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below:

MHz	MHz	MHz	GHz
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
2.1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			275.43 ×

12.8 Spurious Emissions Conducted

Description:

Measurement of the conducted spurious emissions in transmit mode. The EUT is set to single channel mode. The measurement is repeated for low, mid and high channel.

Measurement:

Measurement parameter			
Detector:	Peak		
Sweep time:	Auto		
Video bandwidth:	F < 1 GHz: 1 MHz F > 1 GHz: 1 MHz		
Resolution bandwidth:	F < 1 GHz: 100 kHz F > 1 GHz: 100 kHz		
Span:	9 kHz to 12.75 GHz		
Trace-Mode:	Max Hold		
Used equipment:	See chapter 7.3A		
Measurement uncertainty:	See chapter 9		

Limits:

FCC	IC
TX spurious emis	ssions conducted
In any 100 kHz bandwidth outside the frequency band in v radiator is operating, the radio frequency power that is produ that in the 100 kHz bandwidth within the band that contains t conducted or a radiated measurement. Attenuation below the	which the spread spectrum or digitally modulated intentional uced by the intentional radiator shall be at least 20 dB below the highest level of the desired power, based on either an RF general limits specified in Section 15.209(a) is not required

Result:

Emission Limitation							
Frequency Amplitud		mplitude of	Limit max.	actual attenuation	Results		
[MHz]	en	nission	allowed emission below frequency of				
	[dl	Bm]	power	operation [dB]			
895	18	3.8	24 dBm	>-40dB	Operating frequency		
No e	missions detecte	ed!	-20 dBc				
913	18	3.1	24 dBm	>-40dB	Operating frequency		
No emissions detected!		-20 dBc					
913	19	9.1	24 dBm	>-40dB	Operating frequency		
No emissions detected!		-20 dBc					

Plots:

Plot 1: Low channel, 9 kHz - 12.75 GHz

Plot 2: Middle channel, 9 kHz - 12.75 GHz

Date: 5.MAY.2022 14:07:22

Plot 3: High channel, 9 kHz – 1 GHz

Date: 5.MAY.2022 14:05:49

12.9 Spurious Emissions Radiated < 30 MHz

Description:

Measurement of the radiated spurious emissions in transmit mode below 30 MHz. The EUT is set to single channel mode and the transmit channels are 00; 39 and 78. The measurement is performed in the mode with the highest output power. The limits are recalculated to a measurement distance of 3 m according the ANSI C63.10.

Measurement:

Measurement parameter						
Detector:	Peak / Quasi Peak					
Sweep time:	Auto					
Video bandwidth:	F < 150 kHz:200 HzF > 150 kHz:9 kHz					
Resolution bandwidth:	F < 150 kHz: 1 kHz F > 150 kHz: 100 kHz					
Span:	9 kHz to 30 MHz					
Trace-Mode:	Max Hold					
Used equipment:	See chapter 7.2 B					
Measurement uncertainty:	See chapter 9					

Limits:

FCC			IC			
TX spurious emissions radiated < 30 MHz						
Frequency (MHz)	Field streng	th (dBμV/m)	Measurement dis	tance		
0.009 – 0.490	2400/F	F(kHz)	300			
0.490 – 1.705	24000/F(kHz)		30			
1.705 – 30.0	3	0	30			

Result:

SPURIOUS EMISSIONS LEVEL [dBµV/m]								
Lowest channel Middle channel Highest channel								
Frequency	Detector	Level	Frequency Detector Level Frequency Dete				Detector	Level
All emissions were more than 10 dB below the limit.								

Plots:

Plot 2: TX-Mode mid channel

Plot 3: TX-Mode high channel

12.10 Spurious Emissions Radiated > 30 MHz

12.10.1 Spurious emissions radiated 30 MHz to 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed at channel low, mid and high.

Measurement:

Measurement parameters					
Detector	Peak / Quasi Peak				
Sweep time	Auto				
Resolution bandwidth	3 x VBW				
Video bandwidth	120 kHz				
Span	30 MHz to 1 GHz				
Trace mode	Max hold				
Measured modulation	TX single channel				
Test setup	See sub clause 7.1 A				
Measurement uncertainty	See sub clause 9				

Limits:

FCC	IC				
Band-edge Compliance of conducted and radiated emissions					

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Frequency (MHz)	Field Strength (dBµV/m)	Measurement distance		
30 - 88	30.0	10		
88 – 216	33.5	10		
216 – 960	36.0	10		
Above 960	54.0	3		

Result:

See result table below the plots.

Plots:

Plot 1: 30 MHz – 1 GHz, horizontal & vertical polarisation (lowest channel)

Final_Result

Frequency (MHz)	QuasiPea k (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
43.777	26.97	30.0	3.0	1000	120.0	214.0	V	210	16
47.805	25.64	30.0	4.4	1000	120.0	113.0	V	180	16
55.984	20.66	30.0	9.3	1000	120.0	103.0	V	-11	16
839.901	21.74	36.0	14.3	1000	120.0	162.0	V	139	24
901.979	102.49	36.0	-66.5	1000	120.0	114.0	Н	331	26
912.319	23.74	36.0	12.3	1000	120.0	200.0	V	305	26

Plot 2: 30 MHz - 1 GHz, horizontal & vertical polarisation (middle channel)

Final_Result

Frequency (MHz)	QuasiPea k (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
41.608	24.43	30.0	5.6	1000	120.0	195.0	V	194	16
43.801	26.57	30.0	3.4	1000	120.0	110.0	V	145	16
50.428	24.35	30.0	5.7	1000	120.0	155.0	V	217	16
730.319	27.88	36.0	8.1	1000	120.0	195.0	Н	289	23
779.057	29.59	36.0	6.4	1000	120.0	195.0	Н	-16	24
915.180	91.79	36.0	-55.8	1000	120.0	101.0	Н	79	26

Plot 3: 30 MHz - 1 GHz, horizontal & vertical polarisation (highest channel)

Final_Result

Frequency (MHz)	QuasiPea k (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Meas. Time (ms)	Bandwidth (kHz)	Height (cm)	Pol	Azimuth (deg)	Corr. (dB/m)
42.945	27.42	30.0	2.6	1000	120.0	104.0	V	234	16
43.791	28.21	30.0	1.8	1000	120.0	109.0	V	150	16
74.562	28.71	30.0	1.3	1000	120.0	181.0	V	174	8
718.932	27.37	36.0	8.6	1000	120.0	195.0	V	127	23
745.477	28.65	36.0	7.4	1000	120.0	191.0	V	-21	24
921.579	90.37	36.0	-54.4	1000	120.0	98.0	Н	81	26

12.10.2 Spurious emissions radiated above 1 GHz

Description:

Measurement of the radiated spurious emissions in transmit mode. The measurement is performed in the mode with the highest output power.

Measurement parameters					
Detector	Peak / RMS				
Sweep time	Auto				
Resolution bandwidth	1 MHz				
Video bandwidth	3 x RBW				
Span	1 GHz to 26 GHz				
Trace mode	Max hold				
Measured modulation	DBPSK				
Test setup	See sub clause 7.2 C (1 GHz – 12.75 GHz)				
Measurement uncertainty	See sub clause 9				

The modulation with the highest output power was used to perform the transmitter spurious emissions. If spurious were detected a re-measurement was performed on the detected frequency with each modulation.

Limits:

ANSI C63.10

The average emission shall be determined by using Video averaging (VBW = 10 Hz). If the dwell time of the hopping signal is less than 100 ms (per channel), the VBW=10 Hz reading may be adjusted by a factor: $F = 20\log (dwell time/100 ms)$

FCC			IC			
TX spurious emissions radiated						
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).						
§15.209						
Frequency	Field strength Measurement distance					
Above 960 MHz	54.0 dBµV/m 3 m					

Result:

For radiated spurious emission the limits of 15.209 applies for all frequencies mentioned in 15.205. According to FCC Public Notice DA 00-705 (ANSI C63.10) the average emission shall be determined by using Video averaging (VBW = 10 Hz). If the dwell time of the hopping signal is less than 100 ms (per channel), the VBW=10 Hz reading may be adjusted by a factor:

F = 20*log (dwell time/100 ms)

One pulse train is 5.16 ms in a 100 ms time period so the correction factor is -25.7 (see plots in chapter 12.4)

TX spurious emissions radiated [dBµV/m]										
Lowest channel			Middle channel			Highest channel				
F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]	F [MHz]	Detector	Level [dBµV/m]		
1805	Peak	58.0	1830	Peak	54.1	1843	Peak	59.5		
	AVG*	32.3		AVG*	28.4		AVG*	33.8		
2707	Peak	46.2	2746	Peak	46.6	2765	Peak	45.4		
	AVG*	20.5		AVG*	20.9		AVG*	19.7		
3609	Peak	50.0	3666	Peak	52.2	3686	Peak	51.0		
	AVG*	24.3		AVG*	26.5		AVG*	25.3		
5419	Peak	54.9		Peak			Peak			
	AVG*	29.2		AVG*			AVG*			

*Values recalculated with -25.7 dB duty cycle correction factor

Plots:

Plot 1: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (lowest channel)

Plot 2: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (middle channel)

Plot 3: 1 GHz – 12.75 GHz, horizontal & vertical polarisation (highest channel)

13 Observations

No observations except those reported with the single test cases have been made.

14 Glossary

EUT	Equipment under test				
DUT	Device under test				
UUT	Unit under test				
GUE	GNSS User Equipment				
ETSI	European Telecommunications Standards Institute				
EN	European Standard				
FCC	Federal Communications Commission				
FCC ID	Company Identifier at FCC				
IC	Industry Canada				
PMN	Product marketing name				
HMN	Host marketing name				
HVIN	Hardware version identification number				
FVIN	Firmware version identification number				
EMC	Electromagnetic Compatibility				
HW	Hardware				
SW	Software				
Inv. No.	Inventory number				
S/N or SN	Serial number				
С	Compliant				
NC	Not compliant				
NA	Not applicable				
NP	Not performed				
PP	Positive peak				
QP	Quasi peak				
AVG	Average				
00	Operating channel				
OCW	Operating channel bandwidth				
OBW	Occupied bandwidth				
OOB	Out of band				
DFS	Dynamic frequency selection				
CAC	Channel availability check				
OP	Occupancy period				
NOP	Non occupancy period				
DC	Duty cycle				
PER	Packet error rate				
CW	Clean wave				
MC	Modulated carrier				
WLAN	Wireless local area network				
RLAN	Radio local area network				
DSSS	Dynamic sequence spread spectrum				
OFDM	Orthogonal frequency division multiplexing				
FHSS	Frequency hopping spread spectrum				
GNSS	Global Navigation Satellite System				
C/N₀	Carrier to noise-density ratio, expressed in dB-Hz				

15 Document history

Version	Applied changes	Date of release
-/-	Initial release	2022-05-31

16 Accreditation Certificate – D-PL-12076-01-04

first page	last page				
Deutsche Deutsche Akkreditierungsstelle GmbH	Deutsche Akkreditierungsstelle GmbH				
Entrusted according to Section 8 subsection 1 AkkStelleG in connection with Section 1 subsection 1 AkkStelleGBV Signatory to the Multilateral Agreements of EA, ILAC and IAF for Mutual Recognition Accreditation	Office Berlin Office Frankfurt am Main Office Braunschweig Spittelmarkt 10 Europa-Allee 52 Bundesallee 100 10117 Berlin 60327 Frankfurt am Main 38116 Braunschweig				
The Deutsche Akkreditierungsstelle GmbH attests that the testing laboratory CTC advanced GmbH Untertürkheimer Straße 6-10, 66117 Saarbrücken is competent under the terms of DIN EN ISO/IEC 17025:2018 to carry out tests in the following fields: Telecommunication (TC) and Electromagnetic Compatibility (EMC) for Canadian					
Standards	The publication of extracts of the accreditation certificate is subject to the prior written approval by Deutsche Akkrediterungsstelle GmbH (DAKS). Exempted is the unchanged form of separate disseminations of the cover back by the conformity assessment body methoded overhead. No impression shall be made that the accreditation also extends to fields beyond the scope of accreditation attested by DAKS.				
The accreditation certificate shall only apply in connection with the notice of accreditation of 09.06.2020 with the accreditation number D-PL-12076-01. It comprises the cover sheet, the reverse side of the cover sheet and the following annex with a total of 07 pages. Registration number of the certificate: D-PL-12076-01-04	The accreditation was granted pursuant to the Act on the Accreditation Body (AkkStelled) of 31.09/3009 (rederal LuX Gazette J. a 2523) and the Regulation (EQ No 7552)008 of the European Prainament and of the Council of 9 July 2008 setting out the requirements for accreditation and market surveillance relating to the marketing of products (Official Journal of the European Intol a 218 of 9 July 2008, 330). DAkkS is a signatory to the Multilateral Agreements for Mutual Recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Cooperation (JLAC). The signatories to these agreements recognise each other's accreditations. The up-to-date state of membership can be retrieved from the following websites:				
Frankfurt am Main, 09.06.2020 by order (Jak-ing, USB/HR) Egner Head of Division	EA: www.european-accreditation.org ILAC: www.lac.org IAF: www.laf.nu				
The certificate tagether with its annex reflects the status at the time of the date of issue. The current status of the scope of accorditation can be found in the database of according backs of Deutsche Akkreditierungsstelle GmbH. https://www.daks.de/en/content/accredite&backs-dakks.					

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-04e.pdf

or https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-04 Canada TCEMC.pdf

17 Accreditation Certificate – D-PL-12076-01-05

Note: The current certificate annex is published on the websites (link see below).

https://www.dakks.de/files/data/as/pdf/D-PL-12076-01-05e.pdf

or

https://ctcadvanced.com/app/uploads/2020/06/D-PL-12076-01-05 TCB USA.pdf