

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

FCC ID Compiled (position+ Supervise (position+ Approved (position+ Date of iss Testing L Address Applicant Address	printed name+signature) .: d by printed name+signature) .:	CTA24072900906 2AY4C-MG01 File administrators Jinghua Xiao Project Engineer Xudong Zhang RF Manager Eric Wang Oct. 16, 2024 Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China ShenZhen Jiteng Network Technology Co., Ltd. Floor 7, Building B, Boton Science and Technology Park, Chaguang
FCC ID Compiled (position+ Supervise (position+ Approved (position+ Date of iss Testing L Address Applicant Address	by printed name+signature) .: d by printed name+signature) .: by printed name+signature) .: sue	2AY4C-MG01 File administrators Jinghua Xiao Project Engineer Xudong Zhang RF Manager Eric Wang Oct. 16, 2024 Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China ShenZhen Jiteng Network Technology Co., Ltd.
FCC ID Compiled (position+ Supervise (position+ Approved (position+ Date of iss Testing L Address Applicant Address	by printed name+signature) .: d by printed name+signature) .: by printed name+signature) .: sue	2AY4C-MG01 File administrators Jinghua Xiao Project Engineer Xudong Zhang RF Manager Eric Wang Oct. 16, 2024 Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China ShenZhen Jiteng Network Technology Co., Ltd.
(position+ Supervise (position+ Approved (position+ Date of iss Testing L Address Applicant Address	printed name+signature) .: d by printed name+signature) .: by printed name+signature) .: sue	Project Engineer Xudong Zhang RF Manager Eric Wang Oct. 16, 2024 Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China ShenZhen Jiteng Network Technology Co., Ltd.
Supervise (position+ Approved (position+ Date of iss Testing L Address Applicant Address	d by printed name+signature) .: by printed name+signature) .: sue aboratory Name	Project Engineer Xudong Zhang RF Manager Eric Wang Oct. 16, 2024 Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China ShenZhen Jiteng Network Technology Co., Ltd.
(position+ Approved (position+ Date of iss Testing L Address Applicant Address	printed name+signature) .: by printed name+signature) .: sue aboratory Name 's name	RF Manager Eric Wang Oct. 16, 2024 Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China ShenZhen Jiteng Network Technology Co., Ltd.
Approved (position+ Date of iss Testing L Address Applicant Address	by printed name+signature) .: sue	RF Manager Eric Wang Oct. 16, 2024 Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China ShenZhen Jiteng Network Technology Co., Ltd.
(position+ Date of iss Testing L Address Applicant Address	printed name+signature) .: sue	RF Manager Eric Wang Oct. 16, 2024 Shenzhen CTA Testing Technology Co., Ltd. Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China ShenZhen Jiteng Network Technology Co., Ltd.
Date of iss Testing L Address Applicant Address	aboratory Name	RF Manager Eric Wang Ø Oct. 16, 2024 Ø Shenzhen CTA Testing Technology Co., Ltd. Ø Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China Ø ShenZhen Jiteng Network Technology Co., Ltd. Ø
Testing L Address Applicant Address	aboratory Name:	Shenzhen CTA Testing Technology Co., Ltd.Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,Fuhai Street, Bao'an District, Shenzhen, ChinaShenZhen Jiteng Network Technology Co., Ltd.
Address Applicant Address	's name	Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China ShenZhen Jiteng Network Technology Co., Ltd.
Applicant Address	's name:	Fuhai Street, Bao'an District, Shenzhen, China ShenZhen Jiteng Network Technology Co., Ltd.
Address		
-	TESTING	Floor 7, Building B, Boton Science and Technology Park, Chaguang
Test spec		Road, Xili Street, Nanshan District, Shenzhen, 518055, China
SALE -	ification:	STING
Standard.		FCC Part 15 Subpart E 15.407
		Shenzhen CTA Testing Technology Co., Ltd.
Shenzher	CTA Testing Technology	Co., Ltd. All rights reserved.
CTA Testi CTA Testi	ng Technology Co., Ltd. is a ng Technology Co., Ltd. take	whole or in part for non-commercial purposes as long as the Shenzhe cknowledged as copyright owner and source of the material. Shenzhe es no responsibility for and will not assume liability for damages on of the reproduced material due to its placement and context.
Test item	description:	Gaming Mini PC
Trade Mai	'k	N/A
Manufactu	ırer	ShenZhen Jiteng Network Technology Co., Ltd.
Model/Typ	e reference:	MegaMini2
Listed Mo	dels:	N/A
Modulatio	n Type:	N/A CCK/DSSS/OFDM
Operation	Frequency:	U-NII-5: 5955MHz~6415MHz, U-NII-6: 6435MHz~6515MHz U-NII-7: 6535MHz~6875MHz, U-NII-8: 6895MHz~7095MHz
Rating	:	DC 19.5V From external circuit
Result	TING	PASS

eport No.: CTA24072900906		Page 2 of 38
CTATESTING	TEST REPORT	
Equipment under Test	Gaming Mini PC MegaMini2	
Model /Type	MegaMini2	
Series Model No.	N/A	
Applicant	ShenZhen Jiteng Network Technology Co., Lt	d.
Address	Floor 7, Building B, Boton Science and Technolo Road, Xili Street, Nanshan District, Shenzhen, 57	
Manufacturer	ShenZhen Jiteng Network Technology Co., Lt	d. CTATES
Address	Floor 7, Building B, Boton Science and Technolo Road, Xili Street, Nanshan District, Shenzhen, 5	
Test Resu	t: PASS	.6
		ZING

GA CTATE It is not permitted to copy extracts of these test result without the written permission of the test laboratory. CTATESTING

Contents

1	<u>TEST STANDARDS</u>	
	TED	
Concernant of the second se		-ING
<u>2</u>	<u>SUMMARY</u>	<u></u>
		CTATES 5
2.1	General Remarks	5
2.2	Product Description	5
2.3	Equipment Under Test	6
2.4	Short description of the Equipment under Test (EUT)	6
2.5	EUT operation mode	6
2.6	Block Diagram of Test Setup	10
2.7	Related Submittal(s) / Grant (s)	10
2.8	Modifications	10
	TES	<u> </u>
	CTA .	
<u>3</u>	TEST ENVIRONMENT	<u>11</u>
	CTA IL	
3.1	Address of the test laboratory	-55T11
3.2	Test Facility	TATES 11
3.3	Environmental conditions	C ¹
3.4	Test Description	CTA TES 11 11 12
3.4	Statement of the measurement uncertainty	12
3.6	Equipments Used during the Test	12
3.0	Equipments used during the rest	15
	STIN	
<u>4</u>	TEST CONDITIONS AND RESULTS	<u></u>
	CIA	
4.1	AC Power Conducted Emission	15
4.1	Radiated Emission and Restricted Bands Requirement	15 IS
4.2 4.3	Maximum E.I.R.P.	CTATESTING 15 18 25 26 28 29 29
-	Maximum E.I.K.P.	25
4.4	E.I.R.P. Spectral Density Test	26
4.5	Bandwidth Test	28
4.6		
4.7	Contention-based Protocol	31
4.8	Frequency Stability	33
4.9	Operational restrictions for 6GHz U-NII devices	35
4.10	Antenna Requirement	36
<u>5</u>	TEST SETUP PHOTOS OF THE EUT	
_	CIF	TINC
6	PHOTOS OF THE EUT	2.0-
<u>6</u>		CTATESTING
		-ESTIN'
		TATL
	CTATESTING	
	~ESIN'	
	CTATESTING	TESTING
		STIN

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules Part 15.407: UNLICENSED NATIONAL INFORMATION INFRASTRUCTURE DEVICES. ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devices KDB 662911 D01 Multiple Transmitter Output v02r01: Emissions Testing of Transmitters with Multiple Outputs in the Same Band KDB 987594 D01 U-NII 6GHz General Requirements v01r02: UNLICENSED NATIONAL INFORMATION

KDB 987594 D02 U-NII 6GHz EMC Measurement v01r01: Part 15 Subpart E U-NII 6 GHz General Guidance Bands 5, 6, 7, 8 CTATES

2 SUMMARY

2.1 General Remarks

2.1 General Remarks		
Date of receipt of test sample		Aug. 05, 2024
Testing commenced on		Aug. 05, 2024
Testing concluded on	:	Oct. 16, 2024

Model/Type reference:	151	
	MegaMini2	
Power supply:	DC 19.5V From external circuit	ESTINC
Adapter information:	Model: HKA300195A5-0A7 Input: AC 100-240V 50/60Hz 5. Output: DC 19.5V 15.38A 299.9	
testing sample ID:	CTA240729009-1# (Engineer sa CTA240729009-2# (Normal san	
Hardware version:	V1.0	. ,
Software version:	V1.0	
WIFI :		
Operation frequency:	Operation Frequency: U-NII-5: 5955MHz~6415MHz, U U-NII-7: 6535MHz~6875MHz, U	
Modulation:	802.11a: OFDM (QPSK, BPSK, 802.11ax: OFDMA (BPSK, QPS	16QAM, 64QAM) SK,16QAM, 64QAM, 256QAM, 1024QAM)
Beamforming Function:	With Beamforming, Withou	ut Beamforming
Device Type:	Indoor Access Point Indoor Client Dual Client Fixed Client	Subordinate Standard Power Access Point Standard Client
Antenna type:	Internal antenna	STING
Antenna gain:	ANT1:2.17 dBi, ANT2:4.71 dBi	ATES
Note1:	CDD Mode use max. antenna Gai	+ 10 ^{Chain1/20} +10 ^{Chain2/20} + 10 ^{Chain3/20}) ² / 4] in
Note2:	For PSD: CDD/Beamforming Mode: Directional gain = 10 log[(10 ^{Chain0/20}	+ 10 ^{Chain1/20} +10 ^{Chain2/20} + 10 ^{Chain3/20}) ² / 4]

2.3 Equipment Under Test

Power supply system utilised

Power supply voltage	:	0	230V / 50 Hz	0	120V / 60Hz
Gui		0	12V DC	0	24V DC
	and the second	۲	Other (specified in blank be	low) ISTING
					TES

DC 19.5V From external circuit

Short description of the Equipment under Test (EUT) 2.4

This is a Gaming Mini PC.

For more details, refer to the user's manual of the EUT.

2.5 EUT operation mode

(1) Channel List:

		5955-6	6415MHz(U-NII-5	band)		
	Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	
		1	5955	49	6195	
		5	5975	53	6215	
		9	5995	57	6235	
		13	6015	61	6255	
		17	6035	65	6275	
	902.44 ov(11520)	21	6055	69	6295	
	802.11ax(HE20)	25	6075	73	6315	
		29	6095	77	6335	
		33	6115	81	6355	
		37	6135	85	6375	17
		41	6155	89	6395	
-59		45	6175	93	6415	
(A)L	Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	
		3	5965	51	6205	
		11	6005	59	6245	
	902 11 _{0V} /UE40)	19	6045	67	6285	
	802.11ax(HE40)	27	6085	75	6325	
		35	6125	83	6365	
		43	6165	91	6405	
	Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	
		7	5985	55	6225	
	802.11ax(HE80)	23	6065	71	6305	1
		39	6145	87	6385	1
	Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	
	802.11ax(HE160)	15	6025	79	6345	XF
	002.11ax(HE100)	47	6185			KP

	-ESI"							
	6425-6525MHz(U-NII-6 band)							
	Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)			
		97	6435	109	6495			
	802.11ax(HE20)	101	6455	113	6515			
		105	6475					
	Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)			
	802.11ax(HE40)	99	6445	*115	6525			
CTATE	002.11ax(11L40)	107	6485					
	Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)			
	802.11ax(HE80)	103	6465	*119	6545			
	Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)			
	802.11ax(HE160)	*111	6505					
G	*mean this is strad	dle channel.		•				

		6525-	6885MHz(U-NII-7	band)			
	Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
		117	6535	153	6715		
		121	6555	157	6735		
		125	6575	161	6755		
	802.11ax(HE20)	129	6595	165	6775		
		133	6615	169	6795		
		137	6635	173	6815		
		141	6655	177	6835		
CTATE		145	6675	181	6855		
ì		149	6695	*185	6875		
	Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
		123	6565	163	6765		
		131	6605	171	6805		
	802.11ax(HE40)	139	6645	179	6845		
G		147	6685	*187	6885		
		155	6725				
	Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
	902 11ov(UE90)	135	6625	167	6785		
	802.11ax(HE80)	151	6705	*183	6865		
	Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)		
	802.11ax(HE160)	143	6665	*175	6825		
	*mean this is straddle channel.						

TATESI Page 8 of 38

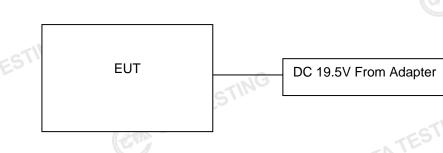
	6875-7125MHz(U-NII-8 band)					
	Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	
		189	6895	213	7015	1
	000 44 ov/UE20)	193	6915	217	7035	
		197	6935	221	7055	
	802.11ax(HE20)	201	6955	225	7075	
		205	6975	229	7095	(P
		209	6995			
CTAT	Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	
GIR		195	6925	219	7045	
	802.11ax(HE40)	203	6965	227	7085	
		211	7005			
	Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	
	802.11ax(HE80)	199	6945	215	7025	
	Bandwidth	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	
	802.11ax(HE160)	207	6985	/	/	
	CTA TESTIN		CTING	·		
		C	ATESTING			

(2) Test Channel

	U-NII-5		
		Para	meters
Mode	Frequency(MHz)	CDD Mode	BF Mode
	5955	32	N/A
02.11ax(HE20) 🥢	6175	32	N/A
	6415	32	N/A
	5965	56	N/A
02.11ax(HE40)	6165	58	N/A
	6405	60	N/A
	5985	70	N/A
)2.11ax(HE80)	6145	72	N/A
· · · ·	6385	76	N/A
	G 6025	68	N/A
2.11ax(HE160)	6185	68	N/A
TATES	6345	72	N/A
	U-NII-6		
Marti		Para	meters
Mode	Frequency(MHz)	CDD Mode	BF Mode
	6435	32	N/A
02.11ax(HE20)	6475	32	N/A
· - /	6515	36	N/A
	6445	64	N/A
02.11ax(HE40)	6485	64	N/A
ING	6525	64	N/A
	6465	80	N/A
)2.11ax(HE80)	6545	80	N/A
2.11ax(HE160)	6505	72	N/A
	U-NII-7	12	
		Para	meters
Mode	Frequency(MHz)	CDD Mode	BF Mode
	6535	36	N/A
	6695	36	N/A
02.11ax(HE20)	6855	36	N/A
	6875	36	N/A
	6565	64	N/A
	6685	64	N/A
02.11ax(HE40)	6845	64	N/A
	6885	64	N/A
TATES	6625	80 0	N/A
GV	6705	80	N/A
02.11ax(HE80)	6785	80	N/A N/A
	6865	80	N/A / C
	6665	72	N/A N/A
2.11ax(HE160)	6825	72	N/A N/A
	U-NII-8	12	IN/A
	0-111-0	Doro	meters
Mode	Frequency(MHz)	CDD Mode	BF Mode
	C005		
2 11 av/UE20)	6895	36	N/A
2.11ax(HE20)	6995	36	N/A
	7095	36	N/A
2 44 ov/UE 40	6925	64	N/A
2.11ax(HE40)	6965	64	N/A
	7085	64	S N/A
02.11ax(HE80)	6945	76	N/A
	7025	76	N/A
2.11ax(HE160)	6985	72	N/A

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.


According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

(2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.

Mode	Data Rate
AX(HE20) Mode-CDD	HE0NSS1
AX(HE40) Mode-CDD	HE0NSS1
AX(HE80) Mode-CDD	HE0NSS1
AX(HE160) Mode-CDD	HE0NSS1

CTATESTING (3) The EUT is considered a Mobile unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane CTATESTING was used for radiated emission measurement test.

Block Diagram of Test Setup 2.6

2.7 Related Submittal(s) / Grant (s)

This submittal(s) (test report) is intended for filing to comply with Section 15.407 of the FCC Part 15, Subpart E Rules.

2.8 **Modifications**

No modifications were implemented to meet testing criteria. CTATESTING

Shenzhen CTA Testing Technology Co., Ltd.

3 TEST ENVIRONMENT

3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

3.2 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement

ISED#: 27890 CAB identifier: CN0127

Shenzhen CTA Testing Technology Co., Ltd. has been listed by Innovation, Science and Economic Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

3.3 Environmental conditions

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

Temperature:	25 ° C
Humidity:	45 %
Atmospheric pressure:	950-1050mbar

Conducted testing.

inductou teeting.		
Temperature:	25 ° C	
TAIL		.NG
Humidity:	44 %	STING
Co.		-NTES
Atmospheric pressure:	950-1050mbar 🕓	r

AC Power Conducted Emission

Temperature:	24 ° C
Humidity:	44 %
ING	
Atmospheric pressure:	950-1050mbar
	TATESTIN

Shenzhen CTA Testing Technology Co., Ltd.

3.4 Test Description

FCC PART 15.407		
Standard Section	Test Item	Judgment
15.407(b)(8)	Conducted Emission	PASS
15.407(b)(5)(8)	Radiated Spurious Emission	PASS
15.407(b)(5)(8)	Conducted Spurious Emission	PASS
15.407(b)(6)	In-Band Emission(Mask)	PASS
15.407(a)(4/5/6/7/8)	Max E.I.R.P.	PASS
15.407(a)(10)	Emission Bandwidth Measurement	PASS
15.407(a)(4/5/6/7/8)	E.I.R.P Spectral Density	PASS
15.407(d)(6)	Contention-based Protocol	PASS
15.407(g)	Frequency Stability	PASS
15.407(d)	Operational restrictions for 6GHz U-NII devices	PASS
15.203	Antenna Requirement	PASS
1 JIG	On Time and Duty Cycle	PASS

3.5 Statement of the measurement uncertainty

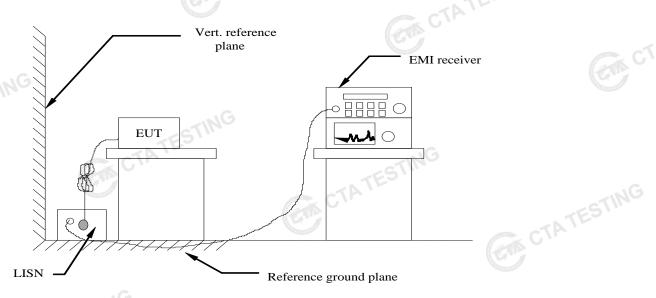
The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device. Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd. :

Test	Range	Measurement Uncertainty	Notes	
Radiated Emission	9KHz~30MHz	3.02 dB	(1)	
Radiated Emission	30~1000MHz	4.06 dB	(1)	. G
Radiated Emission	1~18GHz	5.14 dB	(1)	GTINU
Radiated Emission	18-40GHz	5.38 dB	(1)	TES.
Conducted Disturbance	0.15~30MHz	2.14 dB	(1)	
Output Peak power	30MHz~18GHz	0.55 dB	(1)	
Power spectral density	/	0.57 dB 🕥	/ (1)	
Spectrum bandwidth	/	1.1%	(1)	
Radiated spurious emission (30MHz-1GHz)	30~1000MHz	4.10 dB	(1)	
Radiated spurious emission (1GHz-18GHz)	1~18GHz	4.32 dB	(1)	
Radiated spurious emission (18GHz-40GHz)	18-40GHz	5.54 dB	(1)	

(1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

3.6 Equipments Used during the Test

	Test Equipment	Manufacturer	Model No.	Equipment No.	Calibration Date	Calibration Due Date
	LISN	R&S	ENV216	CTA-308	2024/08/03	2025/08/02
	LISN	R&S	ENV216	CTA-314	2024/08/03	2025/08/02
	EMI Test Receiver	R&S	ESPI	CTA-307	2024/08/03	2025/08/02
	EMI Test Receiver	R&S	ESCI	CTA-306	2024/08/03	2025/08/02
	Spectrum Analyzer	Agilent	N9020A	CTA-301	2024/08/03	2025/08/02
	Spectrum Analyzer	R&S	FSU	CTA-337	2024/08/03	2025/08/02
	Spectrum Analyzer	R&S	FSV40	CTA-338	2024/08/03	2025/08/02
	Vector Signal generator	Agilent	N5182A	CTA-305	2024/08/03	2025/08/02
	Analog Signal Generator	R&S	SML03	CTA-304	2024/08/03	2025/08/02
	WIDEBAND RADIO COMMUNICATION TESTER	CMW500	R&S	CTA-302	2024/08/03	2025/08/02
	Temperature and humidity meter	Chigo	ZG-7020	CTA-326	2024/08/03	2025/08/02
	Ultra-Broadband Antenna	Schwarzbeck	VULB9163	CTA-310	2023/10/17	2024/10/16
	Horn Antenna	Schwarzbeck	BBHA 9120D	CTA-309	2023/10/13	2024/10/12
	Loop Antenna	Zhinan	ZN30900C	CTA-311	2023/10/17	2024/10/16
	Broadband Horn Antenna	A-INFOMW	LB-180500H-2.4F	CTA-336	2023/09/13	2026/09/12
	Amplifier	Schwarzbeck	BBV 9745	CTA-312	2024/08/03	2025/08/02
TE	Amplifier	Taiwan chengyi	EMC051845B	CTA-313	2024/08/03	2025/08/02
	Directional coupler	NARDA	4226-10	CTA-303	2024/08/03	2025/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA18	CTA-402	2024/08/03	2025/08/02
	High-Pass Filter	XingBo	XBLBQ-GTA27	CTA-403	2024/08/03	2025/08/02
	Automated filter bank	Tonscend	JS0806-F	CTA-404	2024/08/03	2025/08/02
	Power Sensor	Agilent	U2021XA	CTA-405	2024/08/03	2025/08/02
	Amplifier	G Schwarzbeck	BBV9719	CTA-406	2024/08/03	2025/08/02
	CTATES	Can C	TATESTING	- 10	TESTING	


Page 14 of 38

	Test Equipment	Manufacturer	Model No.	Version number	Calibration Date	Calibration Due Date	
	EMI Test Software	Tonscend	TS®JS32-RE	5.0.0.2	N/A	N/A	
	EMI Test Software	Tonscend	TS®JS32-CE	5.0.0.1	N/A G	N/A	
	RF Test Software	Tonscend	TS®JS1120-3	3.1.65	N/A	N/A	
	RF Test Software	Tonscend	TS®JS1120	3.1.46	N/A	N/A	TATE
	TING					CTA .	
CTATE	51	CTATESTING					
<i>V</i>		CTAIL					

TEST CONDITIONS AND RESULTS 4

4.1 AC Power Conducted Emission

TEST CONFIGURATION

TEST PROCEDURE

1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.

2 Support equipment, if needed, was placed as per ANSI C63.10-2013

3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013

4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.

5 All support equipments received AC power from a second LISN, if any.

6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.

7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes. **TATESTING** 8 During the above scans, the emissions were maximized by cable manipulation.

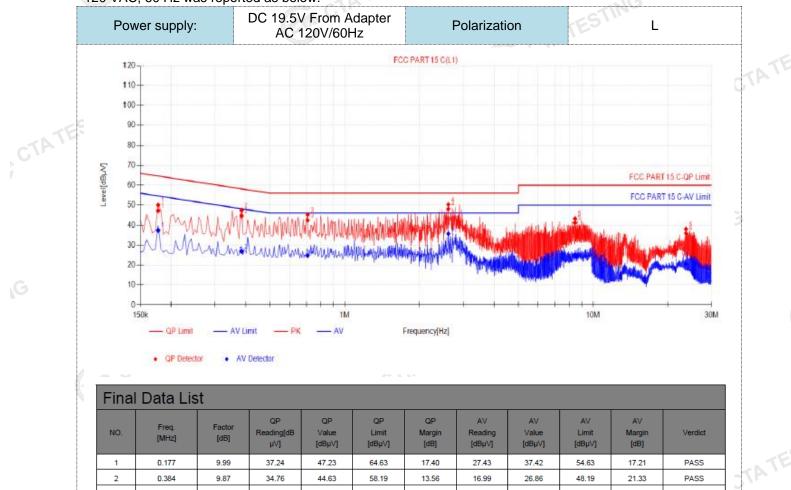
AC Power Conducted Emission Limit

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following :

Frequency range (MHz)		Limit (dBuV)				
Frequency range		Quasi-peak	Average			
0.15-0.5		66 to 56*	56 to 46*			
0.5-5		56	46			
5-30		60	50			
* Decreases with the logari	thm of the frequenc	y.Eo				
TEST RESULTS	CT CIT	- C	ATESTING			

TEST RESULTS

Shenzhen CTA Testing Technology Co., Ltd.


Page 16 of 38

CTA TESTING

Remark:

1. All modes of 802.11ax were tested at Low, Middle, and High channel; only the worst result of 802.11ax(HE20) U-NII-5 was reported as below:

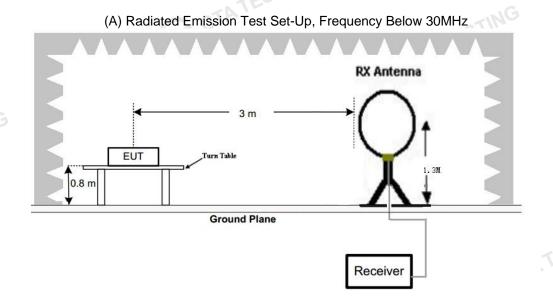
2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:

1	0.177	9.99	37.24	47.23	64.63	17.40	27.43	37.42	54.63	17.21	PASS
2	0.384	9.87	34.76	44.63	58.19	13.56	16.99	26.86	48.19	21.33	PASS
3	0.708	9.91	32.51	42.42	56.00	13.58	14.85	24.76	46.00	21.24	PASS
4	2.6115	10.08	38.08	48.16	56.00	7.84	25.59	35.67	46.00	10.33	PASS
5	8.457	10.27	30.92	41.19	60.00	18.81	14.54	24.81	50.00	25.19	PASS
6	23.6895	10.49	25.45	35.94	60.00	24.06	10.01	20.50	50.00	29.50	PASS

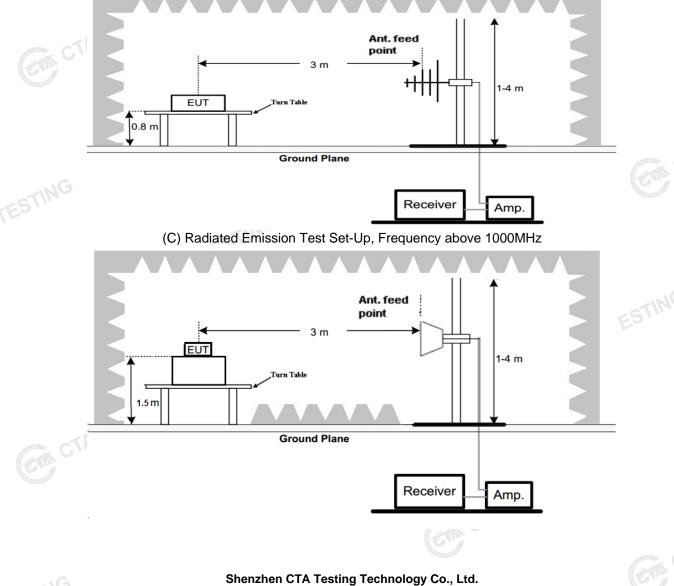
CTATES Note:1).QP Value $(dB\mu V) = QP$ Reading $(dB\mu V) +$ Factor (dB)

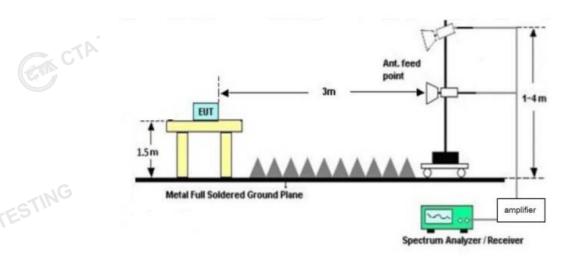
- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). QPMargin(dB) = QP Limit (dB μ V) QP Value (dB μ V)
- 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V)

Page 17 of 38


Final Data List

NO.	Freq. [MHz]	Factor [dB]	QP Reading[dB µV]	QP Value [dBµV]	QP Limit [dBµV]	QP Margin [dB]	AV Reading [dBµV]	AV Value [dBµV]	A∨ Limit [dBµ∨]	A∨ Margin [dB]	Verdict
1	0.15	9.98	45.67	55.65	66.00	10.35	24.28	34.26	56.00	21.74	PASS
2	0.2805	9.92	41.45	51.37	60.80	9.43	19.77	29.69	50.80	21.11	PASS
3	0.7395	10.09	39.63	49.72	56.00	6.28	17.74	27.83	46.00	18.17	PASS
4	1.905	10.18	38.65	48.83	56.00	7.17	13.33	23.51	46.00	22.49	PASS
5	9.9555	10.40	28.45	38.85	60.00	21.15	9.43	19.83	50.00	30.17	PASS
6	14.9325	10.42	27.59	38.01	60.00	21.99	5.00	15.42	50.00	34.58	PASS


- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). $QPMargin(dB) = QP Limit (dB\mu V) QP Value (dB\mu V)$
 - 4). AVMargin(dB) = AV Limit (dB μ V) AV Value (dB μ V) CTATES


4.2 Radiated Emission and Restricted Bands Requirement

TEST CONFIGURATION

(B) Radiated Emission Test Set-Up, Frequency below 1000MHz

TEST PROCEDURE

---Radiated measurement

● The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.

• Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

• The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

• The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode prescanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

● If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.

● Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.

● Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

For the actual test configuration, please see the test setup photo.

---Restricted Radiated Bands measurement

• Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

• The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

• The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode prescanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

The Peak Value and average value both need to comply with applicable limit above 1 GHz.

• Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

For the actual test configuration, please see the test setup photo.

Shenzhen CTA Testing Technology Co., Ltd.

--- Conducted measurement

Reference level measurement

Establish a reference level by using the following procedure:

a) Set instrument center frequency to DTS channel center frequency.

- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

--- Conducted Radiated Bands measurement

a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to

determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain). c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies

 \leq 30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).

d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).

e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

f) Compare the resultant electric field strength level with the applicable regulatory limit.

a) Perform the radiated spurious emission test.

Emission level measurement

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.

f) Trace mode = max hold.

g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level.

Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

FS = RA + AF + CL - AG

	Where FS = Field Strength	CL = Cable Attenuation Factor (Cable Loss)	
	RA = Reading Amplitude	AG = Amplifier Gain	
	AF = Antenna Factor		
ra	nsd=AF +CL-AG	CT CT	

Transd=AF +CL-AG

Shenzhen CTA Testing Technology Co., Ltd.

GIA CTAT

RADIATION LIMIT

FCC Part 15.209 & FCC Part 15.407(b)

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

	General field strength limits at frequencies Below 30MHz							
	Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)					
	0.009~0.490	2400/F(KHz)	300					
	0.490~1.705	24000/F(KHz)	30					
TESI	1.705~30.0	30	30					
CTA	Note: The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.							

General field strength limits at frequencies above 30 MHz								
Frequency (MHz)	Field strength (μV/m at 3 m)	Measurement Distance (meters)	ring					
30~88	100	3						
88~216	150	3						
216~960	200	3						
Above 960	500	3						

General field strength limits at frequencies Above 1000MHz						
Frequency	Frequency Distance of 3m (dBuV/m)					
(MHz)	Peak	Average				
Above 1000	74 54					
Nata.						

Note:

(1) The tighter limit applies at the band edges.

(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

Limits of unwanted emission out of the restricted bands

Frequency (MHz)	EIRP Limits (dBm)	Equivalent Field Strength at 3m (dBuV/m)
5025 7125 TEST	Peak: -7	88.2
5925~7125	AVG: -27	68.2

NOTE:

The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength:

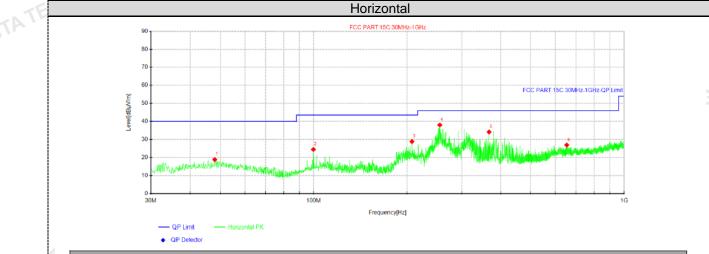
 $E = \frac{1000000\sqrt{30P}}{2} \text{ uV/m, where P is the eirp (Watts)}$

For above 1000MHz E[dBuV/m]=EIRP[dBm]+95.2, for d=3

Note: For above 1000 MHz. Unwanted emissions outside of restricted bands are measured with a RMS detector. In addition, 15.35(b) applies where the peak emissions must be limited to no more than 20 dB above the average limit.

Shenzhen CTA Testing Technology Co., Ltd.

TATE

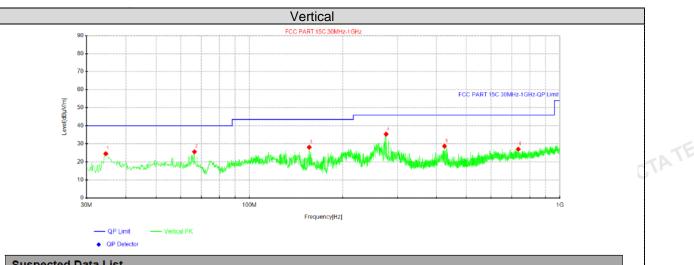

GTA TESTING

TEST RESULTS

Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X 1. position.
- 1. All 802.11 ax modes have been tested for below 1GHz test, only the worst case Low channel 802.11ax(HE20) U-NII-5 MIMO was recorded.
- All 802.11ax modes have been tested for above 1GHz test, only the worst case 802.11ax(HE20) U-NII-5 2. was recorded.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except 3. system noise floor in 9 KHz to 30MHz and not recorded in this report.

For 30MHz-1GHz


Suspected Data List

NO.	Freq.	Reading	Level	Factor	Limit	Margin	Height	Angle	Polarity	
NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polarity	
1	47.945	30.47	18.91	-11.56	40.00	21.09	100	247	Horizontal	
2	99.7188	37.87	24.47	-13.40	43.50	19.03	100	304	Horizontal	
3	207.267	42.11	28.87	-13.24	43.50	14.63	200	340	Horizontal	
4	254.797	50.59	38.04	-12.55	46.00	7.96	100	200	Horizontal	
5	367.075	45.08	34.16	-10.92	46.00	11.84	200	0	Horizontal	
6	653.467	32.15	26.95	-5.20	46.00	19.05	100	130	Horizontal	

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB μ V/m) Level (dB μ V/m)

Page 23 of 38

		0 30M			100M	
CTATE		•	QP Limit Ve QP Detector	rtical PK		
V	Suspe	ected Data	List			
	NO.	Freq. [MHz]	Reading [dBµV]	Level [dBµV/m]	Factor [dB/m]	

- 11	NO.	1104.	rtouding	20101	1 40.01		margin	, inoight	, angle	Polarity
	NO.	[MHz]	[dBµV]	[dBµV/m]	[dB/m]	[dBµV/m]	[dB]	[cm]	[°]	Polanty
	1	34.6075	38.60	24.54	-14.06	40.00	15.46	100	137	Vertical
	2	66.4962	40.05	25.59	-14.46	40.00	14.41	100	241	Vertical
	3	155.736	44.32	28.09	-16.23	43.50	15.41	200	277	Vertical
	4	275.531	47.46	35.39	-12.07	46.00	10.61	100	68	Vertical
	5	424.79	38.98	28.72	-10.26	46.00	17.28	200	21	Vertical
	6	734.462	32.06	27.04	-5.02	46.00	18.96	100	3	Vertical

Limit

Margin

Height Angle

Note:1).Level (dBµV/m)= Reading (dBµV)+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB) CTATESTING

3). Margin(dB) = Limit (dB μ V/m) - Level (dB μ V/m)

For 1GHz to 40GHz

Note: All MIMO and 802.11ax modes have been tested for above 1GHz test, only the worst case 802.11ax(HE20) U-NII-5 MIMO was recorded.

			802.11ax((HE20) L	J-NII-5 MIN	10 <i>Mode</i>	(above 1	GHz)			
Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
		(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
	5150.00	58.53	PK	Н	68.20	9.67	61.96	33.04	5.45	41.92	-3.43
36.00	5150.00	50.12	AV	Н	54.00	3.88	53.55	33.04	5.45	41.92	-3.43
5180MHz	10360.00	51.87	PK	Н	68.20	16.33	38.83	38.83	10.12	45.28	3.67
JUNG										🤇	
44.00	10440.00	53.21	PK	Н	68.20	14.99	49.53	38.85	10.13	45.3	3.68
5220MHz				1G							
48.00	5350.50	57.85	PK	Н	68.20	10.35	61.12	32.84	5.97	42.08	-3.27
5240MHz	5350.50	48.38	AV	Н	54.00	5.62	51.65	32.84	5.97	42.08	-3.27
[10480.00	52.65	PK	Н	68.20	15.55	48.91	38.89	10.19	45.34	3.74
<u>=</u>											. 6
Tested	Frequency	Emission	Detector	ANT	Limit	Margin	Raw	Antenna	Cable	Pre	Correction
Channel	(MHz)	Level	Mode	Pol	(dBuV/m)	(dB)	Value	Factor	Factor	amplifier	Factor
		(dBuV/m)					(dBuV)	(dB/m)	(dB)	(dB)	(dB/m)
	5150.00	54.65	PK	V	68.20	13.55	58.08	33.04	5.45	41.92	-3.43
36.00	5150.00	47.73	AV	V	54.00	6.27	51.16	33.04	5.45	41.92	-3.43
5180MHz	10360.00	53.68	PK	V	68.20	14.52	50.01	38.83	10.12	45.28	3.67
		NG									
	10440.00	53.71	PK	V	68.20	14.49	50.03	38.85	10.13	45.3	3.68
5220MHz	1-				-	G -					
48.00	5350.50	57.22	PK	V	68.20	10.98	60.49	32.84	5.97	42.08	-3.27
5240MHz	5350.50 10480.00	49.31	AV	V	54.00	4.69	52.58	32.84	5.97	42.08	-3.27
		52.85	PK	V	68.20	15.35	49.11	38.89	10.19	45.34	3.74

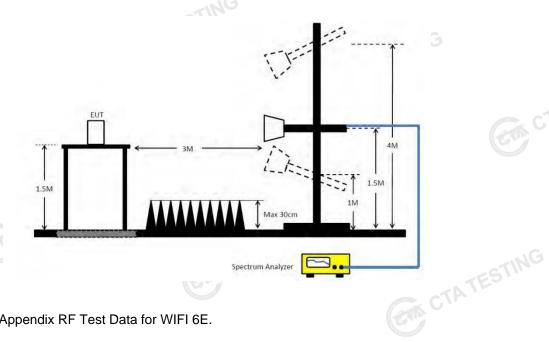
Note:

Emission level (dBuV/m) = Meter Reading+ antenna Factor+ cable loss- preamp factor. 1)

2) Margin value = Limits-Emission level.

- -- Mean the PK detector measured value is below average limit. 3)
- The other emission levels were very low against the limit. 4)
- 5) RBW1MHz VBW3MHz Peak detector is for PK value; RBW 1MHz VBW10Hz Peak detector is for AV value.

Maximum E.I.R.P. 4.3



		-100
Device Type	e.i.r.p. spectral density	e.i.r.p.
indoor access point	not exceed 5dBm/MHz	not exceed 30dBm
subordinate device operating under the control of an indoor access point	not exceed -1dBm/MHz	not exceed 24dBm
client devices, except for fixed client devices	not exceed 17dBm/MHz	not exceed 30dBm; no more than 6 dB below its associated standard power
client devices operating under the control of an indoor access point	not exceed -1dBm/MHz	not exceed 24dBm
	Device Type indoor access point subordinate device operating under the control of an indoor access point client devices, except for fixed client devices client devices operating under the control of an indoor	indoor access pointnot exceed 5dBm/MHzsubordinate device operating under the control of an indoor access pointnot exceed -1dBm/MHzclient devices, except for fixed client devicesnot exceed 17dBm/MHzclient devices, operating under the control of an indoornot exceed -1dBm/MHz

Test Procedure

For radiated measurement. Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1GHz.

Test Configuration

Test Results

Please refer to the Appendix RF Test Data for WIFI 6E.

E.I.R.P. Spectral Density Test

Limit

	FCC Part 15 Su	bpart E(15.407) Limit	
Frequency	Device Type	e.i.r.p. spectral density	e.i.r.p.
	indoor access point	not exceed 5dBm/MHz	not exceed 30dBm
5925-7125MHz	subordinate device operating under the control of an indoor access point	not exceed -1dBm/MHz	not exceed 24dBm
5925–6425MHz and 6525–6875 MHz	client devices, except for fixed client devices	not exceed 17dBm/MHz	not exceed 30dBm; no more than 6 dB below its associated standard power
5925-7125MHz	client devices operating under the control of an indoor access point	not exceed -1dBm/MHz	not exceed 24dBm
est Procedure		9	CTATES

Test Procedure

 Notwithstanding that some regulatory requirements refer to peak power spectral density (PPSD), in some cases the intent is to measure the maximum value of the time average of the power spectral density during a period of continuous transmission. The procedure for this method is as follows:

a) Create an average power spectrum for the EUT operating mode being tested by following the instructions in 12.3.2 for measuring maximum conducted output power using a spectrum analyzer or EMI receiver; that is, select the appropriate test method (SA-1, SA-2, SA-3, or their respective alternatives) and apply it up to, but not including, the step labeled, "Compute power...."(This procedure is required even if the maximum conducted output power measurement was performed using the power meter method PM.)

b) Use the peak search function on the instrument to find the peak of the spectrum.

c) Make the following adjustments to the peak value of the spectrum, if applicable:

1) If method SA-2 or SA-2A was used, then add [10 log (1 / D)], where D is the duty cycle, to the peak of the spectrum.

2) If method SA-3A was used and the linear mode was used in step h) of 12.3.2.7, add 1 dB to the final result to compensate for the difference between linear averaging and power averaging.

d) The result is the PPSD.

e) The procedure in item a) through item c) requires the use of 1 MHz resolution bandwidth to satisfy the 1 MHz measurement bandwidth specified by some regulatory authorities.95 This requirement also permits use of resolution bandwidths less than 1 MHz provided that the measured power is integrated to show the total power over the measurement bandwidth"(i.e., 1 MHz). If measurements are performed using a reduced resolution bandwidth and integrated over 1 MHz bandwidth, the following adjustments to the procedures apply:

1) Set RBW \geq 1 / T, where T is defined in 12.2 a).

2) Set VBW \geq [3*RBW].

Care shall be taken such that the measurements are performed during a period of

continuous transmission or are corrected upward for duty cycle.

For radiated measurement. Refer as ANSI C63.10, clause 6.6 for radiated emissions above 1GHz.

Shenzhen CTA Testing Technology Co., Ltd.