

PCTEST

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

SAR EVALUATION REPORT

Applicant Name:

LG Electronics U.S.A., Inc. 1000 Sylvan Avenue Englewood Cliffs, NJ 07632 **United States**

Date of Testing:

03/02/2020 - 03/17/2020 **Test Site/Location:** PCTEST Lab, Columbia, MD, USA **Document Serial No.:** 1M2003020032-01-R1.ZNF

FCC ID:

ZNFK400AM

APPLICANT:

LG ELECTRONICS U.S.A., INC.

DUT Type: Application Type: FCC Rule Part(s): Model: Additional Model(s): Portable Handset Certification CFR §2.1093 LM-K400AKR LMK400AKR, K400AKR, LM-K400AKR, LMK400AM, K400AM

Equipment	Band & Mode	Tx Frequency	SAR			
Class	Durid & Mode	TXTToquonoy	1g Head (W/kg)	Worn (W/kg) (W/kg) (W/		10g Phablet (W/kg)
PCE	GSM/GPRS/EDGE 850	824.20 - 848.80 MHz	0.30	0.58	0.58	N/A
PCE	GSM/GPRS/EDGE 1900	1850.20 - 1909.80 MHz	0.26	0.49	0.49	N/A
PCE	UMTS 850	826.40 - 846.60 MHz	0.33	0.49	0.49	N/A
PCE	UMTS 1750	1712.4 - 1752.6 MHz	0.37	0.89	0.89	2.98
PCE	UMTS 1900	1852.4 - 1907.6 MHz	0.31	0.78	0.78	2.27
PCE	LTE Band 12	699.7 - 715.3 MHz	0.33	0.64	0.64	N/A
PCE	LTE Band 14	790.5 - 795.5 MHz	0.27	0.53	0.58	N/A
PCE	LTE Band 5 (Cell)	824.7 - 848.3 MHz	0.35	0.57	0.57	N/A
PCE	LTE Band 66 (AWS)	1710.7 - 1779.3 MHz	0.30	0.94	0.94	2.73
PCE	LTE Band 4 (AWS)	1710.7 - 1754.3 MHz	N/A	N/A	N/A	N/A
PCE	LTE Band 2 (PCS)	1850.7 - 1909.3 MHz	0.37	0.69	0.69	3.19
PCE	LTE Band 30	2307.5 - 2312.5 MHz	0.15	0.75	1.10	2.91
DTS	2.4 GHz WLAN	2412 - 2462 MHz	1.04	0.22	0.22	N/A
DSS/DTS	Bluetooth	2402 - 2480 MHz	0.23	< 0.1	< 0.1	N/A
Simultaneou	s SAR per KDB 690783 D	01v01r03:	1.41	1.16	1.32	3.19

Note: This revised Test Report (S/N: 1M2003020032-01-R1.ZNF) supersedes and replaces the previously issued test report on the same subject device for the same type of testing as indicated. Please discard or destroy the previously issued test report(s) and dispose of it accordingly.

This wireless portable device has been shown to be capable of compliance for localized specific absorption rate (SAR) for uncontrolled environment/general population exposure limits specified in ANSI/IEEE C95.1-1992 and has been tested in accordance with the measurement procedures specified in Section 1.7 of this report; for North American frequency bands only.

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them. Test results reported herein relate only to the item(s) tested.

The SAR Tick is an initiative of the Mobile & Wireless Forum (MWF). While a product may be considered eligible, use of the SAR Tick logor equires an agreement with the MWF. Further details can be obtained by emailing: sartick@mwfai.info

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dege 1 of 90
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 1 of 80
202	20 PCTEST	•		REV 21.4 M

© 2020 PCTEST

TABLE OF CONTENTS

1	DEVICE	JNDER TEST	3
2	LTE INFO	DRMATION	11
3	INTRODU	JCTION	12
4	DOSIMET	TRIC ASSESSMENT	13
5	DEFINITI	ON OF REFERENCE POINTS	14
6	TEST CO	NFIGURATION POSITIONS	15
7	RF EXPC	SURE LIMITS	19
8	FCC MEA	ASUREMENT PROCEDURES	20
9	RF CONE	DUCTED POWERS	25
10	SYSTEM	VERIFICATION	50
11	SAR DAT	A SUMMARY	53
12	FCC MUL	TI-TX AND ANTENNA SAR CONSIDERATIONS	71
13		ASUREMENT VARIABILITY	
14		ENT LIST	
15	MEASUR	EMENT UNCERTAINTIES	//
16	CONCLU	SION	78
17	REFEREI	NCES	79
APPEN	DIX A:	SAR TEST PLOTS	
APPEN	DIX B:	SAR DIPOLE VERIFICATION PLOTS	
APPEN	DIX C:	SAR TISSUE SPECIFICATIONS	
APPEN	DIX D:	SAR SYSTEM VALIDATION	
APPEN	DIX E:	DUT ANTENNA DIAGRAM & SAR TEST SETUP PHOTOGRAPHS	
APPEN	DIX F:	DOWNLINK LTE CA RF CONDUCTED POWERS	
APPEN	DIX G:	POWER REDUCTION VERIFICATION	

APPENDIX H: PROBE AND DIPOLE CALIBRATION CERTIFICATES

	FCC ID ZNFK400AM	Provide to be part of the element SAR EVALUATION REPORT		Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:	Dage 2 of 90		
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 2 of 80		
202	20 PCTEST					

© 20

^{09/11/2019} © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

1 DEVICE UNDER TEST

1.1 Device Overview

Band & Mode	Operating Modes	Tx Frequency
GSM/GPRS/EDGE 850	Voice/Data	824.20 - 848.80 MHz
GSM/GPRS/EDGE 1900	Voice/Data	1850.20 - 1909.80 MHz
UMTS 850	Voice/Data	826.40 - 846.60 MHz
UMTS 1750	Voice/Data	1712.4 - 1752.6 MHz
UMTS 1900	Voice/Data	1852.4 - 1907.6 MHz
LTE Band 12	Voice/Data	699.7 - 715.3 MHz
LTE Band 14	Voice/Data	790.5 - 795.5 MHz
LTE Band 5 (Cell)	Voice/Data	824.7 - 848.3 MHz
LTE Band 66 (AWS)	Voice/Data	1710.7 - 1779.3 MHz
LTE Band 4 (AWS)	Voice/Data	1710.7 - 1754.3 MHz
LTE Band 2 (PCS)	Voice/Data	1850.7 - 1909.3 MHz
LTE Band 30	Voice/Data	2307.5 - 2312.5 MHz
2.4 GHz WLAN	Voice/Data	2412 - 2462 MHz
Bluetooth	Data	2402 - 2480 MHz

1.2 Power Reduction for SAR

This device utilizes a power reduction mechanism for some wireless modes and bands for SAR compliance under some conditions when the device is being used in close proximity to the user's hand. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device when being used in phablet use conditions. Detailed descriptions of the power reduction mechanism are included in the operational description.

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	💽 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	Dates: DUT Type:		Page 3 of 80
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Fage 5 01 60
© 202	0 PCTEST				REV 21.4 M

Nominal and Maximum Output Power Specifications 1.3

This device operates using the following maximum and nominal output power specifications. SAR values were scaled to the maximum allowed power to determine compliance per KDB Publication 447498 D01v06.

2G/3G/4G Maximum and Reduced Output Power 1.3.1

GSM/GPRS/EDGE 850						
Power Level		Voice (in dBm)	Data - Burst Average GMSK (in dBm)		Data - Burst Average 8-PSK (in dBm)	
		1 TX Slot	1 TX Slots	2 TX Slots	1 TX Slots	2 TX Slots
Max	Max allowed power	33.7	33.7	32.2	27.7	26.7
IVIAX	Nominal	33.2	33.2	31.7	27.2	26.2
		GSM	/GPRS/EDGE 19	00		
Power Level		Voice (in dBm)	Data - Burst Aver	age GMSK (in dBm)	Data - Burst Aver	age 8-PSK (in dBm)
		1 TX Slot	1 TX Slots	2 TX Slots	1 TX Slots	2 TX Slots
Max	Max allowed power	30.7	30.7	28.2	26.7	25.7
IVIdX	Nominal	30.2	30.2	27.7	26.2	25.2

		Modulated Average		
Band	/Mode	Output Power		
		(in c	lBm)	
		Μ	ах	
UMTS Band	5 (850 MHz)	Newsing	Max allowed	
		Nominal	power	
WCI	OMA	247	25.2	
Rel 99		24.7	25.2	
	Subtest 1	23.7	24.2	
HSDPA	Subtest 2	23.7	24.2	
Rel 5	Subtest 3	23.2	23.7	
	Subtest 4	23.2	23.7	
	Subtest 1	21.7	22.2	
	Subtest 2	21.7	22.2	
HSUPA Rel 6	Subtest 3	22.7	23.2	
Rel D	Subtest 4	21.2	21.7	
	Subtest 5	22.7	23.2	

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 4 of 80
202	0 PCTEST				REV 21.4 M

© 2020 PCTEST

Band/	′Mode	Mc	odulated Avera (in d		wer	
		Max		Grip Sen	sor Active	
UMTS Band 4 (1750 MHz)		Nominal	Max allowed power	Nominal	Max allowed power	
	DMA 99	24.2	24.7	21.8	22.3	
	Subtest 1	23.2	23.7	21.8	22.3	
HSDPA	Subtest 2	23.2	23.7	21.8	22.3	
Rel 5	Subtest 3	22.7	23.2	21.8	22.3	
	Subtest 4	22.7	23.2	21.8	22.3	
	Subtest 1	21.2	21.7	21.2	21.7	
HSUPA	Subtest 2	21.2	21.7	21.2	21.7	
Rel 6	Subtest 3	22.2	22.7	21.8	22.3	
Rei O	Subtest 4	20.7	21.2	20.7	21.2	
	Subtest 5	22.2	22.7	21.8	22.3	
Band/	′Mode	Modulated Average Output Power (in dBm)				
		Μ	ах	Grip Sensor Active		
UMTS Band 2	2 (1900 MHz)	Nominal	Max allowed power	Nominal	Max allowed power	
WCI Rel	DMA 99	24.2	24.7	21.8	22.3	
	Subtest 1	23.2	23.7	21.8	22.3	
HSDPA	Subtest 2	23.2	23.7	21.8	22.3	
Rel 5	Subtest 3	22.7	23.2	21.8	22.3	
	Subtest 4	22.7	23.2	21.8	22.3	
	Subtest 1	21.2	21.7	21.2	21.7	
HSUPA	Subtest 2	21.2	21.7	21.2	21.7	
Rel 6	Subtest 3	22.2	22.7	21.8	22.3	
Nel U	Subtest 4	20.7	21.2	20.7	21.2	
	Subtest 5	22.2	22.7	21.8	22.3	

FCC ID ZNFK400AM		SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 5 of 80
1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 5 of 80

Mode / Band		Modulated Average Output Power (in dBm)	
		Max	Grip Sensor Active
LTE FDD Band 12	Max allowed power	25.2	25.2
LIE FDD Ballu 12	Nominal	24.7	24.7
LTE FDD Band 14	Max allowed power	24.2	24.2
LIE FDD Ballu 14	Nominal	23.7	23.7
LTE FDD Band 5	Max allowed power	25.2	25.2
LIE FUU Ballu S	Nominal	24.7	24.7
LTE FDD Band 4	Max allowed power	24.7	22.7
LIE FDD Ballu 4	Nominal	24.2	22.2
LTE FDD Band 66	Max allowed power	24.7	22.7
LIE FDD Ballu 00	Nominal	24.2	22.2
LTE FDD Band 2	Max allowed power	24.7	22.5
	Nominal	24.2	22.0
LTE FDD Band 30	Max allowed power	23.2	22.2
	Nominal	22.7	21.7

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 6 of 90
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 6 of 80
02	20 PCTEST				REV 21.4 M

© 20

Mode / Band	Modulated Average (dBm)				
Channel	1	2 - 10	11		
	Maximum		17.0		
IEEE 802.11b (2.4 GHz)	Nominal		16.0		
IEEE 802.11g (2.4 GHz)	Maximum	14.5	16.0	14.5	
1666 902.11g (2.4 GHZ)	Nominal	13.5	15.0	13.5	
IEEE 802.11n (2.4 GHz)	Maximum		14.0		
	Nominal		13.0		

Maximum Bluetooth and WLAN Output Power
Maximum Bluetooth and WLAN Output Pow

Mode / Band	Modulated Average (dBm)	
Plustooth 1 Mbns (CESK)	Maximum	11.0
Bluetooth 1 Mbps (GFSK)	Nominal	10.0
Bluetooth 2 Mbps (DPSK)	Maximum	10.0
Biuelootii z wibps (DPSK)	Nominal	9.0
Bluetooth 3 Mbps (8DPSK)	Maximum	10.0
Bideloolii S wibps (obesk)	Nominal	9.0
Bluetooth LE	Maximum	6.5
DIUELUULII LE	Nominal	5.5

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 7 of 80
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Fage / 01 00
© 202	0 PCTEST				REV 21.4 M

1.4 **DUT Antenna Locations**

The overall dimensions of this device are $> 9 \times 5$ cm. A diagram showing the location of the device antennas can be found in Appendix E. Since the diagonal dimension of this device is > 160 mm and <200 mm, it is considered a "phablet."

Device Edges/Sides for SAR Testing							
Mode	Back	Front	Тор	Bottom	Right	Left	
GPRS 850	Yes	Yes	No	Yes	Yes	Yes	
GPRS 1900	Yes	Yes	No	Yes	No	Yes	
UMTS 850	Yes	Yes	No	Yes	Yes	Yes	
UMTS 1750	Yes	Yes	No	Yes	No	Yes	
UMTS 1900	Yes	Yes	No	Yes	No	Yes	
LTE Band 12	Yes	Yes	No	Yes	Yes	Yes	
LTE Band 14	Yes	Yes	No	Yes	Yes	Yes	
LTE Band 5 (Cell)	Yes	Yes	No	Yes	Yes	Yes	
LTE Band 66 (AWS)	Yes	Yes	No	Yes	No	Yes	
LTE Band 2 (PCS)	Yes	Yes	No	Yes	No	Yes	
LTE Band 30	Yes	Yes	No	Yes	Yes	Yes	
2.4 GHz WLAN	Yes	Yes	Yes	No	No	Yes	
Bluetooth	Yes	Yes	Yes	No	No	Yes	

Table 1-1 ~ · - -

Note: Particular DUT edges were not required to be evaluated for wireless router SAR or phablet SAR if the edges were greater than 2.5 cm from the transmitting antenna according to FCC KDB Publication 941225 D06v02r01 Section III and FCC KDB Publication 648474 D04v01r03. The distances between the transmit antennas and the edges of the device are included in the filing.

1.5 Simultaneous Transmission Capabilities

According to FCC KDB Publication 447498 D01v06, transmitters are considered to be operating simultaneously when there is overlapping transmission, with the exception of transmissions during network hand-offs with maximum hand-off duration less than 30 seconds.

This device contains multiple transmitters that may operate simultaneously, and therefore requires a simultaneous transmission analysis according to FCC KDB Publication 447498 D01v06 4.3.2 procedures.

No.	Capable Transmit Configuration	Head	Body-Worn Accessory	Wireless Router	Phablet	Notes		
1	GSM voice + 2.4 GHz WI-FI	Yes	Yes	N/A	Yes			
2	GSM voice + 2.4 GHz Bluetooth	Yes^	Yes	N/A	Yes	^ Bluetooth Tethering is considered		
3	UMTS + 2.4 GHz WI-FI	Yes	Yes	Yes	Yes			
4	UMTS + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	Yes	^Bluetooth Tethering is considered		
5	LTE + 2.4 GHz WI-FI	Yes	Yes	Yes	Yes			
6	LTE + 2.4 GHz Bluetooth	Yes^	Yes	Yes^	Yes	^ Bluetooth Tethering is considered		
7	GPRS/EDGE + 2.4 GHz WI-FI	Yes*	Yes*	Yes	Yes	* Pre-installed VOIP applications are considered		
8	GPRS/EDGE + 2.4 GHz Bluetooth	Yes*^	Yes*	Yes^	Yes	* Pre-installed VOIP applications are considered ^ Bluetooth Tethering is considered		

Table 1-2 Simultaneous Transmission Scenarios

1. 2.4 GHz WLAN, and 2.4 GHz Bluetooth share the same antenna path and cannot transmit simultaneously.

2. All licensed modes share the same antenna path and cannot transmit simultaneously.

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 9 of 90
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 8 of 80
202	0 PCTEST			REV 21.4 M

© 2020 PCTEST

- 3. When the user utilizes multiple services in UMTS 3G mode it uses multi-Radio Access Bearer or multi-RAB. The power control is based on a physical control channel (Dedicated Physical Control Channel [DPCCH]) and power control will be adjusted to meet the needs of both services. Therefore, the UMTS+WLAN scenario also represents the UMTS Voice/DATA + WLAN Hotspot scenario.
- 4. Per the manufacturer, WIFI Direct is expected to be used in conjunction with a held-to-ear or body-worn accessory voice call. Therefore, there are no simultaneous transmission scenarios involving WIFI direct beyond that listed in the above table.
- 5. This device supports VOLTE.
- 6. This device supports VOWIFI.
- 7. This device supports Bluetooth Tethering.

1.6 Miscellaneous SAR Test Considerations

(A) WIFI/BT

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Phablet SAR was not evaluated for 2.4 GHz WLAN and Bluetooth operations since wireless router 1g SAR was < 1.2 W/kg.

(B) Licensed Transmitter(s)

GSM/GPRS/EDGE DTM is not supported for US bands. Therefore, the GSM Voice modes in this report do not transmit simultaneously with GPRS/EDGE Data.

This device is only capable of QPSK HSUPA in the uplink. Therefore, no additional SAR tests are required beyond that described for devices with HSUPA in KDB 941225 D01v03r01.

LTE SAR for the higher modulations and lower bandwidths were not tested since the maximum average output power of all required channels and configurations was not more than 0.5 dB higher than the highest bandwidth; and the reported LTE SAR for the highest bandwidth was less than 1.45 W/kg for all configurations according to FCC KDB 941225 D05v02r04.

This device supports LTE Carrier Aggregation (CA) in the downlink. All uplink communications are identical to Release 8 specifications. Per FCC KDB Publication 941225 D05A v01r02, SAR for LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive. The downlink carrier aggregation exclusion analysis can be found in Appendix F.

Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is greater than 160mm and less than 200mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg. Additional SAR tests for phablet SAR were evaluated per KDB 616217 Section 6 (See Section 6.9 for more information)

This device supports LTE capabilities with overlapping transmission frequency ranges. When the supported frequency range of an LTE Band falls completely within an LTE band with a larger transmission frequency range, both LTE bands have the same target power (or the band with the larger transmission frequency range has a higher target power), and both LTE bands share the same transmission path and signal characteristics, SAR was only assessed for the band with the larger transmission frequency range.

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 0 of 90
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 9 of 80
202	0 PCTEST			REV 21.4 M

© 2020 PCTEST

1.7 Guidance Applied

- IEEE 1528-2013
- FCC KDB Publication 941225 D01v03r01, D05v02r04, D05Av01r02, D06v02r01 (2G/3G/4G and Hotspot)
- FCC KDB Publication 248227 D01v02r02 (SAR Considerations for 802.11 Devices)
- FCC KDB Publication 447498 D01v06 (General SAR Guidance)
- FCC KDB Publication 865664 D01v01r04, D02v01r02 (SAR Measurements up to 6 GHz)
- FCC KDB Publication 648474 D04v01r03 (Phablet Procedures)
- FCC KDB Publication 616217 D04v01r02 (Proximity Sensor)
- October 2013 TCB Workshop Notes (GPRS Testing Considerations)
- April 2018 TCB Workshop Notes (LTE Carrier Aggregation)

1.8 Device Serial Numbers

Several samples with identical hardware were used to support SAR testing. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units. The serial numbers used for each test are indicated alongside the results in Section 11.

FCC ID ZNFK400AM	Proud to be part of @ element	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 10 of 80
1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Fage 10 01 00
20 PCTEST				REV 21.4 M

© 2020 PCTEST

2 LTE INFORMATION

	LTE Information			
Form Factor		Portable Handset		
Frequency Range of each LTE transmission band	LTE Band 12 (699.7 - 715.3 MHz)			
		Band 14 (790.5 - 795.5	1	
	LTE B	and 5 (Cell) (824.7 - 848.	.3 MHz)	
	LTE Ban	d 66 (AWS) (1710.7 - 17	79.3 MHz)	
		nd 4 (AWS) (1710.7 - 175	/	
		nd 2 (PCS) (1850.7 - 190		
		Band 30 (2307.5 - 2312.5	,	
Channel Bandwidths		12: 1.4 MHz, 3 MHz, 5 M	,	
		TE Band 14: 5 MHz, 10 N		
		(Cell): 1.4 MHz, 3 MHz, 5		
	LTE Band 66 (AWS): 1	.4 MHz, 3 MHz, 5 MHz, 1	0 MHz, 15 MHz, 20 MHz	
	LTE Band 4 (AWS): 1.	4 MHz, 3 MHz, 5 MHz, 10) MHz, 15 MHz, 20 MHz	
	LTE Band 2 (PCS): 1.4	4 MHz, 3 MHz, 5 MHz, 10) MHz, 15 MHz, 20 MHz	
	Ľ	TE Band 30: 5 MHz, 10 N	IHz	
Channel Numbers and Frequencies (MHz)	Low	Mid	High	
LTE Band 12: 1.4 MHz	699.7 (23017)	707.5 (23095)	715.3 (23173)	
LTE Band 12: 3 MHz	700.5 (23025)	707.5 (23095)	714.5 (23165)	
LTE Band 12: 5 MHz	701.5 (23035)	707.5 (23095)	713.5 (23155)	
LTE Band 12: 10 MHz	704 (23060)	707.5 (23095)	711 (23130)	
LTE Band 14: 5 MHz	790.5 (23305)	793 (23330)	795.5 (23355)	
LTE Band 14: 10 MHz	N/A	793 (23330)	N/A	
LTE Band 5 (Cell): 1.4 MHz	824.7 (20407)	836.5 (20525)	848.3 (20643)	
LTE Band 5 (Cell): 3 MHz	825.5 (20415)	836.5 (20525)	847.5 (20635)	
LTE Band 5 (Cell): 5 MHz	826.5 (20425)	836.5 (20525)	846.5 (20625)	
LTE Band 5 (Cell): 10 MHz	829 (20450)	836.5 (20525)	844 (20600)	
LTE Band 66 (AWS): 1.4 MHz	1710.7 (131979)	1745 (132322)	1779.3 (132665)	
LTE Band 66 (AWS): 3 MHz	1711.5 (131987)	1745 (132322)	1778.5 (132657)	
LTE Band 66 (AWS): 5 MHz	1712.5 (131997)	1745 (132322)	1777.5 (132647)	
LTE Band 66 (AWS): 10 MHz	1715 (132022)	1745 (132322)	1775 (132622)	
LTE Band 66 (AWS): 15 MHz	1717.5 (132047)	1745 (132322)	1772.5 (132597)	
LTE Band 66 (AWS): 20 MHz	1720 (132072)	1745 (132322)	1770 (132572)	
LTE Band 4 (AWS): 1.4 MHz	1710.7 (19957)	1732.5 (20175)	1754.3 (20393)	
LTE Band 4 (AWS): 3 MHz	1711.5 (19965)	1732.5 (20175)	1753.5 (20385)	
LTE Band 4 (AWS): 5 MHz	1712.5 (19975)	1732.5 (20175)	1752.5 (20375)	
LTE Band 4 (AWS): 10 MHz	1715 (20000)	1732.5 (20175)	1750 (20350)	
LTE Band 4 (AWS): 15 MHz	1717.5 (20025)	1732.5 (20175)	1747.5 (20325)	
LTE Band 4 (AWS): 20 MHz	1720 (20050)	1732.5 (20175)	1745 (20300)	
LTE Band 2 (PCS): 1.4 MHz	1850.7 (18607)	1880 (18900)	1909.3 (19193)	
LTE Band 2 (PCS): 3 MHz	1851.5 (18615)	1880 (18900)	1908.5 (19185)	
LTE Band 2 (PCS): 5 MHz	1852.5 (18625)	1880 (18900)	1907.5 (19175)	
LTE Band 2 (PCS): 10 MHz	1855 (18650)	1880 (18900)	1905 (19150)	
LTE Band 2 (PCS): 15 MHz	1857.5 (18675)	1880 (18900)	1902.5 (19125)	
LTE Band 2 (PCS): 20 MHz	1860 (18700)	1880 (18900)	1900 (19100)	
LTE Band 30: 5 MHz	2307.5 (27685)	2310 (27710)	2312.5 (27735)	
LTE Band 30: 10 MHz	N/A	2310 (27710)	N/A	
UE Category		DL UE Cat 6, UL UE Cat	6	
Modulations Supported in UL		QPSK, 16QAM		
LTE MPR Permanently implemented per 3GPP TS				
36.101 section 6.2.3~6.2.5? (manufacturer attestation		YES		
to be provided)				
A-MPR (Additional MPR) disabled for SAR Testing?		YES		
LTE Carrier Aggregation Possible Combinations	combinations			
LTE Additional Information				

FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 11 of 90
1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 11 of 80

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

REV 21.4 M

3 INTRODUCTION

The FCC and Innovation, Science, and Economic Development Canada have adopted the guidelines for evaluating the environmental effects of radio frequency (RF) radiation in ET Docket 93-62 on Aug. 6, 1996 and Health Canada Safety Code 6 to protect the public and workers from the potential hazards of RF emissions due to FCC-regulated portable devices. [1]

The safety limits used for the environmental evaluation measurements are based on the criteria published by the American National Standards Institute (ANSI) for localized specific absorption rate (SAR) in IEEE/ANSI C95.1-1992 Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz [3] and Health Canada RF Exposure Guidelines Safety Code 6 [22]. The measurement procedure described in IEEE/ANSI C95.3-2002 Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic Fields - RF and Microwave [4] is used for guidance in measuring the Specific Absorption Rate (SAR) due to the RF radiation exposure from the Equipment Under Test (EUT). These criteria for SAR evaluation are similar to those recommended by the International Committee for Non-Ionizing Radiation Protection (ICNIRP) in Biological Effects and Exposure Criteria for Radiofrequency Electromagnetic Fields," Report No. Vol 74. SAR is a measure of the rate of energy absorption due to exposure to an RF transmitting source. SAR values have been related to threshold levels for potential biological hazards.

3.1 SAR Definition

Specific Absorption Rate is defined as the time derivative (rate) of the incremental energy (dU) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dV) of a given density (ρ). It is also defined as the rate of RF energy absorption per unit mass at a point in an absorbing body (see Equation 3-1).

Equation 3-1 SAR Mathematical Equation $SAR = \frac{d}{u} \left(\frac{dU}{u} \right) = \frac{d}{u} \left(\frac{dU}{u} \right)$

SAR is expressed in units of Watts per Kilogram (W/kg).

$$SAR = \frac{\sigma \cdot E^2}{\rho}$$

where:

 σ = conductivity of the tissue-simulating material (S/m)

 ρ = mass density of the tissue-simulating material (kg/m³)

E = Total RMS electric field strength (V/m)

NOTE: The primary factors that control rate of energy absorption were found to be the wavelength of the incident field in relation to the dimensions and geometry of the irradiated organism, the orientation of the organism in relation to the polarity of field vectors, the presence of reflecting surfaces, and whether conductive contact is made by the organism with a ground plane.[6]

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Daga 12 of 90
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 12 of 80
202	0 PCTEST				REV 21 4 M

© 2020 PCTEST

4 DOSIMETRIC ASSESSMENT

4.1 Measurement Procedure

The evaluation was performed using the following procedure compliant to FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013:

- 1. The SAR distribution at the exposed side of the head or body was measured at a distance no greater than 5.0 mm from the inner surface of the shell. The area covered the entire dimension of the device-head and body interface and the horizontal grid resolution was determined per FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013.
- 2. The point SAR measurement was taken at the maximum SAR region determined from Step 1 to enable the monitoring of SAR fluctuations/drifts during the 1g/10g cube evaluation. SAR at this fixed point was measured and used as a reference value.

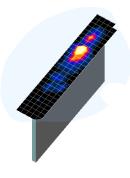


Figure 4-1 Sample SAR Area Scan

3. Based on the area scan data, the peak of the region with maximum SAR was determined by spline interpolation. Around this point, a volume was assessed according to the measurement resolution and volume size requirements of FCC KDB Publication 865664 D01v01r04 (See Table 4-1) and IEEE 1528-2013. On the basis of this data set, the spatial peak SAR value was evaluated with the following procedure (see references or the DASY manual online for more details):

a. SAR values at the inner surface of the phantom are extrapolated from the measured values along the line away from the surface with spacing no greater than that in Table 4-1. The extrapolation was based on a least-squares algorithm. A polynomial of the fourth order was calculated through the points in the z-axis (normal to the phantom shell).

b. After the maximum interpolated values were calculated between the points in the cube, the SAR was averaged over the spatial volume (1g or 10g) using a 3D-Spline interpolation algorithm. The 3D-spline is composed of three one-dimensional splines with the "Not a knot" condition (in x, y, and z directions). The volume was then integrated with the trapezoidal algorithm. One thousand points (10 x 10 x 10) were obtained through interpolation, in order to calculate the averaged SAR.

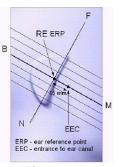
c. All neighboring volumes were evaluated until no neighboring volume with a higher average value was found.

4. The SAR reference value, at the same location as step 2, was re-measured after the zoom scan was complete to calculate the SAR drift. If the drift deviated by more than 5%, the SAR test and drift measurements were repeated.

_	Maximum Area Scan Maximum Zoom Scan Resolution (mm) Resolution (mm) -		Maximum Zoom Scan Spatial Resolution (mm)			Minimum Zoom Scan
Frequency	$(\Delta x_{area}, \Delta y_{area})$	(Δx _{200m} , Δy _{200m})	Uniform Grid	G	raded Grid	Volume (mm) (x,y,z)
		1 100110 7 100117	∆z _{zoom} (n)	$\Delta z_{zoom}(1)^*$	∆z _{zoom} (n>1)*	
≤2 GHz	≤ 15	≤8	≤5	≤4	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 30
2-3 GHz	≤ 12	≤5	≤ 5	≤4	≤ 1.5*∆z _{zoom} (n-1)	≥ 30
3-4 GHz	≤ 12	≤5	≤ 4	≤3	≤ 1.5*∆z _{zoom} (n-1)	≥ 28
4-5 GHz	≤ 10	≤ 4	≤3	≤2.5	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 25
5-6 GHz	≤ 10	≤ 4	≤2	≤2	$\leq 1.5^*\Delta z_{zoom}(n-1)$	≥ 22

Table 4-1 Area and Zoom Scan Resolutions per FCC KDB Publication 865664 D01v01r04*

*Also compliant to IEEE 1528-2013 Table 6


	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 12 of 80
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 13 of 80
202	0 PCTEST			REV 21.4 M

© 2020 PCTEST

5 **DEFINITION OF REFERENCE POINTS**

5.1 EAR REFERENCE POINT

Figure 5-2 shows the front, back and side views of the SAM Twin Phantom. The point "M" is the reference point for the center of the mouth, "LE" is the left ear reference point (ERP), and "RE" is the right ERP. The ERP is 15mm posterior to the entrance to the ear canal (EEC) along the B-M line (Back-Mouth), as shown in Figure 5-1. The plane passing through the two ear canals and M is defined as the Reference Plane. The line N-F (Neck-Front), also called the Reference Pivoting Line, is not perpendicular to the reference plane (see Figure 5-1). Line B-M is perpendicular to the N-F line. Both N-F and B-M lines are marked on the external phantom shell to facilitate handset positioning [5].

Figure 5-1 **Close-Up Side view** of ERP

5.2 HANDSET REFERENCE POINTS

Two imaginary lines on the handset were established: the vertical centerline and the horizontal line. The test device was placed in a normal operating position with the acoustic output located along the "vertical centerline" on the front of the device aligned to the "ear reference point" (See Figure 5-3). The acoustic output was than located at the same level as the center of the ear reference point. The test device was positioned so that the "vertical centerline" was bisecting the front surface of the handset at its top and bottom edges, positioning the "ear reference point" on the outer surface of the both the left and right head phantoms on the ear reference point.

Figure 5-2 Front, back and side view of SAM Twin Phantom

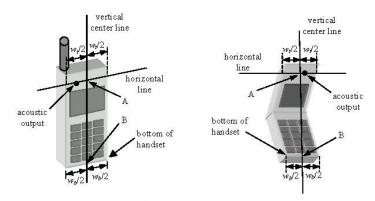


Figure 5-3 Handset Vertical Center & Horizontal Line Reference Points

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Da 4.4 4.00
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 14 of 80
) 202	0 PCTEST				REV 21.4 M

C

6 TEST CONFIGURATION POSITIONS

6.1 Device Holder

The device holder is made out of low-loss POM material having the following dielectric parameters: relative permittivity ε = 3 and loss tangent δ = 0.02.

6.2 Positioning for Cheek

1. The test device was positioned with the device close to the surface of the phantom such that point A is on the (virtual) extension of the line passing through points RE and LE on the phantom (see Figure 6-1), such that the plane defined by the vertical center line and the horizontal line of the phone is approximately parallel to the sagittal plane of the phantom.

Figure 6-1 Front, Side and Top View of Cheek Position

- 2. The handset was translated towards the phantom along the line passing through RE & LE until the handset touches the pinna.
- 3. While maintaining the handset in this plane, the handset was rotated around the LE-RE line until the vertical centerline was in the reference plane.
- 4. The phone was then rotated around the vertical centerline until the phone (horizontal line) was symmetrical was respect to the line NF.
- 5. While maintaining the vertical centerline in the reference plane, keeping point A on the line passing through RE and LE, and maintaining the device contact with the ear, the device was rotated about the NF line until any point on the handset made contact with a phantom point below the ear (cheek) (See Figure 6-2).

6.3 Positioning for Ear / 15º Tilt

With the test device aligned in the "Cheek Position":

- 1. While maintaining the orientation of the phone, the phone was retracted parallel to the reference plane far enough to enable a rotation of the phone by 15degrees.
- 2. The phone was then rotated around the horizontal line by 15 degrees.
- 3. While maintaining the orientation of the phone, the phone was moved parallel to the reference plane until any part of the handset touched the head. (In this position, point A was located on the line RE-LE). The tilted position is obtained when the contact is on the pinna. If the contact was at any location other than the pinna, the angle of the phone would then be reduced. In this situation, the tilted position was obtained when any part of the phone was in contact of the ear as well as a second part of the phone was in contact with the head (see Figure 6-2).

FCC ID ZNFK400AM	Proud to be part of (® element)	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 15 of 90
1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 15 of 80
020 PCTEST				REV 21 4 M

© 2020 PCTEST

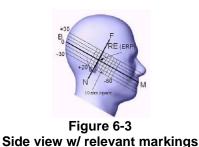
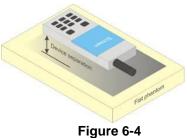


Figure 6-2 Front, Side and Top View of Ear/15º Tilt Position


6.4 SAR Evaluations near the Mouth/Jaw Regions of the SAM Phantom

Antennas located near the bottom of a phone may require SAR measurements around the mouth and jaw regions of the SAM head phantom. This typically applies to clam-shell style phones that are generally longer in the unfolded normal use positions or to certain older style long rectangular phones. Per IEEE 1528-2013, a rotated SAM phantom is necessary to allow probe access to such regions. Both SAM heads of the TwinSAM-Chin20 are rotated 20 degrees around the NF line. Each head can be removed from the table for emptying and cleaning.

Under these circumstances, the following procedures apply, adopted from the FCC guidance on SAR handsets document FCC KDB Publication 648474 D04v01r03. The SAR required in these regions of SAM should be measured using a flat phantom. The phone should be positioned with a separation distance of 4 mm between the ear reference point (ERP) and the outer surface of the flat phantom shell. While maintaining this distance at the ERP location, the low (bottom) edge of the phone should be lowered from the phantom to establish the same separation distance between the peak SAR location identified by the truncated partial SAR distribution measured with the SAM phantom. The distance from the peak SAR location to the phone is determined by the straight line passing perpendicularly through the phantom surface. When it is not feasible to maintain 4 mm separation at the ERP while also establishing the required separation at the peak SAR location, the top edge of the phone will be allowed to touch the phantom with a separation < 4 mm at the ERP. The phone should not be tilted to the left or right while placed in this inclined position to the flat phantom.

6.5 **Body-Worn Accessory Configurations**

Body-worn operating configurations are tested with the belt-clips and holsters attached to the device and positioned against a flat phantom in a normal use configuration (see Figure 6-4). Per FCC KDB Publication 648474 D04v01r03, Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in FCC KDB Publication 447498 D01v06 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. This enables the test results for such configuration to be compatible with that required for hotspot mode when the body-worn accessory test separation

Sample Body-Worn Diagram

distance is greater than or equal to that required for hotspot mode, when applicable. When the reported SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest reported SAR configuration for that wireless mode and frequency band should be repeated for that body-worn accessory with a headset attached to the handset.

Accessories for Body-worn operation configurations are divided into two categories: those that do not contain metallic components and those that do contain metallic components. When multiple accessories that do not

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 16 of 90
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 16 of 80
202	0 PCTEST			REV 21.4 M

^{© 2020} PCTEST

contain metallic components are supplied with the device, the device is tested with only the accessory that dictates the closest spacing to the body. Then multiple accessories that contain metallic components are tested with the device with each accessory. If multiple accessories share an identical metallic component (i.e. the same metallic belt-clip used with different holsters with no other metallic components) only the accessory that dictates the closest spacing to the body is tested.

Body-worn accessories may not always be supplied or available as options for some devices intended to be authorized for body-worn use. In this case, a test configuration with a separation distance between the back of the device and the flat phantom is used. Test position spacing was documented.

Transmitters that are designed to operate in front of a person's face, as in push-to-talk configurations, are tested for SAR compliance with the front of the device positioned to face the flat phantom in head fluid. For devices that are carried next to the body such as a shoulder, waist or chest-worn transmitters, SAR compliance is tested with the accessories, including headsets and microphones, attached to the device and positioned against a flat phantom in a normal use configuration.

6.6 **Extremity Exposure Configurations**

Devices that are designed or intended for use on extremities or mainly operated in extremity only exposure conditions; i.e., hands, wrists, feet and ankles, may require extremity SAR evaluation. When the device also operates in close proximity to the user's body, SAR compliance for the body is also required. The 1g body and 10g extremity SAR Exclusion Thresholds found in KDB Publication 447498 D01v06 should be applied to determine SAR test requirements.

Per KDB Publication 447498 D01v06, Cell phones (handsets) are not normally designed to be used on extremities or operated in extremity only exposure conditions. The maximum output power levels of handsets generally do not require extremity SAR testing to show compliance. Therefore, extremity SAR was not evaluated for this device.

6.7 Wireless Router Configurations

Some battery-operated handsets have the capability to transmit and receive user data through simultaneous transmission of WIFI simultaneously with a separate licensed transmitter. The FCC has provided guidance in FCC KDB Publication 941225 D06v02r01 where SAR test considerations for handsets (L x W \ge 9 cm x 5 cm) are based on a composite test separation distance of 10 mm from the front, back and edges of the device containing transmitting antennas within 2.5 cm of their edges, determined from general mixed use conditions for this type of devices. Since the hotspot SAR results may overlap with the body-worn accessory SAR requirements, the more conservative configurations can be considered, thus excluding some body-worn accessory SAR tests.

When the user enables the personal wireless router functions for the handset, actual operations include simultaneous transmission of both the WIFI transmitter and another licensed transmitter. Both transmitters often do not transmit at the same transmitting frequency and thus cannot be evaluated for SAR under actual use conditions due to the limitations of the SAR assessment probes. Therefore, SAR must be evaluated for each frequency transmission and mode separately and spatially summed with the WIFI transmitter according to FCC KDB Publication 447498 D01v06 procedures. The "Portable Hotspot" feature on the handset was NOT activated during SAR assessments, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal at a time.

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dama 47 of 00
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 17 of 80
202	0 PCTEST	·		REV 21.4 M

© 2020 PCTEST

09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including principality in the second of the secon ng pl mbly of contents thereof, please contact INFO@PCTEST.COM

6.8 Phablet Configurations

For smart phones with a display diagonal dimension > 150 mm or an overall diagonal dimension > 160 mm that provide similar mobile web access and multimedia support found in mini-tablets or UMPC mini-tablets that support voice calls next to the ear, the phablets procedures outlined in KDB Publication 648474 D04v01r03 should be applied to evaluate SAR compliance. A device marketed as phablets, regardless of form factors and operating characteristics must be tested as a phablet to determine SAR compliance. In addition to the normally required head and body-worn accessory SAR test procedures required for handsets, the UMPC mini-tablet procedures must also be applied to test the SAR of all surfaces and edges with an antenna <=25 mm from that surface or edge, in direct contact with the phantom, for 10g SAR. The UMPC mini-tablet 1g SAR at 5 mm is not required. When hotspot mode applies, 10g SAR is required only for the surfaces and edges with hotspot mode 1g SAR > 1.2 W/kg.

6.9 Proximity Sensor Consideration

This device uses a power reduction mechanism to reduce output powers in certain use conditions when the device is used close the user's body. When the device's antenna is within a certain distance of the user, the sensor activates and reduces the maximum allowed output power. However, the sensor is not active when the device is moved beyond the sensor triggering distance and the maximum output power is no longer limited. Therefore, additional evaluation is needed in the vicinity of the triggering distance to ensure SAR is compliant when the device is allowed to operate at a non-reduced output power level. FCC KDB Publication 616217 D04v01r02 Section 6 was used as a guideline for selecting SAR test distances for this device at these additional test positions. Sensor triggering distance summary data is included in Appendix G. The sensor is designed to support sufficient detection range and sensitivity to cover regions of the sensors in all applicable directions since the sensor entirely covers the antennas.

FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dogo 19 of 90
1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 18 of 80
020 PCTEST				REV 21.4 M

© 2020 PCTEST

7 RF EXPOSURE LIMITS

7.1 Uncontrolled Environment

UNCONTROLLED ENVIRONMENTS are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. The general population/uncontrolled exposure limits are applicable to situations in which the general public may be exposed or in which persons who are exposed as a consequence of their employment may not be made fully aware of the potential for exposure or cannot exercise control over their exposure. Members of the general public would come under this category when exposure is not employment-related; for example, in the case of a wireless transmitter that exposes persons in its vicinity.

7.2 Controlled Environment

CONTROLLED ENVIRONMENTS are defined as locations where there is exposure that may be incurred by persons who are aware of the potential for exposure, (i.e. as a result of employment or occupation). In general, occupational/controlled exposure limits are applicable to situations in which persons are exposed as a consequence of their employment, who have been made fully aware of the potential for exposure and can exercise control over their exposure. This exposure category is also applicable when the exposure is of a transient nature due to incidental passage through a location where the exposure levels may be higher than the general population/uncontrolled limits, but the exposed person is fully aware of the potential for exposure and can exercise control over his or her exposure by leaving the area or by some other appropriate means.

 Table 7-1

 SAR Human Exposure Specified in ANSI/IEEE C95.1-1992 and Health Canada Safety Code 6

HUMAN EXPOSURE LIMITS		
	UNCONTROLLED ENVIRONMENT General Population (W/kg) or (mW/g)	CONTROLLED ENVIRONMENT Occupational (W/kg) or (mW/g)
Peak Spatial Average SAR Head	1.6	8.0
Whole Body SAR	0.08	0.4
Peak Spatial Average SAR Hands, Feet, Ankle, Wrists, etc.	4.0	20

1. The Spatial Peak value of the SAR averaged over any 1 gram of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

2. The Spatial Average value of the SAR averaged over the whole body.

3. The Spatial Peak value of the SAR averaged over any 10 grams of tissue (defined as a tissue volume in the shape of a cube) and over the appropriate averaging time.

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 10 of 90
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 19 of 80
202	0 PCTEST			REV 21.4 M

© 2020 PCTEST

8 FCC MEASUREMENT PROCEDURES

Power measurements for licensed transmitters are performed using a base station simulator under digital average power.

8.1 Measured and Reported SAR

Per FCC KDB Publication 447498 D01v06, when SAR is not measured at the maximum power level allowed for production units, the results must be scaled to the maximum tune-up tolerance limit according to the power applied to the individual channels tested to determine compliance. For simultaneous transmission, the measured aggregate SAR must be scaled according to the sum of the differences between the maximum tune-up tolerance and actual power used to test each transmitter. When SAR is measured at or scaled to the maximum tune-up tolerance limit, the results are referred to as *reported* SAR. The highest *reported* SAR results are identified on the grant of equipment authorization according to procedures in KDB 690783 D01v01r03.

8.2 3G SAR Test Reduction Procedure

In FCC KDB Publication 941225 D01v03r01, certain transmission modes within a frequency band and wireless mode evaluated for SAR are defined as primary modes. The equivalent modes considered for SAR test reduction are denoted as secondary modes. When the maximum output power including tune-up tolerance specified for production units in a secondary mode is ≤ 0.25 dB higher than the primary mode or when the highest reported SAR of the primary mode, scaled by the ratio of specified maximum output power and tune-up tolerance of secondary to primary mode, is ≤ 1.2 W/kg, SAR measurements are not required for the secondary mode. These criteria are referred to as the 3G SAR test reduction procedure. When the 3G SAR test reduction procedure is not satisfied, SAR measurements are additionally required for the secondary mode.

8.3 Procedures Used to Establish RF Signal for SAR

The following procedures are according to FCC KDB Publication 941225 D01v03r01 "3G SAR Measurement Procedures."

The device is placed into a simulated call using a base station simulator in a RF shielded chamber. Establishing connections in this manner ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. Devices under test are evaluated prior to testing, with a fully charged battery and were configured to operate at maximum output power. In order to verify that the device is tested throughout the SAR test at maximum output power, the SAR measurement system measures a "point SAR" at an arbitrary reference point at the start and end of the 1 gram SAR evaluation, to assess for any power drifts during the evaluation. If the power drift deviates by more than 5%, the SAR test and drift measurements are repeated.

8.4 SAR Measurement Conditions for UMTS

8.4.1 Output Power Verification

Maximum output power is verified on the High, Middle and Low channels according to the general descriptions in section 5.2 of 3GPP TS 34.121, using the appropriate RMC with TPC (transmit power control) set to all "1s" or applying the required inner loop power control procedures to maintain maximum output power while HSUPA is active. Results for all applicable physical channel configurations (DPCCH, DPDCHn and spreading codes, HS-DPCCH etc) are tabulated in this test report. All configurations that are not supported by the DUT or cannot be measured due to technical or equipment limitations are identified.

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Daga 20 of 80
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 20 of 80
202	0 DOTEST				DEV/21.4 M

^{© 2020} PCTEST

8.4.2 Head SAR Measurements

SAR for next to the ear head exposure is measured using a 12.2 kbps RMC with TPC bits configured to all "1's". The 3G SAR test reduction procedure is applied to AMR configurations with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured for 12.2 kbps AMR in 3.4 kbps SRB (signaling radio bearer) using the highest reported SAR configuration in 12.2 kbps RMC for head exposure.

8.4.3 Body SAR Measurements

SAR for body exposure configurations is measured using the 12.2 kbps RMC with the TPC bits all "1s". The 3G SAR test reduction procedure is applied to other spreading codes and multiple DPDCH_n configurations supported by the handset with 12.2 kbps RMC as the primary mode. Otherwise, SAR is measured using an applicable RMC configuration with the corresponding spreading code or DPDCH_n, for the highest reported SAR configuration in 12.2 kbps RMC.

8.4.4 SAR Measurements with Rel 5 HSDPA

The 3G SAR test reduction procedure is applied to HSDPA body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSDPA is measured using an FRC with H-Set 1 in Sub-test 1 and a 12.2 kbps RMC configured in Test Loop Mode 1, for the highest reported SAR configuration in 12.2 kbps RMC without HSDPA. Handsets with both HSDPA and HSUPA are tested according to Release 6 HSPA test procedures.

8.4.5 SAR Measurements with Rel 6 HSUPA

The 3G SAR test reduction procedure is applied to HSPA (HSUPA/HSDPA with RMC) body configurations with 12.2 kbps RMC as the primary mode. Otherwise, Body SAR for HSPA is measured with E-DCH Subtest 5, using H-Set 1 and QPSK for FRC and a 12.2 kbps RMC configured in Test Loop Mode 1 and power control algorithm 2, according to the highest reported body SAR configuration in 12.2 kbps RMC without HSPA.

When VOIP applies to head exposure, the 3G SAR test reduction procedure is applied with 12.2 kbps RMC as the primary mode; otherwise, the same HSPA configuration used for body SAR measurements are applied to head exposure testing.

8.5 SAR Measurement Conditions for LTE

LTE modes are tested according to FCC KDB 941225 D05v02r04 publication. Establishing connections with base station simulators ensure a consistent means for testing SAR and are recommended for evaluating SAR [4]. The R&S CMW500 or Anritsu MT8820C simulators are used for LTE output power measurements and SAR testing. Closed loop power control was used so the UE transmits with maximum output power during SAR testing. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).

8.5.1 Spectrum Plots for RB Configurations

A properly configured base station simulator was used for SAR tests and power measurements. Therefore, spectrum plots for RB configurations were not required to be included in this report.

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 21 of 20
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 21 of 80
202	0 PCTEST			REV 21.4 M

© 2020 PCTEST

8.5.2 MPR

MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.

8.5.3 A-MPR

A-MPR (Additional MPR) has been disabled for all SAR tests by setting NS=01 on the base station simulator.

8.5.4 Required RB Size and RB Offsets for SAR Testing

According to FCC KDB 941225 D05v02r04:

- a. Per Section 5.2.1, SAR is required for QPSK 1 RB Allocation for the largest bandwidth
 - i. The required channel and offset combination with the highest maximum output power is required for SAR.
 - ii. When the reported SAR is ≤ 0.8 W/kg, testing of the remaining RB offset configurations and required test channels is not required. Otherwise, SAR is required for the remaining required test channels using the RB offset configuration with highest output power for that channel.
 - iii. When the reported SAR for a required test channel is > 1.45 W/kg, SAR is required for all RB offset configurations for that channel.
- b. Per Section 5.2.2, SAR is required for 50% RB allocation using the largest bandwidth following the same procedures outlined in Section 5.2.1.
- c. Per Section 5.2.3, QPSK SAR is not required for the 100% allocation when the highest maximum output power for the 100% allocation is less than the highest maximum output power of the 1 RB and 50% RB allocations and the reported SAR for the 1 RB and 50% RB allocations is < 0.8 W/kg.</p>
- d. Per Section 5.2.4 and 5.3, SAR tests for higher order modulations and lower bandwidths configurations are not required when the conducted power of the required test configurations determined by Sections 5.2.1 through 5.2.3 is less than or equal to ½ dB higher than the equivalent configuration using QPSK modulation and when the QPSK SAR for those configurations is <1.45 W/kg.</p>

8.5.5 Downlink Only Carrier Aggregation

Conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band. Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for downlink only carrier aggregation configurations when the average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

	PCTEST'		LG	Approved by:
FCC ID ZNFK400AM	Proud to be part of element	SAR EVALUATION REPORT		Quality Manager
Document S/N:	Test Dates:	DUT Type:		Daga 22 of 90
1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 22 of 80
20 PCTEST				REV 21 4 M

© 2020 PCTEST

8.6 SAR Testing with 802.11 Transmitters

The normal network operating configurations of 802.11 transmitters are not suitable for SAR measurements. Unpredictable fluctuations in network traffic and antenna diversity conditions can introduce undesirable variations in SAR results. The SAR for these devices should be measured using chipset based test mode software to ensure the results are consistent and reliable. See KDB Publication 248227 D01v02r02 for more details.

8.6.1 General Device Setup

Chipset based test mode software is hardware dependent and generally varies among manufacturers. The device operating parameters established in test mode for SAR measurements must be identical to those programmed in production units, including output power levels, amplifier gain settings and other RF performance tuning parameters.

A periodic duty factor is required for current generation SAR systems to measure SAR. When 802.11 frame gaps are accounted for in the transmission, a maximum transmission duty factor of 92 - 96% is typically achievable in most test mode configurations. A minimum transmission duty factor of 85% is required to avoid certain hardware and device implementation issues related to wide range SAR scaling. The reported SAR is scaled to 100% transmission duty factor to determine compliance at the maximum tune-up tolerance limit.

8.6.2 Initial Test Position Procedure

For exposure conditions with multiple test positions, such as handset operating next to the ear, devices with hotspot mode or UMPC mini-tablet, procedures for initial test position can be applied. Using the transmission mode determined by the DSSS procedure or initial test configuration, area scans are measured for all positions in an exposure condition. The test position with the highest extrapolated (peak) SAR is used as the initial test position. When reported SAR for the initial test position is ≤ 0.4 W/kg, no additional testing for the remaining test positions is required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until the reported SAR result is ≤ 0.8 W/kg or all test positions are measured. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.3 2.4 GHz SAR Test Requirements

SAR is measured for 2.4 GHz 802.11b DSSS using either the fixed test position or, when applicable, the initial test position procedure. SAR test reduction is determined according to the following:

- When the reported SAR of the highest measured maximum output power channel for the exposure configuration is ≤ 0.8 W/kg, no further SAR testing is required for 802.11b DSSS in that exposure configuration.
- 2) When the reported SAR is > 0.8 W/kg, SAR is required for that position using the next highest measured output power channel. When any reported SAR is > 1.2 W/kg, SAR is required for the third channel; i.e., all channels require testing.

2.4 GHz 802.11 g/n OFDM are additionally evaluated for SAR if the highest reported SAR for 802.11b, adjusted by the ratio of the OFDM to DSSS specified maximum output power, is > 1.2 W/kg. When SAR is required for OFDM modes in 2.4 GHz band, the Initial Test Configuration Procedures should be followed. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.4 OFDM Transmission Mode and SAR Test Channel Selection

When the same maximum output power was specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration with the largest channel bandwidth, lowest order modulation and lowest data rate. When the maximum output power of a channel is

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Page 23 of 80	
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Fage 23 01 60	
© 202	0 PCTEST			REV 21.4 M	

REV 21.4 M 09/11/2019

^{© 2020} PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

the same for equivalent OFDM configurations; for example, 802.11g and 802.11n with the same channel bandwidth, modulation and data rate etc., the lower order 802.11 mode i.e., 802.11g then 802.11n, is used for SAR measurement. When the maximum output power are the same for multiple test channels, either according to the default or additional power measurement requirements, SAR is measured using the channel closest to the middle of the frequency band or aggregated band. When there are multiple channels with the same maximum output power, SAR is measured using the higher number channel.

8.6.5 Initial Test Configuration Procedure

For OFDM, an initial test configuration is determined for each frequency band and aggregated band, according to the transmission mode with the highest maximum output power specified for SAR measurements. When the same maximum output power is specified for multiple OFDM transmission mode configurations in a frequency band or aggregated band, SAR is measured using the configuration(s) with the largest channel bandwidth, lowest order modulation, lowest data rate and lowest order IEEE 802.11 mode. The channel of the transmission mode with the highest average RF output conducted power will be the initial test configuration.

When the reported SAR is ≤ 0.8 W/kg, no additional measurements on other test channels are required. Otherwise, SAR is evaluated using the subsequent highest average RF output channel until the reported SAR result is ≤ 1.2 W/kg or all channels are measured. When there are multiple untested channels having the same subsequent highest average RF output power, the channel with higher frequency from the lowest 802.11 mode is considered for SAR measurements (See Section 8.6.4). When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

8.6.6 Subsequent Test Configuration Procedures

For OFDM configurations in each frequency band and aggregated band, SAR is evaluated for initial test configuration using the fixed test position or the initial test position procedure. When the highest reported SAR (for the initial test configuration), adjusted by the ratio of the specified maximum output power of the subsequent test configuration to initial test configuration, is ≤ 1.2 W/kg, no additional SAR tests for the subsequent test configurations are required. When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Da
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 24 of 80
© 202	0 PCTEST		•		REV 21.4 M

9 **RF CONDUCTED POWERS**

GSM Conducted Powers 9.1

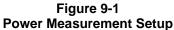
	Maximum Conducted Power								
	Maximum Burst-Averaged Output Power								
		Voice GPRS/EDGE Data EDGE (GMSK) (8-P							
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot			
	128	33.46	33.46	32.18	27.01	26.19			
GSM 850	190	33.53	33.52	32.20	27.00	26.09			
	251	33.42	33.43	32.15	27.04	26.03			
	512	30.65	30.65	27.87	26.37	24.96			
GSM 1900	661	30.63	30.62	27.78	26.28	24.76			
	810	30.55	30.55	27.72	26.22	24.90			

Table 9-1

C	Calculated Max	imum Fram	e-Average	d Output	Power	
		Voice	GPRS/EDGE Data (GMSK)		EDGE Data (8-PSK)	
Band	Channel	GSM [dBm] CS (1 Slot)	GPRS [dBm] 1 Tx Slot	GPRS [dBm] 2 Tx Slot	EDGE [dBm] 1 Tx Slot	EDGE [dBm] 2 Tx Slot
	128	24.26	24.26	25.99	17.81	20.00
GSM 850	190	24.33	24.32	26.01	17.80	19.90
	251	24.22	24.23	25.96	17.84	19.84
	512	21.45	21.45	21.68	17.17	18.77
GSM 1900	661	21.43	21.42	21.59	17.08	18.57
	810	21.35	21.35	21.53	17.02	18.71

GSM 850	Frame	24.00	24.00	25.51	18.00	20.01
GSM 1900	Avg.Targets:	21.00	21.00	21.51	17.00	19.01

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 25 of 80
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 25 01 80
202	0 PCTEST		•	REV 21.4 M


© 2020 PCTEST

Note:

- 1. Both burst-averaged and calculated frame-averaged powers are included. Frame-averaged power was calculated from the measured burst-averaged power by converting the slot powers into linear units and calculating the energy over 8 timeslots.
- GPRS/EDGE (GMSK) output powers were measured with coding scheme setting of 1 (CS1) on the base station simulator. CS1 was configured to measure GPRS output power measurements and SAR to ensure GMSK modulation in the signal. Our Investigation has shown that CS1 - CS4 settings do not have any impact on the output levels or modulation in the GPRS modes.
- 3. EDGE (8-PSK) output powers were measured with MCS7 on the base station simulator. MCS7 coding scheme was used to measure the output powers for EDGE since investigation has shown that choosing MCS7 coding scheme will ensure 8-PSK modulation. It has been shown that MCS levels that produce 8-PSK modulation do not have an impact on output power.

GSM Class: B GPRS Multislot class: 10 (Max 2 Tx uplink slots) EDGE Multislot class: 10 (Max 2 Tx uplink slots) DTM Multislot Class: N/A

FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 26 of 80
1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Fage 20 01 00
20 PCTEST				REV 21.4 M

© 2020 PCTEST

9.2 UMTS Conducted Powers

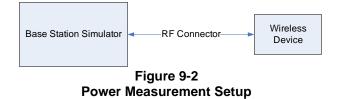

	Maximum Conducted Power										
Release	Release Version Mode	Subtest	Cellular Band [dBm]		AWS Band [dBm]			PCS Band [dBm]			
version			4132	4183	4233	1312	1412	1513	9262	9400	9538
99	WCDMA	12.2 kbps RMC	25.04	24.97	24.91	24.62	24.58	24.52	24.59	24.60	24.61
99	VCDINA	12.2 kbps AMR	25.03	24.97	24.89	24.62	24.57	24.54	24.57	24.62	24.60
6		Subtest 1	23.96	23.86	23.80	23.58	23.54	23.51	23.35	23.53	23.52
6	HSDPA	Subtest 2	23.90	23.80	23.77	23.51	23.48	23.47	23.36	23.45	23.49
6	NODEA	Subtest 3	23.40	23.36	23.27	23.04	22.98	23.02	22.90	22.92	23.00
6		Subtest 4	23.41	23.37	23.26	23.00	22.92	22.96	22.87	22.91	22.96
6		Subtest 1	21.96	21.81	21.77	21.55	21.49	21.50	21.39	21.42	21.40
6		Subtest 2	21.96	21.82	21.76	21.52	21.50	21.47	21.37	21.41	21.42
6	HSUPA	Subtest 3	22.91	22.82	22.79	22.49	22.47	22.48	22.33	22.42	22.39
6		Subtest 4	20.88	20.82	20.74	21.07	21.02	21.06	20.86	20.93	20.89
6		Subtest 5	22.88	22.81	22.79	22.49	22.47	22.42	22.29	22.34	22.37

Table 9-2 Maximum Conducted Power

Table 9-3 Reduced Conducted Power

Release Version	Mode	Subtest	AWS Band [dBm]		PCS Band [dBm]			
Version			1312	1412	1513	9262	9400	9538
99	WCDMA	12.2 kbps RMC	22.20	22.15	22.13	22.10	22.20	22.15
99		12.2 kbps AMR	22.19	22.15	22.12	22.09	22.18	22.13
6		Subtest 1	22.13	22.11	22.07	22.00	22.11	22.01
6	HSDPA	Subtest 2	22.18	22.12	22.19	21.98	21.99	22.13
6	HODEA	Subtest 3	21.68	21.49	21.63	21.55	21.56	21.54
6		Subtest 4	21.69	21.55	21.58	21.53	21.52	21.53
6		Subtest 1	20.54	20.51	20.50	20.39	20.45	20.46
6		Subtest 2	20.16	20.12	20.11	20.01	20.11	20.09
6	HSUPA	Subtest 3	21.22	21.15	21.13	21.04	21.11	21.09
6		Subtest 4	19.68	19.63	19.64	19.51	19.56	19.58
6		Subtest 5	21.06	21.11	21.10	20.99	21.06	21.07

This device does not support DC-HSDPA.

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dama 07 of 00
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 27 of 80
0 202	20 PCTEST				REV 21.4 M

© 2020 PCTEST

LTE Conducted Powers 9.3

9.3.1 LTE Band 12

			LTE Band 12 10 MHz Bandwidth		
Modulation	RB Size	RB Offset	Mid Channel 23095 (707.5 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]
	1 0 24.71		0		
	1	25	24.87	0	0
	1	49	24.72		0
QPSK	25	0	24.00		1
	25	12	23.90	0-1	1
	25	25	23.94	0-1	1
	50	0	23.95		1
	1	0	24.20		1
	1	25	24.04	0-1	1
	1	49	24.04		1
16QAM	25	0	22.75		2
	25	12	22.82	0-2	2
	25	25	22.78	0-2	2
	50	0	22.75		2

Table 9-4

Note: LTE Band 12 at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

Table 9-5
LTE Band 12 Conducted Powers - 5 MHz Bandwidth

				LTE Band 12 5 MHz Bandwidth				
Low Channel Mid Channel High Channel								
Modulation	RB Size	RB Offset	23035 (701.5 MHz)	23095 (707.5 MHz)	23155 (713.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
				Conducted Power [dBm]			
	1	0	24.97	24.88	24.76		0	
	1	12	25.13	25.11	25.01	0	0	
	1	24	24.90	24.91	24.76		0	
QPSK	12	0	23.96	23.98	24.02		1	
	12	6	23.98	24.07	23.99	- 0-1	1	
	12	13	23.96	24.02	23.90	0-1	1	
	25	0	23.95	23.97	23.99		1	
	1	0	24.02	23.82	23.88		1	
	1	12	24.10	24.09	24.14	0-1	1	
	1	24	24.04	23.83	23.89]	1	
16QAM	12	0	22.98	23.06	23.06		2	
	12	6	23.00	23.10	23.04	0-2	2	
	12	13	23.01	23.09	22.95	0-2	2	
	25	0	22.91	22.98	22.97		2	

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Page 28 of 80	
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 28 01 80	
202	0 PCTEST		· · · · · · · · · · · · · · · · · · ·	REV 21.4 M	

© 2020 PCTEST

				LTE Band 12 3 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	23025 (700.5 MHz)	23095 (707.5 MHz)	23165 (714.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.95	24.90	24.93		0
	1	7	25.05	25.02	25.03	0	0
	1	14	24.88	24.85	24.91		0
QPSK	8	0	23.96	23.97	24.02		1
	8	4	23.99	24.01	24.06	0-1	1
	8	7	23.91	23.98	23.99	0-1	1
	15	0	23.93	23.99	23.97		1
	1	0	24.03	23.73	23.85		1
	1	7	23.99	23.85	23.95	0-1	1
	1	14	24.09	23.89	23.92		1
16QAM	8	0	23.01	22.95	23.06		2
	8	4	23.07	23.00	23.08	0-2	2
	8	7	23.00	22.97	22.99	0-2	2
	15	0	22.93	23.00	23.04		2

Table 9-6 LTE Band 12 Conducted Powers - 3 MHz Bandwidth

Table 9-7 LTE Band 12 Conducted Powers -1.4 MHz Bandwidth

	LTE Band 12									
		·	r	1.4 MHz Bandwidth		· · · · · · · · ·				
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	23017 (699.7 MHz)	23095 (707.5 MHz)	23173 (715.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
				Conducted Power [dBm]					
	1	0	25.01	24.88	24.82		0			
	1	2	25.11	25.00	24.96] [0			
	1	5	25.02	24.88	24.83		0			
QPSK	3	0	25.00	25.00	25.03	- 0	0			
	3	2	25.01	25.04	25.10		0			
	3	3	24.99	25.04	25.03		0			
	6	0	24.02	24.00	24.04	0-1	1			
	1	0	23.69	23.90	23.64		1			
	1	2	23.77	24.06	23.70		1			
	1	5	23.74	24.05	23.66	0-1	1			
16QAM	3	0	23.97	24.09	24.08		1			
	3	2	24.04	24.09	24.11] [1			
	3	3	24.01	23.98	24.09		1			
	6	0	23.15	22.92	23.18	0-2	2			

FCC ID ZNFK400AM	PCTEST [®] Proud to be part of [®] element	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 29 of 80
1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Fage 29 01 00
20 PCTEST				REV 21.4 M

© 20

9.3.2 LTE Band 14

	LTE B	and 14 Co	nducted Powers -	10 MHz Bandwidt	h
			LTE Band 14		
	1	1	10 MHz Bandwidth	1	
			Mid Channel		
			23330	MPR Allowed per	
Modulation	RB Size	RB Offset	(793.0 MHz)	3GPP [dB]	MPR [dB]
			Conducted Power		
			[dBm]		
	1	0	23.76		0
	1	25	23.82	0	0
	1	49	23.70		0
QPSK	25	0	22.87		1
	25	12	22.78	0-1	1
	25	25	22.74	0-1	1
	50	0	22.79		1
	1	0	22.83		1
	1	25	22.91	0-1	1
	1	49	22.83		1
16QAM	25	0	21.83		2
	25	12	21.73	0-2	2
	25	25	21.74		2
	50	0	21.78		2

Table 9-8

Table 9-9
LTE Band 14 Conducted Powers - 5 MHz Bandwidth

	LTE Band 14 5 MHz Bandwidth								
Modulation	RB Size	RB Offset	Mid Channel 23330 (793.0 MHz) Conducted Power [dBm]	MPR Allowed per 3GPP [dB]	MPR [dB]				
	1	0	23.55		0				
	1	12	23.73	0	0				
	1	24	23.50		0				
QPSK	12	0	22.69		1				
	12	6	22.67	0-1	1				
	12	13	22.64	0-1	1				
	25	0	22.64		1				
	1	0	22.61		1				
	1	12	22.83	0-1	1				
	1	24	22.57		1				
16QAM	12	0	21.68		2				
	12	6	21.74	0-2	2				
	12	13	21.62	0-2	2				
	25	0	21.60		2				

Note: LTE Band 14 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

FCC ID ZNF	K400AM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
Document S	/N:	Test Dates:	DUT Type:		Page 30 of 80
1M200302003	32-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		1 ago 60 01 00
120 PCTEST					REV/21/1 M

© 2020 PCTEST

	LTE	E Band 5 (Cell) Conducted Powers -	10 MHz Bandwidth	
			LTE Band 5 (Cell)		
			10 MHz Bandwidth		
			Mid Channel	-	
Modulation	RB Size	RB Offset	20525 (836.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]		
	1	0	24.72		0
	1	25	24.93	0	0
	1	49	24.85		0
QPSK	25	0	23.80		1
	25	12	23.78	0-1	1
	25	25	23.78	0-1	1
	50	0	23.75		1
	1	0	24.00		1
	1	25	24.07	0-1	1
	1	49	23.67		1
16QAM	25	0	22.85		2
	25	12	22.81	0-2	2
	25	25	22.73	0-2	2
	50	0	22.78		2

Table 9-10

Note: LTE Band 5 (Cell) at 10 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

		LTE	Band 5 (Cell) C	onducted Powe	rs - 5 MHz Ban	dwidth	
				LTE Band 5 (Cell) 5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20425 (826.5 MHz)	20525 (836.5 MHz)	20625 (846.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.78	24.70	24.60		0
	1	12	24.97	24.93	24.86	0	0
	1	24	24.72	24.71	24.62		0
QPSK	12	0	23.83	23.76	23.73		1
	12	6	23.85	23.84	23.89	0-1	1
	12	13	23.78	23.74	23.88	0-1	1
	25	0	23.79	23.75	23.82		1
	1	0	23.80	23.60	23.74		1
	1	12	23.76	23.81	23.99	0-1	1
	1	24	24.01	23.60	23.78		1
16QAM	12	0	22.93	22.82	22.84		2
	12	6	22.97	22.90	22.94	0-2	2
	12	13	22.89	22.78	22.92	0*2	2
	25	0	22.94	22.77	22.85		2

Table 9-11

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 21 of 90
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 31 of 80
202	0 PCTEST	•		REV 21.4 M

© 2020 PCTEST

				LTE Band 5 (Cell)		aman	
			Low Channel	3 MHz Bandwidth Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20415 (825.5 MHz)	20525 (836.5 MHz)	20635 (847.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.79	24.70	24.76	_	0
	1	7	24.94	24.80	24.92	0	0
	1	14	24.78	24.72	24.75		0
QPSK	8	0	23.82	23.76	23.84	0-1	1
	8	4	23.86	23.83	23.88		1
	8	7	23.79	23.78	23.84		1
	15	0	23.83	23.75	23.83		1
	1	0	24.09	23.65	23.76		1
	1	7	23.87	23.56	23.88	0-1	1
	1	14	23.80	23.59	23.70		1
16QAM	8	0	22.97	22.72	22.95		2
	8	4	22.99	22.82	22.99	- 0-2	2
	8	7	22.94	22.74	22.92	0-2	2
	15	0	22.84	22.73	22.95] [2

Table 9-12 I TE Band 5 (Cell) Conducted Powers - 3 MHz Bandwidth

Table 9-13 LTE Band 5 (Cell) Conducted Powers -1.4 MHz Bandwidth

				LTE Band 5 (Cell)			
			Low Channel	1.4 MHz Bandwidth Mid Channel	High Channel		
Modulation	RB Size	RB Offset	20407 (824.7 MHz)	20525 (836.5 MHz)	20643 (848.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.88	24.73	24.73	0	0
	1	2	24.98	24.82	24.80		0
	1	5	24.89	24.72	24.72		0
QPSK	3	0	24.86	24.75	24.86		0
	3	2	24.88	24.80	24.93		0
	3	3	24.84	24.76	24.88		0
	6	0	23.88	23.80	23.91	0-1	1
	1	0	23.57	23.97	23.66		1
	1	2	23.64	24.08	23.60		1
	1	5	23.70	23.95	23.67	0.1	1
16QAM	3	0	23.95	23.88	23.91	0-1	1
	3	2	23.97	23.96	23.97]	1
	3	3	23.94	23.95	23.95		1
	6	0	23.07	22.72	23.07	0-2	2

FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 22 of 20
1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 32 of 80
020 PCTEST				REV 21.4 M

© 20

9.3.4

LTE Band 66 (AWS)

				onducted Fowe		awiatii	
				LTE Band 66 (AWS)			
				20 MHz Bandwidth			
			Low Channel	132322	High Channel		
Modulation	RB Size	RB Offset	132072		132572	MPR Allowed per	MPR [dB]
wouldtion	ND 5126	IND Onset	(1720.0 MHz)	(1745.0 MHz)	(1770.0 MHz)	3GPP [dB]	
			(Conducted Power [dBm]		
	1	0	24.22	24.32	24.38		0
	1	50	24.30	24.53	24.36	0	0
	1	99	24.20	24.33	24.25		0
QPSK	50	0	23.28	23.40	23.37		1
	50	25	23.34	23.43	23.31	0.1	1
	50	50	23.20	23.50	23.23	0-1	1
	100	0	23.19	23.41	23.26		1
	1	0	23.53	23.25	23.65		1
	1	50	23.60	23.53	23.66	0-1	1
	1	99	23.51	23.24	23.53		1
16QAM	50	0	22.33	22.37	22.38		2
	50	25	22.40	22.46	22.31	0-2	2
	50	50	22.21	22.49	22.21	0-2	2
	100	0	22.23	22.46	22.32		2

Table 9-14 LTE Band 66 (AWS) Conducted Powers - 20 MHz Bandwidth

Table 9-15 LTE Band 66 (AWS) Conducted Powers - 15 MHz Bandwidth

				LTE Band 66 (AWS) 15 MHz Bandwidth			
			Low Channel Mid Ch		High Channel		
Modulation	RB Size	B Size RB Offset	132047 (1717.5 MHz)	132322 (1745.0 MHz)	132597 (1772.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			Conducted Power [dBm]				
	1	0	24.48	24.59	24.36		0
	1	36	24.55	24.61	24.45	0	0
	1	74	24.42	24.52	24.23		0
QPSK	36	0	23.54	23.54	23.59		1
	36	18	23.54	23.62	23.66	0-1	1
	36	37	23.47	23.47	23.56		1
	75	0	23.56	23.62	23.58		1
	1	0	23.60	23.38	23.39		1
	1	36	23.45	23.59	23.48	0-1	1
	1	74	23.55	23.40	23.23		1
16QAM	36	0	22.67	22.64	22.61		2
	36	18	22.56	22.70	22.59	0-2	2
	36	37	22.68	22.55	22.50	0-2	2
	75	0	22.58	22.64	22.54		2

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dogo 22 of 90
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 33 of 80
© 202	20 PCTEST				REV 21.4 M

		LIEDa		onducted Powe		lawiath	
				LTE Band 66 (AWS)			
		1	Law Obarrad	10 MHz Bandwidth	Ulat Ohermal	1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132022	132322	132622	MPR Allowed per	MPR [dB]
modulation			(1715.0 MHz)	(1745.0 MHz)	(1775.0 MHz)	3GPP [dB]	
				Conducted Power [dBm]		
	1	0	24.22	24.32	24.18		0
	1	25	24.25	24.44	24.35	0	0
	1	49	24.24	24.23	24.12		0
QPSK	25	0	23.40	23.43	23.33		1
	25	12	23.44	23.50	23.34	0-1	1
	25	25	23.48	23.56	23.24		1
	50	0	23.54	23.48	23.32		1
	1	0	23.28	23.33	23.62		1
	1	25	23.25	23.47	23.57	0-1	1
	1	49	23.27	23.27	23.50		1
16QAM	25	0	22.58	22.51	22.45		2
	25	12	22.59	22.57	22.40	0-2	2
	25	25	22.65	22.65	22.27	0-2	2
	50	0	22.55	22.49	22.33		2

Table 9-16 LTE Band 66 (AWS) Conducted Powers - 10 MHz Bandwidth

Table 9-17 LTE Band 66 (AWS) Conducted Powers - 5 MHz Bandwidth LTE Band 66 (AWS)

				5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131997	132322	132647	MPR Allowed per	MPR [dB]
			(1712.5 MHz)	(1745.0 MHz)	(1777.5 MHz)	3GPP [dB]	
				Conducted Power [dBm]		
	1	0	24.27	24.40	24.38		0
	1	12	24.52	24.52	24.24	0	0
	1	24	24.25	24.24	23.97		0
QPSK	12	0	23.35	23.39	23.28		1
	12	6	23.46	23.45	23.33	0-1	1
	12	13	23.41	23.47	23.18	0-1	1
	25	0	23.40	23.41	23.27		1
	1	0	23.48	23.28	23.19		1
	1	12	23.45	23.51	23.43	0-1	1
	1	24	23.51	23.30	23.16		1
16QAM	12	0	22.48	22.45	22.33		2
	12	6	22.56	22.52	22.33	0-2	2
	12	13	22.53	22.55	22.24	0-2	2
	25	0	22.54	22.45	22.25		2

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 24 of 90
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 34 of 80
© 202	20 PCTEST				REV 21.4 M

			anu 00 (AW3) C	onducted Powe	15 - 5 MINZ Dali		
				LTE Band 66 (AWS)			
				3 MHz Bandwidth			
			Low Channel	Mid Channel	Mid Channel High Channel		
Modulation	RB Size	RB Offset	131987	132322	132657	MPR Allowed per	MPR [dB]
modulation	ND 0120	IND ONSEL	(1711.5 MHz)	(1745.0 MHz)	(1778.5 MHz)	3GPP [dB]	
				Conducted Power [dBm]		
	1	0	24.30	24.24	24.33		0
	1	7	24.42	24.46	24.27	0	0
	1	14	24.27	24.21	24.21		0
QPSK	8	0	23.38	23.40	23.27		1
	8	4	23.43	23.44	23.31	0-1	1
	8	7	23.38	23.38	23.23	- 0-1	1
	15	0	23.39	23.41	23.25		1
	1	0	23.63	23.25	23.26		1
	1	7	23.61	23.45	23.44	0-1	1
	1	14	23.60	23.10	23.37		1
16QAM	8	0	22.51	22.36	22.30		2
	8	4	22.56	22.45	22.31	0-2	2
	8	7	22.50	22.39	22.23	0-2	2
	15	0	22.44	22.37	22.28		2

 Table 9-18

 LTE Band 66 (AWS) Conducted Powers - 3 MHz Bandwidth

Table 9-19 LTE Band 66 (AWS) Conducted Powers -1.4 MHz Bandwidth

			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131979 (1710.7 MHz)	132322 (1745.0 MHz)	132665 (1779.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	24.24	24.28	24.25		0
	1	2	24.36	24.48	24.32]	0
QPSK	1	5	24.28	24.19	24.24	0	0
	3	0	24.38	24.36	24.26	0	0
	3	2	24.42	24.43	24.28	-	0
	3	3	24.40	24.40	24.24		0
	6	0	23.35	23.43	23.27	0-1	1
	1	0	23.59	23.31	23.27		1
	1	2	23.69	23.23	23.35	1	1
	1	5	23.58	23.12	23.27	0-1	1
16QAM	3	0	23.68	23.48	23.34	0-1	1
F	3	2	23.68	23.54	23.36] [1
	3	3	23.69	23.49	23.35]	1
	6	0	22.29	22.61	22.42	0-2	2

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 35 of 80
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 35 01 80
© 202	0 PCTEST				REV 21.4 M

Reduced LTE Band 66 (AWS) Conducted Powers - 20 MHZ Bandwidth								
LTE Band 66 (AWS)								
20 MHz Bandwidth								
	RB Size	RB Offset	Low Channel	Mid Channel	High Channel	MPR Allowed per 3GPP [dB]	MPR [dB]	
Modulation			132072	132322	132572			
modulation			(1720.0 MHz)	(1745.0 MHz)	(1770.0 MHz)			
				Conducted Power [dBm]				
	1	0	22.24	22.13	22.10	0	0	
	1	50	22.50	22.40	22.30		0	
	1	99	22.22	22.16	22.15		0	
QPSK	50	0	22.60	22.29	22.28		0	
	50	25	22.58	22.22	22.21	0-1	0	
	50	50	22.50	22.17	22.10		0	
	100	0	22.49	22.23	22.22		0	
	1	0	22.55	22.56	22.55	0-1	0	
	1	50	22.70	22.70	22.61		0	
	1	99	22.69	22.58	22.50		0	
16QAM	50	0	22.35	22.29	22.30		0	
	50	25	22.33	22.25	22.21	0-2	0	
	50	50	22.38	22.21	22.18		0	
	100	0	22.39	22.31	22.17		0	

 Table 9-20

 Reduced LTE Band 66 (AWS) Conducted Powers - 20 MHz Bandwidth

Table 9-21 Reduced LTE Band 66 (AWS) Conducted Powers - 15 MHz Bandwidth LTE Band 66 (AWS)

	15 MHz Bandwidth							
	RB Size	RB Offset	Low Channel	Mid Channel	High Channel			
Modulation			132047 (1717.5 MHz)	132322 (1745.0 MHz)	132597 (1772.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]	
			Conducted Power [dBm]					
	1	0	22.31	22.10	22.22		0	
	1	36	22.43	22.18	22.08	0	0	
	1	74	22.23	22.02	22.05		0	
QPSK	36	0	22.33	22.25	22.19		0	
	36	18	22.38	22.34	22.21	0-1	0	
	36	37	22.35	22.34	22.24		0	
	75	0	22.36	22.34	22.15		0	
	1	0	22.14	22.46	22.25	0-1	0	
	1	36	22.32	22.58	22.09		0	
	1	74	22.23	22.36	22.28		0	
16QAM	36	0	22.28	22.27	22.20		0	
	36	18	22.33	22.30	22.20	0-2	0	
	36	37	22.31	22.34	22.19		0	
	75	0	22.32	22.33	22.17		0	

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 36 of 80
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		·g
© 202	0 PCTEST				REV 21.4 M

	N		E Banu oo (Aw	S) Conducted F			
				LTE Band 66 (AWS)			
		r		10 MHz Bandwidth		1	
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	132022	132322	132622	MPR Allowed per	MPR [dB]
modulation		NB Onset	(1715.0 MHz)	(1745.0 MHz)	(1775.0 MHz)	3GPP [dB]	
				Conducted Power [dBm]		
	1	0	22.19	22.15	22.25		0
	1	25	22.34	22.32	22.25	0	0
	1	49	22.22	22.23	22.21		0
QPSK	25	0	22.28	22.17	22.19		0
	25	12	22.33	22.19	22.21	0-1	0
	25	25	22.35	22.29	22.24	0-1	0
	50	0	22.33	22.23	22.26		0
	1	0	22.29	22.47	22.24		0
	1	25	22.26	22.63	22.16	0-1	0
	1	49	22.24	22.47	22.21		0
16QAM	25	0	22.36	22.24	22.25		0
	25	12	22.42	22.26	22.21	0-2	0
	25	25	22.41	22.31	22.20	0-2	0
	50	0	22.38	22.27	22.24		0

 Table 9-22

 Reduced LTE Band 66 (AWS) Conducted Powers - 10 MHz Bandwidth

Table 9-23 Reduced LTE Band 66 (AWS) Conducted Powers - 5 MHz Bandwidth LTE Band 66 (AWS)

			Low Channel	5 MHz Bandwidth Mid Channel	High Channel	1	
Modulation	RB Size	RB Offset	131997 (1712.5 MHz)	132322 (1745.0 MHz)	132647 (1777.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	22.25	22.16	22.14		0
	1	12	22.37	22.36	22.25	0	0
	1	24	22.10	22.12	22.28] [0
QPSK	12	0	22.24	22.15	22.24		0
	12	6	22.31	22.19	22.28	0-1	0
	12	13	22.29	22.21	22.25		0
	25	0	22.23	22.15	22.24		0
	1	0	22.33	22.67	22.22		0
	1	12	22.55	22.41	22.22	0-1	0
	1	24	22.33	22.63	22.17		0
16QAM	12	0	22.33	22.21	22.22		0
	12	6	22.34	22.26	22.10	0-2	0
	12	13	22.30	22.28	22.13	0-2	0
	25	0	22.26	22.25	22.12] [0

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dogo 27 of 90	
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 37 of 80	
© 202	20 PCTEST				REV 21.4 M	

				vs) conducted	FOWERS - 5 IVITIZ	. Danuwiutii	
				LTE Band 66 (AWS)			
		r		3 MHz Bandwidth		1	
			Low Channel	Mid Channel	High Channel		MPR [dB]
Modulation	RB Size	RB Offset	131987		132657 (1778.5 MHz)	MPR Allowed per	
Noutiation	ND 5126	IND ONSEL	(1711.5 MHz)			3GPP [dB]	
				Conducted Power [dBm]		
	1	0	22.43	22.33	22.23		0
	1	7	22.56	22.45	22.30	0	0
	1	14	22.40	22.31	22.15		0
QPSK	8	0	22.50	22.38	22.26		0
	8	4	22.54	22.41	22.26	0-1	0
	8	7	22.48	22.39	22.16		0
	15	0	22.46	22.33	22.23		0
	1	0	22.26	22.70	22.20		0
	1	7	22.38	22.37	22.24	0-1	0
	1	14	22.22	22.70	22.34		0
16QAM	8	0	22.45	22.51	22.30		0
	8	4	22.50	22.53	22.27	0-2	0
	8	7	22.44	22.46	22.18	0-2	0
	15	0	22.46	22.38	22.26		0

Table 9-24 Reduced LTE Band 66 (AWS) Conducted Powers - 3 MHz Bandwidth

Table 9-25 Reduced LTE Band 66 (AWS) Conducted Powers -1.4 MHz Bandwidth

				1.4 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	131979 (1710.7 MHz)	132322 (1745.0 MHz)	132665 (1779.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm]		
	1	0	22.36	22.42	22.23		0
	1	2	22.46	22.54	22.20		0
	1	5	22.39	22.46	22.09	0	0
QPSK	3	0	22.54	22.44	22.24		0
	3	2	22.60	22.47	22.33		0
	3	3	22.56	22.49	22.27		0
	6	0	22.57	22.47	22.30	0-1	0
	1	0	22.21	22.19	22.01		0
	1	2	22.29	22.27	22.00		0
	1	5	22.23	22.23	22.14	0-1	0
16QAM	3	0	22.58	22.59	22.31		0
	3	2	22.64	22.58	22.35		0
	3	3	22.62	22.59	22.30		0
	6	0	22.68	22.63	22.40	0-2	0

FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 38 of 80	
1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Fage 30 01 00	
20 PCTEST				REV 21.4 M	

© 20

9.3.5

LTE Band 2 (PCS)

				LTE Band 2 (PCS) 20 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18700 (1860.0 MHz)	18900 (1880.0 MHz)	19100 (1900.0 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.22	24.31	24.34		0
	1	50	24.45	24.44	24.46	0	0
	1	99	24.23	24.25	24.23		0
QPSK	50	0	23.28	23.35	23.44	- 0-1 -	1
	50	25	23.35	23.36	23.40		1
	50	50	23.34	23.33	23.35		1
	100	0	23.36	23.36	23.42		1
	1	0	23.19	23.51	23.62		1
	1	50	23.49	23.70	23.68	0-1	1
	1	99	23.24	23.53	23.62		1
16QAM	50	0	22.34	22.40	22.46		2
	50	25	22.41	22.40	22.44	0-2	2
	50	50	22.44	22.39	22.37		2
	100	0	22.40	22.47	22.51		2

Table 9-26 LTE Band 2 (PCS) Conducted Powers - 20 MHz Bandwidth

Table 9-27 LTE Band 2 (PCS) Conducted Powers - 15 MHz Bandwidth

	LTE Band 2 (PCS) 15 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	18675 (1857.5 MHz)	18900 (1880.0 MHz)	19125 (1902.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]			
			Conducted Power [dBm]							
	1	0	24.36	24.29	24.31		0			
	1	36	24.57	24.51	24.52	0	0			
	1	74	24.40	24.30	24.34		0			
QPSK	36	0	23.43	23.57	23.64		1			
	36	18	23.49	23.56	23.69		1			
	36	37	23.54	23.61	23.66		1			
	75	0	23.52	23.60	23.61		1			
	1	0	23.22	23.61	23.26		1			
	1	36	23.38	23.68	23.50	0-1	1			
	1	74	23.27	23.62	23.33		1			
16QAM	36	0	22.39	22.58	22.57		2			
	36	18	22.47	22.59	22.64	0-2	2			
	36	37	22.47	22.57	22.62	0-2	2			
	75	0	22.43	22.55	22.59		2			

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:	Page 39 of 80	
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Fage 39 01 60	
)2	0 PCTEST			REV 21.4 M	

© 20

			anu 2 (PCS) CO	naucted Power		awiatii	
				LTE Band 2 (PCS)			
				10 MHz Bandwidth		r	
			Low Channel 18650	Mid Channel	High Channel		
Modulation	RB Size	RB Offset			19150	MPR Allowed per	MPR [dB]
Modulation		NB Onset	(1855.0 MHz)		3GPP [dB]		
			(Conducted Power [dBm]		
	1	0	24.29	24.40	24.43		0
	1	25	24.47	24.59	24.59	0	0
	1	49	24.28	24.35	24.45		0
QPSK	25	0	23.38	23.47	23.58		1
	25	12	23.43	23.54	23.59	0-1	1
	25	25	23.44	23.46	23.55		1
	50	0	23.40	23.51	23.59		1
	1	0	23.20	23.68	23.40		1
	1	25	23.26	23.64	23.61	0-1	1
	1	49	23.24	23.58	23.42		1
16QAM	25	0	22.51	22.57	22.69		2
	25	12	22.56	22.61	22.67	0-2	2
	25	25	22.51	22.58	22.65	0-2	2
	50	0	22.46	22.56	22.60		2

 Table 9-28

 LTE Band 2 (PCS) Conducted Powers - 10 MHz Bandwidth

Table 9-29 LTE Band 2 (PCS) Conducted Powers - 5 MHz Bandwidth LTE Band 2 (PCS)

				5 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18625 (1852.5 MHz)	18900 (1880.0 MHz)	19175 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
				Conducted Power [dBm]		
	1	0	24.37	24.44	24.28		0
	1	12	24.61	24.69	24.55	0	0
	1	24	24.30	24.39	24.25		0
QPSK	12	0	23.43	23.50	23.48		1
	12	6	23.50	23.55	23.56	- 0-1	1
	12	13	23.43	23.49	23.50		1
	25	0	23.43	23.48	23.49		1
	1	0	23.32	23.69	23.43		1
	1	12	23.55	23.52	23.61	0-1	1
	1	24	23.27	23.68	23.43		1
16QAM	12	0	22.53	22.62	22.59		2
	12	6	22.58	22.67	22.67	0-2	2
	12	13	22.54	22.62	22.54	0-2	2
	25	0	22.41	22.63	22.55		2

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 40 of 90
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 40 of 80
© 202	20 PCTEST				REV 21.4 M

			Saliu 2 (FCS) CC	onducted Power	IS - 5 MINZ Dalic	iwiam					
				LTE Band 2 (PCS)							
	3 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel 19185 (1908.5 MHz)		MPR [dB]				
Modulation	RB Size	RB Offset	18615	18900		MPR Allowed per					
modulation			(1851.5 MHz)	(1880.0 MHz)		3GPP [dB]					
			(Conducted Power [dBm]						
	1	0	24.34	24.39	24.40		0				
	1	7	24.51	24.59	24.55	0	0				
	1	14	24.31	24.41	24.44		0				
QPSK	8	0	23.45	23.46	23.50		1				
	8	4	23.48	23.52	23.59	0-1	1				
	8	7	23.44	23.43	23.49		1				
	15	0	23.45	23.48	23.52		1				
	1	0	23.44	23.58	23.36		1				
	1	7	23.54	23.67	23.52	0-1	1				
	1	14	23.34	23.61	23.38		1				
16QAM	8	0	22.44	22.65	22.59		2				
	8	4	22.48	22.66	22.62	0-2	2				
	8	7	22.44	22.59	22.56	0-2	2				
	15	0	22.39	22.54	22.58		2				

Table 9-30 I TE Band 2 (PCS) Conducted Powers - 3 MHz Bandwidth

Table 9-31 LTE Band 2 (PCS) Conducted Powers -1.4 MHz Bandwidth

	1.4 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel						
Modulation	RB Size	RB Offset	18607 (1850.7 MHz)	18900 (1880.0 MHz)	19193 (1909.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			(Conducted Power [dBm	j						
	1	0	24.39	24.51	24.34	0	0				
	1	2	24.50	24.61	24.46		0				
	1	5	24.40	24.54	24.34		0				
QPSK	3	0	24.48	24.54	24.54		0				
	3	2	24.51	24.56	24.60		0				
	3	3	24.50	24.54	24.59		0				
	6	0	23.50	23.51	23.57	0-1	1				
	1	0	23.53	23.26	23.26		1				
	1	2	23.38	23.34	23.24		1				
	1	5	23.47	23.26	23.20	0-1	1				
16QAM	3	0	23.41	23.65	23.59	0-1	1				
	3	2	23.67	23.68	23.63		1				
	3	3	23.69	23.66	23.61		1				
	6	0	22.42	22.64	22.57	0-2	2				

FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 41 of 80	
1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 41 01 80	
20 PCTEST				REV 21.4 M	

© 20

Reduced LTE Band 2 (PCS) Conducted Powers - 20 MHZ Bandwidth										
	LTE Band 2 (PCS)									
	20 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	18700	18900	19100	MPR Allowed per	MPR [dB]			
modulation	ND 0120	THE ONSER	(1860.0 MHz)	(1880.0 MHz)	(1900.0 MHz)	3GPP [dB]				
				Conducted Power [dBm]					
	1	0	22.04	22.16	22.08	0	0			
	1	50	22.33	22.47	22.37		0			
	1	99	22.07	22.12	22.14		0			
QPSK	50	0	22.18	22.29	22.27	0-1	0			
	50	25	22.25	22.31	22.29		0			
	50	50	22.26	22.22	22.16		0			
	100	0	22.23	22.28	22.28		0			
	1	0	22.45	22.48	22.40		0			
	1	50	22.49	22.50	22.50	0-1	0			
	1	99	22.41	22.42	22.48		0			
16QAM	50	0	22.25	22.40	22.22		0			
	50	25	22.31	22.35	22.21	0-2	0			
	50	50	22.30	22.31	22.17	0-2	0			
	100	0	22.22	22.35	22.27		0			

 Table 9-32

 Reduced LTE Band 2 (PCS) Conducted Powers - 20 MHz Bandwidth

 Table 9-33

 Reduced LTE Band 2 (PCS)
 Conducted Powers - 15 MHz Bandwidth

 LTE Band 2 (PCS)

				15 MHz Bandwidth			
			Low Channel	Mid Channel	High Channel		
Modulation	RB Size	RB Offset	18675 (1857.5 MHz)	18900 (1880.0 MHz)	19125 (1902.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]
			(Conducted Power [dBm	j		
	1	0	22.19	22.05	22.05 22.03	0	
	1	36	22.36	22.21	22.23	0	0
	1	74	22.24	22.08	22.09		0
QPSK	36	0	22.22	22.26	22.35	0-1	0
	36	18	22.23	22.34	22.42		0
	36	37	22.28	22.30	22.35		0
	75	0	22.21	22.31	22.30		0
	1	0	22.27	22.50	22.24		0
	1	36	22.28	22.37	22.29	0-1	0
	1	74	22.13	22.48	22.16		0
16QAM	36	0	22.13	22.29	22.33		0
	36	18	22.19	22.35	22.41	0-2	0
	36	37	22.19	22.30	22.39	0-2	0
	75	0	22.19	22.31	22.35		0

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 42 of 80
	1M2003020032-01-R1.ZNF	03020032-01-R1.ZNF 03/02/2020 - 03/17/2020 Portable		ortable Handset	
© 202	20 PCTEST				REV 21.4 M

Reduced LTE Band 2 (PCS) Conducted Powers - 10 MHz Bandwidth										
	LTE Band 2 (PCS)									
	10 MHz Bandwidth									
			Low Channel Mid Channel High Channel							
Modulation	RB Size	RB Offset	18650	18900	19150	MPR Allowed per	MPR [dB]			
modulation			(1855.0 MHz)	(1880.0 MHz)	(1905.0 MHz)	3GPP [dB]	in it [ab]			
				Conducted Power [dBm]					
	1	0	22.13	22.15	22.13	0	0			
	1	25	22.28	22.32	22.35		0			
QPSK	1	49	22.09	22.15	22.19		0			
	25	0	22.24	22.29	22.36		0			
	25	12	22.22	22.30	22.32	0-1	0			
	25	25	22.20	22.29	22.34		0			
	50	0	22.19	22.31	22.32		0			
	1	0	21.95	22.41	22.20		0			
	1	25	22.09	22.37	22.38	0-1	0			
	1	49	21.91	22.30	22.20		0			
16QAM	25	0	22.27	22.37	22.39		0			
	25	12	22.33	22.37	22.40	0-2	0			
	25	25	22.33	22.35	22.42	0-2	0			
	50	0	22.28	22.35	22.31		0			

 Table 9-34

 Reduced LTE Band 2 (PCS) Conducted Powers - 10 MHz Bandwidth

Table 9-35 Reduced LTE Band 2 (PCS) Conducted Powers - 5 MHz Bandwidth LTE Band 2 (PCS)

	5 MHz Bandwidth										
			Low Channel	Mid Channel	High Channel						
Modulation	RB Size	RB Offset	18625 (1852.5 MHz)	18900 (1880.0 MHz)	19175 (1907.5 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
			(Conducted Power [dBm]						
	1	0	22.10	22.21	22.04		0				
	1	12	22.33	22.48	22.34	0	0				
	1	24	22.03	22.17	22.03		0				
QPSK	12	0	22.12	22.26	22.24		0				
	12	6	22.27	22.32	22.35	0-1	0				
	12	13	22.19	22.29	22.26		0				
	25	0	22.16	22.28	22.29		0				
	1	0	22.11	22.37	22.23		0				
	1	12	22.34	22.46	22.38	0-1	0				
	1	24	22.06	22.48	22.20		0				
16QAM	12	0	22.22	22.39	22.32		0				
	12	6	22.30	22.41	22.38	0-2	0				
	12	13	22.28	22.35	22.35	0-2	0				
	25	0	22.15	22.40	22.34		0				

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:		DUT Type:		Page 43 of 80
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Ū
© 202	20 PCTEST				REV 21.4 M

Reduced LTE Band 2 (PCS) Conducted Powers - 3 MHz Bandwidth										
	LTE Band 2 (PCS)									
	3 MHz Bandwidth									
			Low Channel	Mid Channel	High Channel					
Modulation	RB Size	RB Offset	18615	18900	19185	MPR Allowed per	MPR [dB]			
modulation	ND 0120	NB Onset	(1851.5 MHz)	(1880.0 MHz)	(1908.5 MHz)	3GPP [dB]				
			(Conducted Power [dBm]					
	1	0	22.17	22.19	22.11	0	0			
	1	7	22.30	22.36	22.34		0			
	1	14	22.10	22.17	22.21		0			
QPSK	8	0	22.22	22.21	22.29		0			
	8	4	22.22	22.29	22.34	0-1	0			
	8	7	22.17	22.23	22.27		0			
	15	0	22.14	22.25	22.29		0			
	1	0	22.02	22.49	22.18		0			
	1	7	22.15	22.48	22.34	0-1	0			
	1	14	21.92	22.34	22.15		0			
16QAM	8	0	22.19	22.39	22.31		0			
	8	4	22.21	22.42	22.36	0-2	0			
	8	7	22.17	22.35	22.27	0-2	0			
	15	0	22.16	22.32	22.36		0			

Table 9-36 Reduced LTE Band 2 (PCS) Conducted Powers - 3 MHz Bandwidth

Table 9-37 Reduced LTE Band 2 (PCS) Conducted Powers -1.4 MHz Bandwidth

	1.4 MHz Band 2 (PCS)										
			Low Channel	Mid Channel	High Channel						
Modulation	RB Size	RB Offset	18607 (1850.7 MHz)	18900 (1880.0 MHz)	19193 (1909.3 MHz)	MPR Allowed per 3GPP [dB]	MPR [dB]				
				Conducted Power [dBm]						
	1	0	22.08	22.12	22.33	22.33 22.41 22.25 22.29 22.31 22.29	0				
	1	2	22.22	22.26	22.41		0				
	1	5	22.14	22.16	22.25		0				
QPSK	3	0	22.25	22.35	22.29		0				
	3	2	22.30	22.34	22.31		0				
	3	3	22.25	22.31	22.29		0				
	6	0	22.27	22.27	22.31	0-1	0				
	1	0	22.20	22.50	22.02		0				
	1	2	22.25	22.36	22.13		0				
	1	5	22.24	22.38	22.05	0-1	0				
16QAM	3	0	22.31	22.47	22.40	01	0				
	3	2	22.36	22.41	22.45	_	0				
	3	3	22.32	22.42	22.40		0				
	6	0	22.42	22.19	22.46	0-2	0				

FCC ID ZNFK400AM	Proud to be part of @ element	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 44 of 80	
1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset			
20 PCTEST				REV 21.4 M	

© 20

LTE Band 30 9.3.6

LTE Band 30					
10 MHz Bandwidth					
			Mid Channel		
			27710	MPR Allowed per	
Modulation	RB Size	RB Offset	(2310.0 MHz)	3GPP [dB]	MPR [dB]
			Conducted Power		
			[dBm]		
	1	0	22.70		0
	1	25	22.82	0	0
	1	49	22.73		0
QPSK	25	0	21.82	0-1	1
	25	12	21.81		1
	25	25	21.75		1
	50	0	21.76		1
	1	0	21.75		1
	1	25	21.87	0-1	1
	1	49	21.70		1
16QAM	25	0	20.78		2
	25	12	20.78	0-2	2
	25	25	20.75	0-2	2
	50	0	20.74		2

Table 9-38 10 MU- P

Table 9-39
LTE Band 30 Conducted Powers - 5 MHz Bandwidth

			U MILE BUILDWICH		
	LTE Band 30 5 MHz Bandwidth				
			Mid Channel		
			27710	MPR Allowed per	
Modulation	RB Size	RB Offset	(2310.0 MHz)	3GPP [dB]	MPR [dB]
			Conducted Power		
			[dBm]		
	1	0	22.71		0
	1	12	22.90	0	0
	1	24	22.69		0
QPSK	12	0	21.84	0-1	1
	12	6	21.95		1
	12	13	21.88		1
	25	0	21.89		1
	1	0	21.96		1
	1	12	22.11	0-1	1
	1	24	21.85		1
16QAM	12	0	20.99		2
	12	6	21.01	0-2	2
	12	13	20.95	0-2	2
	25	0	20.91		2

Note: LTE Band 30 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 45 of 80
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Fage 45 01 60
© 202	0 PCTEST				REV 21.4 M

Reduced LTE Band 30 Conducted Powers - 10 MHz Bandwidth						
			LTE Band 30			
10 MHz Bandwidth					r	
			Mid Channel			
			27710	MPR Allowed per		
Modulation	RB Size	RB Offset	(2310.0 MHz)	3GPP [dB]	MPR [dB]	
			Conducted Power			
			[dBm]			
	1	0	22.16		0	
	1	25	22.20	0	0	
	1	49	22.18		0	
QPSK	25	0	22.19		0	
	25	12	22.14	0-1	0	
	25	25	22.20		0	
	50	0	22.15		0	
	1	0	22.08		0	
	1	25	22.17	0-1	0	
	1	49	22.06		0	
16QAM	25	0	21.19		1	
	25	12	21.20	0-2	1	
	25	25	21.13	0-2	1	
	50	0	21.08		1	

Table 9-40 Deduced | TE Dend 20 C And Dawa 10 MHz Bandwidth

Table 9-41 Reduced LTE Band 30 Conducted Powers - 5 MHz Bandwidth

LTE Band 30					
5 MHz Bandwidth					
		Mid Channel			
			27710	MPR Allowed per	
Modulation	RB Size	RB Offset	(2310.0 MHz)	3GPP [dB]	MPR [dB]
			Conducted Power		
			[dBm]		
	1	0	21.88		0
	1	12	22.07	0	0
	1	24	21.79		0
QPSK	12	0	21.93	0-1	0
	12	6	21.99		0
	12	13	21.91		0
	25	0	21.93		0
	1	0	22.04		0
	1	12	22.20	0-1	0
	1	24	22.00		0
16QAM	12	0	21.09		1
	12	6	21.18	0-2	1
	12	13	21.13	0-2	1
	25	0	21.08		1

Note: LTE Band 30 at 5 MHz bandwidth does not support three non-overlapping channels. Per KDB Publication 941225 D05v02, when a device supports overlapping channel assignment in a channel bandwidth configuration, the middle channel of the group of overlapping channels should be selected for testing.

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	🔁 LG	Approved by:
				-	Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 46 of 80
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Fage 40 01 00
© 202	0 PCTEST				REV 21.4 M

9.4 WLAN Conducted Powers

2.4GHz Conducted Power [dBm]					
		IEEE Transmission Mode			
Freq [MHz]	Channel	802.11b	802.11g	802.11n	
		Average	Average	Average	
2412	1	15.72	13.21	12.54	
2417	2	N/A	14.73	N/A	
2437	6	16.08	15.02	12.88	
2457	10	N/A	15.02	N/A	
2462	11	15.83	13.51	12.84	

Table 9-422.4 GHz WLAN Maximum Average RF Power

Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02:

- Power measurements were performed for the transmission mode configuration with the highest maximum output power specified for production units.
- For transmission modes with the same maximum output power specification, powers were measured for the largest channel bandwidth, lowest order modulation and lowest data rate.
- For transmission modes with identical maximum specified output power, channel bandwidth, modulation and data rates, power measurements were required for all identical configurations.
- For each transmission mode configuration, powers were measured for the highest and lowest channels; and at the mid-band channel(s) when there were at least 3 channels supported. For configurations with multiple mid-band channels, due to an even number of channels, both channels were measured.

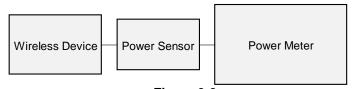


Figure 9-3 Power Measurement Setup

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Dage 47 of 90		
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 47 of 80		
© 202	2020 PCTEST						

Bluetooth Conducted Powers 9.5

	Data	Average R	Avg Conducted Power		
Frequency [MHz]	Rate [Mbps]	Channel No.	[dBm]	[mW]	
2402	1.0	0	6.51	4.480	
2441	1.0	39	10.04	10.102	
2480	1.0	78	8.04	6.368	
2402	2.0	0	6.31	4.275	
2441	2.0	39	9.46	8.829	
2480	2.0	78	7.83	6.063	
2402	3.0	0	6.33	4.298	
2441	3.0	39	9.48	8.880	
2480	3.0	78	7.85	6.092	

Table 9-43

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 48 of 80
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Fage 40 01 00
)2	20 PCTEST			REV 21.4 M

© 2020 PCTEST

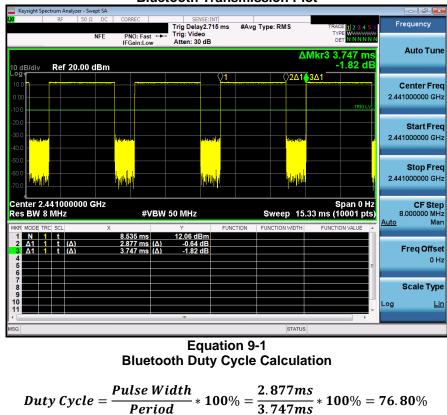
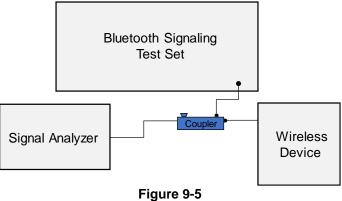



Figure 9-4 Bluetooth Transmission Plot

Power Measurement Setup

	FCC ID ZNFK400AM	Proud to be part of @ element	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dogo 40 of 90
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 49 of 80
202	0 PCTEST				REV 21.4 M

09/11/2019 © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

©

10.1 Tissue Verification

			Measured	d Tissue Pi		Head						
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε			
			680	0.861	40.385	0.888	42.305	-3.04%	-4.54%			
			695	0.866	40.342	0.889	42.227	-2.59%	-4.46%			
			700	0.867	40.329	0.889	42.201	-2.47%	-4.44%			
			710	0.871	40.302	0.890	42.149	-2.13%	-4.38%			
			725	0.876	40.256	0.891	42.071	-1.68%	-4.31%			
03/11/2020	750H	21.8	740	0.881	40.208	0.893	41.994	-1.34%	-4.25%			
			750	0.885	40.172	0.894	41.942	-1.01%	-4.22%			
			755	0.887	40.156	0.894	41.916	-0.78%	-4.20%			
			770	0.892	40.107	0.895	41.838	-0.34%	-4.14%			
			785	0.896	40.068	0.896	41.760	0.00%	-4.05%			
			800	0.901	40.037	0.897	41.682	0.45%	-3.95%			
			820	0.870	40.486	0.899	41.578	-3.23%	-2.63%			
03/05/2020	835H	21.9	835	0.885	40.295	0.900	41.500	-1.67%	-2.90%			
			850	0.900	40.096	0.916	41.500	-1.75%	-3.38%			
			820	0.864	39.938	0.899	41.578	-3.89%	-3.94%			
03/10/2020	835H	20.6	835	0.879	39.739	0.900	41.500	-2.33%	-4.24%			
			850	0.894	39.540	0.916	41.500	-2.40%	-4.72%			
			1710	1.337	39.048	1.348	40.142	-0.82%	-2.73%			
03/02/2020		I 20.6	1720	1.343	39.034	1.354	40.126	-0.81%	-2.72%			
	1750H		20.6	20.6	20.0	1745	1.359	38.991	1.368	40.087	-0.66%	-2.73%
					1750	1.362	38.982	1.371	40.079	-0.66%	-2.74%	
					1770	1.374	38.944	1.383	40.047	-0.65%	-2.75%	
			1790	1.386	38.902	1.394	40.016	-0.57%	-2.78%			
					1850	1.386	39.375	1.400	40.000	-1.00%	-1.56%	
					1860	1.397	39.332	1.400	40.000	-0.21%	-1.67%	
				1880	1.418	39.244	1.400	40.000	1.29%	-1.89%		
03/02/2020	1900H	22.1	1900	1.439	39.154	1.400	40.000	2.79%	-2.11%			
			1905	1.444	39.132	1.400	40.000	3.14%	-2.17%			
			1910	1.449	39.109	1.400	40.000	3.50%	-2.23%			
			1850	1.355	38.515	1.400	40.000	-3.21%	-3.71%			
			1860	1.362	38.501	1.400	40.000	-2.71%	-3.75%			
			1880	1.374	38.473	1.400	40.000	-1.86%	-3.82%			
03/17/2020	1900H	21.3	1900	1.385	38.440	1.400	40.000	-1.07%	-3.90%			
			1905	1.388	38.433	1.400	40.000	-0.86%	-3.92%			
			1910	1.391	38.423	1.400	40.000	-0.64%	-3.94%			
			2400	1.790	38.507	1.756	39.289	1.94%	-1.99%			
03/02/2020	2450H	22.5	2400	1.829	38.432	1.800	39.209	1.61%	-1.99%			
03/02/2020	24000	22.0	2430	1.865	38.343	1.855	39.200	0.54%	-2.03%			
			2500	1.800	38.343	1.855	39.136	0.54% 3.76%	-2.03%			
03/10/2020	2450H	24.2	2400	1.822		1.756	39.289	3.76%	-1.54%			
03/10/2020	2400H	24.2			38.607							
			2500	1.903	38.517	1.855	39.136	2.59%	-1.58%			
00/40/0000	0.450	22.0	2300	1.743	38.211	1.670	39.500	4.37%	-3.26%			
03/12/2020	2450H	22.2	2310	1.750	38.202	1.679	39.480	4.23%	-3.24%			
			2320	1.758	38.193	1.687	39.460	4.21%	-3.21%			

Table 10-1

FCC ID ZNFK400AM	PCTEST*	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 50 of 80
1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 50 of 80
020 PCTEST	·	·		REV 21.4 M

© 2020 PCTEST

			Measure	ed Tissue Pr	operties - B	ody												
Calibrated for Tests Performed on:	Tissue Type	Tissue Temp During Calibration (°C)	Measured Frequency (MHz)	Measured Conductivity, σ (S/m)	Measured Dielectric Constant, ε	TARGET Conductivity, σ (S/m)	TARGET Dielectric Constant, ε	% dev σ	% dev ε									
			680	0.919	54.095	0.958	55.804	-4.07%	-3.06%									
			695	0.924	54.051	0.959	55.745	-3.65%	-3.04%									
			700	0.925	54.032	0.959	55.726	-3.55%	-3.04%									
			710	0.929	53.976	0.960	55.687	-3.23%	-3.07%									
			725	0.933	53.843	0.961	55.629	-2.91%	-3.21%									
03/09/2020	750B	21.5	740	0.936	53.660	0.963	55.570	-2.80%	-3.44%									
			750	0.937	53.527	0.964	55.531	-2.80%	-3.61%									
			755	0.938	53.464	0.964	55.512	-2.70%	-3.69%									
			770	0.941	53.296	0.965	55.453	-2.49%	-3.89%									
			785	0.944	53.186	0.966	55.395	-2.28%	-3.99%									
			800	0.950	53.135	0.967	55.336	-1.76%	-3.98%									
			820	0.946	54.071	0.969	55.258	-2.37%	-2.15%									
03/09/2020	835B	21.0	835	0.962	53.927	0.970	55.200	-0.82%	-2.31%									
			850	0.978	53.769	0.988	55.154	-1.01%	-2.51%									
			820	0.943	53.403	0.969	55.258	-2.68%	-3.36%									
03/11/2020	835B	21.4	835	0.959	53.252	0.970	55.200	-1.13%	-3.53%									
			850	0.975	53.106	0.988	55.154	-1.32%	-3.71%									
			1710	1.421	55.487	1.463	53.537	-2.87%	3.64%									
		22.2	1720	1.433	55.450	1.469	53.511	-2.45%	3.62%									
02/42/2020	1750B		22.2	22.2	1745	1.461	55.360	1.485	53.445	-1.62%	3.58%							
03/12/2020					22.2	22.2	1750	1.466	55.342	1.488	53.432	-1.48%	3.57%					
													-	1770	1.486	55.270	1.501	53.379
					1790	1.506	55.201	1.514	53.326	-0.53%	3.52%							
			1710	1.405	55.352	1.463	53.537	-3.96%	3.39%									
			1720	1.416	55.329	1.469	53.511	-3.61%	3.40%									
00/40/0000	47500	22.0	1745	1.445	55.273	1.485	53.445	-2.69%	3.42%									
03/16/2020	1750B	22.0	1750	1.451	55.260	1.488	53.432	-2.49%	3.42%									
			1770	1.474	55.199	1.501	53.379	-1.80%	3.41%									
			1790	1.496	55.125	1.514	53.326	-1.19%	3.37%									
			1850	1.504	51.287	1.520	53.300	-1.05%	-3.78%									
			1860	1.516	51.250	1.520	53.300	-0.26%	-3.85%									
00/40/0000	40000	24.0	1880	1.538	51.182	1.520	53.300	1.18%	-3.97%									
03/16/2020	1900B	24.0	1900	1.561	51.111	1.520	53.300	2.70%	-4.11%									
			1905	1.567	51.094	1.520	53.300	3.09%	-4.14%									
			1910	1.572	51.075	1.520	53.300	3.42%	-4.17%									
			2400	1.940	51.585	1.902	52.767	2.00%	-2.24%									
03/05/2020	2450B	23.5	2450	1.997	51.452	1.950	52.700	2.41%	-2.37%									
			2500	2.054	51.307	2.021	52.636	1.63%	-2.52%									
			2300	1.864	52.621	1.809	52.900	3.04%	-0.53%									
03/16/2020	2450B	22.5	2310	1.875	52.592	1.816	52.887	3.25%	-0.56%									
			2320	1.886	52.561	1.826	52.873	3.29%	-0.59%									
			-						/ •									

Table 10-2 Measured Tissue Properties - Rody

The above measured tissue parameters were used in the DASY software. The DASY software was used to perform interpolation to determine the dielectric parameters at the SAR test device frequencies (per KDB Publication 865664 D01v01r04 and IEEE 1528-2013 6.6.1.2). The tissue parameters listed in the SAR test plots may slightly differ from the table above due to significant digit rounding in the software.

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Daga 51 of 80
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 51 of 80
202	0 PCTEST			REV 21.4 M

© 2020 PCTEST

^{09/11/2019} © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

10.2 Test System Verification

Prior to SAR assessment, the system is verified to ±10% of the SAR measurement on the reference dipole at the time of calibration by the calibration facility. Full system validation status and result summary can be found in Appendix D.

	System Verification TARGET & MEASURED													
SAR System #	Tissue Frequency (MHz)	Tissue Type	Date	Amb. Temp (°C)	Liquid Temp (°C)	Input Power (W)	Source SN	Probe SN	Measured SAR1g (W/kg)	1 W Target SAR _{1g} (W/kg)	1 W Normalized SAR1g (W/kg)	Deviation _{1g} (%)		
L	750	HEAD	03/11/2020	22.3	21.3	0.200	1161	7410	1.710	8.030	8.550	6.48%		
н	835	HEAD	03/05/2020	22.5	21.9	0.200	4d133	7406	1.890	9.430	9.450	0.21%		
н	835	HEAD	03/10/2020	21.0	20.6	0.200	4d132	7406	1.920	9.650	9.600	-0.52%		
L	1750	HEAD	03/02/2020	22.2	20.1	0.100	1150	7410	3.760	36.500	37.600	3.01%		
G	1900	HEAD	03/02/2020	22.3	22.1	0.100	5d149	7409	4.050	39.300	40.500	3.05%		
н	1900	HEAD	03/17/2020	23.0	21.3	0.100	5d148	7406	3.930	39.100	39.300	0.51%		
E	2300	HEAD	03/12/2020	22.9	21.2	0.100	1073	3589	4.870	49.200	48.700	-1.02%		
E	2450	HEAD	03/02/2020	22.5	23.5	0.100	719	3589	5.190	53.100	51.900	-2.26%		
Е	2450	HEAD	03/10/2020	23.7	23.4	0.100	797	3589	5.200	52.700	52.000	-1.33%		
к	750	BODY	03/09/2020	23.0	21.5	0.200	1161	7547	1.690	8.430	8.450	0.24%		
D	835	BODY	03/09/2020	21.6	21.0	0.200	4d047	7488	1.830	9.470	9.150	-3.38%		
D	835	BODY	03/11/2020	21.9	21.4	0.200	4d047	7488	1.810	9.470	9.050	-4.44%		
н	1750	BODY	03/12/2020	22.9	22.2	0.100	1150	7406	3.660	36.600	36.600	0.00%		
I	1750	BODY	03/16/2020	22.6	22.0	0.100	1150	7357	3.800	36.600	38.000	3.83%		
J	1900	BODY	03/16/2020	22.0	23.0	0.100	5d148	7571	4.100	39.100	41.000	4.86%		
к	2300	BODY	03/16/2020	23.2	22.5	0.100	1073	7547	5.090	47.700	50.900	6.71%		
к	2450	BODY	03/05/2020	23.5	23.0	0.100	719	7547	5.030	50.800	50.300	-0.98%		

Table 10-3 System Verification Results - 1g

Table 10-4 System Verification Results – 10g

	System Verification TARGET & MEASURED												
SAR System #	stem Frequency Tissue Date Temp Temp Power Source Probe SAR ₁₀₀ 1 W larget Normalized Deviation ₁₀₀ (%)												
I	1750	BODY	03/16/2020	22.6	22.0	0.100	1150	7357	2.020	19.400	20.200	4.12%	
J	1900	BODY	03/16/2020	22.0	23.0	0.100	5d148	7571	2.110	20.500	21.100	2.93%	
К	2300	BODY	03/16/2020	23.2	22.5	0.100	1073	7547	2.430	23.200	24.300	4.74%	

Figure 10-1 System Verification Setup Diagram

Figure 10-2 **System Verification Setup Photo**

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 52 of 80
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Fage 52 01 00
202	0 PCTEST			REV 21.4 M

© 2020 PCTEST

11 SAR DATA SUMMARY

11.1 Standalone Head SAR Data

						GSIN	820 H	eau 3/							
						MEASU	UREMENT RESULTS								
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side Test Position		Device Serial	# of Time	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots	Cycle	(W/kg)	Factor	(W/kg)	
836.60	190	GSM 850	GSM	33.7	33.53	-0.02	Right	Cheek	10534	1	1:8.3	0.247	1.040	0.257	
836.60	190	GSM 850	GSM	33.7	33.53	-0.05	Right	Tilt	10534	1	1:8.3	0.119	1.040	0.124	
836.60	190	GSM 850	GSM	33.7	33.53	0.03	Left	Cheek	10534	1	1:8.3	0.234	1.040	0.243	
836.60	190	GSM 850	GSM	33.7	33.53	-0.07	Left	Tilt	10534	1	1:8.3	0.115	1.040	0.120	
836.60	190	GSM 850	GPRS	32.2	32.20	-0.04	Right	Right Cheek 10534 2 1:4.15 0.301						0.301	A1
836.60	190	GSM 850	GPRS	32.2	32.20	0.03	Right	Tilt	10534	2	1:4.15	0.131	1.000	0.131	
836.60	190	GSM 850	GPRS	32.2	32.20	0.05	Left	Cheek	10534	2	1:4.15	0.275	1.000	0.275	
836.60	190	GSM 850	GPRS	32.2	32.20	0.06	Left	Tilt	10534	2	1:4.15	0.139	1.000	0.139	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT Spatial Peak Uncontrolled Exposure/General Population										He 1.6 W/kg	(mW/g)			
		Uncontrolled		averaged over 1 gram											

Table 11-1 GSM 850 Head SAR

Table 11-2 GSM 1900 Head SAR

						MEASU	SUREMENT RESULTS								
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side Test Position		Device Serial	# of Time	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Slots	Cycle	(W/kg)	Factor	(W/kg)	
1880.00	661	GSM 1900	GSM	30.7	30.63	0.00	Right	Cheek	10526	1	1:8.3	0.111	1.016	0.113	
1880.00	661	GSM 1900	GSM	30.7	30.63	0.04	Right	Tilt	10526	1	1:8.3	0.104	1.016	0.106	
1880.00	661	GSM 1900	GSM	30.7	30.63	0.07	Left	Cheek	10526	1	1:8.3	0.195	1.016	0.198	
1880.00	661	GSM 1900	GSM	30.7	30.63	0.11	Left	Tilt	10526	1	1:8.3	0.090	1.016	0.091	
1880.00	661	GSM 1900	GPRS	28.2	27.78	0.12	Right	Cheek	10526	2	1:4.15	0.118	1.102	0.130	
1880.00	661	GSM 1900	GPRS	28.2	27.78	0.13	Right	Tilt	10526	2	1:4.15	0.104	1.102	0.115	
1880.00	661	GSM 1900	GPRS	28.2	27.78	0.19	Left	Cheek	10526	2	1:4.15	0.239	1.102	0.263	A2
1880.00	661	GSM 1900	GPRS	28.2	27.78	0.04	Left	Tilt	10526	2	1:4.15	0.100	1.102	0.110	
		ANSI / IEE	E C95.1 1992	- SAFETY LI	VIT						He	ad			
	Spatial Peak							1.6 W/kg (mW/g)							
	Uncontrolled Exposure/General Population									a۱	eraged o	ver 1 gram			

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Daga 52 of 90
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 53 of 80
202	0 PCTEST			REV 21.4 M

© 2020 PCTEST

Table 11-3 UMTS 850 Head SAR

					ME	ESULTS								
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
836.60	4183	UMTS 850	RMC	25.2	24.97	0.00	Right	Cheek	10526	1:1	0.311	1.054	0.328	A3
836.60	4183	UMTS 850	RMC	25.2	24.97	-0.04	Right	Tilt	10526	1:1	0.178	1.054	0.188	
836.60	4183	UMTS 850	RMC	25.2	24.97	0.02	Left	Cheek	10526	1:1	0.265	1.054	0.279	
836.60	4183	UMTS 850	RMC	25.2	24.97	0.00	.00 Left Tilt 10526 1:1 0.156 1.054 0.1							
		ANSI / IEE	E C95.1 1992	- SAFETY LI	MIT						Head			
			Spatial Pe	ak			1.6 W/kg (mW/g)							
		Uncontrolled	Exposure/G	eneral Popul	ation					averag	ed over 1 gra	am		

Table 11-4 UMTS 1750 Head SAR

					ME	ASURE	EMENT RESULTS							
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
1732.40	1412	UMTS 1750	RMC	24.7	24.58	0.12	Right	Cheek	10526	1:1	0.190	1.028	0.195	
1732.40	1412	UMTS 1750	RMC	24.7	24.58	-0.02	Right	Tilt	10526	1:1	0.219	1.028	0.225	
1732.40	1412	UMTS 1750	RMC	24.7	24.58	0.06	Left	Cheek	10526	1:1	0.356	1.028	0.366	A4
1732.40	1412	UMTS 1750	RMC	0.18	Left	Tilt	10526	1:1	0.188	1.028	0.193			
		ANSI / IEE	E C95.1 1992	- SAFETY LI	MIT						Head			
				1.6 W/kg (mW/g)										
		Uncontrolled	Exposure/G	eneral Popul	ation					averag	ed over 1 gra	im		

Table 11-5 UMTS 1900 Head SAR

					ME	ASURE	MENT R	ESULTS						
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Position	Number	Cycle	(W/kg)	Factor	(W/kg)	
1880.00	9400	UMTS 1900	RMC	24.7	24.60	-0.01	Right	Cheek	10526	1:1	0.196	1.023	0.201	
1880.00	9400	UMTS 1900	RMC	24.7	24.60	0.08	Right	Tilt	10526	1:1	0.185	1.023	0.189	
1880.00	9400	UMTS 1900	RMC	24.7	24.60	0.07	Left	Cheek	10526	1:1	0.307	1.023	0.314	A5
1880.00	9400	UMTS 1900	RMC	24.7	24.60	0.08	Left	Tilt	10526	1:1	0.151	1.023	0.154	
		ANSI / IEE	E C95.1 1992	- SAFETY LI	MIT						Head			
			Spatial Pe	ak						1.6 V	V/kg (mW/g))		
		Uncontrollec	I Exposure/G	eneral Popul	lation					averag	jed over 1 gra	m		

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 54 of 80
202	0 PCTEST		·	REV 21.4 M

© 2020 PCTEST

Table 11-6 LTE Band 12 Head SAR

								MEAS	UREME	ENT RES	BULTS								
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	C	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.2	24.87	0.07	0	Right	Cheek	QPSK	1	25	10542	1:1	0.308	1.079	0.332	A6
707.50	23095	Mid	LTE Band 12	10	24.2	24.00	0.13	1	Right	Cheek	QPSK	25	0	10542	1:1	0.231	1.047	0.242	
707.50	23095	Mid	LTE Band 12	10	25.2	24.87	0.04	0	Right	Tilt	QPSK	1	25	10542	1:1	0.155	1.079	0.167	
707.50	23095	Mid	LTE Band 12	10	24.2	24.00	0.11	1	Right	Tilt	QPSK	25	0	10542	1:1	0.114	1.047	0.119	
707.50	23095	Mid	LTE Band 12	10	25.2	24.87	0.00	0	Left	Cheek	QPSK	1	25	10542	1:1	0.276	1.079	0.298	
707.50	23095	Mid	LTE Band 12	10	24.2	24.00	0.03	1	Left	Cheek	QPSK	25	0	10542	1:1	0.219	1.047	0.229	
707.50	23095	Mid	LTE Band 12	10	25.2	24.87	0.09	0	Left	Tilt	QPSK	1	25	10542	1:1	0.120	1.079	0.129	
707.50	23095	Mid	LTE Band 12	10	24.2	24.00	-0.01	1	Left	Tilt	QPSK	25	0	10542	1:1	0.096	1.047	0.101	
			ANSI / IEEE C			MIT								Head					
			Uncontrolled E	Spatial Pe xposure/G		lation								.6 W/kg (n eraged over			-		

Table 11-7 LTE Band 14 Head SAR

								MEAS	UREM	ENT RE	SULTS								
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	С	ı.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
793.00	23330	Mid	LTE Band 14	10	24.2	23.82	0.05	0	Right	Cheek	QPSK	1	25	10542	1:1	0.245	1.091	0.267	A7
793.00	23330	Mid	LTE Band 14	10	23.2	22.87	0.12	1	Right	Cheek	QPSK	25	0	10542	1:1	0.206	1.079	0.222	
793.00 23330 Mid LTE Band 14 10 24.2 23.82 0.03									Right	Tilt	QPSK	1	25	10542	1:1	0.141	1.091	0.154	
793.00	23330	Mid	LTE Band 14	10	23.2	22.87	0.03	1	Right	Tilt	QPSK	25	0	10542	1:1	0.120	1.079	0.129	
793.00	23330	Mid	LTE Band 14	10	24.2	23.82	0.02	0	Left	Cheek	QPSK	1	25	10542	1:1	0.216	1.091	0.236	
793.00	23330	Mid	LTE Band 14	10	23.2	22.87	0.09	1	Left	Cheek	QPSK	25	0	10542	1:1	0.192	1.079	0.207	
793.00	23330	Mid	LTE Band 14	10	24.2	23.82	-0.03	0	Left	Tilt	QPSK	1	25	10542	1:1	0.120	1.091	0.131	
793.00	23330	Mid	LTE Band 14	10	23.2	22.87	-0.06	1	Left	Tilt	QPSK	25	0	10542	1:1	0.102	1.079	0.110	
			ANSI / IEEE C	Spatial Pe	ak									Head .6 W/kg (n eraged over					

Table 11-8 LTE Band 5 (Cell) Head SAR

								MEAS	UREMI	ENT RE	SULTS								
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	С	h.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.2	24.93	-0.04	0	Right	Cheek	QPSK	1	25	10542	1:1	0.309	1.064	0.329	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.2	23.80	0.01	1	Right	Cheek	QPSK	25	0	10542	1:1	0.245	1.096	0.269	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.2	24.93	0.04	0	Right	Tilt	QPSK	1	25	10542	1:1	0.177	1.064	0.188	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.2	23.80	0.03	1	Right	Tilt	1:1	0.140	1.096	0.153					
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.2	24.93	0.00	0	Left	Cheek	QPSK	1	25	10542	1:1	0.333	1.064	0.354	A8
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.2	23.80	0.01	1	Left	Cheek	QPSK	25	0	10542	1:1	0.267	1.096	0.293	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.2	24.93	-0.01	0	Left	Tilt	QPSK	1	25	10542	1:1	0.182	1.064	0.194	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.2	23.80	0.05	1	Left	Tilt	QPSK	25	0	10542	1:1	0.146	1.096	0.160	
			ANSI / IEEE C			MIT								Head					
				Spatial Pe										.6 W/kg (n					
	_		Uncontrolled Ex	xposure/G	eneral Popul	ation						_	ave	eraged over	1 gram				

FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage FE of 90
1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 55 of 80
020 PCTEST				REV 21.4 M

© 2020 PCTEST

Table 11-9 LTE Band 66 (AWS) Head SAR

										ENT RE	SULTS								
FR	EQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Cł	ı.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.7	24.53	0.19	0	Right	Cheek	QPSK	1	50	10559	1:1	0.190	1.040	0.198	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.7	23.50	0.04	1	Right	Cheek	QPSK	50	50	10559	1:1	0.150	1.047	0.157	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.7	24.53	0.03	0	Right	Tilt	QPSK	1	50	10559	1:1	0.193	1.040	0.201	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.7	23.50	0.15	1	Right	Tilt	QPSK	50	50	10559	1:1	0.156	1.047	0.163	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.7	24.53	-0.01	0	Left	Cheek	QPSK	1	50	10559	1:1	0.291	1.040	0.303	A9
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.7	23.50	0.00	1	Left	Cheek	QPSK	50	50	10559	1:1	0.235	1.047	0.246	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.7	24.53	-0.07	0	Left	Tilt	QPSK	1	50	10559	1:1	0.155	1.040	0.161	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.7	23.50	0.10	1	Left	Tilt	QPSK	50	50	10559	1:1	0.127	1.047	0.133	
			ANSI / IEEE C	95.1 1992	- SAFETY LI	MIT								Head					
				Spatial Pea										.6 W/kg (n					
			Uncontrolled Ex	kposure/G	eneral Popul	lation							ave	eraged over	1 gram				

Table 11-10 LTE Band 2 (PCS) Head SAR

								MEAS	UREMI	ENT RE	SULTS								
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Side	Test	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	С	n.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.7	24.46	0.03	0	Right	Cheek	QPSK	1	50	10542	1:1	0.193	1.057	0.204	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.44	0.13	1	Right	Cheek	QPSK	50	0	10542	1:1	0.153	1.062	0.162	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.7	24.46	0.13	0	Right	Tilt	QPSK	1	50	10542	1:1	0.227	1.057	0.240	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.44	-0.04	1	Right Tilt QPSK 50 0 10542 1:1 0.176 1.062									0.187	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.7	24.46	0.05	0	Left	Cheek	QPSK	1	50	10542	1:1	0.349	1.057	0.369	A10
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.44	-0.04	1	Left	Cheek	QPSK	50	0	10542	1:1	0.273	1.062	0.290	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.7	24.46	0.01	0	Left	Tilt	QPSK	1	50	10542	1:1	0.165	1.057	0.174	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	1	Left	Tilt	QPSK	50	0	10542	1:1	0.135	1.062	0.143			
			ANSI / IEEE C			MIT								Head					
				Spatial Pe										.6 W/kg (n					
			Uncontrolled E	xposure/G	eneral Popul	lation							ave	eraged over	1 gram				

Table 11-11 LTE Band 30 Head SAR

								MEAS	UREMI	ENT RES	BULTS								
FR	EQUENCY	,	Mode	Bandwidth	Maximum Allowed	Conducted	Power Drift [dB]	MPR [dB]	Side	Test Position	Modulation	RB Size	RB Offset	Device Serial	Duty	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	С	n.		[MHz]	Power [dBm]	Power [dBm]	υτιπ (αΒ)			Position				Number	Cycle	(W/kg)	Factor	(W/kg)	
2310.00	27710	Mid	LTE Band 30	10	23.2	22.82	0.10	0	Right	Cheek	QPSK	1	25	10542	1:1	0.137	1.091	0.149	A11
2310.00	27710	Mid	LTE Band 30	10	22.2	21.82	0.13	1	Right	Cheek	QPSK	25	0	10542	1:1	0.106	1.091	0.116	
2310.00	27710	Mid	LTE Band 30	10	23.2	22.82	0.12	0	Right	Tilt	QPSK	1	25	10542	1:1	0.072	1.091	0.079	
2310.00	27710	Mid	LTE Band 30	10	22.2	21.82	0.17	1	1 Right Tilt QPSK 25 0 10542 1:1 0.058 1.091 0.063										
2310.00	27710	Mid	LTE Band 30	10	23.2	22.82	0.07	0	Left	Cheek	QPSK	1	25	10542	1:1	0.133	1.091	0.145	
2310.00	27710	Mid	LTE Band 30	10	22.2	21.82	0.19	1	Left	Cheek	QPSK	25	0	10542	1:1	0.096	1.091	0.105	
2310.00	27710	Mid	LTE Band 30	10	23.2	22.82	0.21	0	Left	Tilt	QPSK	1	25	10542	1:1	0.114	1.091	0.124	
2310.00	27710	Mid	LTE Band 30	10	22.2	21.82	0.18	1	Left	Tilt	QPSK	25	0	10542	1:1	0.077	1.091	0.084	
			ANSI / IEEE C			MIT								Head					
				Spatial Pe		ation								.6 W/kg (n	•				
			Uncontrolled E	xposure/G	eneral Popul	ation							ave	eraged over	1 gram				

FCC ID ZNFK400AM	Proud to be part of ((e) element	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 56 of 90
1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 56 of 80
020 PCTEST	·			REV 21.4 M

© 2020 PCTEST

Table 11-12 DTS Head SAR

							N	IEASUF	REMENT	RESUL	TS							
FREQU	ENCY	Mode	Service	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Side	Test Position	Device Serial	Data Rate (Mbps)	Duty Cycle (%)	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			[WH2]	Power [dBm]	Power [dBm]	υτιπ (αΒ)		Position	Number	(Mops)	(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2412	1	802.11b	DSSS	22	17.0	15.72	0.14	Right	Cheek	10666	1	99.1	1.021	0.692	1.343	1.009	0.938	
2437	6	802.11b	DSSS	22	17.0	16.08	0.08	Right	Cheek	10666	1	99.1	1.115	0.779	1.236	1.009	0.972	
2462	11	802.11b	DSSS	22	17.0	15.83	0.17	Right	Cheek	10666	1	99.1	1.125	0.788	1.309	1.009	1.041	A12
2437	6	802.11b	DSSS	22	17.0	16.08	0.16	Right	Tilt	10666	1	99.1	0.971	0.620	1.236	1.009	0.773	
2437	6	802.11b	DSSS	22	17.0	16.08	0.02	Left	Cheek	10666	1	99.1	0.453	-	1.236	1.009	-	
2437	6	802.11b	DSSS	22	17.0	16.08	0.05	Left	Tilt	10666	1	99.1	0.416	-	1.236	1.009	-	
		ANSI / I	EEE C95.1	1992 - SAF	ETY LIMIT								Hea					
			•	al Peak									1.6 W/kg					
		Uncontro	lled Exposu	ure/Genera	al Population								averaged ov	/er 1 gram				

Table 11-13 **DSS Head SAR**

						м	EASURE	MENT R	ESULT	s						
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted	Power	Side	Test	Device Serial	Data Rate	Duty	SAR (1g)	Scaling Factor (Cond	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.	WODE	Service	Power [dBm]	Power [dBm]	Drift [dB]	Side	Position	Number	(Mbps)	Cycle (%)	(W/kg)	Power)	Cycle)	(W/kg)	FIOL#
2441.00	39	Bluetooth	FHSS	11.0	10.04	-0.12	Right	Cheek	10674	1	76.8	0.139	1.247	1.302	0.226	A13
2441.00	39	Bluetooth	FHSS	11.0	10.04	-0.19	Right	Tilt	10674	1	76.8	0.099	1.247	1.302	0.161	
2441.00	39	Bluetooth	FHSS	11.0	10.04	0.13	Left	Cheek	10674	1	76.8	0.054	1.247	1.302	0.088	
2441.00	39	Bluetooth	FHSS	11.0	10.04	0.19	Left	Tilt	10674	1	76.8	0.045	1.247	1.302	0.073	
		ANSI / IEEI	E C95.1 1992	- SAFETY LI	MIT							Head				
			Spatial Pe								1.6	W/kg (mW/	g)			
		Uncontrolled	Exposure/G	eneral Popul	ation						avera	aged over 1 g	ram			

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Daga EZ at 90
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 57 of 80
0:	20 PCTEST				REV 21 4 M

© 20

11.2 Standalone Body-Worn SAR Data

			•			ASURE		RESULTS	`			•			
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted	Power	Spacing	Device Serial	# of Time	Duty	Side	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	Drift [dB]		Number	Slots	Cycle		(W/kg)	Factor	(W/kg)	
836.60	190	GSM 850	GSM	33.7	33.53	-0.10	10 mm	10534	1	1:8.3	back	0.450	1.040	0.468	
836.60	190	GSM 850	GPRS	32.2	32.20	-0.04	10 mm	10534	2	1:4.15	back	0.576	1.000	0.576	A14
1880.00	661	GSM 1900	GSM	30.7	30.63	-0.14	10 mm	10534	1	1:8.3	back	0.435	1.016	0.442	
1880.00	661	GSM 1900	GPRS	28.2	27.78	-0.03	10 mm	10534	2	1:4.15	back	0.448	1.102	0.494	A15
836.60	4183	UMTS 850	RMC	25.2	24.97	-0.05	10 mm	10534	N/A	1:1	back	0.462	1.054	0.487	A16
1712.40	1312	UMTS 1750	RMC	24.7	24.62	0.05	10 mm	10526	N/A	1:1	back	0.863	1.019	0.879	A17
1732.40	1412	UMTS 1750	RMC	24.7	24.58	-0.16	10 mm	10526	N/A	1:1	back	0.862	1.028	0.886	
1752.60	1513	UMTS 1750	RMC	24.7	24.52	0.01	10 mm	10526	N/A	1:1	back	0.777	1.042	0.810	
1712.40	1312	UMTS 1750	RMC	24.7	24.62	0.05	10 mm	10526	N/A	1:1	back	0.860	1.019	0.876	
1852.40	9262	UMTS 1900	RMC	24.7	24.59	-0.09	10 mm	10534	N/A	1:1	back	0.672	1.026	0.689	
1880.00	9400	UMTS 1900	RMC	24.7	24.60	-0.08	10 mm	10534	N/A	1:1	back	0.745	1.023	0.762	
1907.60	9538	UMTS 1900	RMC	24.7	24.61	-0.21	10 mm	10534	N/A	1:1	back	0.762	1.021	0.778	A18
		ANSI / IEEE	C95.1 1992 - S							ody					
			Spatial Peak							g (mW/g)					
		Uncontrolled	Exposure/Gene	eral Populatio								over 1 gram			

Table 11-14 **GSM/UMTS Body-Worn SAR Data**

Note: Blue entries indicate variability measurements

FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 59 of 90
1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 58 of 80
020 PCTEST				REV 21.4 M

© 202

									bay-vv	orn S	АК								
								MEASU	REMENT	RESULT	s								
FR	EQUENC	(Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	c	h.	inout	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number	modulution	112 0120		opuong	0.00	Cycle	(W/kg)	Factor	(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.2	24.87	-0.03	0	10559	QPSK	1	25	10 mm	back	1:1	0.594	1.079	0.641	A19
707.50	23095	Mid	LTE Band 12	10	24.2	24.00	-0.01	1	10559	QPSK	25	0	10 mm	back	1:1	0.448	1.047	0.469	
793.00	23330	Mid	LTE Band 14	10	24.2	23.82	-0.01	0	10559	QPSK	1	25	10 mm	back	1:1	0.483	1.091	0.527	A20
793.00	23330	Mid	LTE Band 14	10	23.2	22.87	0.00	1	10559	QPSK	25	0	10 mm	back	1:1	0.371	1.079	0.400	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.2	24.93	0.00	0	10559	QPSK	1	25	10 mm	back	1:1	0.534	1.064	0.568	A22
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.2	23.80	0.00	1	10559	QPSK	25	0	10 mm	back	1:1	0.402	1.096	0.441	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.7	24.30	-0.02	0	10559	QPSK	1	50	10 mm	back	1:1	0.859	1.096	0.941	A23
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.7	24.53	-0.01	0	10559	QPSK	1	50	10 mm	back	1:1	0.810	1.040	0.842	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.7	24.38	-0.01	0	10559	QPSK	1	0	10 mm	back	1:1	0.800	1.076	0.861	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.7	23.50	-0.02	1	10559	QPSK	50	50	10 mm	back	1:1	0.684	1.047	0.716	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.7	23.41	-0.01	1	10559	QPSK	100	0	10 mm	back	1:1	0.674	1.069	0.721	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.7	24.45	-0.18	0	10542	QPSK	1	50	10 mm	back	1:1	0.581	1.059	0.615	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	24.7	24.44	-0.07	0	10542	QPSK	1	50	10 mm	back	1:1	0.634	1.062	0.673	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.7	24.46	-0.04	0	10542	QPSK	1	50	10 mm	back	1:1	0.657	1.057	0.694	A24
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.44	-0.04	1	10542	QPSK	50	0	10 mm	back	1:1	0.540	1.062	0.573	
2310.00	27710	Mid	LTE Band 30	10	23.2	22.82	-0.04	0	10559	QPSK	1	25	10 mm	back	1:1	0.683	1.091	0.745	A25
2310.00	0 27710 Mid LTE Band 30 10 22.2 21.82 -0.02									QPSK	25	0	10 mm	back	1:1	0.548	1.091	0.598	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT														dy				
		Spatial Peak													g (mW/g)				
			Uncontrolled E	xposure/Ge	eneral Popul	ation							av	eraged o	over 1 gra	im			

Table 11-15 I TE Body-Worn SAR

Table 11-16 **DTS Body-Worn SAR**

							MEAS	SUREME	ENT RE	SULTS	i							
FREQ	UENCY	Mode	Service	Bandwidth	Maximum Allowed Power	Conducted Power		Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz Ch. Interference [MHz] Antore of weither [dBm] [dBm] [dBm] Spacing Spacing <th< th=""><th>(%)</th><th>W/kg</th><th>(W/kg)</th><th>(Power)</th><th>Cycle)</th><th>(W/kg)</th><th></th></th<>											(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)		
2437	6	802.11b	DSSS	22	17.0	16.08	0.16	10 mm	10674	1	back	99.1	0.287	0.176	1.236	1.009	0.219	A27
		ANS	SI / IEEE (C95.1 1992	- SAFETY LIMIT	ŕ							В	ody				
				Spatial Pe										kg (mW/g)				
		Unco	ntrolled E	Exposure/G	eneral Populati	on							averaged	over 1 gram				

Table 11-17 **DSS Body-Worn SAR**

	MEASUREMENT RESULTS															
FREQU	ENCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor (Cond	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	[dB]		Number	(Mbps)		(%)	(W/kg)	Power)	Cycle)	(W/kg)	
2441	39	Bluetooth	FHSS	11.0	10.04	0.19	10 mm	10674	1	back	76.8	0.028	1.247	1.302	0.045	A28
		ANSI / IEEE Uncontrolled E	Spatial I	Peak								Body I.6 W/kg (ml eraged over 1				

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage 50 of 90
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 59 of 80
202	0 PCTEST		·	REV 21.4 M

© 2020 PCTEST

11.3 Standalone Hotspot SAR Data

					GPRS/C			RESULTS		a					
FREQUE	NCY Ch.	Mode	Service	Maximum Allowed Power [dBm]	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial Number	# of Time Slots	Duty Cycle	Side	SAR (1g) (W/kg)	Scaling Factor	Reported SAR (1g) (W/kg)	Plot #
836.60	190	GSM 850	GPRS	32.2	32.20	-0.04	10 mm	10534	2	1:4.15	back	0.576	1.000	0.576	A14
836.60	190	GSM 850	GPRS	32.2	32.20	-0.01	10 mm	10534	2	1:4.15	front	0.302	1.000	0.302	
836.60	190	GSM 850	GPRS	32.2	32.20	0.02	10 mm	10534	2	1:4.15	bottom	0.175	1.000	0.175	
836.60	190	GSM 850	GPRS	32.2	32.20	0.04	10 mm	10534	2	1:4.15	right	0.372	1.000	0.372	
836.60	190	GSM 850	GPRS	32.2	32.20	-0.01	10 mm	10534	2	1:4.15	left	0.245	1.000	0.245	
1880.00	661	GSM 1900	GPRS	28.2	27.78	-0.03	10 mm	10534	2	1:4.15	back	0.448	1.102	0.494	A15
1880.00	661	GSM 1900	GPRS	28.2	27.78	0.01	10 mm	10534	2	1:4.15	front	0.287	1.102	0.316	
1880.00	661	GSM 1900	GPRS	28.2	27.78	0.00	10 mm	10534	2	1:4.15	bottom	0.277	1.102	0.305	
1880.00	661	GSM 1900	GPRS	28.2	27.78	0.00	10 mm	10534	2	1:4.15	left	0.350	1.102	0.386	
836.60	4183	UMTS 850	RMC	25.2	24.97	-0.05	10 mm	10534	N/A	1:1	back	0.462	1.054	0.487	A16
836.60	4183	UMTS 850	RMC	25.2	24.97	-0.05	10 mm	10534	N/A	1:1	front	0.304	1.054	0.320	
836.60	4183	UMTS 850	RMC	25.2	24.97	-0.03	10 mm	10534	N/A	1:1	bottom	0.174	1.054	0.183	
836.60	4183	UMTS 850	RMC	25.2	24.97	-0.03	10 mm	10534	N/A	1:1	right	0.355	1.054	0.374	
836.60	4183	UMTS 850	RMC	25.2	24.97	0.04	10 mm	10534	N/A	1:1	left	0.247	1.054	0.260	
1712.40	1312	UMTS 1750	RMC	24.7	24.62	0.05	10 mm	10526	N/A	1:1	back	0.863	1.019	0.879	A17
1732.40	1412	UMTS 1750	RMC	24.7	24.58	-0.16	10 mm	10526	N/A	1:1	back	0.862	1.028	0.886	
1752.60	1513	UMTS 1750	RMC	24.7	24.52	0.01	10 mm	10526	N/A	1:1	back	0.777	1.042	0.810	
1732.40	1412	UMTS 1750	RMC	24.7	24.58	-0.07	10 mm	10526	N/A	1:1	front	0.504	1.028	0.518	
1732.40	1412	UMTS 1750	RMC	24.7	24.58	-0.02	10 mm	10526	N/A	1:1	bottom	0.350	1.028	0.360	
1732.40	1412	UMTS 1750	RMC	24.7	24.58	0.10	10 mm	10526	N/A	1:1	left	0.580	1.028	0.596	
1712.40	1312	UMTS 1750	RMC	24.7	24.62	0.05	10 mm	10526	N/A	1:1	back	0.860	1.019	0.876	
1852.40	9262	UMTS 1900	RMC	24.7	24.59	-0.09	10 mm	10534	N/A	1:1	back	0.672	1.026	0.689	
1880.00	9400	UMTS 1900	RMC	24.7	24.60	-0.08	10 mm	10534	N/A	1:1	back	0.745	1.023	0.762	
1907.60	9538	UMTS 1900	RMC	24.7	24.61	-0.21	10 mm	10534	N/A	1:1	back	0.762	1.021	0.778	A18
1880.00	9400	UMTS 1900	RMC	24.7	24.60	0.12	10 mm	10534	N/A	1:1	front	0.469	1.023	0.480	
1880.00	9400	UMTS 1900	RMC	24.7	24.60	-0.03	10 mm	10534	N/A	1:1	bottom	0.391	1.023	0.400	
1880.00	9400	UMTS 1900	RMC	24.7	24.60	0.09	10 mm	10534	N/A	1:1	left	0.512	1.023	0.524	
		ANSI / IEEE	C95.1 1992 - S Spatial Peak	AFETY LIMIT								ody g (mW/g)			
		Uncontrolled	Exposure/Gene	eral Populatio							veraged	over 1 gram	-		

Table 11-18 **GPRS/UMTS Hotspot SAR Data**

Note: Blue entries indicate variability measurements

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dage C0 of 90
	1M2003020032-01-R1.ZNF	03/02/2020 – 03/17/2020 Portable Handset		Page 60 of 80
202	0 PCTEST		•	REV 21.4 M

© 2020 PCTEST

Table 11-19 LTE Band 12 Hotspot SAR

								MEASU	JREMEN	T RESULT	rs								
FRE	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	CI	າ.		[mn2]	Power [dBm]	Fower [ubili]	Dint [db]		Number							(W/kg)	Factor	(W/kg)	
707.50	23095	Mid	LTE Band 12	10	25.2	24.87	-0.03	0	10559	QPSK	1	25	10 mm	back	1:1	0.594	1.079	0.641	A19
707.50	23095	Mid	LTE Band 12	10	24.2	24.00	-0.01	1	10559	QPSK	25	0	10 mm	back	1:1	0.448	1.047	0.469	
707.50	23095	Mid	LTE Band 12	10	25.2	24.87	-0.02	0	10559	QPSK	1	25	10 mm	front	1:1	0.388	1.079	0.419	
707.50	23095	Mid	LTE Band 12	10	24.2	24.00	0.01	1	10559	QPSK	25	0	10 mm	front	1:1	0.288	1.047	0.302	
707.50	23095	Mid	LTE Band 12	10	25.2	24.87	0.05	0	10559	QPSK	1	25	10 mm	bottom	1:1	0.137	1.079	0.148	
707.50	23095	Mid	LTE Band 12	10	24.2	24.00	0.01	1	10559	QPSK	25	0	10 mm	bottom	1:1	0.112	1.047	0.117	
707.50	23095	Mid	LTE Band 12	10	25.2	24.87	-0.01	0	10559	QPSK	1	25	10 mm	right	1:1	0.507	1.079	0.547	
707.50	23095	Mid	LTE Band 12	10	24.2	24.00	-0.01	1	10559	QPSK	25	0	10 mm	right	1:1	0.389	1.047	0.407	
707.50	23095	Mid	LTE Band 12	10	25.2	24.87	0.08	0	10559	QPSK	1	25	10 mm	left	1:1	0.303	1.079	0.327	
707.50	23095	Mid	LTE Band 12	10	0.01	1	10559	QPSK	25	0	10 mm	left	1:1	0.236	1.047	0.247			
		1	ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT								Body						
		Spatial Peak											1.6 W	/kg (mW	/g)				
		Un	controlled Expo	sure/Gener	al Population	n							average	d over 1	gram				

Table 11-20 LTE Band 14 Hotspot SAR

								MEASU	REMEN	RESULT	s								
FRI	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	ı.		[]	Power [dBm]	r on or [abili]	5[05]		Number							(W/kg)	1 40101	(W/kg)	
793.00	23330	Mid	LTE Band 14	10	24.2	23.82	-0.01	0	10559	QPSK	1	25	10 mm	back	1:1	0.483	1.091	0.527	
793.00	23330	Mid	LTE Band 14	10	23.2	22.87	0.00	1	10559	QPSK	25	0	10 mm	back	1:1	0.371	1.079	0.400	
793.00	23330	Mid	LTE Band 14	10	24.2	23.82	0.06	0	10559	QPSK	1	25	10 mm	front	1:1	0.343	1.091	0.374	
793.00	23330	Mid	LTE Band 14	10	23.2	22.87	0.04	1	10559	QPSK	25	0	10 mm	front	1:1	0.265	1.079	0.286	
793.00	23330	Mid	LTE Band 14	10	24.2	23.82	0.03	0	10559	QPSK	1	25	10 mm	bottom	1:1	0.170	1.091	0.185	
793.00	23330	Mid	LTE Band 14	10	23.2	22.87	0.03	1	10559	QPSK	25	0	10 mm	bottom	1:1	0.130	1.079	0.140	
793.00	23330	Mid	LTE Band 14	10	24.2	23.82	0.00	0	10559	QPSK	1	25	10 mm	right	1:1	0.530	1.091	0.578	A21
793.00	23330	Mid	LTE Band 14	10	23.2	22.87	-0.02	1	10559	QPSK	25	0	10 mm	right	1:1	0.422	1.079	0.455	
793.00	23330	Mid	LTE Band 14	10	24.2	23.82	0.01	0	10559	QPSK	1	25	10 mm	left	1:1	0.365	1.091	0.398	
793.00	.00 23330 Mid LTE Band 14 10 23.2 22.87 0								10559	QPSK	25	0	10 mm	left	1:1	0.290	1.079	0.313	
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT													Body			•		
		Spatial Peak											1.6 W	/kg (mV	V/g)				
		Un	controlled Expo	sure/Gener	al Populatio	n							average	ed over 1	gram				

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 61 of 80
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Tage of broo
© 202	0 PCTEST				REV 21.4 M

09/11/2019

Table 11-21 LTE Band 5 (Cell) Hotspot SAR

								MEASU		RESULT									
FRI	EQUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[WIFIZ]	Power [dBm]	Fower [ubili]	ын (авј		Number							(W/kg)	Factor	(W/kg)	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.2	24.93	0.00	0	10559	QPSK	1	25	10 mm	back	1:1	0.534	1.064	0.568	A22
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.2	23.80	0.00	1	10559	QPSK	25	0	10 mm	back	1:1	0.402	1.096	0.441	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.2	24.93	-0.05	0	10559	QPSK	1	25	10 mm	front	1:1	0.350	1.064	0.372	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.2	23.80	-0.01	-0.01 1 10559 QPSK 25 0 10 mm front 1:1 0.263 1.096 0.288										0.288	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.2	24.93	0.03	0.03 0 10559 QPSK 1 25 10 mm bottom 1:1 0.192 1.064 0.204											
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.2	23.80	0.04	1	10559	QPSK	25	0	10 mm	bottom	1:1	0.146	1.096	0.160	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.2	24.93	-0.05	0	10559	QPSK	1	25	10 mm	right	1:1	0.405	1.064	0.431	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.2	23.80	0.00	1	10559	QPSK	25	0	10 mm	right	1:1	0.304	1.096	0.333	
836.50	20525	Mid	LTE Band 5 (Cell)	10	25.2	24.93	-0.05	0	10559	QPSK	1	25	10 mm	left	1:1	0.284	1.064	0.302	
836.50	20525	Mid	LTE Band 5 (Cell)	10	24.2	0.01	1	10559	QPSK	25	0	10 mm	left	1:1	0.216	1.096	0.237		
			ANSI / IEEE C95.1	1 1992 - SA	FETY LIMIT									Body					
			Spa	tial Peak									1.6 W	/kg (mV	V/g)				
		Ur	controlled Expo	sure/Gener	al Populatio	n							average	ed over 1	gram				

Table 11-22 LTE Band 66 (AWS) Hotspot SAR

								MEASU	REMENT	RESULT	s								
FRE	QUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	Cł	n.		[WITZ]	Power [dBm]	Power [dbm]	υτιπ (αΒ)		Number							(W/kg)	Factor	(W/kg)	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.7	24.30	-0.02	0	10559	QPSK	1	50	10 mm	back	1:1	0.859	1.096	0.941	A23
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.7	24.53	-0.01	0	10559	QPSK	1	50	10 mm	back	1:1	0.810	1.040	0.842	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.7	24.38	-0.01	0	10559	QPSK	1	0	10 mm	back	1:1	0.800	1.076	0.861	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.7	23.50	-0.02	1	10559	QPSK	50	50	10 mm	back	1:1	0.684	1.047	0.716	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.7	23.41	-0.01	1	10559	QPSK	100	0	10 mm	back	1:1	0.674	1.069	0.721	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.7	24.53	-0.18	0	10559	QPSK	1	50	10 mm	front	1:1	0.488	1.040	0.508	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.7	23.50	0.08	1	10559	QPSK	50	50	10 mm	front	1:1	0.416	1.047	0.436	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.7	24.53	-0.12	0	10559	QPSK	1	50	10 mm	bottom	1:1	0.230	1.040	0.239	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.7	23.50	-0.03	1	10559	QPSK	50	50	10 mm	bottom	1:1	0.204	1.047	0.214	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.7	24.53	-0.02	0	10559	QPSK	1	50	10 mm	left	1:1	0.662	1.040	0.688	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.7	23.50	-0.02	1	10559	QPSK	50	50	10 mm	left	1:1	0.553	1.047	0.579	
		4	ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body					
			Spa	atial Peak									1.6 W	/kg (mV	//g)				
		Un	controlled Expo	sure/Gener	al Populatio	n							average	ed over 1	gram				

FCC ID ZNFK400AM	PCTEST*	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Dage 62 of 90
1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 62 of 80
20 PCTEST				REV 21.4 M

© 202

Table 11-23 LTE Band 2 (PCS) Hotspot SAR

								MEASU		RESULT									
FRE	QUENCY		Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling Factor	Reported SAR (1g)	Plot #
MHz	C	h.		[WIFIZ]	Power [dBm]	Power [dbm]	υτιπ (αΒ)		Number							(W/kg)	Factor	(W/kg)	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.7	24.45	-0.18	0	10542	QPSK	1	50	10 mm	back	1:1	0.581	1.059	0.615	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	24.7	24.44	-0.07	0	10542	QPSK	1	50	10 mm	back	1:1	0.634	1.062	0.673	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.7	24.46	-0.04	0	10542	QPSK	1	50	10 mm	back	1:1	0.657	1.057	0.694	A24
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.44	-0.04	1	10542	QPSK	50	0	10 mm	back	1:1	0.540	1.062	0.573	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.7	24.46	0.07	07 0 10542 QPSK 1 50 10 mm front 1:1 0.500 1.057									1.057	0.529	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.44	0.10	1	10542	QPSK	50	0	10 mm	front	1:1	0.417	1.062	0.443	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.7	24.46	0.01	0	10542	QPSK	1	50	10 mm	bottom	1:1	0.446	1.057	0.471	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.44	0.02	1	10542	QPSK	50	0	10 mm	bottom	1:1	0.369	1.062	0.392	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.7	24.46	-0.05	0	10542	QPSK	1	50	10 mm	left	1:1	0.572	1.057	0.605	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.44	0.01	1	10542	QPSK	50	0	10 mm	left	1:1	0.481	1.062	0.511	
			ANSI / IEEE C95.	1 1992 - SA	FETY LIMIT									Body					
			Spa	tial Peak									1.6 W	/kg (mV	V/g)				
		Ur	ncontrolled Expo	sure/Gener	al Populatio	n				-		_	average	ed over 1	gram		_		

Table 11-24 LTE Band 30 Hotspot SAR

								MEASU	JREMENT	RESULT	s								
FRE	QUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Device Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (1g)	Scaling	Reported SAR (1g)	Plot #
MHz	Cł	ı.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)	
2310.00	27710	Mid	LTE Band 30	10	23.2	22.82	-0.04	0	10559	QPSK	1	25	10 mm	back	1:1	0.683	1.091	0.745	
2310.00	27710	Mid	LTE Band 30	10	22.2	21.82	-0.02	1	10559	QPSK	25	0	10 mm	back	1:1	0.548	1.091	0.598	
2310.00	27710	Mid	LTE Band 30	10	23.2	22.82	-0.02	0	10559	QPSK	1	25	10 mm	front	1:1	0.449	1.091	0.490	
2310.00	27710	Mid	LTE Band 30	10	22.2	21.82	-0.01	1	10559	QPSK	25	0	10 mm	front	1:1	0.357	1.091	0.389	
2310.00	27710	Mid	LTE Band 30	10	23.2	22.82	-0.03	0	10559	QPSK	1	25	10 mm	bottom	1:1	1.010	1.091	1.102	A26
2310.00	27710	Mid	LTE Band 30	10	22.2	21.82	-0.02	0.02 1 10559 QPSK 25 0 10 mm bottom 1:1 0.792 1.091 0.864											
2310.00	27710	Mid	LTE Band 30	10	22.2	21.76	-0.01												
2310.00	27710	Mid	LTE Band 30	10	23.2	22.82	0.09	0	10559	QPSK	1	25	10 mm	right	1:1	0.188	1.091	0.205	
2310.00	27710	Mid	LTE Band 30	10	22.2	21.82	-0.01	1	10559	QPSK	25	0	10 mm	right	1:1	0.149	1.091	0.163	
2310.00	27710	Mid	LTE Band 30	10	23.2	22.82	0.13	0	10559	QPSK	1	25	10 mm	left	1:1	0.101	1.091	0.110	
2310.00	27710	Mid	LTE Band 30	10	22.2	21.82	0.14	1	10559	QPSK	25	0	10 mm	left	1:1	0.082	1.091	0.089	
2310.00	27710	Mid	LTE Band 30	10	23.2	22.82	-0.05	0	10559	QPSK	1	25	10 mm	bottom	1:1	1.010	1.091	1.102	
		4	ANSI / IEEE C95.		FETY LIMIT									Body					
			Spa	atial Peak									1.6 W	//kg (mV	V/g)				
		Un	controlled Expo	sure/Gene	al Populatio					·			average	ed over 1	gram				

Note: Blue entries indicate variability measurements

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 63 of 80
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 63 01 80
202	0 PCTEST			REV 21.4 M

© 20

Table 11-25 WLAN Hotspot SAR

								JREME										
FREQU	ENCY	Mode	Service	Bandwidth	Maximum Allowed Power	Conducted Power		Spacing	Device Serial	Data Rate	Side	Duty Cycle	Peak SAR of Area Scan	SAR (1g)	Scaling Factor	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			[MHz]	[dBm]	[dBm]	[dB]		Number	(Mbps)		(%)	W/kg	(W/kg)	(Power)	Cycle)	(W/kg)	
2437	6	802.11b	DSSS	22	17.0	16.08	0.16	10 mm	10674	1	back	99.1	0.287	0.176	1.236	1.009	0.219	A27
2437	6	802.11b	DSSS	22	17.0	16.08	0.14	10 mm	10674	1	front	99.1	0.161	-	1.236	1.009	-	
2437	6	802.11b	DSSS	22	17.0	16.08	0.18	10 mm	10674	1	top	99.1	0.187	-	1.236	1.009	-	
2437	6	802.11b	DSSS	22	17.0	16.08	0.15	10 mm	10674	1	left	99.1	0.157	-	1.236	1.009	-	
		AN	ISI / IEEE	C95.1 1992 ·	- SAFETY LIMIT								В	ody				
				Spatial Pea	ak								1.6 W/k	g (mW/g)				
		Unco	ontrolled	Exposure/Ge	eneral Populatio	n							averaged	over 1 gram				

Table 11-26 DSS Hotspot SAR

						ME	ASURE	MENT F	RESUL	rs						
FREQU	JENCY	Mode	Service	Maximum Allowed		Power Drift	Spacing	Device Serial	Data Rate	Side	Duty Cycle	SAR (1g)	Scaling Factor (Cond	Scaling Factor (Duty	Reported SAR (1g)	Plot #
MHz	Ch.			Power [dBm]	Power [dBm]	[dB]		Number	(Mbps)		(%)	(W/kg)	Power)	Cycle)	(W/kg)	
2441	39	Bluetooth	FHSS	11.0	10.04	0.19	10 mm	10674	1	back	76.8	0.028	1.247	1.302	0.045	A28
2441	39	Bluetooth	FHSS	11.0	10.04	0.12	10 mm	10674	1	front	76.8	0.018	1.247	1.302	0.029	
2441	39	Bluetooth	FHSS	11.0	10.04	0.02	10 mm	10674	1	top	76.8	0.020	1.247	1.302	0.032	
2441	39	Bluetooth	FHSS	11.0	10.04	0.12	10 mm	10674	1	left	76.8	0.015	1.247	1.302	0.024	
		ANSI / IEEE	C95.1 199	2 - SAFETY	LIMIT							Body				
			Spatial I	Peak							1	.6 W/kg (mV	V/g)			
		Uncontrolled E	Exposure	General Pop	oulation						ave	eraged over 1	gram			

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 64 of 90
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 64 of 80
© 202	0 PCTEST				REV 21.4 M

11.4 Standalone Phablet SAR Data

					UMTS	Phabi	et SAI	R Data	_	_				_
					MEAS	UREME	NT RES	ULTS						
FREQUE	NCY	Mode	Service	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	Spacing	Device Serial	Duty Cycle	Side	SAR (10g)	Scaling Factor	Reported SAR (10g)	Plot #
MHz	Ch.			Power [dBm]	rower [abiii]	Dint[db]		Number	Cycle		(W/kg)	Tactor	(W/kg)	
1712.40	1312	UMTS 1750	RMC	24.7	24.62	0.04	2 mm	10526	1:1	back	2.020	1.019	2.058	
1732.40	1412	UMTS 1750	RMC	24.7	24.58	-0.09	2 mm	10526	1:1	back	2.080	1.028	2.138	
1752.60	1513	UMTS 1750	RMC	24.7	24.52	-0.14	2 mm	10526	1:1	back	2.050	1.042	2.136	
1732.40	1412	UMTS 1750	RMC	24.7	24.58	0.01	0 mm	10526	1:1	front	1.780	1.028	1.830	
1732.40	1412	UMTS 1750	RMC	24.7	24.58	0.08	0 mm	10526	1:1	bottom	1.250	1.028	1.285	
1712.40	1312	UMTS 1750	RMC	24.7	24.62	0.09	0 mm	10526	1:1	left	2.710	1.019	2.761	
1732.40	1412	UMTS 1750	RMC	24.7	24.58	-0.03	0 mm	10526	1:1	left	2.730	1.028	2.806	
1752.60	1513	UMTS 1750	RMC	24.7	24.52	-0.02	0 mm	10526	1:1	left	2.860	1.042	2.980	A29
1712.40	1312	UMTS 1750	RMC	22.3	22.20	-0.10	0 mm	10526	1:1	back	2.320	1.023	2.373	
1732.40	1412	UMTS 1750	RMC	22.3	22.15	-0.11	0 mm	10526	1:1	back	2.380	1.035	2.463	
1752.60	1513	UMTS 1750	RMC	22.3	22.13	-0.08	0 mm	10526	1:1	back	2.340	1.040	2.434	
1752.60	1513	UMTS 1750	RMC	24.7	24.52	-0.02	0 mm	10526	1:1	left	2.790	1.042	2.907	
1852.40	9262	UMTS 1900	RMC	24.7	24.59	-0.06	2 mm	10534	1:1	back	2.070	1.026	2.124	
1880.00	9400	UMTS 1900	RMC	24.7	24.60	0.02	2 mm	10534	1:1	back	2.170	1.023	2.220	
1907.60	9538	UMTS 1900	RMC	24.7	24.61	0.02	2 mm	10534	1:1	back	2.110	1.021	2.154	
1852.40	9262	UMTS 1900	RMC	24.7	24.59	0.17	0 mm	10534	1:1	front	2.070	1.026	2.124	
1880.00	9400	UMTS 1900	RMC	24.7	24.60	0.19	0 mm	10534	1:1	front	2.180	1.023	2.230	
1907.60	9538	UMTS 1900	RMC	24.7	24.61	0.18	0 mm	10534	1:1	front	2.220	1.021	2.267	A30
1880.00	9400	UMTS 1900	RMC	24.7	24.60	-0.12	0 mm	10534	1:1	bottom	1.210	1.023	1.238	
1852.40	9262	UMTS 1900	RMC	24.7	24.59	-0.12	0 mm	10534	1:1	left	1.880	1.026	1.929	
1880.00	9400	UMTS 1900	RMC	24.7	24.60	-0.16	0 mm	10534	1:1	left	2.000	1.023	2.046	
1907.60	9538	UMTS 1900	RMC	24.7	24.61	-0.16	0 mm	10534	1:1	left	2.090	1.021	2.134	
1852.40	9262	UMTS 1900	RMC	22.3	22.10	-0.13	0 mm	10534	1:1	back	2.020	1.047	2.115	
1880.00	9400	UMTS 1900	RMC	22.3	22.20	-0.15	0 mm	10534	1:1	back	2.090	1.023	2.138	
1907.60	9538	UMTS 1900	RMC	22.3	22.15	-0.18	0 mm	10534	1:1	back	2.100	1.035	2.174	
		ANSI / IEEE	C95.1 1992 - S	AFETY LIMIT	-						Phablet			
			Spatial Peak								W/kg (mW/g			
		Uncontrolled	Exposure/Gen	eral Populati	on		· .			average	ed over 10 gr	ams		

Table 11-27 UMTS Phablet SAR Data

Note: Blue entries indicate variability measurements

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	ì	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage (F of 90
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 65 of 80
© 202	0 PCTEST		·		REV 21.4 M

							LTE	Band	66 PI	nablet	SAF	ર							
								MEASUR	EMENT	RESULTS	;								
FF	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (10g)	Scaling	Reported SAR (10g)	Plot #
MHz	C	ı.	libdo	[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number	modulution	112 0120	110 011001	opuonig	oluc	buly office	(W/kg)	Factor	(W/kg)	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.7	24.30	-0.06	0	10559	QPSK	1	50	2 mm	back	1:1	2.170	1.096	2.378	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.7	24.53	0.02	0	10559	QPSK	1	50	2 mm	back	1:1	2.270	1.040	2.361	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.7	24.38	-0.12	0	10559	QPSK	1	0	2 mm	back	1:1	2.250	1.076	2.421	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.7	23.34	-0.01	1	10559	QPSK	50	25	2 mm	back	1:1	1.780	1.086	1.933	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.7	23.50	-0.01	1	10559	QPSK	50	50	2 mm	back	1:1	1.940	1.047	2.031	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.7	23.37	-0.08	1	10559	QPSK	50	0	2 mm	back	1:1	1.920	1.079	2.072	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.7	23.41	-0.04	1	10559	QPSK	100	0	2 mm	back	1:1	1.800	1.069	1.924	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.7	24.53	0.14	0	10559	QPSK	1	50	0 mm	front	1:1	1.720	1.040	1.789	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.7	23.50	0.15	1	10559	QPSK	50	50	0 mm	front	1:1	1.490	1.047	1.560	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.7	24.53	-0.04	0	10559	QPSK	1	50	0 mm	bottom	1:1	0.936	1.040	0.973	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.7	23.50	-0.01	1	10559	QPSK	50	50	0 mm	bottom	1:1	0.821	1.047	0.860	
1720.00	132072	Low	LTE Band 66 (AWS)	20	24.7	24.30	-0.03	0	10559	QPSK	1	50	0 mm	left	1:1	2.190	1.096	2.400	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	24.7	24.53	-0.01	0	10559	QPSK	1	50	0 mm	left	1:1	2.360	1.040	2.454	
1770.00	132572	High	LTE Band 66 (AWS)	20	24.7	24.38	0.00	0	10559	QPSK	1	0	0 mm	left	1:1	2.430	1.076	2.615	
1720.00	132072	Low	LTE Band 66 (AWS)	20	23.7	23.34	-0.04	1	10559	QPSK	50	25	0 mm	left	1:1	1.790	1.086	1.944	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.7	23.50	-0.04	1	10559	QPSK	50	50	0 mm	left	1:1	2.080	1.047	2.178	
1770.00	132572	High	LTE Band 66 (AWS)	20	23.7	23.37	-0.04	1	10559	QPSK	50	0	0 mm	left	1:1	2.110	1.079	2.277	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	23.7	23.41	-0.04	1	10559	QPSK	100	0	0 mm	left	1:1	2.030	1.069	2.170	
1720.00	132072	Low	LTE Band 66 (AWS)	20	22.7	22.50	-0.06	0	10559	QPSK	1	50	0 mm	back	1:1	2.270	1.047	2.377	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	22.7	22.40	-0.05	0	10559	QPSK	1	50	0 mm	back	1:1	2.330	1.072	2.498	
1770.00	132572	High	LTE Band 66 (AWS)	20	22.7	22.30	-0.05	0	10559	QPSK	1	50	0 mm	back	1:1	2.490	1.096	2.729	A31
1720.00	132072	Low	LTE Band 66 (AWS)	20	22.7	22.60	-0.06	0	10559	QPSK	50	0	0 mm	back	1:1	2.260	1.023	2.312	
1745.00	132322	Mid	LTE Band 66 (AWS)	20	22.7	22.29	-0.04	0	10559	QPSK	50	0	0 mm	back	1:1	2.350	1.099	2.583	
1770.00	132572	High	LTE Band 66 (AWS)	20	22.7	22.28	-0.06	0	10559	QPSK	50	0	0 mm	back	1:1	2.460	1.102	2.711	
1720.00	132072	Low	LTE Band 66 (AWS)	20	22.7	22.49	-0.06	0	10559	QPSK	100	0	0 mm	back	1:1	2.240	1.050	2.352	
		AN	ISI / IEEE C95.1		ETY LIMIT									Phablet					
			•	al Peak										//kg (mV					
		Unce	ontrolled Exposu	ire/General	Population								average	d over 10	grams				

Table 11-28 I TE Band 66 Phablet SAR

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 66 of 80
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Fage 66 01 60
12	0 PCTEST				REV 21 4 M

© 202

LTE Band 2 Phablet SAR																			
								MEASUR	EMENT	RESULTS	i								
F	REQUENCY	r	Mode	Bandwidth [MHz]	Maximum Allowed	Conducted Power [dBm]	Power Drift [dB]	MPR [dB]	Serial Number	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (10g)	Scaling Factor	Reported SAR (10g)	Plot #
MHz	-	h.			Power [dBm]			-								(W/kg)		(W/kg)	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.7	24.45	0.08	0	10542	QPSK	1	50	2 mm	back	1:1	2.160	1.059	2.287	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	24.7	24.44	-0.09	0	10542	QPSK	1	50	2 mm	back	1:1	2.240	1.062	2.379	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.7	24.46	-0.08	0	10542	QPSK	1	50	2 mm	back	1:1	2.260	1.057	2.389	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.44	-0.05	1	10542	QPSK	50	0	2 mm	back	1:1	1.850	1.062	1.965	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.42	-0.03	1	10542	QPSK	100	0	2 mm	back	1:1	1.820	1.067	1.942	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.7	24.45	0.15	0	10542	QPSK	1	50	0 mm	front	1:1	2.100	1.059	2.224	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	24.7	24.44	0.15	0	10542	QPSK	1	50	0 mm	front	1:1	2.170	1.062	2.305	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.7	24.46	0.15	0	10542	QPSK	1	50	0 mm	front	1:1	2.210	1.057	2.336	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.44	0.14	1	10542	QPSK	50	0	0 mm	front	1:1	1.850	1.062	1.965	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.42	0.17	1	10542	QPSK	100	0	0 mm	front	1:1	1.810	1.067	1.931	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.7	24.46	-0.07	0	10542	QPSK	1	50	0 mm	bottom	1:1	1.280	1.057	1.353	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.44	-0.03	1	10542	QPSK	50	0	0 mm	bottom	1:1	1.050	1.062	1.115	
1860.00	18700	Low	LTE Band 2 (PCS)	20	24.7	24.45	-0.03	0	10542	QPSK	1	50	0 mm	left	1:1	2.860	1.059	3.029	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	24.7	24.44	0.00	0	10542	QPSK	1	50	0 mm	left	1:1	2.990	1.062	3.175	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.7	24.46	-0.04	0	10542	QPSK	1	50	0 mm	left	1:1	3.020	1.057	3.192	A32
1860.00	18700	Low	LTE Band 2 (PCS)	20	23.7	23.35	-0.03	1	10542	QPSK	50	25	0 mm	left	1:1	2.370	1.084	2.569	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	23.7	23.36	-0.07	1	10542	QPSK	50	25	0 mm	left	1:1	2.450	1.081	2.648	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.44	-0.05	1	10542	QPSK	50	0	0 mm	left	1:1	2.540	1.062	2.697	
1900.00	19100	High	LTE Band 2 (PCS)	20	23.7	23.42	-0.03	1	10542	QPSK	100	0	0 mm	left	1:1	2.480	1.067	2.646	
1860.00	18700	Low	LTE Band 2 (PCS)	20	22.5	22.33	-0.12	0	10542	QPSK	1	50	0 mm	back	1:1	2.710	1.040	2.818	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	22.5	22.47	-0.10	0	10542	QPSK	1	50	0 mm	back	1:1	2.810	1.007	2.830	
1900.00	19100	High	LTE Band 2 (PCS)	20	22.5	22.37	-0.13	0	10542	QPSK	1	50	0 mm	back	1:1	2.840	1.030	2.925	
1860.00	18700	Low	LTE Band 2 (PCS)	20	22.5	22.26	-0.19	0	10542	QPSK	50	50	0 mm	back	1:1	2.760	1.057	2.917	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	22.5	22.31	-0.16	0	10542	QPSK	50	25	0 mm	back	1:1	2.870	1.045	2.999	
1900.00	19100	High	LTE Band 2 (PCS)	20	22.5	22.29	-0.12	0	10542	QPSK	50	25	0 mm	back	1:1	2.900	1.050	3.045	
1880.00	18900	Mid	LTE Band 2 (PCS)	20	22.5	22.28	-0.10	0	10542	QPSK	100	0	0 mm	back	1:1	2.880	1.052	3.030	
1900.00	19100	High	LTE Band 2 (PCS)	20	24.7	24.46	-0.04	0	10542	QPSK	1	50	0 mm	left	1:1	2.990	1.057	3.160	
		A	NSI / IEEE C95.1					Phablet											
		11	•	al Peak	Denulation									//kg (mV					
	Uncontrolled Exposure/General Population					L <u></u>		<u> </u>			average	u over 10	grams						

Table 11-29 I TE Band 2 Phablet SAR

Note: Blue entries indicate variability measurements

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 67 of 80
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Fage 67 01 60
02	0 PCTEST			REV 21.4 M

© 20

								Band	30 PI	nablet	SAF	٢							
								MEASUR	REMENT	RESULTS									
F	REQUENCY		Mode	Bandwidth	Maximum Allowed	Conducted	Power	MPR [dB]	Serial	Modulation	RB Size	RB Offset	Spacing	Side	Duty Cycle	SAR (10g)	Scaling	Reported SAR (10g)	Plot #
MHz	C	ı.		[MHz]	Power [dBm]	Power [dBm]	Drift [dB]		Number							(W/kg)	Factor	(W/kg)	
2310.00	27710	Mid	LTE Band 30	10	23.2	22.82	-0.05	0	10559	QPSK	1	25	2 mm	back	1:1	1.380	1.091	1.506	
2310.00	27710	Mid	LTE Band 30	10	22.2	21.82	-0.08	1	10559	QPSK	25	0	2 mm	back	1:1	1.080	1.091	1.178	
2310.00	27710	Mid	LTE Band 30	10	23.2	22.82	-0.18	0	10559	QPSK	1	25	0 mm	front	1:1	1.200	1.091	1.309	
2310.00	27710	Mid	LTE Band 30	10	22.2	21.82	-0.14	1	10559	QPSK	25	0	0 mm	front	1:1	0.928	1.091	1.012	
2310.00	27710	Mid	LTE Band 30	10	23.2	22.82	-0.21	0	10559	QPSK	1	25	0 mm	bottom	1:1	2.670	1.091	2.913	A33
2310.00	27710	Mid	LTE Band 30	10	22.2	21.82	-0.16	1	10559	QPSK	25	0	0 mm	bottom	1:1	2.030	1.091	2.215	
2310.00	27710	Mid	LTE Band 30	10	22.2	21.76	-0.19	1	10559	QPSK	50	0	0 mm	bottom	1:1	2.070	1.107	2.291	
2310.00	27710	Mid	LTE Band 30	10	23.2	22.82	-0.10	0	10559	QPSK	1	25	0 mm	right	1:1	0.472	1.091	0.515	
2310.00	27710	Mid	LTE Band 30	10	22.2	21.82	-0.15	1	10559	QPSK	25	0	0 mm	right	1:1	0.460	1.091	0.502	
2310.00	27710	Mid	LTE Band 30	10	23.2	22.82	-0.03	0	10559	QPSK	1	25	0 mm	left	1:1	0.328	1.091	0.358	
2310.00	27710	Mid	LTE Band 30	10	22.2	21.82	0.00	1	10559	QPSK	25	0	0 mm	left	1:1	0.259	1.091	0.283	
2310.00	27710	Mid	LTE Band 30	10	22.2	22.20	-0.05	0	10559	QPSK	1	25	0 mm	back	1:1	2.150	1.000	2.150	
2310.00	27710	Mid	LTE Band 30	10	22.2	22.20	-0.04	0	10559	QPSK	25	25	0 mm	back	1:1	2.100	1.000	2.100	
2310.00	27710	Mid	LTE Band 30	10	22.2	22.15	-0.13	0	10559	QPSK	50	0	0 mm	back	1:1	2.000	1.012	2.024	
2310.00	2310.00 27710 Mid LTE Band 30 10 23.2 22.82 0.00					0	10559	QPSK	1	25	0 mm	bottom	1:1	2.440	1.091	2.662			
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT							Phablet											
			•	al Peak				4.0 W/kg (mW/g)											
	Uncontrolled Exposure/General Population										averaged	d over 10) grams						

Table 11-30 LTE Band 30 Phablet SAR

Note: Blue entries indicate variability measurements

11.5 SAR Test Notes

General Notes:

- 1. The test data reported are the worst-case SAR values according to test procedures specified in IEEE 1528-2013, and FCC KDB Publication 447498 D01v06.
- 2. Batteries are fully charged at the beginning of the SAR measurements.
- 3. Liquid tissue depth was at least 15.0 cm for all frequencies.
- 4. The manufacturer has confirmed that the device(s) tested have the same physical, mechanical and thermal characteristics and are within operational tolerances expected for production units.
- 5. SAR results were scaled to the maximum allowed power to demonstrate compliance per FCC KDB Publication 447498 D01v06.
- 6. Device was tested using a fixed spacing for body-worn accessory testing. A separation distance of 10 mm was considered because the manufacturer has determined that there will be body-worn accessories available in the marketplace for users to support this separation distance.
- Per FCC KDB Publication 648474 D04v01r03, body-worn SAR was evaluated without a headset connected to the device. Since the standalone reported body-worn SAR was ≤ 1.2 W/kg, no additional body-worn SAR evaluations using a headset cable were required.
- Per FCC KDB 865664 D01v01r04, variability SAR tests were performed when the measured SAR results for a frequency band were greater than or equal to 0.8 W/kg. Repeated SAR measurements are highlighted in the tables above for clarity. Please see Section 13 for variability analysis.
- 9. During SAR Testing for the Wireless Router conditions per FCC KDB Publication 941225 D06v02r01, the actual Portable Hotspot operation (with actual simultaneous transmission of a transmitter with WIFI) was not activated (See Section 6.7 for more details).
- 10. Per FCC KDB Publication 648474 D04v01r03, this device is considered a "phablet" since the diagonal dimension is > 160 mm and < 200 mm. Therefore, phablet SAR tests are required when wireless router mode does not apply or if wireless router 1g SAR > 1.2 W/kg.

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Dage 69 of 90
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 68 of 80
© 202	0 PCTEST				REV 21.4 M

REV 21.4 M 09/11/2019

^{© 2020} PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.

- 11. Additional SAR tests for phablet SAR were evaluated per KDB 616217 Section 6 (See Section 6.9 for more information)
- 12. This device utilizes power reduction for some wireless modes and technologies, as outlined in Section 1.3. The maximum output power allowed for each transmitter and exposure condition was evaluated for SAR compliance based on expected use conditions and simultaneous transmission scenarios.
- 13. Unless otherwise noted, when 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds below.

GSM Test Notes:

- 1. Body-Worn accessory testing is typically associated with voice operations. Therefore, GSM voice was evaluated for body-worn SAR.
- 2. Justification for reduced test configurations per KDB Publication 941225 D01v03r01 and October 2013 TCB Workshop Notes: The source-based frame-averaged output power was evaluated for all GPRS/EDGE slot configurations. The configuration with the highest target frame averaged output power was evaluated for hotspot SAR. When the maximum frame-averaged powers are equivalent across two or more slots (within 0.25 dB), the configuration with the most number of time slots was tested.
- 3. Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > 1/2 dB, instead of the middle channel, the highest output power channel was used.
- 4. GPRS was additionally evaluated for head and body-worn exposure conditions to address possible VoIP scenarios.

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	🕑 LG	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:		Page 69 of 80
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Fage 09 01 00
)2	0 PCTEST				REV 21.4 M

© 20

UMTS Notes:

- UMTS mode was tested under RMC 12.2 kbps with HSPA Inactive per KDB Publication 941225 D01v03r01. AMR and HSPA SAR was not required per the 3G Test Reduction Procedure in KDB Publication 941225 D01v03r01.
- Per FCC KDB Publication 447498 D01v06, if the reported (scaled) SAR measured at the middle channel or highest output power channel for each test configuration is ≤ 0.8 W/kg for 1g evaluations then testing at the other channels is not required for such test configuration(s). When the maximum output power variation across the required test channels is > ½ dB, instead of the middle channel, the highest output power channel was used.

LTE Notes:

- LTE test configurations are determined according to SAR Evaluation Considerations for LTE Devices in FCC KDB Publication 941225 D05v02r04. The general test procedures used for testing can be found in Section 8.5.4.
- MPR is permanently implemented for this device by the manufacturer. The specific manufacturer target MPR is indicated alongside the SAR results. MPR is enabled for this device, according to 3GPP TS36.101 Section 6.2.3 – 6.2.5 under Table 6.2.3-1.
- 3. A-MPR was disabled for all SAR tests by setting NS=01 on the base station simulator. SAR tests were performed with the same number of RB and RB offsets transmitting on all TTI frames (maximum TTI).
- 4. Per KDB Publication 941225 D05Av01r02, SAR for downlink only LTE CA operations was not needed since the maximum average output power in LTE CA mode was not >0.25 dB higher than the maximum output power when downlink carrier aggregation was inactive.

WLAN Notes:

- For held-to-ear, hotspot, and phablet operations, the initial test position procedures were applied. The test
 position with the highest extrapolated peak SAR will be used as the initial test position. When reported
 SAR for the initial test position is ≤ 0.4 W/kg for 1g evaluations, no additional testing for the remaining test
 positions was required. Otherwise, SAR is evaluated at the subsequent highest peak SAR positions until
 the reported SAR result is ≤ 0.8 W/kg or all test positions are measured.
- 2. Justification for test configurations for WLAN per KDB Publication 248227 D01v02r02 for 2.4 GHz WIFI operations, the highest measured maximum output power channel for DSSS was selected for SAR measurement. SAR for OFDM modes (2.4 GHz 802.11g/n) was not required due to the maximum allowed powers and the highest reported DSSS SAR. See Section 8.6.3 for more information.
- 3. When the maximum reported 1g averaged SAR is ≤0.8 W/kg, SAR testing on additional channels was not required. Otherwise, SAR for the next highest output power channel was required until the reported SAR result was ≤ 1.20 W/kg for 1g evaluations or all test channels were measured.
- 4. The device was configured to transmit continuously at the required data rate, channel bandwidth and signal modulation, using the highest transmission duty factor supported by the test mode tools. The reported SAR was scaled to the 100% transmission duty factor to determine compliance. Procedures used to measure the duty factor are identical to that in the associated EMC test reports.

Bluetooth Notes

- 1. Bluetooth SAR was measured with the device connected to a call box with hopping disabled with DH5 operation and Tx Tests test mode type. Per October 2016 TCB Workshop Notes, the reported SAR was scaled to the 100% transmission duty factor to determine compliance. See Section 9.5 for the time domain plot and calculation for the duty factor of the device.
- 2. Head and Hotspot Bluetooth SAR were evaluated for BT BR tethering applications.

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Page 70 of 80
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Fage 70 01 60
nc	DO POTEST			REV/21/1 M

© 2020 PCTEST

12 FCC MULTI-TX AND ANTENNA SAR CONSIDERATIONS

12.1 Introduction

The following procedures adopted from FCC KDB Publication 447498 D01v06 are applicable to devices with builtin unlicensed transmitters such as 802.11 and Bluetooth devices which may simultaneously transmit with the licensed transmitter.

12.2 Simultaneous Transmission Procedures

This device contains transmitters that may operate simultaneously. Therefore, simultaneous transmission analysis is required. Per FCC KDB Publication 447498 D01v06 4.3.2 and IEEE 1528-2013 Section 6.3.4.1.2, simultaneous transmission SAR test exclusion may be applied when the sum of the 1g SAR for all the simultaneous transmitting antennas in a specific a physical test configuration is ≤ 1.6 W/kg. The different test positions in an exposure condition may be considered collectively to determine SAR test exclusion according to the sum of 1g or 10g SAR.

WLAN/BT antenna SAR testing was not required for phablet exposure conditions per FCC KDB 648474 D04v01r03. Therefore, no further analysis was required to determine that possible simultaneous scenarios would not exceed the SAR limit.

12.3 Head SAR Simultaneous Transmission Analysis

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.301	1.041	1.342
	GSM/GPRS 1900	0.263	1.041	1.304
	UMTS 850	0.328	1.041	1.369
	UMTS 1750	0.366	1.041	1.407
	UMTS 1900	0.314	1.041	1.355
Head SAR	LTE Band 12	0.332	1.041	1.373
	LTE Band 14	0.267	1.041	1.308
	LTE Band 5 (Cell)	0.354	1.041	1.395
	LTE Band 66 (AWS)	0.303	1.041	1.344
	LTE Band 2 (PCS)	0.369	1.041	1.410
	LTE Band 30	0.149	1.041	1.190

 Table 12-1

 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Held to Ear)

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Dogo 71 of 90
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 71 of 80
202	0 PCTEST			REV 21.4 M

© 2020 PCTEST

Sinutan	eous transmission Sce		ueloolii (iie	
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.301	0.226	0.527
	GSM/GPRS 1900	0.263	0.226	0.489
	UMTS 850	0.328	0.226	0.554
	UMTS 1750	0.366	0.226	0.592
	UMTS 1900	0.314	0.226	0.540
Head SAR	LTE Band 12	0.332	0.226	0.558
	LTE Band 14	0.267	0.226	0.493
	LTE Band 5 (Cell)	0.354	0.226	0.580
	LTE Band 66 (AWS)	0.303	0.226	0.529
	LTE Band 2 (PCS)	0.369	0.226	0.595
	LTE Band 30	0.149	0.226	0.375

Table 12-2 Simultaneous Transmission Scenario with Bluetooth (Held to Ear)

Body-Worn Simultaneous Transmission Analysis 12.4

Table 12-3 Simultaneous Transmission Scenario with 2.4 GHz WLAN (Body-Worn at 1.0 cm)

Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	2.4 GHz WLAN SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.576	0.219	0.795
	GSM/GPRS 1900	0.494	0.219	0.713
	UMTS 850	0.487	0.219	0.706
	UMTS 1750	0.886	0.219	1.105
	UMTS 1900	0.778	0.219	0.997
Body-Worn	LTE Band 12	0.641	0.219	0.860
	LTE Band 14	0.527	0.219	0.746
	LTE Band 5 (Cell)	0.568	0.219	0.787
	LTE Band 66 (AWS)	0.941	0.219	1.160
	LTE Band 2 (PCS)	0.694	0.219	0.913
	LTE Band 30	0.745	0.219	0.964

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager				
	Document S/N:	Test Dates:	DUT Type:	Dage 72 of 90				
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 72 of 80				
202	20 PCTEST RE							

© 2020 PCTEST

Exposure Condition	Mode	2G/3G/4G	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GSM/GPRS 850	0.576	0.045	0.621
	GSM/GPRS 1900	0.494	0.045	0.539
	UMTS 850	0.487	0.045	0.532
	UMTS 1750	0.886	0.045	0.931
	UMTS 1900	0.778	0.045	0.823
Body-Worn	LTE Band 12	0.641	0.045	0.686
	LTE Band 14	0.527	0.045	0.572
	LTE Band 5 (Cell)	0.568	0.045	0.613
	LTE Band 66 (AWS)	0.941	0.045	0.986
	LTE Band 2 (PCS)	0.694	0.045	0.739
	LTE Band 30	0.745	0.045	0.790

Table 12-4 Simultaneous Transmission Scenario with Bluetooth (Body-Worn at 1.0 cm)

Hotspot SAR Simultaneous Transmission Analysis 12.5

2.4 GHz 2G/3G/4G Σ SAR WLAN SAR Exposure SAR (W/kg) (W/kg) Mode (W/kg) Condition 1 2 1+2 **GPRS 850** 0.576 0.219 0.795 **GPRS 1900** 0.494 0.219 0.713 **UMTS 850** 0.487 0.219 0.706 **UMTS 1750** 0.886 0.219 1.105 **UMTS 1900** 0.219 0.997 0.778 Hotspot LTE Band 12 0.641 0.219 0.860 SAR LTE Band 14 0.578 0.219 0.797 LTE Band 5 (Cell) 0.787 0.568 0.219 LTE Band 66 (AWS) 0.941 0.219 1.160 LTE Band 2 (PCS) 0.694 0.219 0.913 LTE Band 30 1.102 0.219 1.321

Table 12-5
Simultaneous Transmission Scenario with 2.4 GHz WLAN (Hotspot at 1.0 cm)

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:	Page 73 of 80		
	1M2003020032-01-R1.ZNF	ZNF 03/02/2020 – 03/17/2020 Portable Handset				
202	0 PCTEST			REV 21.4 M		

© 2020 PCTEST

Simultaneou	is transmission scenar	io with blue	lootii (notsp	ot at 1.0 cm)
Exposure Condition	Mode	2G/3G/4G SAR (W/kg)	Bluetooth SAR (W/kg)	Σ SAR (W/kg)
		1	2	1+2
	GPRS 850	0.576	0.045	0.621
	GPRS 1900	0.494	0.045	0.539
	UMTS 850	0.487	0.045	0.532
	UMTS 1750	0.886	0.045	0.931
Listen at	UMTS 1900	0.778	0.045	0.823
Hotspot SAR	LTE Band 12	0.641	0.045	0.686
UAN	LTE Band 14	0.578	0.045	0.623
	LTE Band 5 (Cell)	0.568	0.045	0.613
	LTE Band 66 (AWS)	0.941	0.045	0.986
	LTE Band 2 (PCS)	0.694	0.045	0.739
	LTE Band 30	1.102	0.045	1.147

Table 12-6 Simultaneous Transmission Scenario with Bluetooth (Hotspot at 1.0 cm)

12.6 Simultaneous Transmission Conclusion

The above numerical summed SAR results for all the worst-case simultaneous transmission conditions were below the SAR limit. Therefore, the above analysis is sufficient to determine that simultaneous transmission cases will not exceed the SAR limit and therefore no measured volumetric simultaneous SAR summation is required per FCC KDB Publication 447498 D01v06 and IEEE 1528-2013 Section 6.3.4.1.2.

FCC ID ZNFK400AM	PCTEST [°] Proud to be part of @ element	SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 74 of 80
1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Fage 74 01 60
20 PCTEST				REV 21.4 M

© 20

13 SAR MEASUREMENT VARIABILITY

13.1 Measurement Variability

Per FCC KDB Publication 865664 D01v01r04, SAR measurement variability was assessed for each frequency band, which was determined by the SAR probe calibration point and tissue-equivalent medium used for the device measurements. When both head and body tissue-equivalent media were required for SAR measurements in a frequency band, the variability measurement procedures were applied to the tissue medium with the highest measured SAR, using the highest measured SAR configuration for that tissue-equivalent medium. These additional measurements were repeated after the completion of all measurements requiring the same head or body tissue-equivalent medium in a frequency band. The test device was returned to ambient conditions (normal room temperature) with the battery fully charged before it was re-mounted on the device holder for the repeated measurement(s) to minimize any unexpected variations in the repeated results.

SAR Measurement Variability was assessed using the following procedures for each frequency band:

- 1) When the original highest measured SAR is \geq 0.80 W/kg, the measurement was repeated once.
- 2) A second repeated measurement was performed only if the ratio of largest to smallest SAR for the original and first repeated measurements was > 1.20 or when the original or repeated measurement was \geq 1.45 W/kg (~ 10% from the 1g SAR limit).
- A third repeated measurement was performed only if the original, first or second repeated measurement was \geq 1.5 W/kg and the ratio of largest to smallest SAR for the original, first and second repeated measurements is > 1.20.
- Repeated measurements are not required when the original highest measured SAR is < 0.80 W/kg
- 5) When 10g SAR measurement is considered, a factor of 2.5 is applied to the thresholds above.

MHz Ch. UMTS 1750 RMC back 10mm 0.8633 0.8603 (W/kg)		Body SAR Measurement Variability Results												
Amage FREQUENCY Mode Service Side Space Massaure SAR (1g) Repeated SAR (1g)		BODY VARIABILITY RESULTS												
1750 1712.40 1312 UMTS 1750 RMC back 10 mm 0.863 0.860 1.00 NA NA NA 2300 2310.00 27710 LTE Band 30, 10 MHz Bandwidth QPSK, 1 RB, 25 RB Offset bottom 10 mm 1.010 1.00 NA NA NA NA	Band	FREQUENCY Measured Repeated Repeated Repeated										Ratio		
2300 2310.00 27710 LTE Band 30, 10 MHz Bandwidth QPSK, 1 RB, 25 RB Offset bottom 10 mm 1.010 1.010 1.00 N/A N/A N/A N/A N/A	MHz Ch.		Ch.					(W/kg)	(W/kg)		(W/kg)		(W/kg)	
2300 2310.00 2/710 LTE Band 30, 10 MHz Bandwidth RB Offset bottom 10 mm 1.010 1.010 1.00 N/A N/A N/A N/A N/A	1750	1750 1712.40 1312 UMTS 1750 RMC back				back	10 mm	0.863	0.860	1.00	N/A	N/A	N/A	N/A
	2300						10 mm	1.010	1.010	1.00	N/A	N/A	N/A	N/A
ANSI / IEEE C95.1 1992 - SAFETY LIMIT Body		ANSI / IEEE C95.1 1992 - SAFETY LIMIT								Bo	dy			
Spatial Peak 1.6 W/kg (mW/g)		Spatial Peak							1	1.6 W/kg	g (mW/g)			
Uncontrolled Exposure/General Population averaged over 1 gram	Uncontrolled Exposure/General Population averaged over 1 gram													

Table 13-1

Table 13-2

Phablet SAR Measurement Variability Results

	PHABLET VARIABILITY RESULTS												
Band FREQUENCY Mode Service Side Spacing Measured SAR (10g) 1st SAR (10g) 2nd Repeated SAR (10g) 2nd Repeated SAR (10g) 3rd Repeated SAR (10g)									Ratio				
	MHz	Ch.					(W/kg)	(W/kg)		(W/kg)		(W/kg)	
1750 1752.60 1513 UMTS 1750 RMC left					left	0 mm	2.860	2.790	1.03	N/A	N/A	N/A	N/A
1900	1900 1900.00 19100 LTE Band 2 (PCS), 20 MHz QPSK, 1 RB, 50 left Bandwidth RB Offset				left	0 mm	3.020	2.990	1.01	N/A	N/A	N/A	N/A
OPSK 1 PB 25					bottom	0 mm	2.670	2.440	1.09	N/A	N/A	N/A	N/A
	ANSI / IEEE C95.1 1992 - SAFETY LIMIT						Phablet						
	Spatial Peak						4.0 W/kg (mW/g)						
	Uncontrolled Exposure/General Population averaged over 10 grams												

Measurement Uncertainty 13.2

The measured SAR was <1.5 W/kg for 1g and <3.75 W/kg for 10g for all frequency bands. Therefore, per KDB Publication 865664 D01v01r04, the extended measurement uncertainty analysis per IEEE 1528-2013 was not required.

	FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	Approved by: Quality Manager
	Document S/N:	Test Dates:	DUT Type:	Daga 75 of 90
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 75 of 80
202	0 PCTEST			REV 21.4 M

© 2020 PCTEST

14 EQUIPMENT LIST

Applet 19735 5-Parameter therwayer 9/07020 Annual 9/07/200 Med003941 Aglett 6438C ESG vector Signal Generator 5/2/2019 Annual 5/2/2020 Med003941 Aglett 64438C ESG vector Signal Generator 5/2/2019 Annual 5/2/2020 Med003941 Aglett 64438C ESG vector Signal Generator 3/1/10701 Bervial 3/1/10701 Mervial Mervian 4/1/10701 Mervial 3/1/10701 Mervial 3/1/10701 Mervian 4/1/10701	Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Applert 1973020 Annual 9197020 Annual 9197020 Annual 9197020 Annual 9172020 Merksons Aglent E4438C E55 Vector Signal Generator \$727203 Annual \$527200 Merksons \$877703 Biernial \$877703 Merksons \$877703 <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>							
Aglent E+843C ESS Vector Signal Generator 57/27/20 Annals 57/27/200 Mer425002 Aglent 6443C ESS Vector Signal Generator 31/27/200 Mer250002 Aglent E443C ESS Vector Signal Generator 31/27/201 Mer250020 Aglent E515C Wireless Communications Test Set 0/25/2019 Annal 9/27/200 Mer300200 Aglent E515C Wireless Communications Test Set 0/27/2019 Annal 9/27/200 Mer300200 Aglent E515C Wireless Communications Test Set 0/27/2019 Annal 1/27/2010 Mer300200 Aglent Me9030A PAS Signal Analyter (Met31) 6/12/2019 Annal 1/17/2010 Mer300200 Antitu MA4316A USB Power Senor 6/12/2019 Annal 1/17/2000 Mer320020 Antitu MA4316A USB Power Senor 6/12/2019 Annal 1/17/2000 1/17/2000 1/17/2000 1/17/2000 1/17/2000 1/17/2000 1/17/2000 1/17/2000 1/17/2000 1/17/2000							
Aglent E 4436C E 55 Vector Signal Generator 5/12/2019 Amnall 5/12/2020 MV4720285 Aglent F4436C ESS Uvector Signal Generator 3/11/2019 Bernall 3/12/201 MV4208285 Aglent ESS15C Wreless Communications Test Set 9/25/2019 Annall 5/25/2020 Gel339447 Aglent ESS15C Wreless Communications Test Set 9/25/2019 Annall 7/12/2030 MF020205 Aglent FESS15C Wreless Communications Test Set 9/25/2019 Annall 7/12/2030 MF020205 Aglent FESS15C Wreless Communications Test Set 9/25/2019 Annall 7/12/2030 MF020205 Aglent H99305 M63 Vector Signal Generator 7/12/2019 Annall M7420203 MF020205 Annall M7420203 MF020205 Annall M7420203 MF020205 Annall M7427020 M7420203 MF020205 Annall M7427020 M7427020 M7427020 M7427020 M7427020 M7427020 M74270202 M7427020 M7427020	-						
Agleint E 4436C E 50 Vector Signal Generator 3/1/2011 Biernall 3/1/2011 Mr4300200 Agleint E 5315C Wireless Communications Test Set 6/26/2019 Annaul 5/7/2021 6/8330127 Agleint E 5515C Wireless Communications Test Set 2/7/2013 Terminal 7/1/2021 6/8330127 Agleint 195152A MCM Vector Signal Generator 7/1/2020 Annaul 7/1/2021 6/8330127 Agleint 195020A MCA Signal Analyzer 4/202019 Annaul 1/1/2020 19545566 Agleint 195020A MCA Signal Analyzer (44041) 6/1/2019 Annaul 1/1/2020 19465566 Amritus MA2105A 10.58 Power Senor 1/1/2019 Annaul 1/1/2020 1945556 Amritus MA2265A Power Meter 1/1/2019 Annaul 1/1/2020 1945050 Amritus MM2266A Power Meter 1/1/2019 Annaul 1/1/2020 1945050 Amritus MM286A Power Meter 1/1/2019 Annaul </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Aglert E 433C E 50 Vector Signal Generator 3/11/2319 Bernall 3/11/2210 Merdsson Aglert E 551SC Wireless Communications Test Set 9/25/2019 Annall 5/25/2010 Gel3304427 Aglert N51SSC Wireless Communications Test Set 2/7/2018 Tremail 2/7/2018 Gel3304427 Aglert N51SSC Wireless Communications Test Set 2/7/2018 Annall 4/2/20209 Annall 1/1/20200 MCS300466 Artisu MA4116A USB Power Sentor 4/1/2/2001 Annall 1/1/2/2002 MCS30146 Artisu MA4216A Power Meter 1/1/2/2003 Annall 1/1/2/2003 Annall 1/1/2/2003 Annall 1/1/2/2003 MCS30146 Artisu MA4265A Power Meter 1/1/2/2003 Annall 1/1/2/2003 Annall 1/1/2/2003 Annall 1/1/2/2003 Anna	-						
Aglent ESSLC Wireless Communications Test Set 9/27/2019 Annual 9/27/2029 Mirosoft Aglent ESSLS Wireless Communications Test Set 2/17/2018 Ticenvial 7/17/2018 Gel3394278 Aglent NS182A MGK Vector Signal Generator 7/17/2019 Annual 1/17/2019 Gel3394278 Aglent N902DA MCA Signal Analyzer 4/22/2019 Annual 1/17/2010 N17/2010 N17/20100 N17/2010	-						
Aglent E535.C Wireless Communication Test Set 9/2/2020 Gel3304278 Aglent N553.A More Vector Syn1 Generator 7/10/10 Annual 9/2/2020 Me330474 Aglent N553.A More Vector Syn1 Generator 7/10/201 Annual 4/2/2020 Mv4742080 Aglent N9030.A MAS Sign1 Analyzer (44611) 4/12/2019 Annual 4/12/2020 Mv3253056 Anritsu MA24106A USR Power Sensor 7/11/2019 Annual 4/11/2020 1384555 Anritsu MA24106A USR Power Sensor 7/11/2019 Annual 6/11/2020 1384556 Anritsu MA24105 Power Meter 111/2/2019 Annual 111/2/2020 4/12/2020 4/12/2020 4/12/2020 4/12/2020 4/12/2020 1384505 4/10/10 Annual 111/2/2020 4/12/2020 4/12/2020 4/12/2020 4/12/2020 13920565 4/10/10 Annual 111/2/2020 4/12/2020 14/12/2020 4/12/2020 14/12/2020 14/12/2020 14/12/2020 14/12/2020							
Aglert 15315 Wireless Communications Test Seriet 27/2013 Trennial 27/2021 6#8330447 Aglert N9520A MMA Signal Analyser 4/20/2019 Annual 17/10/2010 UM4470501 Aglert N9520A PMA Signal Analyser 4/20/2010 UM4323000 MM243200A MM243200A MM243200A MM243200A MM243200A MM243200A MM243200A MM243200A MM24310B Annual 7/11/2010 Annual 1/11/2010 Annual 1/11/2010 Annual 7/11/2010 Annual 7/11/2010 Annual 1/11/2010 Annual 1/11/2010 Annual 1/11/20100 Annual 1/11/20100 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
Ageint N1512A DMX Viscots Spin1 Generator 7/10/2013 Annual 7/10/2020 MM4742080 Ageint N9030A PMAS spin1 Analyter (MdSH) 6/12/2013 Annual 6/12/2020 UNS452064 Antisu MA24106A USB Power Sensor 7/15/2013 Annual 6/11/2020 134555 Antisu MA24118 Puble Power Sensor 7/15/2013 Annual 6/11/2020 139553 Antisu MA24118 Puble Power Sensor 5/11/2019 Annual 11/1/2020 139500 Antisu MA24318 Puble Power Sensor 11/1/2013 Annual 11/1/2020 140101 Antisu M124205 Radio Communication Analyzer 11/2/2013 Annual 12/1/2020 620132427 Antisu M1821C Radio Communication Analyzer 5/12/2013 Annual 5/12/2021 620132437 Control Company 4040 Therm./Cocl/Hamidity Monitor 6/22/2019 Biernial 6/22/2011 132231400 Control Company 4040 Therm./Cocl/Hamidity Monitor 6/	-						
Aglert N9020A MAA Spin Analyser 4/2/2010 Annual 4/2/2020 US4457051 Aglert N9020A PEXASDA (M212010) Annual 4/17/2020 1344556 Anotsu MA24106A US8 Power Sensor 4/17/2013 Annual 4/11/2020 1344556 Anotsu MA24118 Puide Power Sensor 6/11/2019 Annual 6/11/2020 1330008 Anotsu MA24118 Puide Power Sensor 6/11/2019 Annual 6/11/2020 1340503 Anotsu MA2410A Power Meter 11/1/2019 Annual 11/1/2020 1400503 Anotsu M18820C Radio Communication Analyser 3/12/2019 Annual 5/12/2020 6/3102375 Control Company 4040 Therm./Coci/Annunicity Monitor 6/212/2019 Bernaia 6/212/2011 32231455 Control Company 4040 Therm./Coci/Annunicity Monitor 6/212/2011 Bernaia 6/212/2011 32231455 Control Company 4040 Therm./Coci/Annunicity Monitor 6/212/2011							
AgeInt N9300A PVS Signi Analyser (4461t) 6/12/2013 Annual 0/12/2020 MV223006 Anritsu MA2406A U3B Power (sensor 7/15/101 Annual 0/12/2020 1349513 Anritsu MA2411B Puble Power Sensor 6/11/2010 Annual 0/12/2020 1233908 Anritsu MA2411B Puble Power Sensor 6/11/2010 Annual 1/11/2020 1233908 Anritsu MA2439A Power Meter 11/17/2013 Annual 1/11/2020 6/313900 Anritsu MR831C Radio Communication Analyzer 5/12/2013 Annual 3/12/2020 6/3139402 Anritsu MR831C Radio Communication Analyzer 5/12/2013 Annual 3/12/2020 6/3132425 Control Company 4040 Therm./Clock/Munidity Monitor 6/22/2013 Biernial 6/22/2021 12223140 Control Company 4040 Therm./Clock/Munidity Monitor 6/22/2013 Biernial 6/22/2021 12223140 Control Company 4352 Lorg Stem Thermometer 6/22/2011	-						
Anritsu MA2105A USB Power Serior 4/17/2030 4/17/2030 134555 Anritsu MA211B Pulse Power Serior 6/11/2030 4/nail 6/11/2030 1329056 Anritsu MA2411B Pulse Power Serior 6/11/2030 4/nail 6/11/2030 1329056 Anritsu ML2495A Power Meter 11/17/2030 4/nail 11/17/2020 9/4000 Anritsu ML385A Power Meter 12/17/2030 4/nail 3/29/2030 4/1000 Anritsu ML982AC Radia Communication Analycer 5/13/2019 4/nail 5/13/20200 6/20120471 Anritsu ML982AC Wireless Connectivity Text Set 8/8//2019 8/8//2019 6/29/2011 192291460 Control Company 4040 Therm,/Loc/t/humdity Montor 6/29/2018 Bernial 6/29/2011 192291460 Control Company 4352 Long Stem Thermometer 6/26/2019 Bernial 6/26/2011 192291450 Control Company 4352 Utra Long Stem Thermometer 6/26/20101 1922201	° ·		, , , , , , , , , , , , , , , , , , ,				
Antisu MA2106A USB Power Sensor 7/15/2019 Annall 6/11/2020 12/2020 Antisu MA211B Pulse Power Sensor 8/8/2019 Annall 8/8/2019 Annall 8/8/2010 Annall 8/8/2010 Annall 8/8/2010 Annall 8/8/2010 4/8/2010 Antisu MU295A Power Meter 11/2/2010 Annall 1/1/2/2010 9/10/2010 4/10/20	Agilent		PXA Signal Analyzer (44GHz)		Annual		
Anrtisu MA23118 Pulse Prover Sensor 6/11/2019 Anrual 6/11/2010 1232808 Anrtisu ML2495A Power Meter 11/6/2019 Anrual 8/8/7020 C601264247 Anrtisu MT882A Writels ConcrotOrthy Test St 8/8/7019 Anrual 8/8/7020 C621726319 L12222011 L12222011 L12220140 L1222014	Anritsu	MA24106A	USB Power Sensor	4/17/2019	Annual	4/17/2020	1344556
Anrtisu MA24118 Public Paren 8//2012 Annal 8//2020 1335005 Anrtisu ML2495A Power Meter 11//2013 Annal 12//72010 Annal 12//72010 404005 Anrtisu MT8820C Radia Communication Analyeer 513/2010 Annal 12//72010 620132071 Anrtisu MT8821C Radia Communication Analyeer 513/2010 Annal 5/3/2010 620152437 Anrtisu MT882A Wireless Connectivity Fert Set 88//2019 Biennal 6/2/20201 19221410 Control Company 4040 Therm./Cock/humdity Montar 6/2/2019 Biennal 6/2/20201 19221410 Control Company 4040 Therm./Cock/humdity Montar 6/2/2019 Biennal 6/2/20201 19221410 Control Company 4032 Long Stem Thermometer 6/2/2019 Biennal 6/2/20201 192224140 Control Company 4332 Utrs Long Stem Thermometer 11/2/2010 Biennal 6/2/20201 192224140 Kerneleneleneles S/3	Anritsu	MA24106A	USB Power Sensor	7/15/2019	Annual	7/15/2020	1349513
Anritsu MA2496A Power Meter 11//5/2019 Annual 11//5/2020 1495020 Anritsu M18820C Badio Communication Analyzer 3/29/2019 Annual 3/29/2020 6/20130437 Anritsu M18821C Badio Communication Analyzer 5/13/2010 6/20130437 Anritsu M1882A Wireless Connectivity Test St 8///2019 Annual 6/29/2021 192291470 Control Company 4040 Therm./Clock/Humidity Monitor 6/29/2019 Biennial 6/29/2021 192291470 Control Company 4040 Therm./Clock/Humidity Monitor 6/27/2019 Biennial 6/29/2021 192291450 Control Company 4040 Therm./Clock/Humidity Monitor 6/26/2019 Biennial 6/26/2011 192291450 Control Company 4352 Long Stem Thermometer 6/26/2019 Biennial 6/26/2012 19228753 Control Company 4352 Uitra Long Stem Thermometer 11/26/2018 Biennial 6/26/2012 Biennial 6/26/2012 Biennial 11/26/2020 N/N3401185	Anritsu	MA2411B	Pulse Power Sensor	6/11/2019	Annual	6/11/2020	1207364
Anritsu M.2495A Power Meter 12/17/2019 Annual 12/17/2020 941001 Anritsu MT8821C Badio Communication Ankyrer 5/13/2019 Annual 5/13/2019 6/20130731 Anritsu MT8824A Wireless Connectivity Test Set 8/(2019) Annual 6/12/2021 5/25/2021	Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Arritsu MT8820C Badio Communication Analyzer 3/29/2019 Annual 3/29/2020 6/2013/24637 Arritsu MT882A Wereless Connectivity Test St 8//8/2019 Annual 8//8/2019 Annual 6/39/2021 19/221470 Control Company 4040 Therm/Clock/Humidity Monitor 6/27/2019 Bienrial 6/39/2021 19/221450 Control Company 4040 Therm/Clock/Humidity Monitor 6/27/2019 Bienrial 6/3/2021 19/221450 Control Company 4040 Therm/Clock/Humidity Monitor 6/27/2019 Bienrial 6/2/3/2011 19/221450 Control Company 4522 Long Stem Thermometer 6/26/2019 Bienrial 6/26/2021 19/222743 Control Company 4532 Uitra Long Stem Thermometer 11/29/2018 Bienrial 1/29/2020 Hi/310/67/2021 Hi/32/67/2021 Hi/32/67/2021 Hi/32/67/2021 Hi/32/67/2020 Hi/33/2014 Hi/32/67/2021 Hi/32/67/2021 Hi/32/67/2021 Hi/32/67/2020 Hi/33/2014 Hi/32/67/2021 Hi/32/67/2020 Hi/33/2021 Hi/32/67/2020	Anritsu	ML2496A	Power Meter	11/6/2019	Annual	11/6/2020	1405003
Anrisu M18820C Radio Communication Analyzer 3/29/2019 Annall 3/29/2020 6/20130637 Anrisu M1882A Wireless Connectivity Ters Et 8/8/2019 Annall 6/3/2020 6/20130637 Control Company 4040 Therm/, Clock/Humidity, Monitor 6/29/2011 Biencial 6/39/2021 19221452 Control Company 4040 Therm/, Clock/Humidity, Monitor 6/29/2019 Biencial 6/39/2021 19221452 Control Company 4040 Therm/, Clock/Humidity, Monitor 6/27/2019 Biencial 6/36/2021 192281450 Control Company 4352 Long Stem Thermometer 6/36/2019 Biencial 6/36/2021 192282753 Control Company 4352 Ultra Long Stem Thermometer 11/29/2018 Biencial 6/36/2021 192282753 Control Company 4352 Ultra Long Stem Thermometer 11/29/2018 Biencial 6/36/2021 Bizneial 6/36/2021 Bizneial 6/36/2021 Bizneial 6/36/2021 Bizneial 6/36/2021 Bizneial Bizneial Bizne	Anritsu	ML2495A	Power Meter	12/17/2019	Annual	12/17/2020	941001
Arritsu MT8821C Radio Communication Analyzer 5/13/2020 Annual 5/13/2020 6201324837 Arritsu MT886A Wireless Connectivity Test Stell 8/8/2019 Annual 8/8/2020 1292291470 Control Company 4040 Therm./Clock/Humidity Monitor 6/29/2011 192291470 Control Company 4040 Therm./Clock/Humidity Monitor 6/29/2011 192291470 Control Company 4052 Long Stem Thermometer 6/28/2019 Biernial 6/29/2021 192291463 Control Company 4552 Long Stem Thermometer 6/26/2019 Biernial 6/26/2021 192282743 Control Company 4552 Ultra Long Stem Thermometer 11/28/2018 Biernial 11/28/2020 181766017 Control Company 4552 Ultra Long Stem Thermometer 11/28/2018 Biernial 1/28/2020 183766031 Kerjsht Technologies Ko758 DC Power Analyzer 4/27/2019 Annual 5/23/2018 Biernial 5/23/2018 Biernial 5/23/2010 Mon54 5/26/2020 10/07	Anritsu	MT8820C	Radio Communication Analyzer		Annual		6201300731
Annulu MT8862A Wreless Connectivity Text Set \$\text{str22395} Annual \$\text{str22395} Control Company 4040 Therm./Clock/Humidity Monitor 6/29/2011 192231455 Control Company 4040 Therm./Clock/Humidity Monitor 6/29/2011 Blemnial 6/29/2021 192231455 Control Company 4040 Therm./Clock/Humidity Monitor 6/29/2013 Blemnial 6/29/2021 192281456 Control Company 44040 Therm./Clock/Humidity Monitor 6/26/2013 Blemnial 6/26/2021 192281456 Control Company 4552 Long Stem Thermometer 11/29/2018 Blemnial 11/29/2020 183766801 Control Company 4552 Ultra Long Stem Thermometer 11/29/2018 Blemnial 11/27/2020 Mt5301181 Kerjight Technologies MS0305 Standard Mechanical Calibration KII (Dc to 9614; 3.5mm) 1/2/2019 Annual 1/2/2020 Mt540113 Rohde & Schwarz CMW500 Radio Communication Tester 10/2/2019 Annual 1/2/2/2020 Mt64 Rohde & Schwarz							
Control Company 4040 Therm./Clock/Humidity Monitor 6/29/2021 Biernial 6/29/2021 192291470 Control Company 4040 Therm./Clock/Humidity Monitor 6/29/2011 192291460 Control Company 4040 Therm./Clock/Humidity Monitor 6/29/2011 192291463 Control Company 4452 Long Stem Thermometer 6/26/2019 Biernial 6/26/2011 192281743 Control Company 4552 Long Stem Thermometer 6/26/2019 Biernial 6/26/2012 192282753 Control Company 4552 Ultra Long Stem Thermometer 11/25/2018 Biernial 11/25/2020 181766010 Control Company 4522 Ultra Long Stem Thermometer 11/25/2018 Biernial 11/25/2020 181766010 Sergint Technologies MS7058 DC Power Anayer 4/27/2019 Annual 8/27/2020 MY3004059 Rohde & Schwarz CMW500 Radio Communication Tester 8/26/2019 Annual 8/27/2020 1106743 Rohde & Schwarz CMW500 Wideband Radio Communication Tester <							
Control Company 4040 Therm./Clock/Humidity,Monitor 6/29/2019 Biennial 6/29/2021 192291455 Control Company 4040 Therm./Clock/Humidity,Monitor 6/29/2019 Biennial 6/29/2021 192291463 Control Company 4352 Long Stem Thermometer 6/26/2019 Biennial 6/26/2021 192281463 Control Company 4352 Long Stem Thermometer 11/29/2018 Biennial 6/26/2021 192282753 Control Company 4352 Ultra Long Stem Thermometer 11/29/2018 Biennial 11/29/2018 Biennial 11/29/2018 Biennial 11/29/2018 Biennial 42/27/201 Mis7864010 Kerjight Technologies MS7058 DC Power Analyzer 42/2/2019 Annual 8/2/2020 Mv530010 Rohde & Schwarz CMW500 Radio Communication Tester 8/2/2019 Annual 8/2/2020 110/37 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 8/2/2019 Annual 10/1/2020 101037 Rohde & Schwarz CMW500 Wideband							
Control Company 4040 Therm./Clock/Humidity Monitor 6/29/2019 Biennal 6/29/2021 192291463 Control Company 4352 Long Stem Thermoneter 6/26/2019 Biennal 6/26/2021 192282743 Control Company 4352 Long Stem Thermoneter 6/26/2019 Biennal 6/26/2021 192282743 Control Company 4352 Uttra Long Stem Thermoneter 11/29/2018 Biennal 11/29/2020 181/6601 Control Company 4352 Uttra Long Stem Thermoneter 11/29/2018 Biennal 11/29/2020 181/6601 Control Company 4352 Uttra Long Stem Thermoneter 11/29/2018 Biennal 1/27/2020 MYS3001181 Kerjött Technologies N67058 DC Power Analyzer 4/27/2019 Annual 7/2/2020 11/6743 Rohde & Schwarz CMMY500 Radio Communication Tester 8/2/2019 Annual 8/2/2020 11/6743 Rohde & Schwarz CMMY500 Radio Communication Tester 1/0/1/2019 Annual 1/0/1/2020 11/6432 Rohde & Schwa							
Control Company 4040 Therm./Clock/Humidity Monitor 6/29/2019 Blennial 6/29/2021 19223434 Control Company 4352 Long Stem Thermometer 6/26/2019 Blennial 6/26/2021 192282753 Control Company 4352 Ultra Long Stem Thermometer 11/29/2018 Blennial 11/29/2000 Bl3766777 Keryskipt Echnologies N67058 Dever Analyzer 7/2/2019 Annual 7/2/2021 M75300189 Rehde & Schwarz COMV900 Radio Communication Tester 8/2/2019 Annual 8/2/2020 116743 Rohde & Schwarz COMV900 Radio Communication Tester 8/2/2019 Annual 8/2/2020 100976 Rohde & Schwarz CMW900 Radio Communication Tester 10/4/2019 Annual 8/2/2020 101872 Rohde & Schwarz CMW900 Radio Communication Tester 10/2/2019 Annual 8/2/2020 101873 Rohde & Schwarz CMW900 Wideband Radio Communication Tester 1/1/2019 Annual 8/1/2020 115149 SPEAG							
Control Company 4352 Long Stem Thermometer 6/2/2019 Blennial 6/2/2021 192282743 Control Company 4352 Long Stem Thermometer 11/29/2018 Blennial 1/29/2020 181766901 Control Company 4352 Ultra Long Stem Thermometer 11/29/2018 Blennial 11/29/2020 181766707 Control Company 4352 Ultra Long Stem Thermometer 11/29/2018 Blennial 11/29/2020 181766707 Vergith Technologies 80338 Standard Mechanical Coll Ordyka, Samy 1/27/2019 Annual 7/2/2020 MY3300480 Rohde & Schwarz CMW500 Radio Communication Tester 8/2/2/2019 Annual 8/2/2/202 100976 Rohde & Schwarz CMW500 Radio Communication Tester 10/1/2019 Annual 8/2/2/202 103976 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/2/2019 Annual 8/2/2/202 115489 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/2/2019 Annual 7/2/2020 1155655 <							
Control Company 4352 Long Stem Thermometer 6/26/2013 Biernial 6/26/2011 919228753 Control Company 4352 Ultra Long Stem Thermometer 11/29/2018 Biernial 11/29/2020 181766777 Keyight Technologies 85033E Standard Mechanical Calibration Ki (DC to 9GH; 3.5mm) 77/2019 Annual 7/2/2020 MY53401182 Keyight Technologies NK705B DC Power Analyzer 4/27/2019 Annual 7/2/2020 MY53401182 Rohde & Schwarz CMW500 Radio Communication Tester 8/25/2018 Biernial 5/23/2020 N/A Rohde & Schwarz CMW500 Radio Communication Tester 10/4/2019 Annual 8/27/2020 116743 Rohde & Schwarz CMW500 Radio Communication Tester 7/12/2019 Annual 10/1/2020 1664622 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/12/2019 Annual 10/1/2020 101507 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/12/2019 Annual 10/1/2/2020 101517							
Control Company 4352 Ultra Long Stem Thermometer 11/29/2018 Biernial 11/29/2020 1817/68071 Control Company 4352 Ultra Long Stem Thermometer 11/29/2018 Biernial 11/29/2020 1817/66777 Vergight Technologies 85038 Standard Mechanical Calibration Kit (Dit 0 5GHz, 3.5mm) 7/2/2019 Monual 7/2/2020 M/S300181 Keysight Technologies NG7058 DC Power Analyzer 4/27/2019 Biennial 4/27/2020 1/07530181 Rohde & Schwarz CMW500 Radio Communication Tester 8/26/2019 Annual 8/26/2020 1/0076 Rohde & Schwarz CMW500 Radio Communication Tester 10/4/2019 Annual 8/27/2020 1/15/431 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/24/2019 Annual 1/12/2020 1/15/2020 1/15/432 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/24/2019 Annual 1/12/2020 1/13/2020 1/13/2020 1/13/2020 1/13/2020 1/13/2020 1/13/2020 1/15/40203 <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></td<>			-				
Control Company 4352 Ultra Long Stem Thermometer 11/29/2018 Biennial 11/29/2020 13/26777 Keysight Technologies M5708 DC Power Analyzer 4/27/2019 Annual 7//2020 M753401181 Keysight Technologies M5708 DC Power Analyzer 4/27/2019 Annual 5/23/2020 M/A Rohde & Schwar CMW500 Radio Communication Tester 8/26/2020 100976 Rohde & Schwarz CMW500 Radio Communication Tester 10/4/2019 Annual 8/27/2020 116743 Rohde & Schwarz CMW500 Radio Communication Tester 10/4/2019 Annual 10/4/2020 166462 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/24/2019 Annual 7/24/2020 151549 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/24/2019 Annual 10/1/2/020 1161 SPEAG D035V2 835 MHz SAR Dipole 10/1/2/018 Biennial 10/1/2/020 1161 SPEAG D1035V2 835 MHz SAR Dipole			-				
Keysight Technologies 85033E Standard Mechanical Calibration Kit (Dc to 96/k; 3.5m) 7/2/2019 Anual 7/2/2020 MV53004059 Pasternack NC-100 Torque Wrench 5/23/2018 Biennial 5/23/2010 N/A Rohde & Schwarz CMW500 Radio Communication Tester 8/26/2019 Annual 8/26/2020 1106743 Rohde & Schwarz CMW500 Radio Communication Tester 8/27/2019 Annual 8/27/2010 116743 Rohde & Schwarz CMW500 Radio Communication Tester 10/11/2019 Annual 10/11/2010 1013070 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/12/2019 Annual 7/12/2020 118643 Seckonk NC100 Torque Wrench (%1b) 5/10/2018 Biennial 5/10/2010 11611 SPEAG D750/3 750 MHz SAR Dipole 1/13/2020 Annual 1/13/2021 4d047 SPEAG D1750/2 353 MHz SAR Dipole 1/13/2020 Annual 1/13/2021 4d133 SPEAG D1750/2							
Keysight Technologies NK7058 DC Power Analyzer 4/27/2019 Bennial 4/27/2011 MY53004059 Pasternack NC-100 Torque Wrench 5/23/2018 Biennial 5/23/2020 N/A Rohde & Schwarz CMWS00 Radio Communication Tester 8/26/2019 Annual 8/26/2010 100976 Rohde & Schwarz CMWS00 Radio Communication Tester 8/27/2019 Annual 8/27/2020 115743 Rohde & Schwarz ZNIE6 Vector Network Analyzer 10/11/2019 Annual 10/11/2020 10397 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/12/2019 Annual 7/12/2020 15849 Seckonk NC-100 Torque Wrench (8' Ib) 5/10/2018 Biennial 5/10/2020 21053 SPEAG D835V2 835 MHz SAR Dipole 10/19/2018 Biennial 10/19/2014 4d132 SPEAG D135V2 835 MHz SAR Dipole 10/19/2018 Biennial 10/22/2020 1150 SPEAG D135V2 835 MHz SAR Dipole <							
Paternack NC-100 Torque Wrench \$/23/2018 Blennial \$/23/2020 N/A Rohde & Schwarz CMW500 Radio Communication Tester 8/27/2019 Annual 8/27/2020 116743 Rohde & Schwarz CMW500 Radio Communication Tester 8/27/2019 Annual 8/27/2020 116743 Rohde & Schwarz CMW500 Radio Communication Tester 10/11/2019 Annual 10/11/2020 116642 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/12/2019 Annual 7/12/2020 115849 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/12/2018 Biennial 5/10/2020 21053 SPEAG D750V3 750 MHz SAR Dipole 3/13/2018 Biennial 10/19/2020 41132 SPEAG D835V2 835 MHz SAR Dipole 1/13/2020 Annual 1/13/2021 4d132 SPEAG D835V2 835 MHz SAR Dipole 1/12/20208 Biennial 1/12/2020 1150 SPEAG D1302V2 1750 MHz SAR Dipole							
Rohde & Schwarz CMW500 Radio Communication Tester 8/26/2019 Annual 8/26/2020 100976 Rohde & Schwarz CMW500 Radio Communication Tester 8/27/2019 Annual 8/27/2020 116743 Rohde & Schwarz CMW500 Radio Communication Tester 10/4/2019 Annual 10/11/2020 166462 Rohde & Schwarz ZNLE6 Vector Network Analyzer 10/11/2019 Annual 10/11/2020 156462 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/12/2019 Annual 7/12/2020 151849 Sekonk N-C100 Torque Wrench (8'1b) 5/10/2018 Biennial 10/19/2020 1161 SPEAG D835V2 835 MHz SAR Dipole 1/13/2020 Annual 1/13/2020 4d047 SPEAG D135V2 835 MHz SAR Dipole 1/0/19/2018 Biennial 10/19/2020 4d133 SPEAG D130V2 1750 MHz SAR Dipole 10/23/2018 Biennial 10/23/2020 4d133 SPEAG D1300V2 1900 MHz SAR Dipole	Keysight Technologies		DC Power Analyzer	4/27/2019	Biennial		MY53004059
Rohde & Schwarz CHWISO0 Radio Communication Tester 8/27/2019 Annual 8/27/2020 116743 Rohde & Schwarz CMWISO0 Radio Communication Tester 10/4/2019 Annual 10/4/2020 166462 Rohde & Schwarz CMWISO0 Wideband Radio Communication Tester 10/11/2019 Annual 17/12/2020 145645 Rohde & Schwarz CMWISO0 Wideband Radio Communication Tester 7/12/2019 Annual 7/12/2020 151849 Seekonk N.C.100 Torque Wrench (8'1b) 5/10/2018 Biennial 10/19/2020 1161 SPEAG D750V3 750 VHz SAR Dipole 10/19/2018 Biennial 10/19/2020 1161 SPEAG D835V2 835 MHz SAR Dipole 1/13/2020 Annual 1/13/2021 4d047 SPEAG D135V2 835 MHz SAR Dipole 10/12/2018 Biennial 10/12/2020 1150 SPEAG D135V2 835 MHz SAR Dipole 10/23/2018 Biennial 10/23/2020 1150 SPEAG D1900V2 1900 MHz SAR Dipole	Pasternack	NC-100	Torque Wrench	5/23/2018	Biennial	5/23/2020	N/A
Rohde & Schwarz CMW500 Radio Communication Tester 10/4/2019 Annual 10/4/2020 166462 Rohde & Schwarz ZNLE6 Vector Network Analyzer 10/11/2019 Annual 10/11/2020 101307 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/12/2019 Annual 17/12/2020 135849 Rohde & Schwarz CMW500 Wideband Radio Communication Tester 7/24/2019 Annual 17/24/2020 151849 Seekonk NC-100 Torque Wrench (8° Ib) 5/10/2018 Biennial 10/19/2020 1161 SPEAG D750V3 750 MHz SAR Dipole 10/13/2020 Annual 1/13/2021 4d047 SPEAG D835V2 835 MHz SAR Dipole 10/12/2018 Biennial 10/12/2020 1150 SPEAG D1390V2 1750 MHz SAR Dipole 10/12/2018 Biennial 10/22/2020 1150 SPEAG D835V2 835 MHz SAR Dipole 10/12/2018 Biennial 10/22/2020 1150 SPEAG D1900V2 1900 MHz SAR Dipole <t< td=""><td>Rohde & Schwarz</td><td>CMW500</td><td>Radio Communication Tester</td><td>8/26/2019</td><td>Annual</td><td>8/26/2020</td><td>100976</td></t<>	Rohde & Schwarz	CMW500	Radio Communication Tester	8/26/2019	Annual	8/26/2020	100976
Rohde & Schwarz ZNLE6 Vector Network Analyzer 10/11/2019 Annual 10/11/2020 101307 Rohde& Schwarz CMWS00 Wideband Radio Communication Tester 7/12/2019 Annual 7/12/2020 145645 Rohde& Schwarz CMWS00 Wideband Radio Communication Tester 7/24/2019 Annual 7/12/2020 151849 Seekonk NC-100 Torque Wrench (8" lb) 5/10/2018 Biennial 5/10/2020 21053 SPEAG D835V2 835 MHz SAR Dipole 10/13/2018 Biennial 10/19/2020 40132 SPEAG D835V2 835 MHz SAR Dipole 10/13/2018 Biennial 10/22/2020 40133 SPEAG D190V2 1900 MHz SAR Dipole 10/23/2018 Biennial 10/23/2020 5d149 SPEAG D190V2 1900 MHz SAR Dipole 8/13/2019 Biennial 10/23/2020 5d149 SPEAG D2450V2 2450 MHz SAR Dipole 8/13/2019 Annual 8/14/2020 1073 SPEAG D2450V2 2450 MHz SAR Dipole 8/13/2019	Rohde & Schwarz	CMW500	Radio Communication Tester	8/27/2019	Annual	8/27/2020	116743
Rohde& Schwarz CMW500 Wideband Radio Communication Tester 7/12/2019 Annual 7/12/2020 145645 Rohde& Schwarz CMW500 Wideband Radio Communication Tester 7/24/2019 Annual 7/24/2020 151849 Seekonk NC-100 Torque Virench (8' Ib) 5/10/2020 1161 5/10/2020 21053 SPEAG D750V3 750 MHz SAR Dipole 10/19/2018 Biennial 10/19/2020 1161 SPEAG D835V2 835 MHz SAR Dipole 1/13/2021 Annual 1/13/2021 404047 SPEAG D835V2 835 MHz SAR Dipole 10/19/2018 Biennial 10/19/2020 4d133 SPEAG D1250V2 1750 MHz SAR Dipole 10/22/2018 Biennial 10/22/2020 1510 SPEAG D1900V2 1900 MHz SAR Dipole 8/14/2019 Annual 8/14/2020 719 SPEAG D1900V2 2300 MHz SAR Dipole 8/14/2019 Annual 8/14/2020 719 SPEAG D2450V2 2450 MHz SAR Dipole 8/14/2019 Annual	Rohde & Schwarz	CMW500	Radio Communication Tester	10/4/2019	Annual	10/4/2020	166462
Rohde& Schwarz CMW500 Wideband Radio Communication Tester 7/24/2019 Annual 7/24/2020 151849 Seekonk NC-100 Torque Wrench (8' lb) 5/10/2018 Blennial 5/10/2020 21053 SPEAG D950V3 750 MHz SAR Dipole 10/19/2018 Blennial 10/19/2018 4d047 SPEAG D835V2 835 MHz SAR Dipole 1/13/2019 Blennial 10/19/2014 4d132 SPEAG D835V2 835 MHz SAR Dipole 10/19/2018 Blennial 10/12/2020 1150 SPEAG D150V2 1750 MHz SAR Dipole 10/22/2018 Blennial 10/23/2020 56149 SPEAG D1900V2 1900 MHz SAR Dipole 10/23/2018 Blennial 10/23/2020 5149 SPEAG D1900V2 2450 MHz SAR Dipole 8/14/2019 Annual 8/14/2020 719 SPEAG D2450V2 2450 MHz SAR Dipole 8/13/2020 1070 544 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2017 Triennial 9/11/2020 1072<	Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Seekonk NC-100 Torque Wrench (8" lb) \$/10/2018 Biennial \$/10/2020 21053 SPEAG D750V3 750 MHz SAR Dipole 10/19/2018 Biennial 10/19/2020 1161 SPEAG D835V2 835 MHz SAR Dipole 3/13/2019 Biennial 3/13/2021 4d047 SPEAG D835V2 835 MHz SAR Dipole 1/13/2020 Annual 1/13/2020 4d132 SPEAG D835V2 835 MHz SAR Dipole 10/22/2018 Biennial 10/22/2020 4d133 SPEAG D1900V2 1750 MHz SAR Dipole 10/23/2018 Biennial 10/23/2020 5d149 SPEAG D1900V2 1900 MHz SAR Dipole 8/14/2019 Annual 8/14/2020 719 SPEAG D2450V2 2450 MHz SAR Dipole 8/13/2018 Biennial 8/13/2020 1073 SPEAG D2450V2 2450 MHz SAR Dipole 8/14/2020 1073 3797 SPEAG D2450V2 2450 MHz SAR Dipole 8/14/2019 Annual 8/14/2020 1070	Rohde& Schwarz	CMW500	Wideband Radio Communication Tester	7/12/2019	Annual	7/12/2020	145645
Seekonk NC-100 Torque Wrench (8" lb) \$/10/2018 Biennial \$/10/2020 21053 SPEAG D750V3 750 MHz SAR Dipole 10/19/2018 Biennial 10/19/2020 1161 SPEAG D835V2 835 MHz SAR Dipole 3/13/2019 Biennial 3/13/2021 4d047 SPEAG D835V2 835 MHz SAR Dipole 1/13/2020 Annual 1/13/2020 4d132 SPEAG D835V2 835 MHz SAR Dipole 10/22/2018 Biennial 10/22/2020 4d133 SPEAG D1900V2 1750 MHz SAR Dipole 10/23/2018 Biennial 10/23/2020 5d149 SPEAG D1900V2 1900 MHz SAR Dipole 8/14/2019 Annual 8/14/2020 719 SPEAG D2450V2 2450 MHz SAR Dipole 8/13/2018 Biennial 8/13/2020 1073 SPEAG D2450V2 2450 MHz SAR Dipole 8/14/2020 1073 3797 SPEAG D2450V2 2450 MHz SAR Dipole 8/14/2019 Annual 8/14/2020 1070	Rohde& Schwarz	CMW500	Wideband Radio Communication Tester	7/24/2019	Annual	7/24/2020	151849
SPEAG D750V3 750 MHz SAR Dipole 10/19/2018 Biennial 10/19/2020 1161 SPEAG D835V2 833 MHz SAR Dipole 3/13/2019 Biennial 3/13/2021 4d047 SPEAG D835V2 835 MHz SAR Dipole 1/13/2020 Annual 1/13/2021 4d132 SPEAG D835V2 835 MHz SAR Dipole 10/19/2018 Biennial 10/19/2020 4d133 SPEAG D1750V2 1750 MHz SAR Dipole 10/22/2018 Biennial 10/23/2020 5d149 SPEAG D1900V2 1900 MHz SAR Dipole 2/21/2019 Biennial 10/23/2020 5d148 SPEAG D2450V2 2450 MHz SAR Dipole 8/14/2019 Annual 8/14/2020 719 SPEAG D2450V2 2450 MHz SAR Dipole 8/13/2018 Biennial 9/12/2020 1070 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2017 Triennial 9/11/2020 797 SPEAG DA450V2 2450 MHz SAR Dipole 10/12/2019 Annual 10/22/2020 1070<	Seekonk			5/10/2018	Biennial	5/10/2020	21053
SPEAG D835V2 835 MHz SAR Dipole 3/13/2019 Biennial 3/13/2021 4d047 SPEAG D835V2 835 MHz SAR Dipole 1/13/2020 Annual 1/13/2021 4d132 SPEAG D835V2 835 MHz SAR Dipole 10/19/2018 Biennial 10/19/2020 4d133 SPEAG D1750V2 1750 MHz SAR Dipole 10/22/2018 Biennial 10/22/2020 5d149 SPEAG D1900V2 1900 MHz SAR Dipole 2/21/2019 Biennial 10/22/2020 5d149 SPEAG D1900V2 1900 MHz SAR Dipole 2/21/2019 Biennial 10/22/2020 5d149 SPEAG D2450V2 2450 MHz SAR Dipole 8/14/2019 Annual 8/14/2020 719 SPEAG D2300V2 2450 MHz SAR Dipole 8/14/2017 Triennial 9/11/2020 797 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2017 Triennial 9/11/2020 1070 SPEAG DAK-3.5 Dielectric Assessment Kit 10/22/2019 Annual 5/7/2020 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>							
SPEAG D835V2 835 MHz SAR Dipole 1/13/2020 Annual 1/13/2021 4d132 SPEAG D835V2 835 MHz SAR Dipole 10/19/2018 Blennial 10/19/2020 4d133 SPEAG D1750V2 1750 MHz SAR Dipole 10/22/2018 Blennial 10/22/2020 5d149 SPEAG D1900V2 1900 MHz SAR Dipole 10/23/2018 Blennial 10/23/2020 5d149 SPEAG D1200V2 2450 MHz SAR Dipole 8/14/2019 Annual 8/14/2020 719 SPEAG D2300V2 2450 MHz SAR Dipole 8/14/2019 Annual 8/13/2020 1073 SPEAG D2450V2 2450 MHz SAR Dipole 8/14/2019 Annual 8/14/2020 1070 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2017 Triennial 9/11/2020 1070 SPEAG DAK-3.5 Dielectric Assessment Kit 10/22/2019 Annual 10/22/2020 1091 SPEAG DAK-4 Dasy Data Acquisition Electronics 7/11/2019 Annual 7/11/2020							
SPEAG D835V2 835 MHz SAR Dipole 10/19/2018 Biennial 10/19/2020 4d133 SPEAG D1750V2 1750 MHz SAR Dipole 10/22/2018 Biennial 10/22/2020 1150 SPEAG D1900V2 1900 MHz SAR Dipole 10/23/2018 Biennial 10/22/2020 5d149 SPEAG D1900V2 1900 MHz SAR Dipole 2/21/2019 Biennial 8/14/2020 719 SPEAG D2450V2 2450 MHz SAR Dipole 8/14/2019 Annual 8/14/2020 719 SPEAG D2300V2 2300 MHz SAR Dipole 8/13/2018 Biennial 8/13/2020 1073 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2017 Triennial 9/11/2020 797 SPEAG DAK-3.5 Dielectric Assessment Kit 5/7/2020 1001 3233 SPEAG DAK-3.5 Dielectric Assessment Kit 10/22/2019 Annual 7/11/2020 1332 SPEAG DAK-4 Dasy Data Acquisition Electronics 7/11/2019 Annual 7/11/2020 1332							
SPEAG D1750V2 1750 MHz SAR Dipole 10/22/2018 Blennial 10/22/2020 1150 SPEAG D1900V2 1900 MHz SAR Dipole 10/23/2018 Blennial 10/23/2020 5d149 SPEAG D1900V2 1900 MHz SAR Dipole 2/21/2019 Blennial 12/21/2021 5d148 SPEAG D2450V2 2450 MHz SAR Dipole 8/14/2019 Annual 8/14/2020 1073 SPEAG D2450V2 2450 MHz SAR Dipole 8/13/2018 Blennial 8/13/2020 1073 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2017 Triennial 9/11/2020 797 SPEAG DAK-3.5 Dielectric Assessment Kit 5/7/2019 Annual 10/22/2020 1070 SPEAG DAK-3.5 Dielectric Assessment Kit 10/22/2019 Annual 10/12/2020 1091 SPEAG DAK-4 Dasy Data Acquisition Electronics 7/11/2019 Annual 17/11/2020 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 17/11/2019 Annual							
SPEAG D1900V2 1900 MHz SAR Dipole 10/23/2018 Biennial 10/23/2020 5d149 SPEAG D1900V2 1900 MHz SAR Dipole 2/21/2019 Biennial 2/21/2021 5d148 SPEAG D2450V2 2450 MHz SAR Dipole 8/14/2019 Annual 8/14/2020 719 SPEAG D2300V2 2300 MHz SAR Dipole 8/13/2018 Biennial 8/13/2020 1073 SPEAG D2300V2 2450 MHz SAR Dipole 8/13/2017 Triennial 8/13/2020 1073 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2017 Triennial 9/11/2020 797 SPEAG DAK-3.5 Dielectric Assessment Kit 10/22/2019 Annual 5/7/2020 1070 SPEAG DAK-3 Dielectric Assessment Kit 10/22/2019 Annual 4/18/2020 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2019 Annual 4/18/2020 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13							
SPEAG D1900V2 1900 MHz SAR Dipole 2/21/2019 Biennial 2/21/2021 5d148 SPEAG D2450V2 2450 MHz SAR Dipole 8/14/2019 Annual 8/14/2020 719 SPEAG D2300V2 2300 MHz SAR Dipole 8/13/2018 Biennial 8/13/2020 1073 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2017 Triennial 9/11/2020 797 SPEAG DAK-3.5 Dielectric Assessment Kit 5/7/2019 Annual 5/7/2020 1070 SPEAG DAK-3.5 Dielectric Assessment Kit 10/22/2019 Annual 7/11/2020 1323 SPEAG DAK-4 Dasy Data Acquisition Electronics 7/11/2019 Annual 7/11/2020 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2019 Annual 7/11/2020 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 7/12/2020 1333 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual							
SPEAG D2450V2 2450 MHz SAR Dipole 8/14/2019 Annual 8/14/2020 719 SPEAG D2300V2 2300 MHz SAR Dipole 8/13/2018 Biennial 8/13/2020 1073 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2017 Triennial 9/11/2020 797 SPEAG DAK-3.5 Dielectric Assessment Kit 5/7/2019 Annual 10/22/2020 1091 SPEAG DAK-3.5 Dielectric Assessment Kit 10/22/2019 Annual 10/22/2020 1091 SPEAG DAK-4 Dasy Data Acquisition Electronics 7/11/2019 Annual 10/12/2020 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2019 Annual 7/11/2020 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 5/8/2020 728 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1530 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Ann							
SPEAG D2300V2 2300 MHz SAR Dipole 8/13/2018 Biennial 8/13/2020 1073 SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2017 Triennial 9/11/2020 797 SPEAG DAK-3.5 Dielectric Assessment Kit 5/7/2019 Annual 5/7/2020 1070 SPEAG DAK-3.5 Dielectric Assessment Kit 10/22/2019 Annual 10/22/2020 1091 SPEAG DAK-3.5 Dielectric Assessment Kit 10/22/2019 Annual 7/11/2020 1323 SPEAG DAK-4 Dasy Data Acquisition Electronics 7/11/2019 Annual 17/11/2020 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2019 Annual 7/11/2020 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2019 Annual 5/8/2020 728 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1558 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 <							
SPEAG D2450V2 2450 MHz SAR Dipole 9/11/2017 Triennial 9/11/2020 797 SPEAG DAK-3.5 Dielectric Assessment Kit 5/7/2019 Annual 5/7/2020 1070 SPEAG DAK-3.5 Dielectric Assessment Kit 10/22/2019 Annual 5/7/2020 1091 SPEAG DAK4 Dasy Data Acquisition Electronics 7/11/2019 Annual 10/22/2020 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2019 Annual 7/11/2020 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2019 Annual 7/11/2020 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2019 Annual 7/11/2020 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1558 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1530 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
SPEAG DAK-3.5 Dielectric Assessment Kit 5/7/2019 Annual 5/7/2020 1070 SPEAG DAK-3.5 Dielectric Assessment Kit 10/22/2019 Annual 10/22/2020 1091 SPEAG DAK-3.5 Dielectric Assessment Kit 10/22/2019 Annual 10/22/2020 1091 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2019 Annual 7/11/2020 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 4/18/2019 Annual 7/11/2020 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2019 Annual 5/8/2020 728 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1558 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1558 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1530 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/20							
SPEAG DAK-3.5 Dielectric Assessment Kit 10/22/2019 Annual 10/22/2020 1091 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2019 Annual 7/11/2020 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2019 Annual 7/11/2020 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 4/18/2019 Annual 7/11/2020 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2019 Annual 7/11/2020 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2019 Annual 5/8/2020 728 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2021 1558 1558 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1533 SPEAG DAE4 Dasy Data Acquisition Electronics 6/20/2019 Annual 6/20/2020 1334 SPEAG DAE4 Dasy Data Acquisition Electronics 6/20/2019 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>							
SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2019 Annual 7/11/2020 1323 SPEAG DAE4 Dasy Data Acquisition Electronics 4/18/2019 Annual 4/18/2020 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 4/18/2019 Annual 4/18/2020 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2019 Annual 5/8/2020 728 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1558 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1558 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1530 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2020 1533 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2020 1334 SPEAG DAE4 Dasy Data Acquisition Electronics							
SPEAG DAE4 Dasy Data Acquisition Electronics 4/18/2019 Annual 4/18/2020 1407 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2019 Annual 7/11/2020 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2019 Annual 7/11/2020 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 5/8/2020 728 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1558 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1558 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1530 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 6/20/2020 1334 SPEAG EX3DV4 SAR Probe 7/15/2019 Annual 7/15/2020 7547 SPEAG EX3DV4 SAR Probe 5/16/2019 Annual	SPEAG	DAK-3.5	Dielectric Assessment Kit	10/22/2019	Annual	10/22/2020	1091
SPEAG DAE4 Dasy Data Acquisition Electronics 7/11/2019 Annual 7/11/2020 1322 SPEAG DAE4 Dasy Data Acquisition Electronics 5/8/2019 Annual 5/8/2020 728 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1558 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1558 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1533 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1530 SPEAG DAE4 Dasy Data Acquisition Electronics 6/20/2019 Annual 6/20/2020 1334 SPEAG EX3DV4 SAR Probe 7/15/2019 Annual 6/20/2020 1334 SPEAG EX3DV4 SAR Probe 7/15/2019 Annual 4/24/2020 7357 SPEAG EX3DV4 SAR Probe 5/16/2019 Annual 5/16/2020<							
SPEAG DAE4 Dasy Data Acquisition Electronics 5/8/2019 Annual 5/8/2020 728 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1558 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1533 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2020 1533 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2020 1533 SPEAG DAE4 Dasy Data Acquisition Electronics 6/20/2019 Annual 6/20/2020 1334 SPEAG EX3DV4 SAR Probe 7/15/2019 Annual 6/2/0202 7357 SPEAG EX3DV4 SAR Probe 5/16/2019 Annual 4/24/2020 7357 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2020 7406 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2021 3589 </td <td>SPEAG</td> <td>DAE4</td> <td>Dasy Data Acquisition Electronics</td> <td>4/18/2019</td> <td>Annual</td> <td>4/18/2020</td> <td>1407</td>	SPEAG	DAE4	Dasy Data Acquisition Electronics	4/18/2019	Annual	4/18/2020	1407
SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1558 SPEAG DAE4 Dasy Data Acquisition Electronics 12/5/2019 Annual 12/5/2020 1533 SPEAG DAE4 Dasy Data Acquisition Electronics 12/13/2021 Annual 12/5/2020 1533 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2021 Annual 1/13/2021 1530 SPEAG DAE4 Dasy Data Acquisition Electronics 6/20/2019 Annual 6/20/2020 1334 SPEAG EX3DV4 SAR Probe 7/15/2019 Annual 7/15/2020 7547 SPEAG EX3DV4 SAR Probe 4/24/2019 Annual 5/16/2020 7357 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2021 3589 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2021 3589 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 7/16/2020 7410	SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1322
SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1558 SPEAG DAE4 Dasy Data Acquisition Electronics 12/5/2019 Annual 12/5/2020 1533 SPEAG DAE4 Dasy Data Acquisition Electronics 12/13/2021 Annual 12/13/2021 1530 SPEAG DAE4 Dasy Data Acquisition Electronics 6/20/2019 Annual 1/13/2021 1530 SPEAG DAE4 Dasy Data Acquisition Electronics 6/20/2019 Annual 6/20/2020 1334 SPEAG EX3DV4 SAR Probe 7/15/2019 Annual 7/15/2020 7547 SPEAG EX3DV4 SAR Probe 4/24/2019 Annual 5/16/2020 7357 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2021 7369 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2021 3589 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 7/16/2020 7410	SPEAG	DAE4		5/8/2019	Annual		728
SPEAG DAE4 Dasy Data Acquisition Electronics 12/5/2019 Annual 12/5/2020 1533 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1530 SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1530 SPEAG DAE4 Dasy Data Acquisition Electronics 6/20/2019 Annual 6/20/2020 1334 SPEAG EX3DV4 SAR Probe 7/15/2019 Annual 4/24/2020 7537 SPEAG EX3DV4 SAR Probe 4/24/2019 Annual 4/24/2020 7357 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 5/16/2020 7406 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2021 3589 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2021 3589 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2020 7410 SPEAG	SPEAG	DAE4	Dasy Data Acquisition Electronics	1/13/2020	Annual	1/13/2021	1558
SPEAG DAE4 Dasy Data Acquisition Electronics 1/13/2020 Annual 1/13/2021 1530 SPEAG DAE4 Dasy Data Acquisition Electronics 6/20/2019 Annual 6/20/2020 1334 SPEAG EX3DV4 SAR Probe 7/15/2019 Annual 6/20/2020 7357 SPEAG EX3DV4 SAR Probe 4/24/2019 Annual 4/24/2020 7357 SPEAG EX3DV4 SAR Probe 5/16/2019 Annual 4/24/2020 7406 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 5/16/2020 7406 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2021 3589 SPEAG EX3DV4 SAR Probe 7/16/2019 Annual 1/21/2021 3589 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2021 7488 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2021 7488 SPEAG EX3DV4 SA		DAE4					
SPEAG DAE4 Dasy Data Acquisition Electronics 6/20/2019 Annual 6/20/2020 1334 SPEAG EX3DV4 SAR Probe 7/15/2019 Annual 7/15/2020 7547 SPEAG EX3DV4 SAR Probe 4/24/2019 Annual 4/24/2020 7357 SPEAG EX3DV4 SAR Probe 5/16/2019 Annual 4/24/2020 7357 SPEAG EX3DV4 SAR Probe 5/16/2019 Annual 5/16/2020 7406 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2021 3589 SPEAG EX3DV4 SAR Probe 7/16/2019 Annual 1/21/2021 3589 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2020 7410 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2020 7488 SPEAG EX3DV4 SAR Probe 1/21/2019 Annual 1/21/2020 7476							
SPEAG EX3DV4 SAR Probe 7/15/2019 Annual 7/15/2020 7547 SPEAG EX3DV4 SAR Probe 4/24/2019 Annual 4/24/2020 7357 SPEAG EX3DV4 SAR Probe 5/16/2019 Annual 5/16/2020 7406 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 5/16/2020 7406 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2021 3589 SPEAG EX3DV4 SAR Probe 7/16/2019 Annual 7/16/2020 7410 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 7/12/1020 7410 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2020 7410 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2020 7410 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2020 7571							
SPEAG EX3DV4 SAR Probe 4/24/2019 Annual 4/24/2020 7357 SPEAG EX3DV4 SAR Probe 5/16/2019 Annual 5/16/2020 7406 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2021 3389 SPEAG EX3DV4 SAR Probe 7/16/2019 Annual 1/21/2021 3389 SPEAG EX3DV4 SAR Probe 7/16/2019 Annual 7/16/2020 7410 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2020 7488 SPEAG EX3DV4 SAR Probe 12/11/2019 Annual 1/21/2020 7488				., .,			
SPEAG EX3DV4 SAR Probe 5/16/2019 Annual 5/16/2020 7406 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2021 3589 SPEAG EX3DV4 SAR Probe 7/16/2019 Annual 1/21/2020 7410 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2020 7410 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2020 7488 SPEAG EX3DV4 SAR Probe 1/21/2019 Annual 1/21/2020 7451	5						
SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2021 3589 SPEAG EX3DV4 SAR Probe 7/16/2019 Annual 7/16/2020 7410 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2021 7488 SPEAG EX3DV4 SAR Probe 1/21/2019 Annual 1/21/2020 7571							
SPEAG EX3DV4 SAR Probe 7/16/2019 Annual 7/16/2020 7410 SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2021 7488 SPEAG EX3DV4 SAR Probe 12/11/2019 Annual 1/21/2020 7571							
SPEAG EX3DV4 SAR Probe 1/21/2020 Annual 1/21/2021 7488 SPEAG EX3DV4 SAR Probe 12/11/2019 Annual 12/11/2020 7571							
SPEAG EX3DV4 SAR Probe 12/11/2019 Annual 12/11/2020 7571							
SPEAG EX3DV4 SAR Probe 6/19/2019 Annual 6/19/2020 7409							
	SPEAG	EX3DV4	SAR Probe	6/19/2019	Annual	6/19/2020	7409

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path. The power meter offset was then adjusted to compensate for the measurement system losses. This level offset is stored within the power meter before measurements are made. This calibration verification procedure applies to the system verification and output power measurements. The calibrated reading is then taken directly from the power meter after compensation of the losses for all final power measurements. Equipments were used only during calibration period.

FCC ID ZNFK400AM		SAR EVALUATION REPORT	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:	Dage 76 of 90
1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset	Page 76 of 80
20 PCTEST		•	REV 21.4 M

© 2020 PCTEST

15 **MEASUREMENT UNCERTAINTIES**

1							
С	d	e=	f	g	h =	i =	k
		f(d,k)			c x f/e	c x g/e	
Tol.	Prob.		с _і	ci	1gm	10gms	
(± %)	Dist.	Div.	1gm	10 gms	ui	ui	vi
					(± %)	(± %)	
6.55	Ν	1	1.0	1.0	6.6	6.6	x
0.25	Ν	1	0.7	0.7	0.2	0.2	8
1.3	Ν	1	0.7	0.7	0.9	0.9	8
2.0	R	1.73	1.0	1.0	1.2	1.2	8
0.3	Ν	1	1.0	1.0	0.3	0.3	∞
0.25	R	1.73	1.0	1.0	0.1	0.1	œ
0.3	Ν	1	1.0	1.0	0.3	0.3	œ
0.8	R	1.73	1.0	1.0	0.5	0.5	x
2.6	R	1.73	1.0	1.0	1.5	1.5	œ
3.0	R	1.73	1.0	1.0	1.7	1.7	œ
3.0	R	1.73	1.0	1.0	1.7	1.7	œ
0.4	R	1.73	1.0	1.0	0.2	0.2	8
6.7	R	1.73	1.0	1.0	3.9	3.9	∞
4.0	R	1.73	1.0	1.0	2.3	2.3	œ
2.7	Ν	1	1.0	1.0	2.7	2.7	35
1.67	N	1	1.0	1.0	1.7	1.7	5
5.0	R	1.73	1.0	1.0	2.9	2.9	3 C
0.0	R	1.73	1.0	1.0	0.0	0.0	8
7.6	R	1.73	1.0	1.0	4.4	4.4	œ
4.2	Ν	1	0.78	0.71	3.3	3.0	10
4.1	Ν	1	0.23	0.26	1.0	1.1	10
3.4	R	1.73	0.78	0.71	1.5	1.4	x
0.6	R	1.73	0.23	0.26	0.1	0.1	∞
5.0	R	1.73	0.64	0.43	1.8	1.2	x
5.0	R	1.73	0.60	0.49	1.7	1.4	x
1	RSS	1	1		11.5	11.3	60
	k=2				23.0	22.6	
	(± %) 6.55 0.25 1.3 2.0 0.3 0.25 0.3 0.25 0.3 0.8 2.6 3.0 3.0 0.4 6.7 4.0 2.7 1.67 5.0 0.0 7.6 4.2 4.1 3.4 0.6 5.0	Tol. Prob. (± %) Dist. 6.55 N 0.25 N 1.3 N 2.0 R 0.3 N 0.25 R 0.3 N 0.25 R 0.3 N 0.25 R 0.3 N 0.25 R 3.0 R 3.0 R 3.0 R 3.0 R 4.1 N 5.0 R 7.6 R 4.1 N 3.4 R 0.6 R 5.0 R	f(d,k) Tol. Prob. (± %) Dist. Div. 6.55 N 1 0.25 N 1 0.25 N 1 2.0 R 1.73 0.3 N 1 0.25 R 1.73 0.3 N 1 0.25 R 1.73 0.3 N 1 0.26 R 1.73 0.3 N 1 0.25 R 1.73 0.3 N 1 0.4 R 1.73 3.0 R 1.73 3.0 R 1.73 6.7 N 1 1.67 N 1 5.0 R 1.73	f(d,k) f(d,k) Tol. Prob. Ci (± %) Dist. Div. 1gm 6.55 N 1 1.0 0.25 N 1 0.7 1.3 N 1 0.7 2.0 R 1.73 1.0 0.3 N 1 1.0 0.4 R 1.73 1.0 3.0 R 1.73 1.0 3.0 R 1.73 1.0 3.0 R 1.73 1.0 6.7 R 1.73 1.0 3.0 R 1.73 1.0 6.7 R 1.73 1.0 6.7 N 1 1.0 5.0 R 1.73	Image Image <t< td=""><td>Image: first stress stress</td><td>Image: Constraint of the section of the se</td></t<>	Image: first stress	Image: Constraint of the section of the se

FCC ID ZNFK400AM	PCTEST [•] Proud to be part of (® element	SAR EVALUATION REPORT	🕕 LG	Approved by: Quality Manager
Document S/N:	Test Dates:	DUT Type:		Page 77 of 80
1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	03/02/2020 – 03/17/2020 Portable Handset		Fage // 01 00
20 PCTEST				REV 21.4 M

© 2020 PCTEST

16 CONCLUSION

16.1 Measurement Conclusion

The SAR evaluation indicates that the EUT complies with the RF radiation exposure limits of the FCC and Innovation, Science, and Economic Development Canada, with respect to all parameters subject to this test. These measurements were taken to simulate the RF effects of RF exposure under worst-case conditions. Precise laboratory measures were taken to assure repeatability of the tests. The results and statements relate only to the item(s) tested.

Please note that the absorption and distribution of electromagnetic energy in the body are very complex phenomena that depend on the mass, shape, and size of the body, the orientation of the body with respect to the field vectors, and the electrical properties of both the body and the environment. Other variables that may play a substantial role in possible biological effects are those that characterize the environment (e.g. ambient temperature, air velocity, relative humidity, and body insulation) and those that characterize the individual (e.g. age, gender, activity level, debilitation, or disease). Because various factors may interact with one another to vary the specific biological outcome of an exposure to electromagnetic fields, any protection guide should consider maximal amplification of biological effects as a result of field-body interactions, environmental conditions, and physiological variables. [3]

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
	Document S/N:	Test Dates:	DUT Type:		Dama 70 of 00	
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset		Page 78 of 80	
© 2020 PCTEST						

17 REFERENCES

- Federal Communications Commission, ET Docket 93-62, Guidelines for Evaluating the Environmental Effects of [1] Radiofrequency Radiation, Aug. 1996.
- ANSI/IEEE C95.1-2005, American National Standard safety levels with respect to human exposure to radio frequency [2] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, 2006.
- ANSI/IEEE C95.1-1992, American National Standard safety levels with respect to human exposure to radio frequency [3] electromagnetic fields, 3kHz to 300GHz, New York: IEEE, Sept. 1992.
- ANSI/IEEE C95.3-2002, IEEE Recommended Practice for the Measurement of Potentially Hazardous Electromagnetic [4] Fields - RF and Microwave, New York: IEEE, December 2002.
- IEEE Standards Coordinating Committee 39 Standards Coordinating Committee 34 IEEE Std. 1528-2013, IEEE [5] Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques.
- NCRP, National Council on Radiation Protection and Measurements, Biological Effects and Exposure Criteria for [6] RadioFrequency Electromagnetic Fields, NCRP Report No. 86, 1986. Reprinted Feb. 1995.
- T. Schmid, O. Egger, N. Kuster, Automated E-field scanning system for dosimetric assessments, IEEE Transaction on [7] Microwave Theory and Techniques, vol. 44, Jan. 1996, pp. 105-113.
- K. Pokovic, T. Schmid, N. Kuster, Robust setup for precise calibration of E-field probes in tissue simulating liquids at [8] mobile communications frequencies, ICECOM97, Oct. 1997, pp. 1 -124.
- K. Pokovic, T. Schmid, and N. Kuster, E-field Probe with improved isotropy in brain simulating liquids, Proceedings of the [9] ELMAR, Zadar, Croatia, June 23-25, 1996, pp. 172-175.
- [10] Schmid & Partner Engineering AG, Application Note: Data Storage and Evaluation, June 1998, p2.
- [11] V. Hombach, K. Meier, M. Burkhardt, E. Kuhn, N. Kuster, The Dependence of EM Energy Absorption upon Human Modeling at 900 MHz, IEEE Transaction on Microwave Theory and Techniques, vol. 44 no. 10, Oct. 1996, pp. 1865-1873.
- [12] N. Kuster and Q. Balzano, Energy absorption mechanism by biological bodies in the near field of dipole antennas above 300MHz, IEEE Transaction on Vehicular Technology, vol. 41, no. 1, Feb. 1992, pp. 17-23.
- [13] G. Hartsgrove, A. Kraszewski, A. Surowiec, Simulated Biological Materials for Electromagnetic Radiation Absorption Studies, University of Ottawa, Bioelectromagnetics, Canada: 1987, pp. 29-36.
- [14] Q. Balzano, O. Garay, T. Manning Jr., Electromagnetic Energy Exposure of Simulated Users of Portable Cellular Telephones, IEEE Transactions on Vehicular Technology, vol. 44, no.3, Aug. 1995.
- [15] W. Gander, Computermathematick, Birkhaeuser, Basel, 1992.
- [16] W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery, Numerical Recipes in C, The Art of Scientific Computing, Second edition, Cambridge University Press, 1992.
- [17] N. Kuster, R. Kastle, T. Schmid, Dosimetric evaluation of mobile communications equipment with known precision, IEEE Transaction on Communications, vol. E80-B, no. 5, May 1997, pp. 645-652.

FCC ID ZNFK400AM	PCTEST Proud to be part of @ element	SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager	
Document S/N:	Test Dates:	DUT Type:		Page 79 of 80	
1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset			
2020 PCTEST				REV 21.4 M	

© 2020 PCTEST

© 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including price microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or asse opving and ng pl nbly of contents thereof, please contact INFO@PCTEST.COM

09/11/2019

- [18] CENELEC CLC/SC111B, European Prestandard (prENV 50166-2), Human Exposure to Electromagnetic Fields Highfrequency: 10kHz-300GHz, Jan. 1995.
- [19] Prof. Dr. Niels Kuster, ETH, Eidgenössische Technische Hoschschule Zürich, Dosimetric Evaluation of the Cellular Phone.
- [20] IEC 62209-1, Measurement procedure for the assessment of specific absorption rate of human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Part 1: Devices used next to the ear (Frequency range of 300 MHz to 6 GHz), July 2016.
- [21] Innovation, Science, Economic Development Canada RSS-102 Radio Frequency Exposure Compliance of Radiocommunication Apparatus (All Frequency Bands) Issue 5, March 2015.
- [22] Health Canada Safety Code 6 Limits of Human Exposure to Radio Frequency Electromagnetic Fields in the Frequency Range from 3 kHz - 300 GHz, 2015
- [23] FCC SAR Test Procedures for 2G-3G Devices, Mobile Hotspot and UMPC Devices KDB Publications 941225, D01-D07
- [24] SAR Measurement Guidance for IEEE 802.11 Transmitters, KDB Publication 248227 D01
- [25] FCC SAR Considerations for Handsets with Multiple Transmitters and Antennas, KDB Publications 648474 D03-D04
- [26] FCC SAR Evaluation Considerations for Laptop, Notebook, Netbook and Tablet Computers, FCC KDB Publication 616217 D04
- [27] FCC SAR Measurement and Reporting Requirements for 100MHz 6 GHz, KDB Publications 865664 D01-D02
- [28] FCC General RF Exposure Guidance and SAR Procedures for Dongles, KDB Publication 447498, D01-D02
- [29] Anexo à Resolução No. 533, de 10 de Septembro de 2009.
- [30] IEC 62209-2, Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices - Human models, instrumentation, and procedures - Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz), Mar. 2010.

	FCC ID ZNFK400AM		SAR EVALUATION REPORT	🕒 LG	Approved by: Quality Manager		
	Document S/N:	Test Dates:	DUT Type:		Page 80 of 80		
	1M2003020032-01-R1.ZNF	03/02/2020 - 03/17/2020	Portable Handset				
202	020 PCTEST						

©2

^{09/11/2019} © 2020 PCTEST All rights reserved. Unless otherwise specified, no part of this report may be reproduced or utilized in any part, form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from PCTEST. If you have any questions about this international copyright or have an enquiry about obtaining additional rights to this report or assembly of contents thereof, please contact INFO@PCTEST.COM.