

TEST REPORT

Applicant Name: M&M Electronics, S.A.

Address: Cocosolito, Colon Free Zone, Main Entrance Warehouse 10D

and 11D, Colon Panama

Report Number: 2501P28089E-RF-00D

FCC ID: 2BLU9-QA27R5

Test Standard (s) FCC PART 15.407

Sample Description

Product Type: ALL IN ONE PC

Model No.: QA27R5GW16256W

Multiple Model(s) No.: N/A

Trade Mark: COMPAQ
Date Received: 2025-01-23
Issue Date: 2025-03-11

Test Result: Pass▲

▲ In the configuration tested, the EUT complied with the standards above.

Prepared and Checked By:

Jim Cheng

Approved By:

Jim Cheng Nancy Wang

RF Engineer RF Supervisor

Note: The information marked * is provided by the applicant, the laboratory is not responsible for its authenticity and this information can affect the validity of the result in the test report. Customer model name, addresses, names, trademarks etc. are included.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

This report must not be used by the customer to claim product certification, approval, or endorsement by NVLAP or any agency of the U.S. Government.

This report may contain data that are not covered by the NVLAP accreditation and are marked with an asterisk "▼"

Bay Area Compliance Laboratories Corp. (Shenzhen)

5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

TR-EM-RF015 Page 1 of 156 Version 4.0

TABLE OF CONTENTS

DOCUMENT REVISION HISTORY	3
GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
Objective	
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
SUMMARY OF TEST RESULTS	10
TEST EQUIPMENT LIST	11
REQUIREMENTS AND TEST PROCEDURES	13
CONDUCTED EMISSIONS	13
Undesirable Emission	15
26 dB & 6dB Emission Bandwidth	
CONDUCTED TRANSMITTER OUTPUT POWER	
POWER SPECTRAL DENSITY	
DUTY CYCLE	23
ANTENNA REQUIREMENT	24
TEST DATA AND RESULTS	25
CONDUCTED EMISSIONS	25
Undesirable Emission	
RF CONDUCTED DATA	
EMISSION BANDWIDTH	
99% OCCUPIED BANDWIDTH	
POWER SPECTRAL DENSITY	
DUTY CYCLE	
RF EXPOSURE EVALUATION	153
EUT PHOTOGRAPHS	155
TEST SETUD DHOTOCD ADHS	156

DOCUMENT REVISION HISTORY

Revision Number	rision Number Report Number Description of Revision		Date of Revision
0	2501P28089E-RF-00D	Original Report	2025-03-11

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Frequency Range	5150-5250MHz; 5725-5850MHz
Mode	802.11a/n20/n40/ac20/ac40/ac80
Maximum Conducted Average Output Power 5150-5250MHz: 15.22dBm; 5725-5850MHz: 13.82dBm	
Modulation Technique	OFDM
Antenna Specification#	3.52dBi (provided by the applicant)
Voltage Range	DC 19V from Adapter
Sample serial number	2Y1M-1 for Conducted and Radiated Emissions Test 2Y1M-18 for RF Conducted Test (Assigned by BACL, Shenzhen)
Sample/EUT Status	Good condition
Adapter Information	Model: SOY-1900474 Input: AC100-240V, 50/60Hz, 1.8A MAX Output: DC19.0V, 4.74A, 96.06W

Report No.: 2501P28089E-RF-00D

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and E of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart E, section 15.203, 15.205, 15.207, 15.209 and 15.407 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

And KDB789033 D02 General U-NII Test Procedures New Rules v02r01.

All emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter		r	Uncertainty	
Occupied	Occupied Channel Bandwidth		109.2kHz(k=2, 95% level of confidence)	
RI	Frequen	cy	56.6Hz(k=2, 95% level of confidence)	
RF outpu	t power, c	conducted	0.86dB(k=2, 95% level of confidence)	
Unwanted 1	Emission	, conducted	1.60dB(k=2, 95% level of confidence)	
Power	Spectral I	Density	0.90dB(k=2, 95% level of confidence)	
AC Power Lines Cond	ucted	9kHz-150kHz	3.63dB(k=2, 95% level of confidence)	
Emissions		150kHz-30MHz	3.66dB(k=2, 95% level of confidence)	
		9kHz - 30MHz	3.60dB(k=2, 95% level of confidence)	
	30MHz~200MHz (Horizontal)		5.32dB(k=2, 95% level of confidence)	
	30MHz~200MHz (Vertical)		5.43dB(k=2, 95% level of confidence)	
Radiated Emissions	200MHz~1000MHz (Horizontal)		5.77dB(k=2, 95% level of confidence)	
Radiated Ellissions	200MHz~1000MHz (Vertical)		5.73dB(k=2, 95% level of confidence)	
		1GHz - 6GHz	5.34dB(k=2, 95% level of confidence)	
		6GHz - 18GHz	5.40dB(k=2, 95% level of confidence)	
	18GHz - 40GHz		5.64dB(k=2, 95% level of confidence)	
Temperature		re	±1°C	
Humidity			±1%	
Supply voltages		ges	±0.4%	

Report No.: 2501P28089E-RF-00D

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Test Facility

The Test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 5F(B-West), 6F, 7F, the 3rd Phase of Wan Li Industrial Building D, Shihua Rd, FuTian Free Trade Zone, Shenzhen, China.

The lab has been recognized as the FCC accredited lab under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 715558, the FCC Designation No.: CN5045.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode, which was provided by manufacturer.

Report No.: 2501P28089E-RF-00D

For 5150-5250MHz Band, 7 channels are provided to testing:

Channel	Frequency (MHz)	Channel	Frequency (MHz)
36	5180	44	5220
38	5190	46	5230
40	5200	48	5240
42	5210	/	/

For 802.11a/ac20 mode: channel 36, 40, 48 were tested;

For 802.11ac40 mode: channel 38, 46 were tested;

For 802.11ac80 mode, channel 42 was tested.

For 5725-5850MHz Band, 8 channels are provided to testing:

Channel	Channel Frequency (MHz)		Frequency (MHz)
149	5745	157	5785
151	5755	159	5795
153	5765	161	5805
155	5775	165	5825

For 802.11a/ac20 mode: channel 149, 157, 165 were tested;

For 802.11ac40 mode: channel 151, 159 were tested;

For 802.11ac80 mode, channel 155 was tested.

EUT Exercise Software

Let Exercise Software					
Exercise Software MPTool					
5150-5250 MHz Band	5150-5250 MHz Band				
Mode	Test Channels	Data rate	Power Level [#]		
	Low	6Mbps	53		
802.11a	Middle	6Mbps	53		
	High	6Mbps	53		
	Low	MCS0	53		
802.11ac-VHT20	Middle	MCS0	53		
	High	MCS0	53		
002.11 1/1/1740	Low	MCS0	47		
802.11ac-VHT40	High	MCS0	47		
802.11ac-VHT80	Middle	MCS0	45		

5725-5850 MHz Band				
Mode	Test Channels	Data rate	Power Level [#]	
	Low	6Mbps	53	
802.11a	Middle	6Mbps	53	
	High	6Mbps	53	
	Low	MCS0	53	
802.11ac-VHT20	Middle	MCS0	53	
	High	MCS0	53	
802.11ac-VHT40	Low	MCS0	53	
	High	MCS0	53	
802.11ac-VHT80	Middle	MCS0	50	

Report No.: 2501P28089E-RF-00D

Note:

Special Accessories

No special accessory.

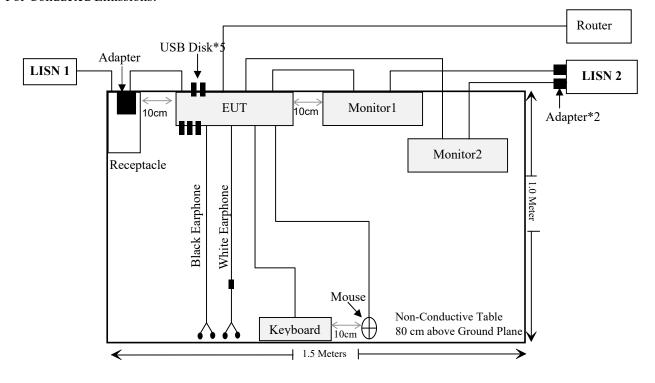
Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

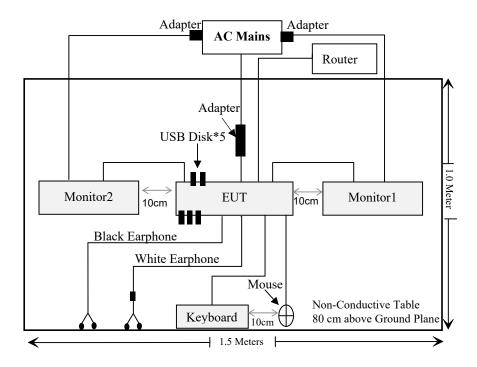
Manufacturer	Description	Model	Serial Number	
Redmi	Monitor1	RMMNT238NF	6971041358020	
Redmi	Monitor2	A22FAB-RA	DL0ZCS1	
Unknown	Adapter*2	AD-0241200200CN-1	Unknown	
Xiaomi	Router	Mi router 4A	Unknown	
Unknown	Black Earphone	Unknown	Unknown	
Unknown	White Earphone	Unknown	Unknown	
Unknown	USB Disk*5	Unknown	Unknown	

External I/O Cable

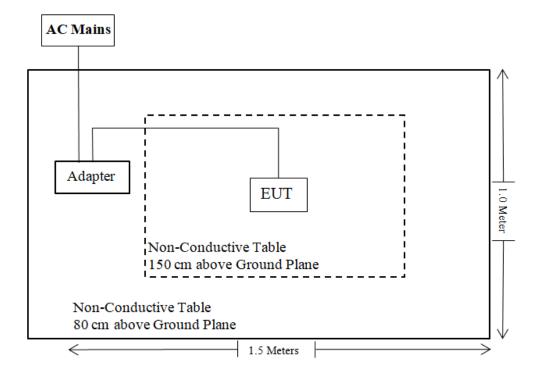

Cable Description	Length (m)	From Port	To
Shielded Un-detachable DC cable	1.5	EUT	Adapter
Un-shielded Detachable AC cable	1.5	Adapter	LISN1/AC Mains
Un-shielded Un-detachable Audio cable*2	1.2	EUT	Earphone
Un-shielded Un-detachable USB cable	1.5	EUT	Mouse
Un-shielded Un-detachable USB cable	1.5	EUT	Keyboard
Un-shielded Detachable HDMI cable	2.0	EUT	Monitor1
Un-shielded Detachable VGA cable	2.0	EUT	Monitor2
Un-Shielding Un-Detachable DC Cable*2	1.5	Adapter	Monitor
Un-shielded Detachable RJ45 cable	5.0	EUT	Router

^{1.} The worst-case data rates are determined to be as follows for each mode based upon inverstigation by measuring the average power and PSD across all data rates bandwidths, and modulations.

^{2.} The n20/n40 mode was reduced test as identical parameter with ac20/ac40 mode.


Block Diagram of Test Setup

For Conducted Emissions:



Report No.: 2501P28089E-RF-00D

For Radiated Emissions below 1GHz:

For Radiated Emissions above 1GHz:

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
FCC §15.203	Antenna Requirement	Compliant
FCC §15.207(a)	AC Line Conducted Emissions	Compliant
FCC §15.205, §15.209, §15.407(b)	Undesirable Emission& Restricted Bands	Compliant
FCC§15.407(a) (e)	Emission Bandwidth	Compliant
FCC§15.407 (a)	Maximum Conducted Output Power	Compliant
FCC§15.407 (a)	Power Spectral Density	Compliant
§15.407 (h)	Transmit Power Control (TPC)	Not Applicable
§15.407 (h)	Dynamic Frequency Selection (DFS)	Not Applicable
C63.10 §11.6	Duty Cycle	Compliant
FCC§1.1307 (b) (3) & §2.1091	MPE-Based Exemption	Compliant

Report No.: 2501P28089E-RF-00D

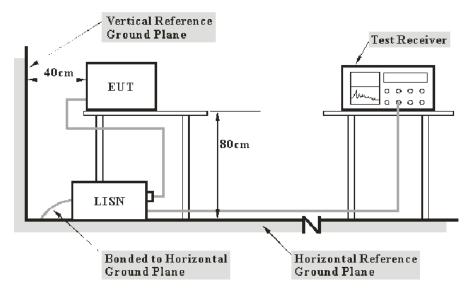
Not Applicable: The EUT supports 5150-5250 MHz and 5725-5850 MHz bands only.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
	Conducted Emission Test						
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2024/12/04	2025/12/03		
Rohde & Schwarz	Transient Limiter	ESH3Z2	DE25985	2024/05/21	2025/05/20		
Rohde & Schwarz	LISN	ENV216	101613	2024/12/04	2025/12/03		
Unknown	CE Cable	Unknown	UF A210B-1- 0720-504504	2024/05/21	2025/05/20		
Audix	EMI Test software	E3	191218(V9)	NCR	NCR		
		Radiated Emis	sion Test				
Rohde & Schwarz	EMI Test Receiver	ESR3	102455	2024/12/04	2025/12/03		
Sonoma instrument	Pre-amplifier	310N	186238	2024/05/21	2025/05/20		
Sunol Sciences	Broadband Antenna	JB1	A040904-1	2023/07/20	2026/07/19		
Unknown	Cable	Chamber Cable	F-03-EM236	2024/06/18	2025/06/17		
Unknown	Cable	XH500C	J-10M-A	2024/06/18	2025/06/17		
BACL	Active Loop Antenna	1313-1A	4031911	2024/05/14	2027/05/13		
Unknown	Cable	2Y194	0735	2024/12/04	2025/12/03		
Unknown	Cable	PNG214	1354	2024/12/04	2025/12/03		
Audix	EMI Test software	E3	19821b(V9)	NCR	NCR		
Rohde&Schwarz	Spectrum Analyzer	FSV40	101605	2024/03/27	2025/03/26		
A.H.System	Preamplifier	PAM-0118P	489	2024/11/15	2025/11/14		
Schwarzbeck	Horn Antenna	BBHA9120D(12 01)	1143	2023/07/26	2026/07/25		
Unknown	RF Cable	KMSE	0735	2024/12/06	2025/12/05		
Unknown	RF Cable	UFA147	219661	2024/12/06	2025/12/05		
Unknown	RF Cable	XH750A-N	J-10M	2024/12/06	2025/12/05		
JD	Filter Switch Unit	DT7220FSU	DS79906	2024/09/09	2025/09/08		
JD	Multiplex Switch Test Control Set	DT7220SCU	DS79903	2024/09/09	2025/09/08		
A.H.System	Pre-amplifier	PAM-1840VH	190	2024/06/18	2025/06/17		
Electro-Mechanics Co	Horn Antenna	3116	9510-2270	2023/09/18	2026/09/17		
UTIFLEX	RF Cable	NO. 13	232308-001	2024/12/18	2025/12/17		
Audix	EMI Test software	E3	191218(V9)	NCR	NCR		

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date				
RF Conducted Test									
Rohde&Schwarz	Spectrum Analyzer	FSV40-N	102259	2024/12/04	2025/12/03				
ANRITSU	Microwave peak power sensor	MA24418A	12622	2024/05/21	2025/05/20				
Unknown	10dB Attenuator	Unknown	F-03-EM014	2024/06/27	2025/06/26				

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).


REQUIREMENTS AND TEST PROCEDURES

Conducted Emissions

Applicable Standard

FCC §15.207

EUT Setup

Report No.: 2501P28089E-RF-00D

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC Part 15.207 limits.

The spacing between the peripherals was 10 cm.

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Test Procedure

During the conducted emission test, the adapter was connected to the LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All data was recorded in the Quasi-peak and Average detection mode.

Factor & Over Limit Calculation

The factor is calculated by adding LISN VDF (Voltage Division Factor) and Cable Loss. The basic equation is as follows:

Report No.: 2501P28089E-RF-00D

```
Factor = LISN VDF + Cable Loss
```

The "Over limit" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over limit of -7 dB means the emission is 7 dB below the limit. The equation for calculation is as follows:

```
Over Limit = Level – Limit
Level = Read Level + Factor
```

Note: The term "cable loss" refers to the combination of a cable and a 10dB transient limiter (attenuator).

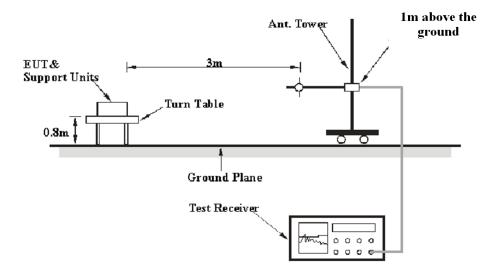
TR-EM-RF015 Page 14 of 156 Version 4.0

Undesirable Emission

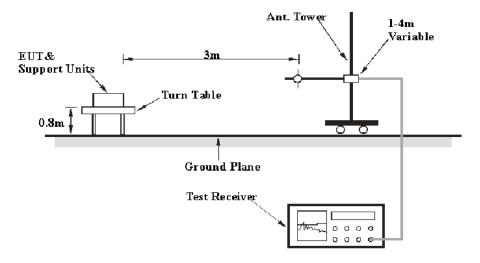
Applicable Standard

FCC §15.407 (b); §15.209; §15.205;

(b) Undesirable emission limits. Except as shown in paragraph (b)(7) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

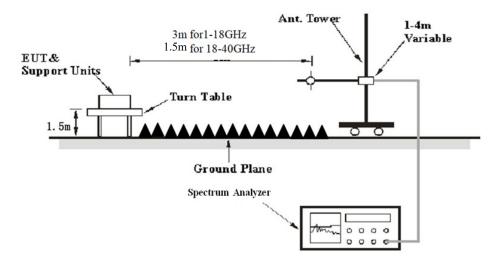

Report No.: 2501P28089E-RF-00D

- (1) For transmitters operating in the 5.15-5.25 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (2) For transmitters operating in the 5.25-5.35 GHz band: All emissions outside of the 5.15-5.35 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (3) For transmitters operating in the 5.47-5.725 GHz band: All emissions outside of the 5.47-5.725 GHz band shall not exceed an e.i.r.p. of -27 dBm/MHz.
- (4) For transmitters operating in the 5.725-5.85 GHz band:
- (i) All emissions shall be limited to a level of −27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.


Unwanted emissions below 1 GHz must comply with the general field strength limits set forth in §15.209.

EUT Setup

9 kHz-30MHz:



30MHz-1GHz:

Report No.: 2501P28089E-RF-00D

Above 1 GHz:

The setup of EUT is according with per ANSI C63.10-2013 measurement procedure. The specification used was with the FCC 15.209 and FCC 15.407 limits.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

EMI Test Receiver & Spectrum Analyzer Setup

The system was investigated from 9 kHz to 40 GHz.

During the radiated emission test, the EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Report No.: 2501P28089E-RF-00D

9 kHz-1GHz:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
01:11- 1501:11-	/	/	200 Hz	QP
9 kHz – 150 kHz	300 Hz	1 kHz	/	PK
150111 20 101	/	/	9 kHz	QP
150 kHz – 30 MHz	10 kHz	30 kHz	/	PK
30 MHz – 1000 MHz	/	/	120 kHz	QP
30 MIUS — 1000 MIUS	100 kHz	300 kHz	/	PK

1-40GHz:

Pre-scan

Measurement	Duty cycle	RBW	Video B/W
PK	Any	1MHz	3 MHz
A 7.7	>98%	1MHz	5 kHz
AV	<98%	1MHz	≥1/Ton

Final measurement for emission identified during pre-scan

Measurement	Duty cycle RBW		Video B/W
PK	Any	1MHz	3 MHz
AV	>98%	1MHz	10 Hz
AV	<98%	1MHz	≥1/Ton

Note: Ton is minimum transmission duration

If the maximized peak measured value complies with under the QP/Average limit more than 6dB, then it is unnecessary to perform an QP/Average measurement.

Test Procedure

Radiated Spurious Emission

During the radiated emission test, the adapter was connected to the AC floor outlet.

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all the installation combinations.

All final data was recorded in Quasi-peak detection mode except for the frequency bands 9–90 kHz, 110–490 kHz and above 1000 MHz, average detection modes for frequency bands 9–90 kHz and 110–490 kHz, peak and average detection modes for frequencies above 1 GHz.

For 9 kHz-30MHz, the report shall list the six emissions with the smallest margin relative to the limit, for each of the three antenna orientations (parallel, perpendicular, and ground-parallel) unless the margin is greater than 20 dB.

Report No.: 2501P28089E-RF-00D

According to ANSI C63.10-2013,9.4: For field strength measurements made at other than the distance at which the applicable limit is specified, extrapolate the measured field strength to the field strength at the distance specified by the limit using an inverse distance correction factor (20 dB/decade of distance). In some cases, a different distance correction factor may be required;

$$E_{\text{SpecLimit}} = E_{\text{Meas}} + 20 \log \left(\frac{d_{\text{Meas}}}{d_{\text{SpecLimit}}} \right)$$

where

 $E_{
m SpecLimit}$ is the field strength of the emission at the distance specified by the limit, in

dBμV/m

 E_{Meas} is the field strength of the emission at the measurement distance, in dB μ V/m

 d_{Meas} is the measurement distance, in m $d_{\text{SpecLimit}}$ is the distance specified by the limit, in m

So the extrapolation factor of 1m is $20*\log(1/3) = -6.0$ dB, for 18-40GHz range, the limit of 1.5m distance was added by 6.0dB from limit of 3m to compared with the result measurement at 1.5m distance.

Factor & Over Limit/Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "Over Limit/Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, an Over Limit/margin of -7dB means the emission is 7dB below the limit. The equation for calculation is as follows:

Over Limit = Level – Limit; Margin = Limit–Corrected Amplitude Level / Corrected Amplitude = Read Level + Factor

26 dB & 6dB Emission Bandwidth

Applicable Standard

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band are made over a reference bandwidth of 500 kHz or the 26 dB emission bandwidth of the device, whichever is less. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

Report No.: 2501P28089E-RF-00D

Within the 5.725-5.85 GHz band, the minimum 6 dB bandwidth of U-NII devices shall be at least 500 kHz.

Test Procedure

According to KDB789033 D02 section II.C and section II.D

1. Emission Bandwidth (EBW)

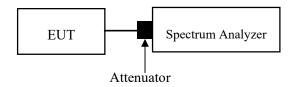
- a) Set RBW = approximately 1% of the emission bandwidth.
- b) Set the VBW > RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Measure the maximum width of the emission that is 26 dB down from the maximum of the emission. Compare this with the RBW setting of the analyzer. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

2. Minimum Emission Bandwidth for the band 5.725-5.85 GHz

Section 15.407(e) specifies the minimum 6 dB emission bandwidth of at least 500 KHz for the band 5.725-5.85 GHz. The following procedure shall be used for measuring this bandwidth:

- a) Set RBW = 100 kHz.
- b) Set the video bandwidth (VBW) \geq 3 × RBW.
- c) Detector = Peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.
- f) Allow the trace to stabilize.
- g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

3. 99% Occupied Bandwidth:


According to ANSI C63.10-2013 Section 12.4.2&6.9.3

The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

- a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.
- b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

- d) Step a) through step c) might require iteration to adjust within the specified range.
- e) Video averaging is not permitted. Where practical, a sample detection and single sweep mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.
- f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.
- g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies.
- h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).

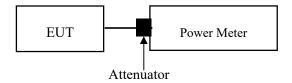
Conducted Transmitter Output Power

Applicable Standard

For an indoor access point operating in the band 5.15-5.25 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 17 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: 2501P28089E-RF-00D

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.


For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method PM-G should be applied

- a. Place the EUT on a bench and set it in transmitting mode.
- b. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.

Note: A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable and/or power splitter loss

Power Spectral Density

For client devices in the 5.15-5.25 GHz band, the maximum conducted output power over the frequency band of operation shall not exceed 250 mW provided the maximum antenna gain does not exceed 6 dBi. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

Report No.: 2501P28089E-RF-00D

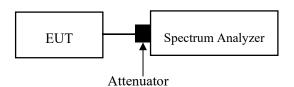
For the 5.25-5.35 GHz and 5.47-5.725 GHz bands, the maximum conducted output power over the frequency bands of operation shall not exceed the lesser of 250 mW or 11 dBm + 10 log B, where B is the 26 dB emission bandwidth in megahertz. In addition, the maximum power spectral density shall not exceed 11 dBm in any 1 megahertz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

Test Procedure

According to KDB 789033 D02 General UNII Test Procedures New Rules v02r01

Duty cycle ≥98%


KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-1 should be applied.

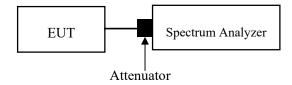
Duty cycle <98%, duty cycle variations are less than $\pm2\%$

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-2 should be applied.

Duty cycle <98%, duty cycle variations exceed $\pm2\%$

KDB 789033 D02 General UNII Test Procedures New Rules v02r01 Method SA-3 should be applied.

Note: A short RF cable with low cable loss connected to the EUT antenna port, which was provided by client or lab, the cable loss was add with offset into test equipment, the total offset consists of attenuator and/or RF cable and/or power splitter loss


Duty Cycle

Test Procedure

According to ANSI C63.10-2013 Section 12.2

The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:

- 1) Set the center frequency of the instrument to the center frequency of the transmission.
- 2) Set RBW \geq OBW if possible; otherwise, set RBW to the largest available value.
- 3) Set VBW \geq RBW. Set detector = peak or average.
- 4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration T exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if T $\le 16.7 \,\mu s$.)

ANTENNA REQUIREMENT

Applicable Standard

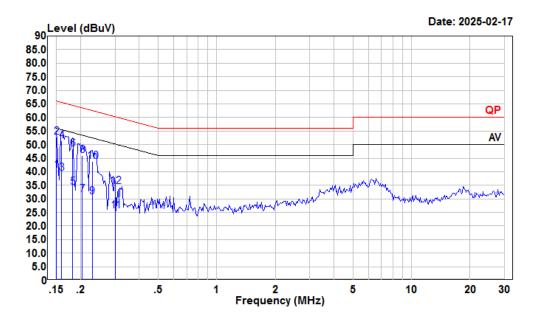
According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

Report No.: 2501P28089E-RF-00D

Further, this requirement does not apply to intentional radiators that must be professionally installed, such as perimeter protection systems and some field disturbance sensors, or to other intentional radiators which, in accordance with § 15.31(d), must be measured at the installation site. However, the installer shall be responsible for ensuring that the proper antenna is employed so that the limits in this part are not exceeded.

Antenna Connector Construction

The EUT has an internal antenna arrangement, which was permanently attached, the antenna gain[#] is 3.52dBi, fulfill the requirement of this section. Please refer to the EUT photos.

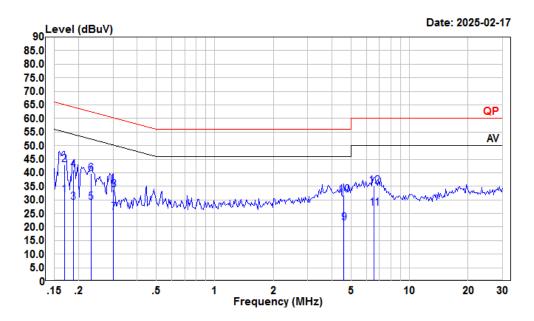

Result: Compliant

TR-EM-RF015 Page 24 of 156 Version 4.0

TEST DATA AND RESULTS

Conducted Emissions

Temperature (°C)	24.6	Relative Humidity (%)	48					
ATM Pressure (kPa)	101.3	Test engineer	Macy Shi					
Test date	2025/02/17	2025/02/17						
EUT operation mode	Transmitting (Maximum	Fransmitting (Maximum output power mode, 802.11ac-VHT20 5200MHz)						


Report No.: 2501P28089E-RF-00D

Condition: Line

Project : 2501P28089E-RF

tester : Macy.shi Note:Transmitting Setting : RBW:9kHz VBW:Auto SWT:Auto

	Freq	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.150	19.90	40.43	10.40	10.13	56.00	-15.57	Average
2	0.150	32.20	52.73	10.40	10.13	66.00	-13.27	QP
3	0.160	18.86	39.45	10.47	10.12	55.47	-16.02	Average
4	0.160	30.78	51.37	10.47	10.12	65.47	-14.10	QP
5	0.182	13.50	34.20	10.60	10.10	54.42	-20.22	Average
6	0.182	27.70	48.40	10.60	10.10	64.42	-16.02	QP
7	0.204	10.86	31.65	10.70	10.09	53.45	-21.80	Average
8	0.204	25.11	45.90	10.70	10.09	63.45	-17.55	QP
9	0.229	10.00	30.75	10.67	10.08	52.48	-21.73	Average
10	0.229	23.10	43.85	10.67	10.08	62.48	-18.63	QP
11	0.302	4.98	25.70	10.61	10.11	50.19	-24.49	Average
12	0.302	13.84	34.56	10.61	10.11	60.19	-25.63	OP

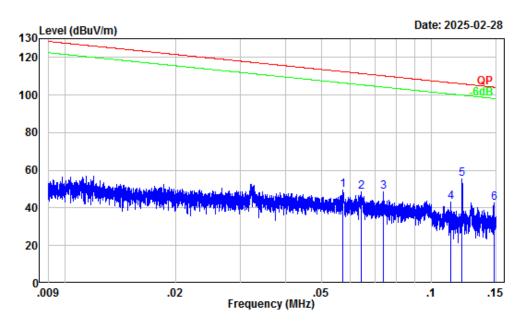
Report No.: 2501P28089E-RF-00D

Condition: Neutral

Project : 2501P28089E-RF

tester : Macy.shi Note:Transmitting Setting : RBW:9kHz VBW:Auto SWT:Auto

	Freq	Read Level	Level	LISN Factor	Cable Loss	Limit Line	Over Limit	Remark
	MHz	dBuV	dBuV	dB	dB	dBuV	dB	
1	0.169	11.16	31.82	10.56	10.10	55.03	-23.21	Average
2	0.169	22.27	42.93	10.56	10.10	65.03	-22.10	QP
3	0.187	8.20	29.00	10.71	10.09	54.15	-25.15	Average
4	0.187	20.20	41.00	10.71	10.09	64.15	-23.15	QP
5	0.232	8.33	29.16	10.75	10.08	52.39	-23.23	Average
6	0.232	18.97	39.80	10.75	10.08	62.39	-22.59	QP
7	0.302	4.53	25.31	10.67	10.11	50.19	-24.88	Average
8	0.302	13.00	33.78	10.67	10.11	60.19	-26.41	QP
9	4.598	0.50	21.59	10.90	10.19	46.00	-24.41	Average
10	4.598	10.85	31.94	10.90	10.19	56.00	-24.06	QP
11	6.592	6.01	26.84	10.64	10.19	50.00	-23.16	Average
12	6.592	14.20	35.03	10.64	10.19	60.00	-24.97	OP


Undesirable Emission

Temperature (°C)	24.1-25.5	Relative Humidity (%)	39-53			
ATM Pressure (kPa):	101.1-101.5		Alex Yan & Zenos Qiao			
Test date:	2025/02/16-2025/02/28					
EUT operation mode:	Below 1GHz: Transmitting(Maximum output power mode, 802.11ac20 5200MHz) Above 1GHz: Transmitting					
Note:	recorded.	f peak was less than the li	Hz, only the worst case (parallel) was imit of QP/Average more than 6dB,			

Below 1GHz:

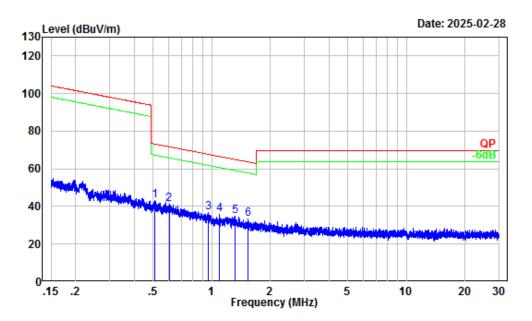
9kHz-150kHz

Report No.: 2501P28089E-RF-00D

Site : Chamber A

Condition : 3m

Project Number : 2501P28089E-RF


Test Mode : 5G WIFI Transmitting

Detector: Peak RBW/VBW: 0.3/1kHz Tester : Alex Yan

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.06	25.68	23.89	49.57	112.45	-62.88	Peak
2	0.06	24.96	23.45	48.41	111.43	-63.02	Peak
3		24.00	24.50	48.50	110.22	-61.72	Peak
4	0.11	21.25	21.93	43.18	106.57	-63.39	Peak
5	0.12	20.76	34.82	55.58	105.94	-50.36	Peak
6	0.15	19.19	23.57	42.76	104.22	-61.46	Peak

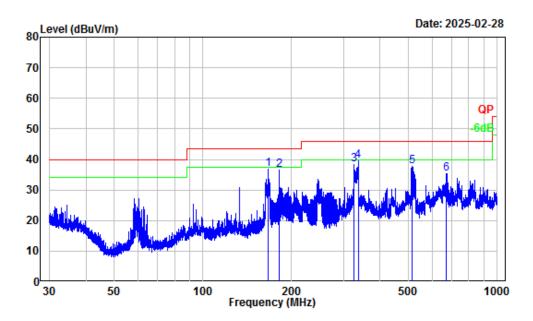
150kHz-30MHz

Report No.: 2501P28089E-RF-00D

Site : Chamber A

Condition : 3m

Project Number : 2501P28089E-RF


Test Mode : 5G WIFI Transmitting

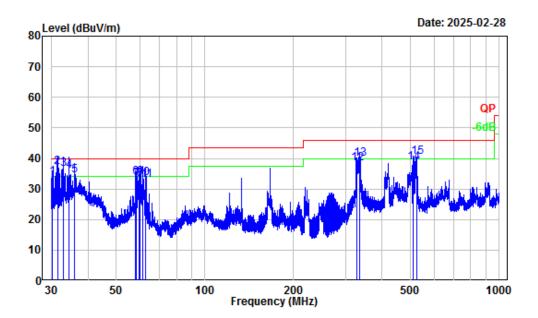
Detector: Peak RBW/VBW: 10/30kHz Tester : Alex Yan

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
-							
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	0.51	6.25	36.83	43.08	73.40	-30.32	Peak
2	0.61	5.10	36.00	41.10	71.93	-30.83	Peak
3	0.97	1.46	35.44	36.90	67.79	-30.89	Peak
4	1.09	0.94	34.67	35.61	66.68	-31.07	Peak
5	1.32	0.29	34.63	34.92	64.98	-30.06	Peak
6	1.54	-0.32	33.82	33.50	63.63	-30.13	Peak

30MHz-1GHz_Horizontal

Report No.: 2501P28089E-RF-00D

Site : Chamber A
Condition : 3m Horizontal
Project Number : 2501P28089E-RF


Test Mode : 5G WIFI Transmitting

Detector: Peak RBW/VBW: 100/300kHz Tester : Alex Yan

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
-	MHz	dB/m	dBuV	dBuV/m	dBuV/m	——dB	
1	166.14	-12.92	49.62	36.70	43.50	-6.80	Peak
2	181.52	-13.77	50.27	36.50	43.50	-7.00	Peak
3	326.45	-10.68	48.92	38.24	46.00	-7.76	Peak
4	336.62	-10.49	50.07	39.58	46.00	-6.42	Peak
5	514.99	-5.88	43.63	37.75	46.00	-8.25	Peak
6	673.14	-3.83	39.24	35.41	46.00	-10.59	Peak

30MHz-1GHz_Vertical

Report No.: 2501P28089E-RF-00D

Site : Chamber A
Condition : 3m Vertical
Project Number : 2501P28089E-RF

Test Mode : 5G WIFI Transmitting

Detector: Peak RBW/VBW: 100/300kHz Tester : Alex Yan

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	30.36	-6.14	40.04	33.90	40.00	-6.10	QP
2	31.51	-6.79	43.81	37.02	40.00	-2.98	QP
3	33.01	-7.59	44.21	36.62	40.00	-3.38	QP
4	34.52	-8.60	44.50	35.90	40.00	-4.10	QP
5	36.02	-9.49	43.89	34.40	40.00	-5.60	QP
6	58.15	-18.22	52.12	33.90	40.00	-6.10	QP
7	58.51	-18.22	51.52	33.30	40.00	-6.70	QP
8	59.70	-18.15	51.22	33.07	40.00	-6.93	QP
9	60.25	-18.12	52.00	33.88	40.00	-6.12	QP
10	61.53	-18.11	51.60	33.49	40.00	-6.51	QP
11	63.01	-18.11	50.91	32.80	40.00	-7.20	QP
12	328.89	-10.66	48.87	38.21	46.00	-7.79	QP
13	335.89	-10.51	50.31	39.80	46.00	-6.20	QP
14	510.71	-5.78	44.49	38.71	46.00	-7.29	QP
15	525.71	-5.80	46.30	40.50	46.00	-5.50	QP

Above 1GHz: 5150-5250 MHz

Frequency	Reading		Polar	Factor	Corrected	Limit	Margin
(MHz)	(dBµV)	PK/Ave	(H/V)	(dB/m)	Amplitude (dBµV/m)	(dBµV/m)	(dB)
			802	2.11a			
			Low C	Channel			
10360.00	56.28	PK	Н	2.53	58.81	68.2	-9.39
10360.00	56.83	PK	V	2.53	59.36	68.2	-8.84
			Middle	Channel			
10400.00	55.12	PK	Н	2.55	57.67	68.2	-10.53
10400.00	55.67	PK	V	2.55	58.22	68.2	-9.98
			High (Channel			
10480.00	53.99	PK	Н	2.25	56.24	68.2	-11.96
10480.00	54.54	PK	V	2.25	56.79	68.2	-11.41
			802.1	1ac20			
	T		Low C	Channel			
10360.00	55.94	PK	Н	2.53	58.47	68.2	-9.73
10360.00	56.45	PK	V	2.53	58.98	68.2	-9.22
	T		Middle	Channel			
10400.00	55.26	PK	Н	2.55	57.81	68.2	-10.39
10400.00	55.78	PK	V	2.55	58.33	68.2	-9.87
			High (Channel			
10480.00	54.48	PK	Н	2.25	56.73	68.2	-11.47
10480.00	55.01	PK	V	2.25	57.26	68.2	-10.94
				1ac40			
	ī		Low C	Channel	T		
10380.00	53.14	PK	Н	2.54	55.68	68.2	-12.52
10380.00	53.66	PK	V	2.54	56.2	68.2	-12.00
	ī		High (Channel	T		
10460.00	52.57	PK	Н	2.32	54.89	68.2	-13.31
10460.00	53.12	PK	V	2.32	55.44	68.2	-12.76
			802.1	1ac80			
	T	<u> </u>		Channel		1	
10420.00	52.05	PK	Н	2.48	54.53	68.2	-13.67
10420.00	52.61	PK	V	2.48	55.09	68.2	-13.11

5725-5850MHz

Frequency (MHz)	Reading (dBµV)	PK/Ave	Polar (H/V)	Factor (dB/m)	Corrected Amplitude	Limit (dBµV/m)	Margin (dB)				
(MITIZ)	(иБµ V)		(n/v)	(ub/III)	(dBµV/m)	(ибµ v/ш)	(ub)				
802.11a											
	Low Channel										
11490.00	55.27	PK	Н	3.54	58.81	74	-15.19				
11490.00	43.15	AV	Н	3.54	46.69	54	-7.31				
11490.00	56.69	PK	V	3.54	60.23	74	-13.77				
11490.00	43.98	AV	V	3.54	47.52	54	-6.48				
			Middle	Channel							
11570.00	54.36	PK	Н	3.3	57.66	74	-16.34				
11570.00	42.18	AV	Н	3.3	45.48	54	-8.52				
11570.00	55.77	PK	V	3.3	59.07	74	-14.93				
11570.00	43.01	AV	V	3.3	46.31	54	-7.69				
	High Channel										
11650.00	53.75	PK	Н	3.42	57.17	74	-16.83				
11650.00	41.02	AV	Н	3.42	44.44	54	-9.56				
11650.00	55.18	PK	V	3.42	58.6	74	-15.40				
11650.00	41.84	AV	V	3.42	45.26	54	-8.74				
	•		802.1	1ac20	•						
			Low C	Channel							
11490.00	55.52	PK	Н	3.54	59.06	74	-14.94				
11490.00	42.83	AV	Н	3.54	46.37	54	-7.63				
11490.00	56.95	PK	V	3.54	60.49	74	-13.51				
11490.00	43.69	AV	V	3.54	47.23	54	-6.77				
	Middle Channel										
11570.00	54.65	PK	Н	3.3	57.95	74	-16.05				
11570.00	41.89	AV	Н	3.3	45.19	54	-8.81				
11570.00	56.07	PK	V	3.3	59.37	74	-14.63				
11570.00	42.7	AV	V	3.3	46	54	-8.00				
High Channel											
11650.00	53.84	PK	Н	3.42	57.26	74	-16.74				
11650.00	40.91	AV	Н	3.42	44.33	54	-9.67				
11650.00	55.39	PK	V	3.42	58.81	74	-15.19				
11650.00	41.72	AV	V	3.42	45.14	54	-8.86				

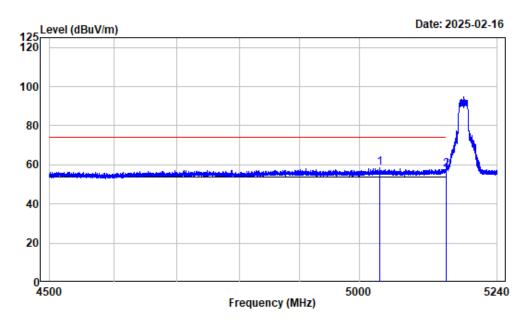
Frequency (MHz)	Reading (dBµV)	PK/Ave	Polar (H/V)	Factor (dB/m)	Corrected Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)			
	802.11ac40									
			Low C	hannel						
11510.00	54.57	PK	Н	3.53	58.1	74	-15.90			
11510.00	42.32	AV	Н	3.53	45.85	54	-8.15			
11510.00	55.89	PK	V	3.53	59.42	74	-14.58			
11510.00	43.16	AV	V	3.53	46.69	54	-7.31			
High Channel										
11590.00	53.17	PK	Н	3.21	56.38	74	-17.62			
11590.00	40.63	AV	Н	3.21	43.84	54	-10.16			
11590.00	54.58	PK	V	3.21	57.79	74	-16.21			
11590.00	41.45	AV	V	3.21	44.66	54	-9.34			
802.11ac80										
Middle Channel										
11550.00	51.67	PK	Н	3.37	55.04	74	-18.96			
11550.00	40.45	AV	Н	3.37	43.82	54	-10.18			
11550.00	52.96	PK	V	3.37	56.33	74	-17.67			
11550.00	41.29	AV	V	3.37	44.66	54	-9.34			

Report No.: 2501P28089E-RF-00D

Note:

 $Factor = Antenna \ factor \ (RX) + Cable \ Loss - Amplifier \ Factor$

Corrected Amplitude = Factor + Reading


Margin = Corrected. Amplitude - Limit

The other spurious emission which is in the noise floor level was not recorded.

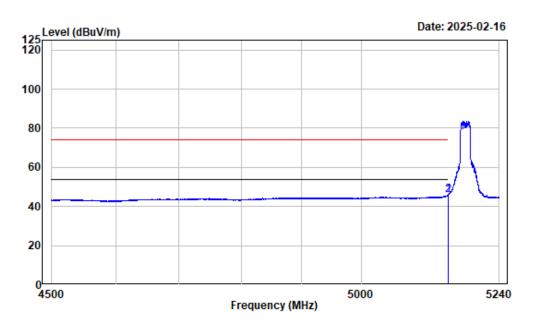
Test plots:

Left Band edge_Horizontal_Peak_802.11a_5180MHz

Report No.: 2501P28089E-RF-00D

Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

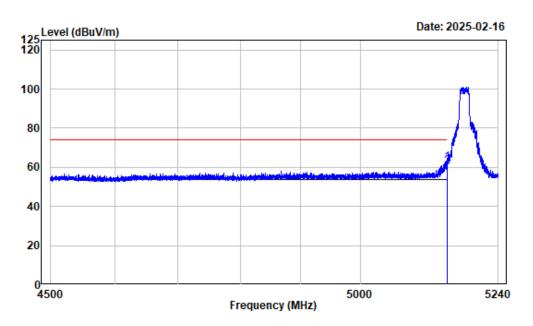

Note : 5GWiFi-Band1-A-5180

Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dBuV/m dB

1 5035.549 -7.31 65.83 58.52 74.00 -15.48 Peak
2 5150.000 -7.46 65.04 57.58 74.00 -16.42 Peak

Left Band edge_Horizontal_Average_802.11a_5180MHz

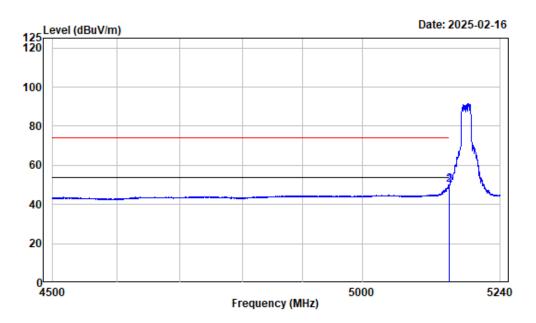


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	——dB		_
1	5149.801	-7.46	53.38	45.92	54.00	-8.08	Average	
2	5150.000	-7.46	53.29	45.83	54.00	-8.17	Average	

Left Band edge_Vertical_Peak_802.11a_5180MHz

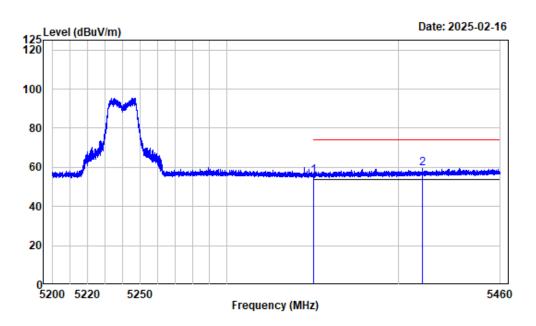

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	5149.750	-7.46	69.69	62.23	74.00	-11.77	Peak	
2	5150.000	-7.46	67.85	60.39	74.00	-13.61	Peak	

Left Band edge_Vertical_Average_802.11a_5180MHz

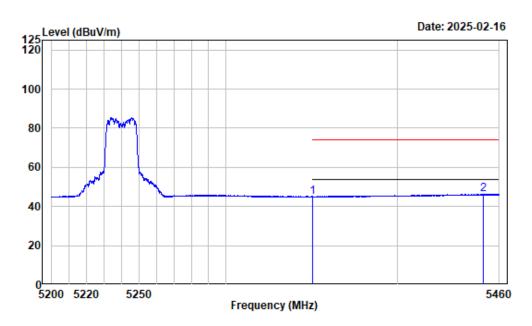

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5149.986	-7.46	57.59	50.13	54.00	-3.87	Average
2	5150.000	-7.46	57.47	50.01	54.00	-3.99	Average

Right Band edge_Horizontal_Peak_802.11a_5240MHz

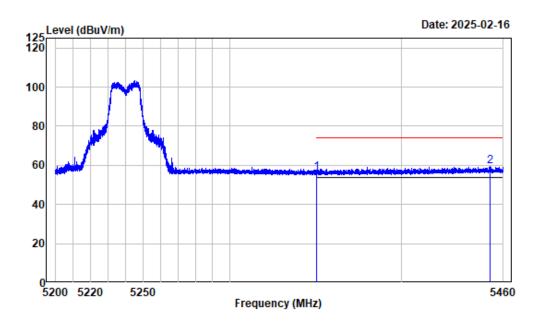


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5350.000	-6.74	62.44	55.70	74.00	-18.30	Peak
2	5413.714	-6.51	65.84	59.33	74.00	-14.67	Peak

Right Band edge_Horizontal_Average_802.11a_5240MHz

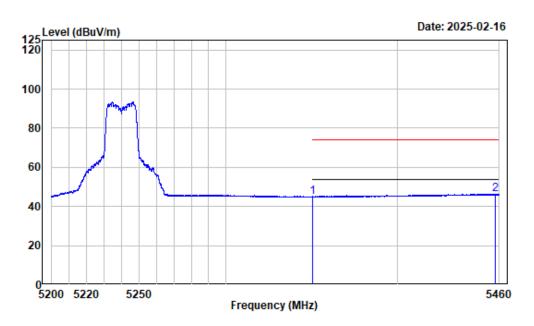


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	——dB		-
1	5350.000	-6.74	51.59	44.85	54.00	-9.15	Average	
2	5450.606	-6.32	52.62	46.30	54.00	-7.70	Average	

Right Band edge_Vertical_Peak_802.11a_5240MHz


Condition : Vertical Project No. : 2501P28089E-RF

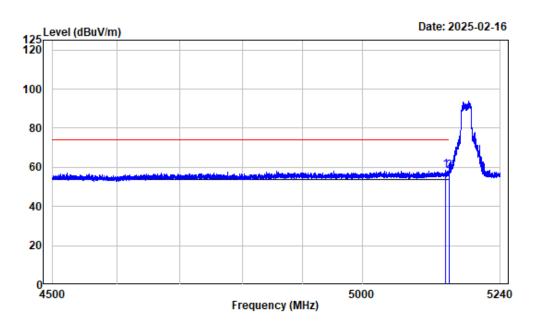
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5350.000	-6.74	62.77	56.03	74.00	-17.97	Peak
2	5452.427	-6.32	65.67	59.35	74.00	-14.65	Peak

Right Band edge_Vertical_Average_802.11a_5240MHz

Condition : Vertical

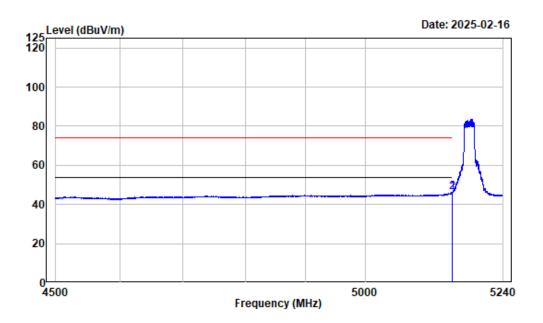

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	——dB		_
1	5350.000	-6.74	51.50	44.76	54.00	-9.24	Average	
2	5457.822	-6.29	52.60	46.31	54.00	-7.69	Average	

Left Band edge_Horizontal_Peak_802.11ac-VHT20_5180MHz

Report No.: 2501P28089E-RF-00D

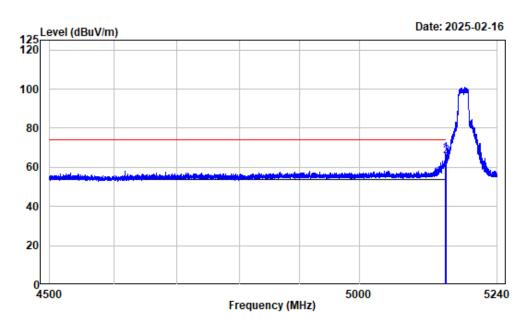


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5142.863	-7.46	66.10	58.64	74.00	-15.36	Peak
2	5150.000	-7.46	65.34	57.88	74.00	-16.12	Peak

Left Band edge_Horizontal_Average_802.11ac-VHT20_5180MHz

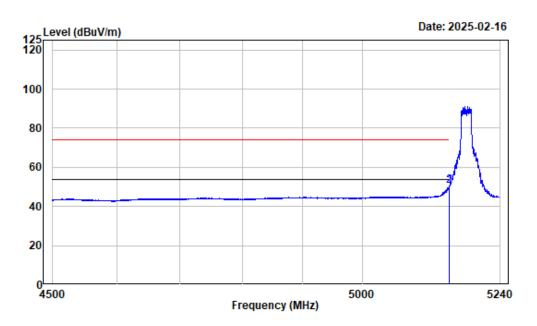


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		-
1	5149.616	-7.46	53.86	46.40	54.00	-7.60	Average	
2	5150.000	-7.46	53.49	46.03	54.00	-7.97	Average	

Left Band edge_Vertical_Peak_802.11ac-VHT20_5180MHz

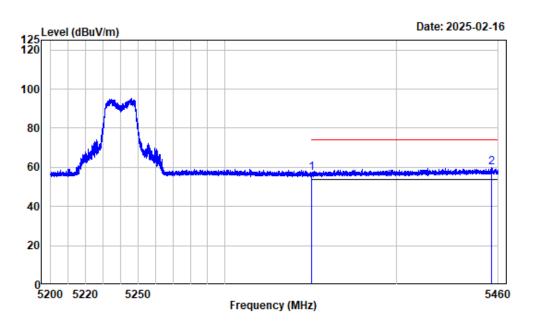

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5148.321	-7.46	74.33	66.87	74.00	-7.13	Peak
2	5150.000	-7.46	73.11	65.65	74.00	-8.35	Peak

Left Band edge_Vertical_Average_802.11ac-VHT20_5180MHz

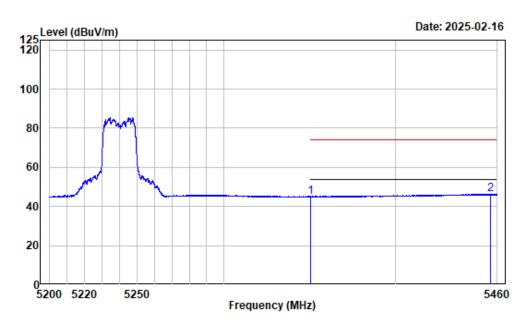

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	5149.825	-7.46	58.08	50.62	54.00	-3.38	Average	
2	5150.000	-7.46	57.96	50.50	54.00	-3.50	Average	

Right Band edge_Horizontal_Peak_802.11ac-VHT20_5240MHz

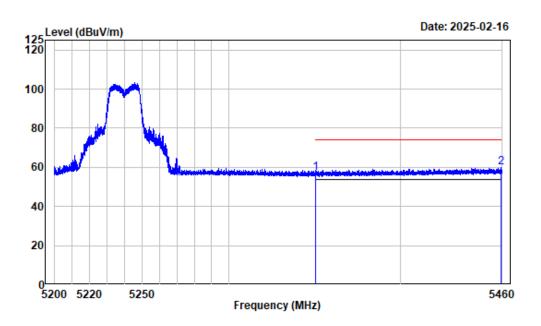


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5350.000	-6.74	63.73	56.99	74.00	-17.01	Peak
2	5456.197	-6.31	66.03	59.72	74.00	-14.28	Peak

Right Band edge_Horizontal_Average_802.11ac-VHT20_5240MHz

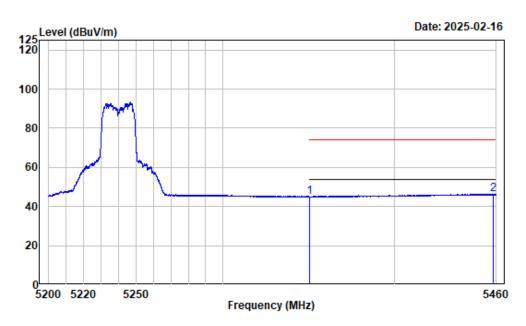


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	5350.000	-6.74	51.66	44.92	54.00	-9.08	Average	
2	5455.807	-6.31	52.63	46.32	54.00	-7.68	Average	

Right Band edge_Vertical_Peak_802.11ac-VHT20_5240MHz

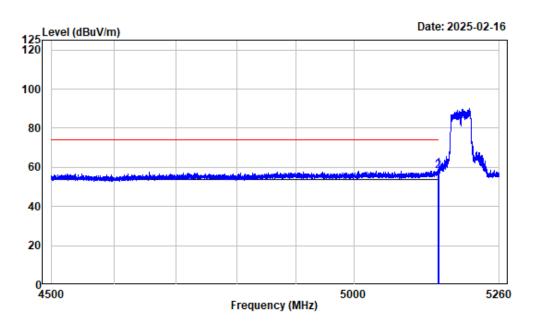

Condition : Vertical Project No. : 2501P28089

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	5350.000	-6.74	63.67	56.93	74.00	-17.07	Peak	
2	5459.480	-6.29	65.98	59.69	74.00	-14.31	Peak	

Right Band edge_Vertical_Average_802.11ac-VHT20_5240MHz

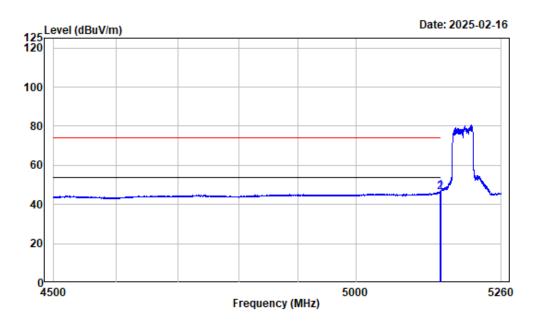

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5350.000	-6.74	51.59	44.85	54.00	-9.15	Average
2	5458.050	-6.29	52.64	46.35	54.00	-7.65	Average

Left Band edge_Horizontal_Peak_802.11ac-VHT40_5190MHz



Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5149.406	-7.46	66.54	59.08	74.00	-14.92	Peak
2	5150.000	-7.46	65.67	58.21	74.00	-15.79	Peak

Left Band edge_Horizontal_Average_802.11ac-VHT40_5190MHz



Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	5149.501	-7.46	54.22	46.76	54.00	-7.24	Average	
2	5150.000	-7.46	53.81	46.35	54.00	-7.65	Average	

Left Band edge_Vertical_Peak_802.11ac-VHT40_5190MHz

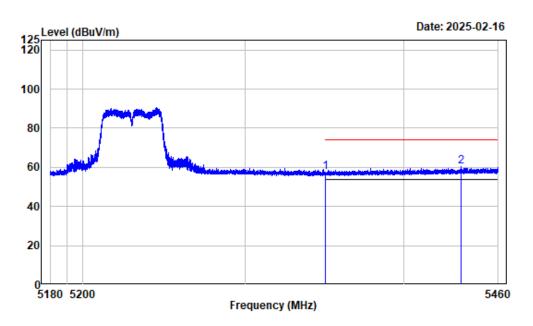

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	5149.881	-7.46	72.70	65.24	74.00	-8.76	Peak	
2	5150.000	-7.46	70.75	63.29	74.00	-10.71	Peak	

Left Band edge_Vertical_Average_802.11ac-VHT40_5190MHz

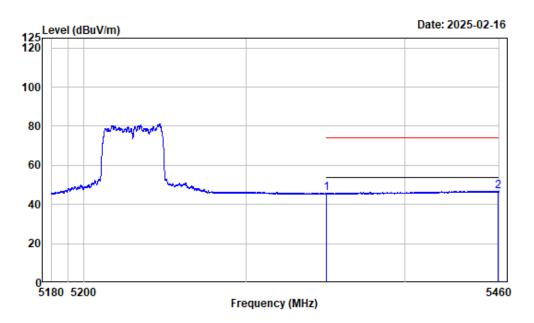

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	5149.881	-7.46	58.45	50.99	54.00	-3.01	Average	
2	5150.000	-7.46	58.31	50.85	54.00	-3.15	Average	

Right Band edge_Horizontal_Peak_802.11ac-VHT40_5230MHz

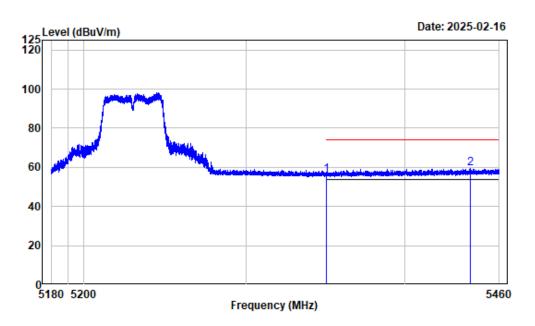


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5350.000	-6.74	64.07	57.33	74.00	-16.67	Peak
2	5436.057	-6.40	66.55	60.15	74.00	-13.85	Peak

Right Band edge_Horizontal_Average_802.11ac-VHT40_5230MHz

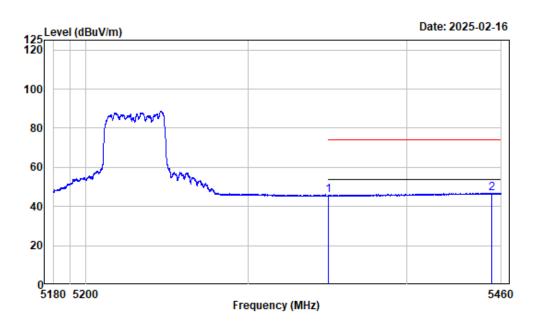


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	5350.000	-6.74	52.34	45.60	54.00	-8.40	Average	
2	5459.265	-6.29	53.18	46.89	54.00	-7.11	Average	

Right Band edge_Vertical_Peak_802.11ac-VHT40_5230MHz

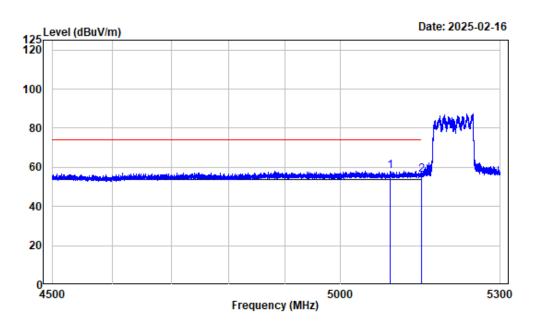

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5350.000	-6.74	62.91	56.17	74.00	-17.83	Peak
2	5441.763	-6.38	65.60	59.22	74.00	-14.78	Peak

Right Band edge_Vertical_Average_802.11ac-VHT40_5230MHz

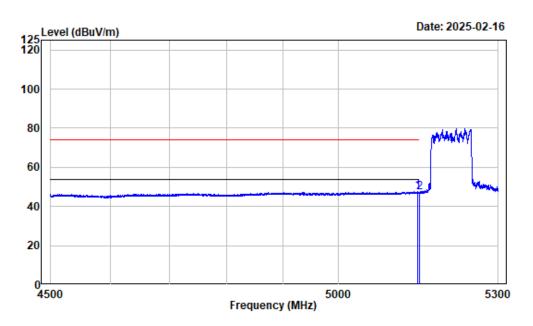

Condition : Vertical Project No. : 2501P28089E-RF

Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5350.000	-6.74	52.27	45.53	54.00	-8.47	Average
2	5453.804	-6.31	53.19	46.88	54.00	-7.12	Average

Left Band edge_Horizontal_Peak_802.11ac-VHT80_5210MHz

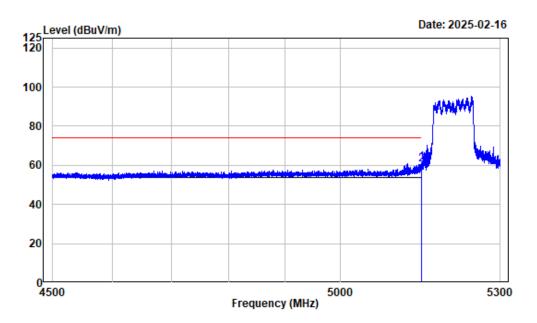


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5091.074	-7.44	65.58	58.14	74.00	-15.86	Peak
2	5150.000	-7.46	63.58	56.12	74.00	-17.88	Peak

Left Band edge_Horizontal_Average_802.11ac-VHT80_5210MHz

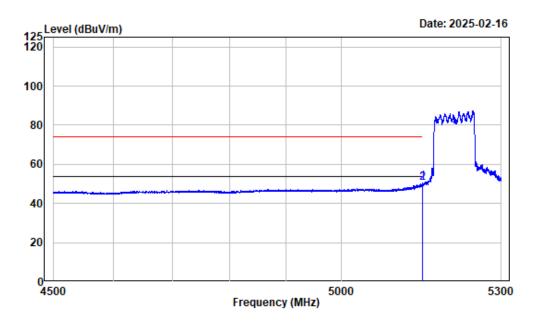


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:5kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	5146.381	-7.46	55.11	47.65	54.00	-6.35	Average	
2	5150.000	-7.46	54.39	46.93	54.00	-7.07	Average	

Left Band edge_Vertical_Peak_802.11ac-VHT80_5210MHz

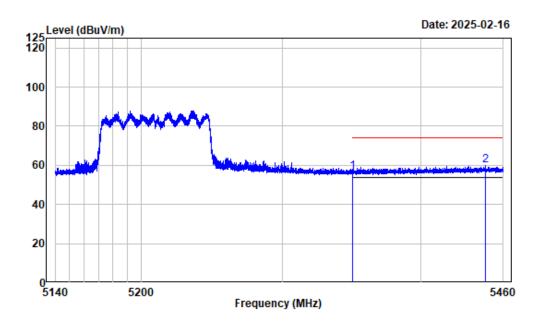

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5149.681	-7.46	68.80	61.34	74.00	-12.66	Peak
2	5150.000	-7.46	67.65	60.19	74.00	-13.81	Peak

Left Band edge_Vertical_Average_802.11ac-VHT80_5210MHz

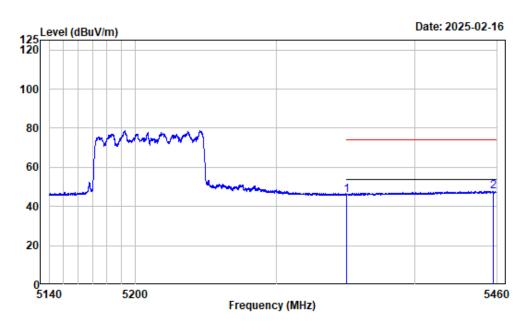

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:5kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5149.681	-7.46	58.22	50.76	54.00	-3.24	Average
2	5150.000	-7.46	57.93	50.47	54.00	-3.53	Average

Right Band edge_Horizontal_Peak_802.11ac-VHT80_5210MHz

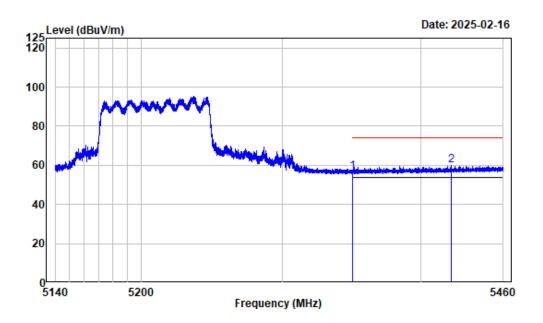


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5350.000	-6.74	63.20	56.46	74.00	-17.54	Peak
2	5446.958	-6.35	66.21	59.86	74.00	-14.14	Peak

Right Band edge_Horizontal_Average_802.11ac-VHT80_5210MHz

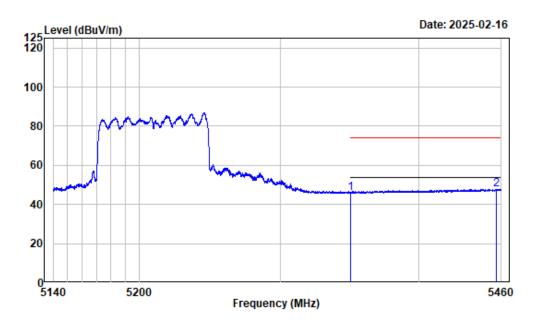


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:5kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	5350.000	-6.74	52.52	45.78	54.00	-8.22	Average	
2	5457.320	-6.31	54.13	47.82	54.00	-6.18	Average	

Right Band edge_Vertical_Peak_802.11ac-VHT80_5210MHz

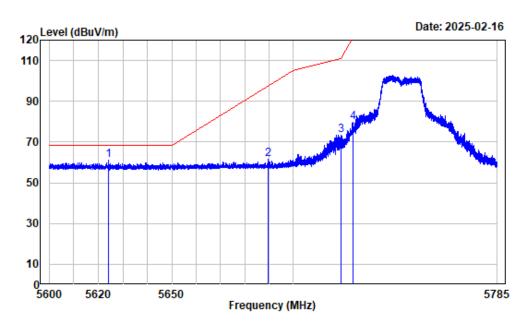

Condition : Vertical Project No. : 2501P28089E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5350.000	-6.74	63.45	56.71	74.00	-17.29	Peak
2	5422.115	-6.48	66.53	60.05	74.00	-13.95	Peak

Right Band edge_Vertical_Average_802.11ac-VHT80_5210MHz

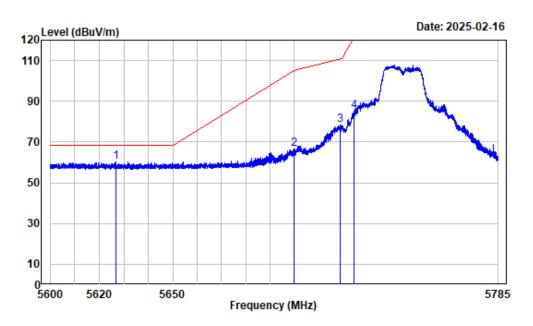

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:5kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5350.000	-6.74	52.71	45.97	54.00	-8.03	Average
2	5456.720	-6.31	54.10	47.79	54.00	-6.21	Average

Left Band edge_Horizontal_802.11a_5745MHz

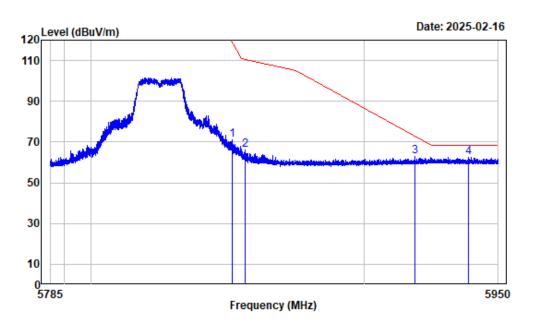


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	5624.261	-6.05	67.18	61.13	68.20	-7.07	Peak	
2	5689.713	-5.75	67.42	61.67	97.61	-35.94	Peak	
3	5719.664	-5.54	79.01	73.47	110.71	-37.24	Peak	
4	5724.868	-5.49	85.38	79.89	121.90	-42.01	Peak	

Left Band edge_Vertical_802.11a_5745MHz

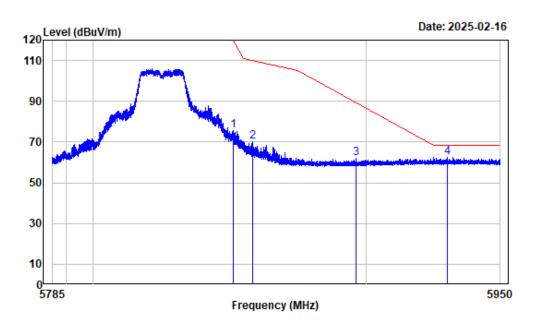

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

			Read		Limit	0ver		
	Freq	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	5626.944	-6.01	66.09	60.08	68.20	-8.12	Peak	
2	5699.889	-5.71	72.28	66.57	105.12	-38.55	Peak	
3	5718.993	-5.54	84.07	78.53	110.52	-31.99	Peak	
4	5724.775	-5.49	90.75	85.26	121.69	-36.43	Peak	

Right Band edge_Horizontal_802.11a_5825MHz

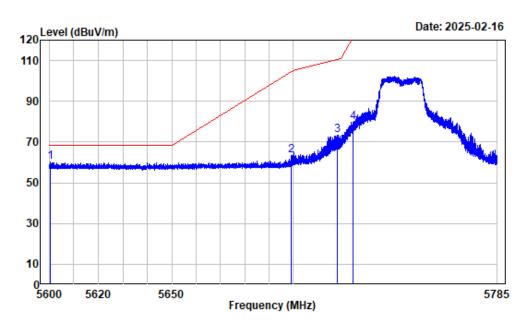


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

			Read		Limit	0ver		
	Freq	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	——dB		
1	5851.503	-4.66	75.84	71.18	118.77	-47.59	Peak	
2	5856.207	-4.66	70.72	66.06	110.46	-44.40	Peak	
3	5918.976	-4.45	67.24	62.79	72.64	-9.85	Peak	
4	5938.820	-4.45	67.11	62.66	68.20	-5.54	Peak	

Right Band edge_Vertical_802.11a_5825MHz

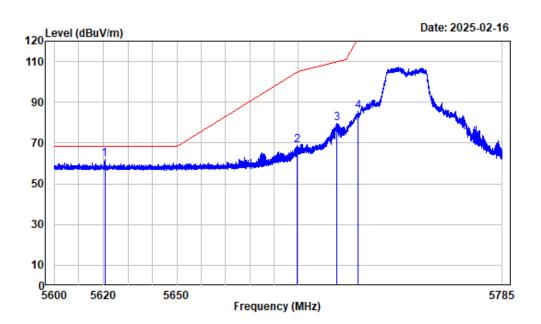


Condition : Vertical Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	——dB	
1	5851.132	-4.68	80.53	75.85	119.62	-43.77	Peak
2	5858.125	-4.65	74.67	70.02	109.92	-39.90	Peak
3	5896.348	-4.47	66.71	62.24	89.36	-27.12	Peak
4	5930.259	-4.45	67.05	62.60	68.20	-5.60	Peak

Left Band edge_Horizontal_802.11ac-VHT20_5745MHz

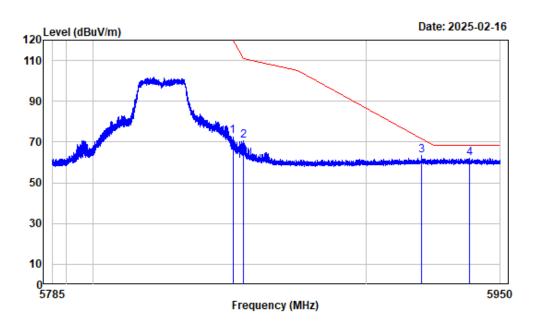


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5600.625	-6.21	66.30	60.09	68.20	-8.11	Peak
2	5699.288	-5.71	69.12	63.41	104.68	-41.27	Peak
3	5718.369	-5.54	78.83	73.29	110.34	-37.05	Peak
4	5724.798	-5.49	85.35	79.86	121.74	-41.88	Peak

Left Band edge_Vertical_802.11ac-VHT20_5745MHz

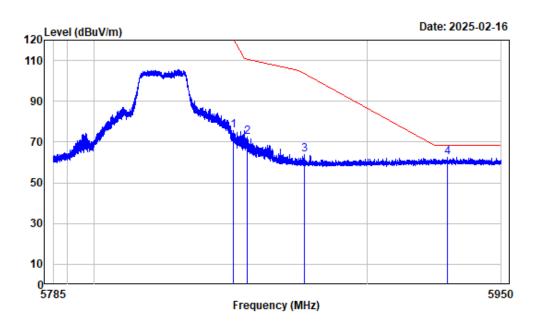

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	——dB	
1	5620.584	-6.07	67.98	61.91	68.20	-6.29	Peak
2	5699.565	-5.71	74.69	68.98	104.88	-35.90	Peak
3	5716.148	-5.57	85.29	79.72	109.72	-30.00	Peak
4	5724.914	-5.49	91.13	85.64	122.00	-36.36	Peak

Right Band edge_Horizontal_802.11ac-VHT20_5825MHz

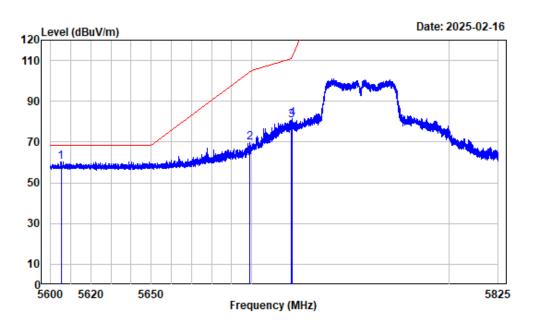


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5850.977	-4.68	77.56	72.88	155.20	-82.32	Peak
2	5855.010	-4.66	75.20	70.54	110.80	-40.26	Peak
3	5920.564	-4.45	67.65	63.20	71.47	-8.27	Peak
4	5938.614	-4.45	66.32	61.87	68.20	-6.33	Peak

Right Band edge_Vertical_802.11ac-VHT20_5825MHz

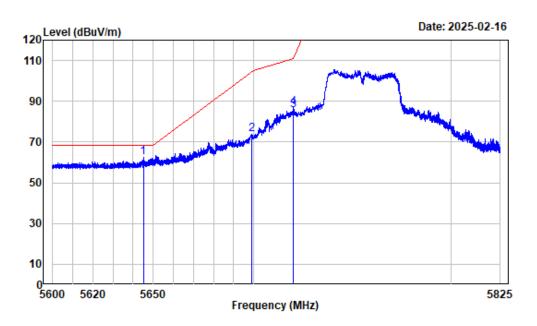

Condition : Vertical Project No. : 2501P28089E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	——dB	
1	5850.864	-4.68	80.52	75.84	120.23	-44.39	Peak
2	5855.938	-4.66	76.91	72.25	110.54	-38.29	Peak
3	5876.999	-4.56	68.58	64.02	103.71	-39.69	Peak
4	5929.888	-4.45	66.85	62.40	68.20	-5.80	Peak

Left Band edge_Horizontal_802.11ac-VHT40_5755MHz

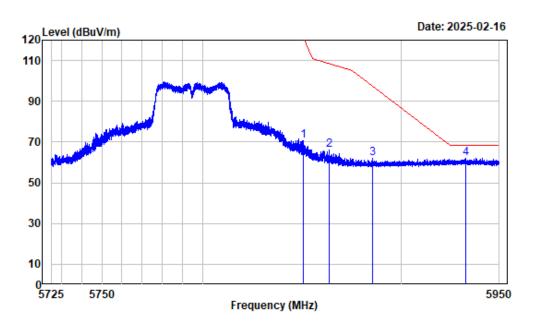


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

			Read		Limit	0ver		
	Freq	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	5605.373	-6.17	66.58	60.41	68.20	-7.79	Peak	
2	5699.153	-5.72	75.64	69.92	104.58	-34.66	Peak	
3	5719.799	-5.54	86.29	80.75	110.74	-29.99	Peak	
4	5720.277	-5.53	87.26	81.73	111.43	-29.70	Peak	

Left Band edge_Vertical_802.11ac-VHT40_5755MHz

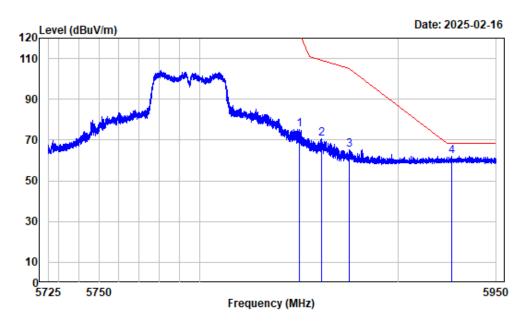

Condition : Vertical Project No. : 2501P28089E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5645.062	-5.90	68.34	62.44	68.20	-5.76	Peak
2	5699.181	-5.72	79.56	73.84	104.60	-30.76	Peak
3	5719.884	-5.53	90.98	85.45	110.77	-25.32	Peak
4	5720.193	-5.53	92.29	86.76	111.24	-24.48	Peak

Right Band edge_Horizontal_802.11ac-VHT40_5795MHz

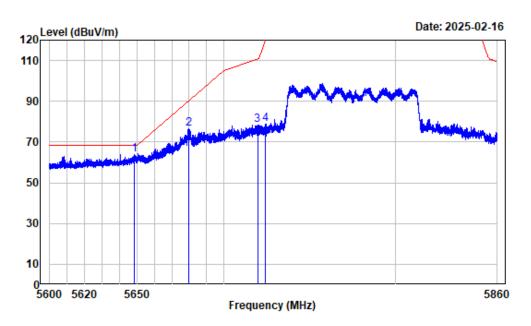


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5850.538	-4.68	75.46	70.78	120.97	-50.19	Peak
2	5863.449	-4.62	70.60	65.98	108.43	-42.45	Peak
3	5885.473	-4.53	66.73	62.20	97.42	-35.22	Peak
4	5932.842	-4.45	66.51	62.06	68.20	-6.14	Peak

Right Band edge_Vertical_802.11ac-VHT40_5795MHz

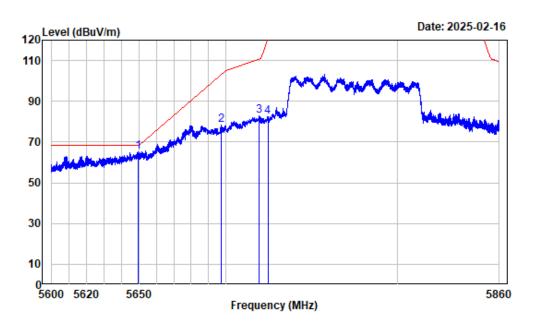

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	5850.200	-4.68	79.83	75.15	121.74	-46.59	Peak
2	5861.086	-4.63	75.26	70.63	109.09	-38.46	Peak
3	5875.122	-4.57	70.00	65.43	105.11	-39.68	Peak
4	5927.441	-4.45	66.47	62.02	68.20	-6.18	Peak

Left Band edge_Horizontal_802.11ac-VHT80_5775MHz

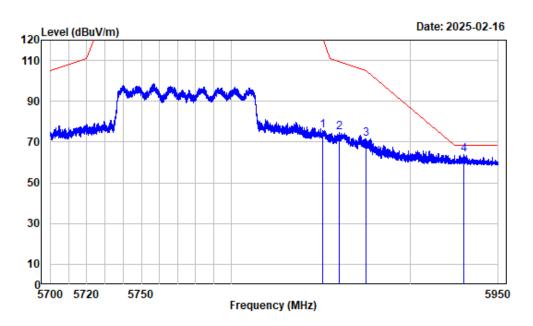


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

			Read		Limit	0ver		
	Freq	Factor	Level	Level	Line	Limit	Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	5648.626	-5.87	69.94	64.07	68.20	-4.13	Peak	
2	5679.928	-5.77	82.45	76.68	90.39	-13.71	Peak	
3	5719.453	-5.54	83.79	78.25	110.65	-32.40	Peak	
4	5724.230	-5.49	84.41	78.92	120.45	-41.53	Peak	

Left Band edge_Vertical_802.11ac-VHT80_5775MHz

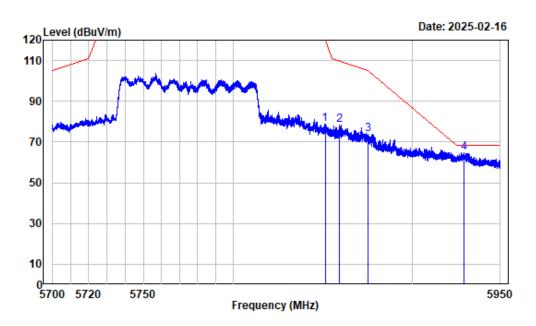

Condition : Vertical Project No. : 2501P28089E-RF

Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	——dB	
1	5649.569	-5.86	71.00	65.14	68.20	-3.06	Peak
2	5697.285	-5.72	83.87	78.15	103.20	-25.05	Peak
3	5719.420	-5.54	88.42	82.88	110.64	-27.76	Peak
4	5724.263	-5.49	87.92	82.43	120.52	-38.09	Peak

Right Band edge_Horizontal_802.11ac-VHT80_5775MHz



Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

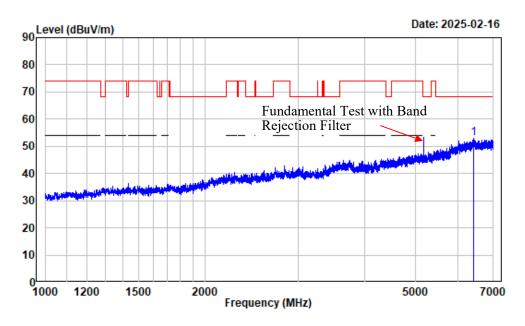
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	——dB	
1	5850.925	-4.68	80.46	75.78	120.09	-44.31	Peak
2	5860.051	-4.63	79.20	74.57	109.38	-34.81	Peak
3	5874.991	-4.56	76.07	71.51	105.20	-33.69	Peak
4	5930.341	-4.45	68.51	64.06	68.20	-4.14	Peak

Right Band edge_Vertical_802.11ac-VHT80_5775MHz

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao


Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

			Read		Limit	0ver	
	Freq	Factor	Level	Level	Line	Limit	Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	——dB	
1	5851.019	-4.68	83.61	78.93	119.88	-40.95	Peak
2	5859.208	-4.63	83.08	78.45	109.62	-31.17	Peak
3	5875.178	-4.57	78.57	74.00	105.07	-31.07	Peak
4	5929.498	-4.45	69.24	64.79	68.20	-3.41	Peak

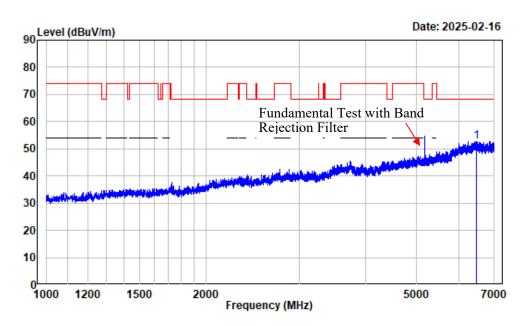
1-18GHz (Listed with the worst harmonic margin test plot)

1-7GHz_Horizontal_802.11a_5180MHz

Report No.: 2501P28089E-RF-00D

Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak


Note : 5GWiFi-Band1-A-5180

Read Limit Over
Freq Factor Level Level Line Limit Remark

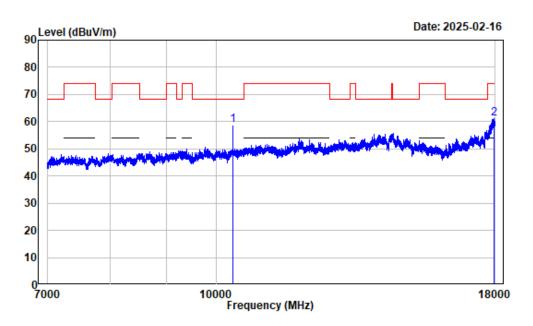
MHz dB/m dBuV dBuV/m dBuV/m dB dB

1 6432.929 -2.88 55.95 53.07 68.20 -15.13 Peak

1-7GHz_Vertical_802.11a_5180MHz

Condition : Vertical
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

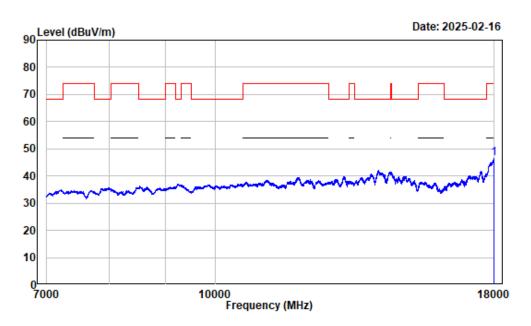

Note : 5GWiFi-Band1-A-5180

Read Limit Over
Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

1 6480.935 -2.92 55.66 52.74 68.20 -15.46 Peak

7-18GHz_Horizontal_Peak_802.11a_5180MHz


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

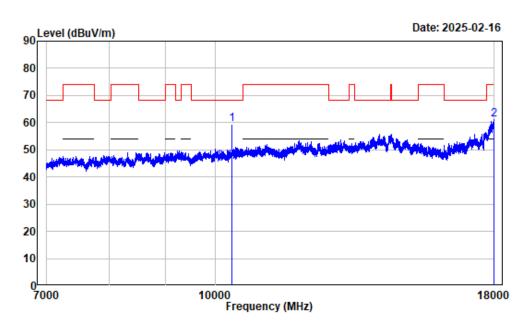
Note : 5GWiFi-Band1-A-5180

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	10360.000	2.53	56.28	58.81	68.20	-9.39	Peak	
2	17971.120	13.06	47.95	61.01	74.00	-12.99	Peak	

7-18GHz_Horizontal_Average_802.11a_5180MHz

Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

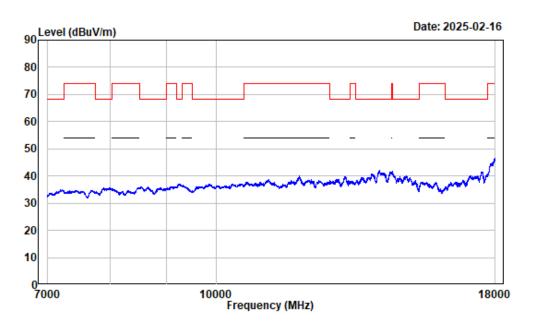

Note : 5GWiFi-Band1-A-5180

Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

1 17989.000 13.14 33.45 46.59 54.00 -7.41 Average

7-18GHz_Vertical_Peak_802.11a_5180MHz


Condition : Vertical
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : 5GWiFi-Band1-A-5180

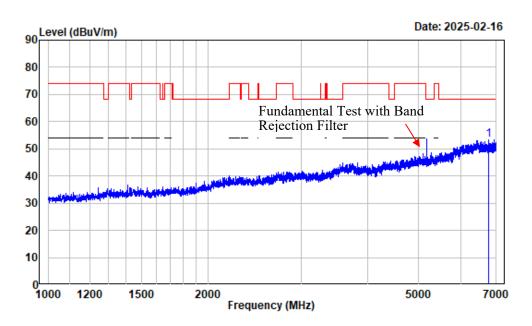
	Freq	Factor			Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	10360.000	2.53	56.83	59.36	68.20	-8.84	Peak	
2	17997.250	13.19	47.88	61.07	74.00	-12.93	Peak	

7-18GHz_Vertical_Average_802.11a_5180MHz

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak


Note : 5GWiFi-Band1-A-5180

Read Limit Over
Freq Factor Level Level Line Limit Remark

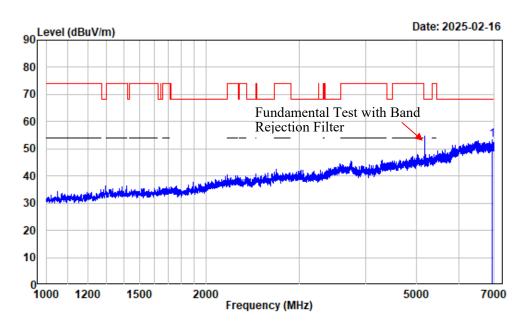
MHz dB/m dBuV dBuV/m dBuV/m dB

1 18000.000 13.20 33.65 46.85 54.00 -7.15 Average

1-7GHz Horizontal 802.11ac-VHT20 5180MHz

Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak


Note : 5GWiFi-Band1-AC20-5180

Read Limit Over
Freq Factor Level Level Line Limit Remark

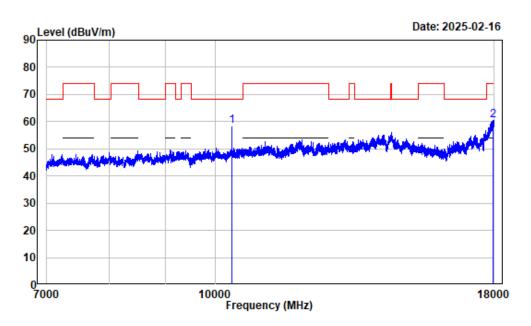
MHz dB/m dBuV dBuV/m dBuV/m dB

1 6761.470 -3.24 56.46 53.22 68.20 -14.98 Peak

1-7GHz Vertical 802.11ac-VHT20 5180MHz

Condition : Vertical
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

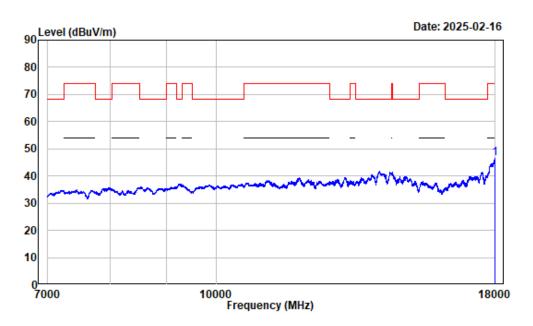

Note : 5GWiFi-Band1-AC20-5180

Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

1 6933.242 -2.84 56.26 53.42 68.20 -14.78 Peak

7-18GHz_Horizontal_Peak_802.11ac-VHT20_5180MHz



Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

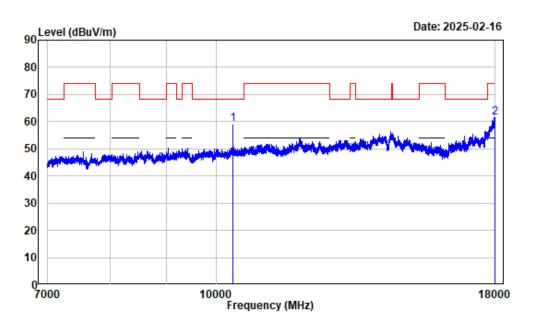
Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	10360.000	2.53	55.94	58.47	68.20	-9.73	Peak
2	17953.240	12.97	47.57	60.54	74.00	-13.46	Peak

7-18GHz Horizontal Average 802.11ac-VHT20 5180MHz

Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

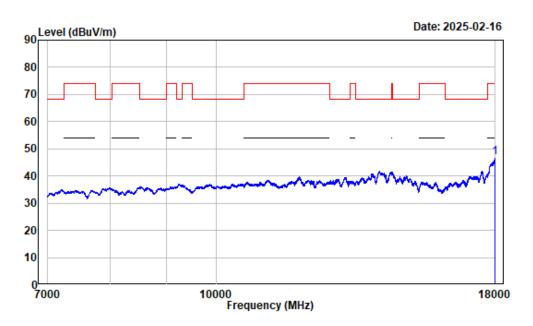

Note : 5GWiFi-Band1-AC20-5180

Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

1 17995.880 13.18 33.34 46.52 54.00 -7.48 Average

7-18GHz_Vertical_Peak_802.11ac-VHT20_5180MHz



Condition : Vertical
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

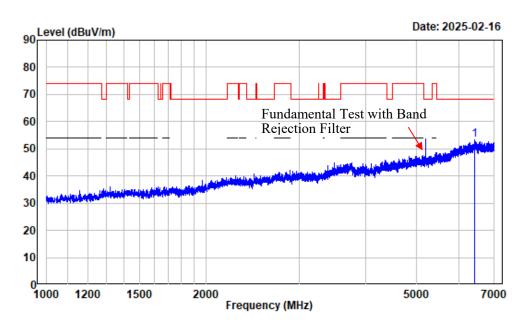
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	10360.000	2.53	56.45	58.98	68.20	-9.22	Peak
2	17986.250	13.12	48.36	61.48	74.00	-12.52	Peak

7-18GHz Vertical Average 802.11ac-VHT20 5180MHz

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak


Note : 5GWiFi-Band1-AC20-5180

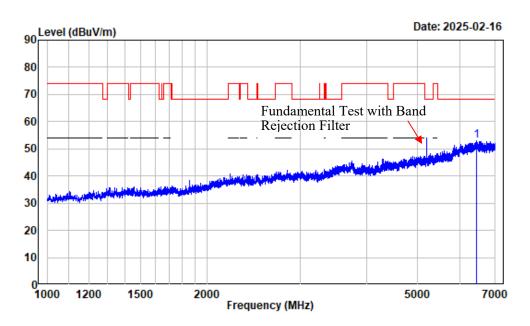
Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

1 17998.630 13.19 33.55 46.74 54.00 -7.26 Average

1-7GHz Horizontal 802.11ac-VHT40 5190MHz

Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao


Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

Note : 5GWiFi-Band1-AC40-5190

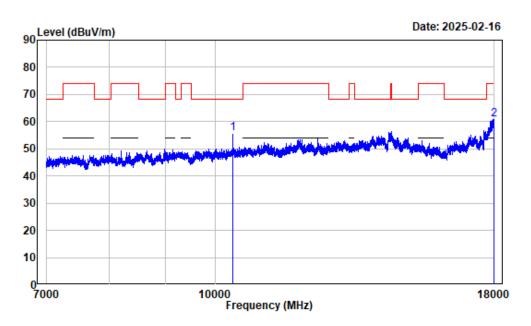
Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB dBuV/m dBuV/m dB dBuV/m dB dBuV/m dB dBuV/m dBuV/m dB dBuV/m dBuV/m dB dBuV/m dBuV/m dB dBuV/m dBuV/m dBuV/m dBuV/m dBuV/m dB dBuV/m dBuV/m

1-7GHz Vertical 802.11ac-VHT40 5190MHz

Condition : Vertical Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

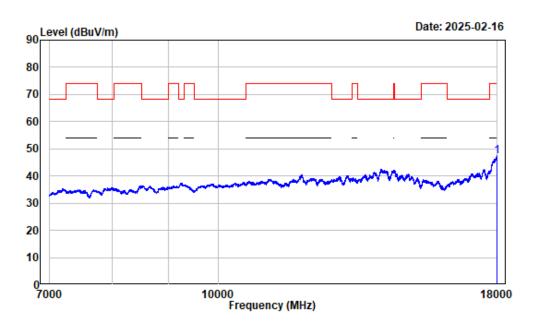

Note : 5GWiFi-Band1-AC40-5190

Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

1 6453.932 -2.88 56.01 53.13 68.20 -15.07 Peak

7-18GHz_Horizontal_Peak_802.11ac-VHT40_5190MHz



Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

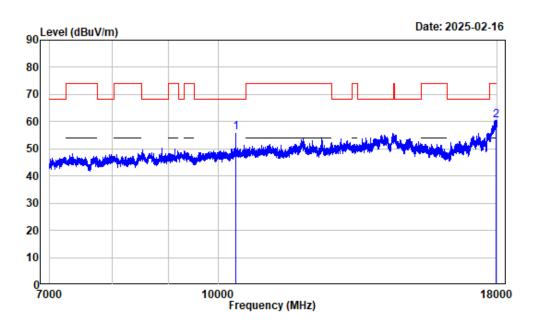
Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	10380.000	2.54	53.14	55.68	68.20	-12.52	Peak
2	17993.130	13.17	47.65	60.82	74.00	-13.18	Peak

7-18GHz Horizontal Average 802.11ac-VHT40 5190MHz

Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

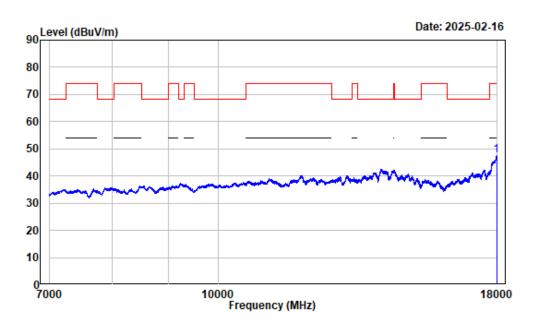

Note : 5GWiFi-Band1-AC40-5190

Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

1 17993.130 13.17 34.15 47.32 54.00 -6.68 Average

7-18GHz_Vertical_Peak_802.11ac-VHT40_5190MHz



Condition : Vertical
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

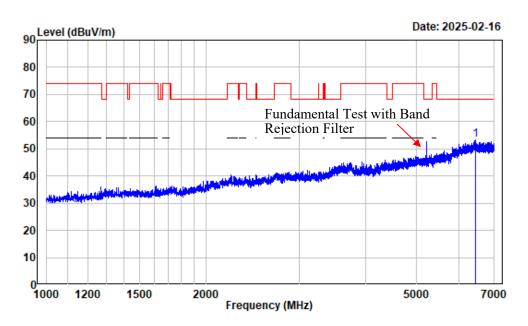
	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	10380.000	2.54	53.66	56.20	68.20	-12.00	Peak
2	17968.370	13.05	47.36	60.41	74.00	-13.59	Peak

7-18GHz Vertical Average 802.11ac-VHT40 5190MHz

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:2kHz Detector:Peak


Note : 5GWiFi-Band1-AC40-5190

Read Limit Over
Freq Factor Level Level Line Limit Remark

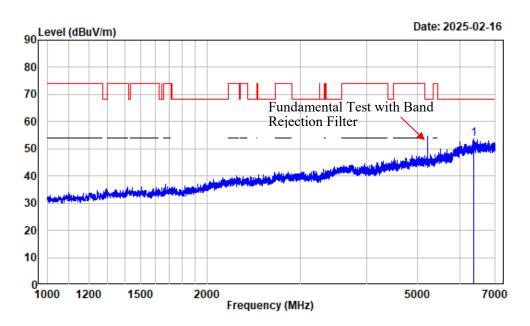
MHz dB/m dBuV dBuV/m dBuV/m dB dB

1 17973.870 13.08 34.37 47.45 54.00 -6.55 Average

1-7GHz Horizontal 802.11ac-VHT80 5210MHz

Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak


Note : 5GWiFi-Band1-AC80-5210

Read Limit Over
Freq Factor Level Level Line Limit Remark

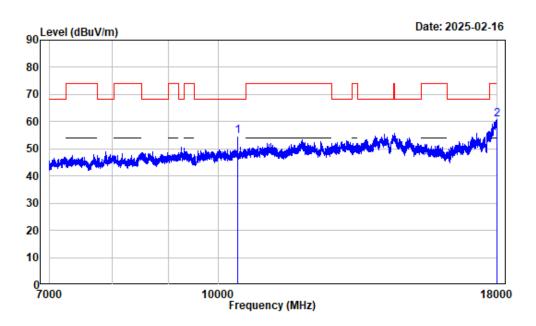
MHz dB/m dBuV dBuV/m dBuV/m dB

1 6452.432 -2.88 56.14 53.26 68.20 -14.94 Peak

1-7GHz Vertical 802.11ac-VHT80 5210MHz

Condition : Vertical Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

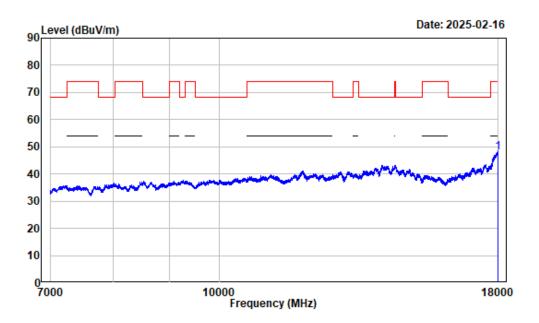

Note : 5GWiFi-Band1-AC80-5210

Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB dB

1 6385.673 -3.03 56.69 53.66 68.20 -14.54 Peak

7-18GHz_Horizontal_Peak_802.11ac-VHT80_5210MHz



Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

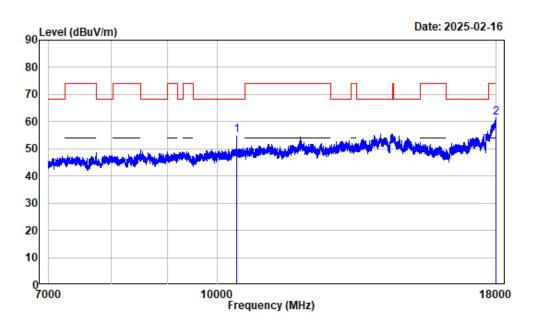
Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	10420.000	2.48	52.05	54.53	68.20	-13.67	Peak
2	17976.620	13.09	47.77	60.86	74.00	-13.14	Peak

7-18GHz_Horizontal_Average_802.11ac-VHT80_5210MHz

Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:5kHz Detector:Peak

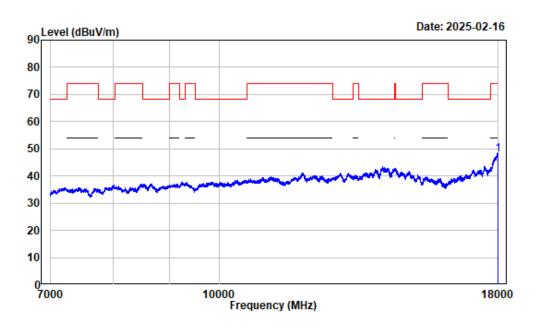

Note : 5GWiFi-Band1-AC80-5210

Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

1 17991.750 13.16 34.67 47.83 54.00 -6.17 Average

7-18GHz_Vertical_Peak_802.11ac-VHT80_5210MHz



Condition : Vertical Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

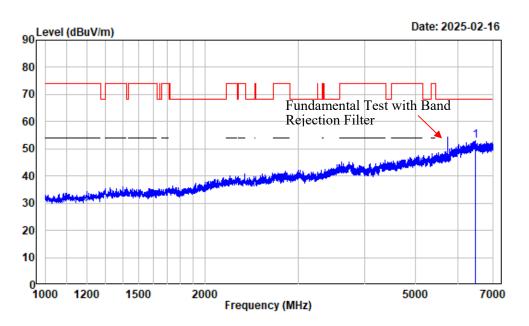
	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	10420.000	2.48	52.61	55.09	68.20	-13.11	Peak	
2	17984.870	13.12	48.31	61.43	74.00	-12.57	Peak	

7-18GHz Vertical Average 802.11ac-VHT80 5210MHz

Condition : Vertical Project No. : 2501P28089E-RF

Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:5kHz Detector:Peak


Note : 5GWiFi-Band1-AC80-5210

Read Limit Over
Freq Factor Level Level Line Limit Remark

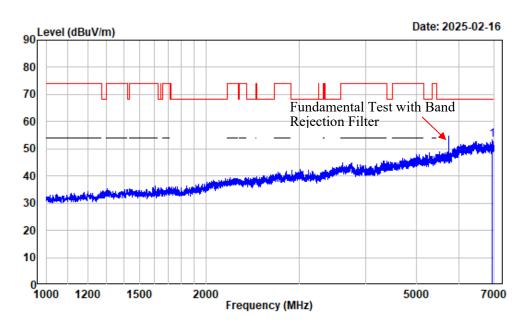
MHz dB/m dBuV dBuV/m dBuV/m dB

1 17993.130 13.17 34.78 47.95 54.00 -6.05 Average

1-7GHz Horizontal 802.11a 5745MHz

Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak


Note : 5GWiFi-Band4-A-5745

Read Limit Over
Freq Factor Level Level Line Limit Remark

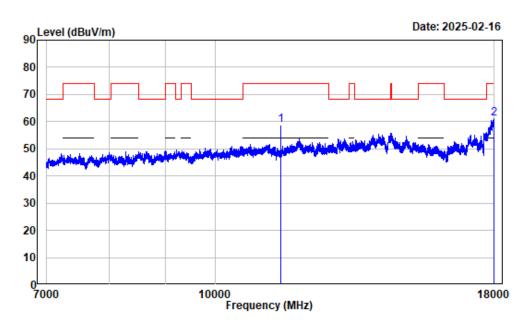
MHz dB/m dBuV dBuV/m dBuV/m dB

1 6474.184 -2.91 56.00 53.09 68.20 -15.11 Peak

1-7GHz_Vertical_802.11a_5745MHz

Condition : Vertical
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

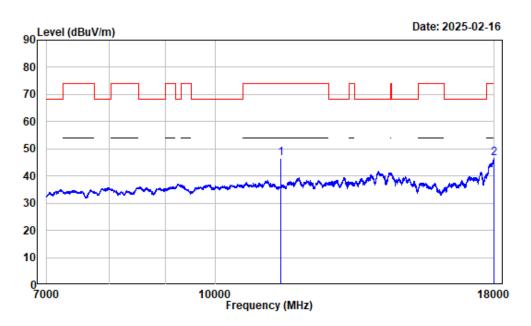

Note : 5GWiFi-Band4-A-5745

Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

1 6930.991 -2.86 56.29 53.43 68.20 -14.77 Peak

7-18GHz_Horizontal_Peak_802.11a_5745MHz

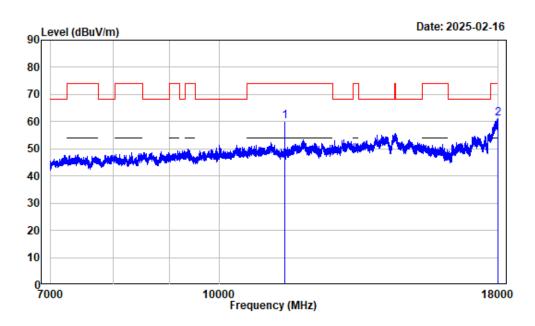


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	11490.000	3.54	55.27	58.81	74.00	-15.19	Peak
2	17989.000	13.14	47.94	61.08	74.00	-12.92	Peak

7-18GHz_Horizontal_Average_802.11a_5745MHz

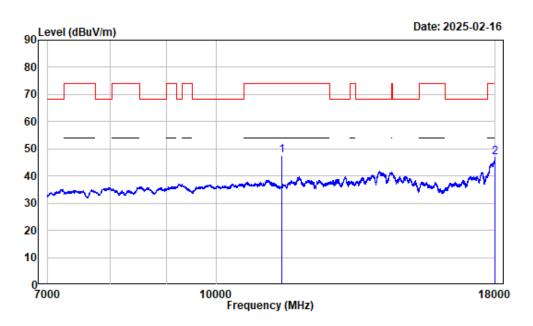


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	11490.000	3.54	43.15	46.69	54.00	-7.31	Average	
2	17998.630	13.19	33.31	46.50	54.00	-7.50	Average	

7-18GHz_Vertical_Peak_802.11a_5745MHz

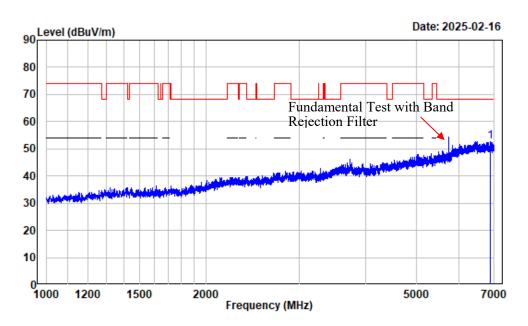


Condition : Vertical
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		
1	11490.000	3.54	56.69	60.23	74.00	-13.77	Peak	
2	17994.500	13.17	47.87	61.04	74.00	-12.96	Peak	

7-18GHz_Vertical_Average_802.11a_5745MHz


Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

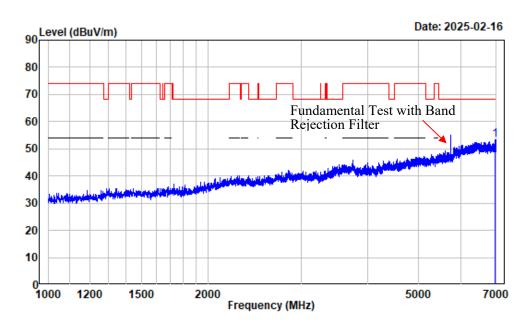
Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		-
1	11490.000	3.54	43.98	47.52	54.00	-6.48	Average	
2	17989.000	13.14	33.58	46.72	54.00	-7.28	Average	

1-7GHz Horizontal 802.11ac-VHT20 5745MHz

Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak


Note : 5GWiFi-Band4-AC20-5745

Read Limit Over
Level Level Line Limit Remark

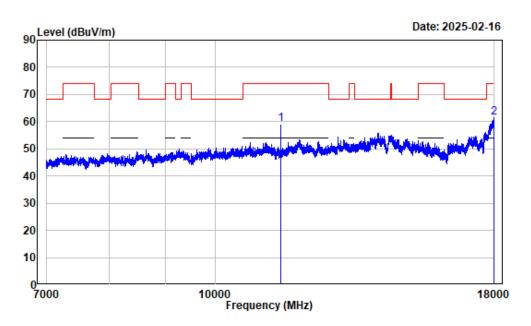
MHz dB/m dBuV dBuV/m dBuV/m dB

1 6880.735 -3.12 55.79 52.67 68.20 -15.53 Peak

1-7GHz Vertical 802.11ac-VHT20 5745MHz

Condition : Vertical
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

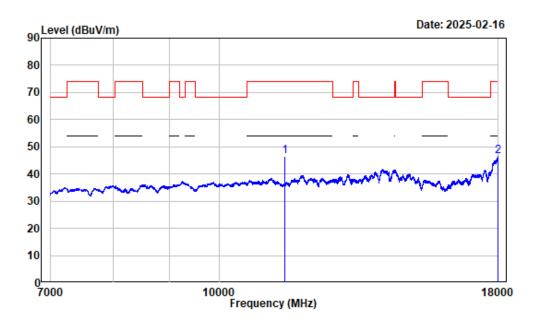

Note : 5GWiFi-Band4-AC20-5745

Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

1 6974.497 -2.82 56.26 53.44 68.20 -14.76 Peak

7-18GHz_Horizontal_Peak_802.11ac-VHT20_5745MHz

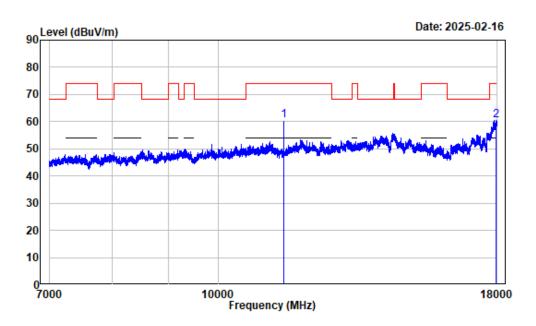


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	11490.000	3.54	55.52	59.06	74.00	-14.94	Peak
2	17993.130	13.17	48.39	61.56	74.00	-12.44	Peak

7-18GHz_Horizontal_Average_802.11ac-VHT20_5745MHz

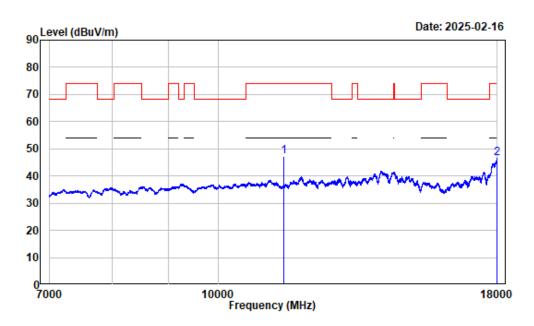


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	11490.000	3.54	42.83	46.37	54.00	-7.63	Average
2	17998.630	13.19	33.25	46.44	54.00	-7.56	Average

7-18GHz_Vertical_Peak_802.11ac-VHT20_5745MHz

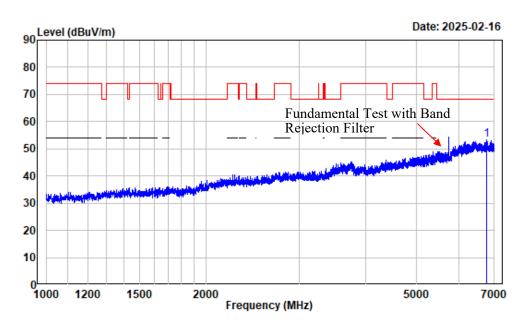

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	11490.000	3.54	56.95	60.49	74.00	-13.51	Peak
2	17971.120	13.06	47.52	60.58	74.00	-13.42	Peak

7-18GHz_Vertical_Average_802.11ac-VHT20_5745MHz



Condition : Vertical
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

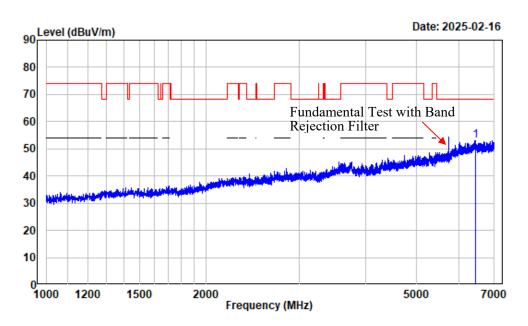
Spectrum setting: Average reading:RBW:1MHz VBW:1kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	11490.000	3.54	43.69	47.23	54.00	-6.77	Average	
2	17991.750	13.16	33.50	46.66	54.00	-7.34	Average	

1-7GHz Horizontal 802.11ac-VHT40 5755MHz

Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak


Note : 5GWiFi-Band4-AC40-5755

Read Limit Over
Freq Factor Level Level Line Limit Remark

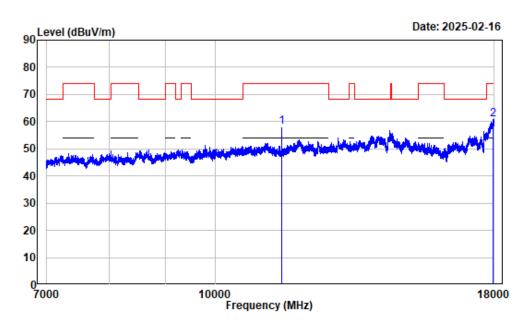
MHz dB/m dBuV dBuV/m dBuV/m dB

1 6776.472 -3.29 56.59 53.30 68.20 -14.90 Peak

1-7GHz Vertical 802.11ac-VHT40 5755MHz

Condition : Vertical
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

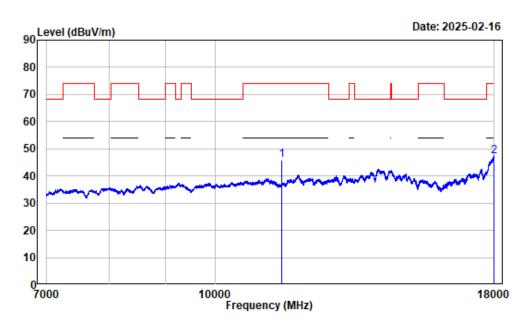

Note : 5GWiFi-Band4-AC40-5755

Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

1 6453.182 -2.88 55.89 53.01 68.20 -15.19 Peak

7-18GHz_Horizontal_Peak_802.11ac-VHT40_5755MHz

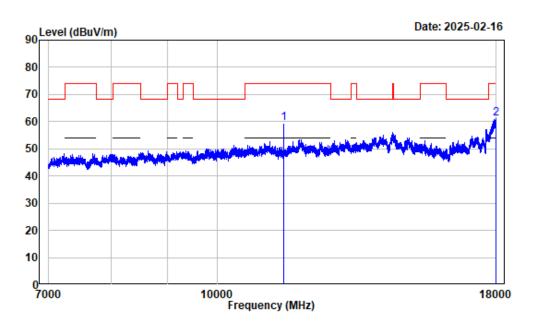


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		•
1	11510.000	3.53	54.57	58.10	74.00	-15.90	Peak	
2	17965.620	13.03	47.87	60.90	74.00	-13.10	Peak	

7-18GHz_Horizontal_Average_802.11ac-VHT40_5755MHz

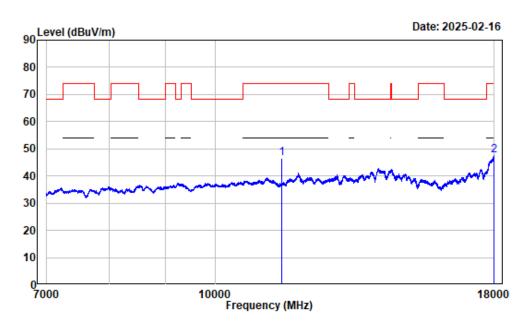


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	11510.000	3.53	42.32	45.85	54.00	-8.15	Average
2	17998.250	13.20	34.13	47.33	54.00	-6.67	Average

7-18GHz_Vertical_Peak_802.11ac-VHT40_5755MHz

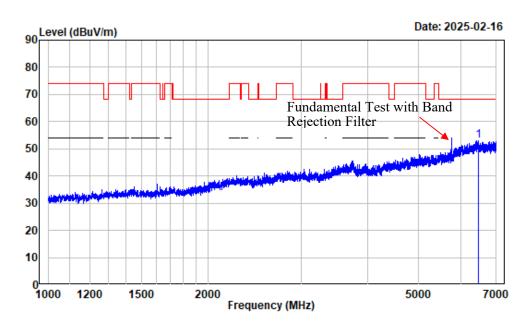

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	11510.000	3.53	55.89	59.42	74.00	-14.58	Peak
2	17995.880	13.18	48.04	61.22	74.00	-12.78	Peak

7-18GHz_Vertical_Average_802.11ac-VHT40_5755MHz


Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

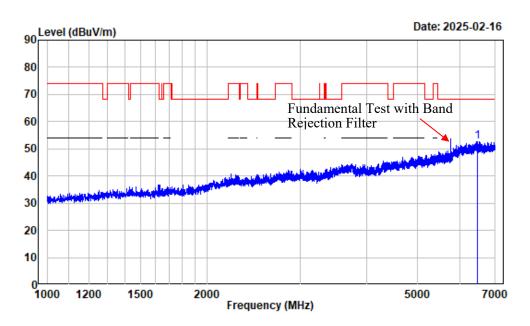
Spectrum setting: Average reading:RBW:1MHz VBW:2kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	11510.000	3.53	43.16	46.69	54.00	-7.31	Average
2	17995.880	13.18	34.30	47.48	54.00	-6.52	Average

1-7GHz Horizontal 802.11ac-VHT80 5775MHz

Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak


Note : 5GWiFi-Band4-AC80-5775

Read Limit Over
Freq Factor Level Level Line Limit Remark

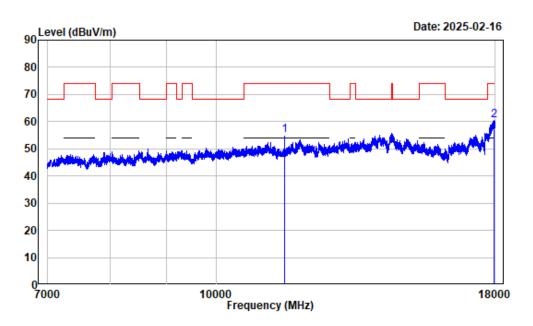
MHz dB/m dBuV dBuV/m dBuV/m dB

1 6471.184 -2.90 55.84 52.94 68.20 -15.26 Peak

1-7GHz Vertical 802.11ac-VHT80 5775MHz

Condition : Vertical
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

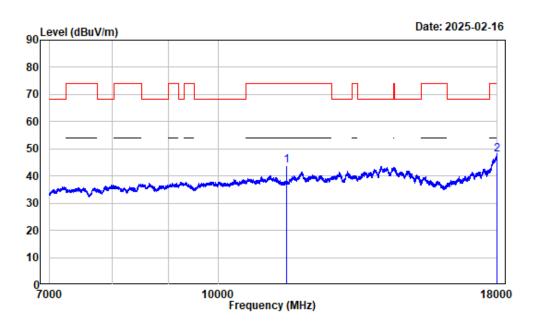

Note : 5GWiFi-Band4-AC80-5775

Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

1 6474.184 -2.91 55.57 52.66 68.20 -15.54 Peak

7-18GHz_Horizontal_Peak_802.11ac-VHT80_5775MHz

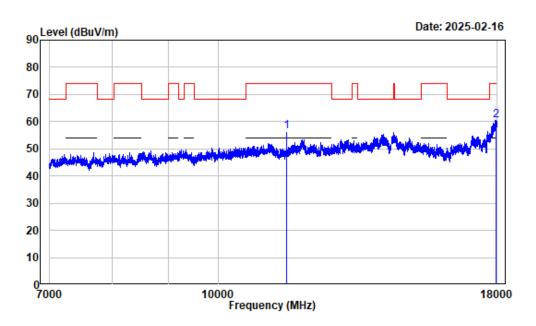


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	11550.000	3.37	51.67	55.04	74.00	-18.96	Peak
2	17960.120	13.00	47.46	60.46	74.00	-13.54	Peak

7-18GHz_Horizontal_Average_802.11ac-VHT80_5775MHz

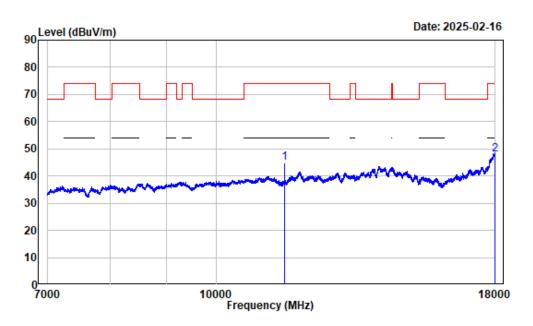


Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Average reading:RBW:1MHz VBW:5kHz Detector:Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	11550.000	3.37	40.45	43.82	54.00	-10.18	Average
2	17991.750	13.16	34.60	47.76	54.00	-6.24	Average

7-18GHz_Vertical_Peak_802.11ac-VHT80_5775MHz


Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

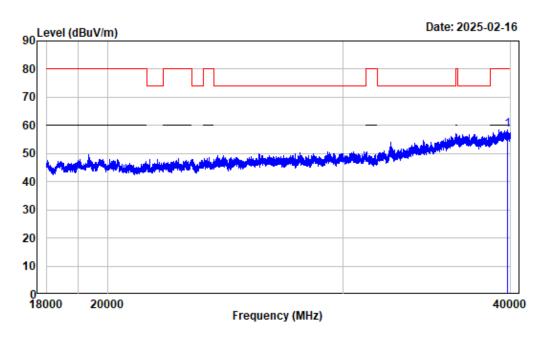
Spectrum setting: Peak reading: RBW: 1MHz VBW: 3MHz Detector: Peak

	Freq	Factor			Limit Line		Remark
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB	
1	11550.000	3.37	52.96	56.33	74.00	-17.67	Peak
2	17949.120	12.95	47.62	60.57	74.00	-13.43	Peak

7-18GHz_Vertical_Average_802.11ac-VHT80_5775MHz

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao


Spectrum setting: Average reading:RBW:1MHz VBW:5kHz Detector:Peak

	Freq	Factor			Limit Line		Remark	
	MHz	dB/m	dBuV	dBuV/m	dBuV/m	dB		_
1	11550.000	3.37	41.29	44.66	54.00	-9.34	Average	
2	17984.870	13.12	34.86	47.98	54.00	-6.02	Average	

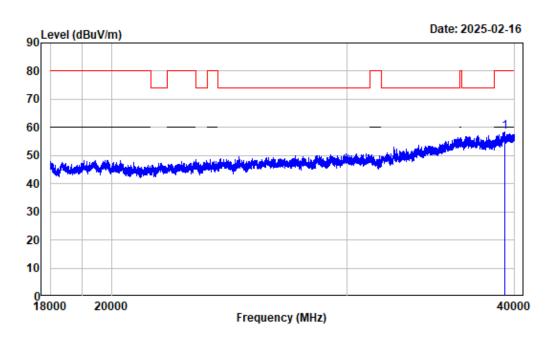
18-40GHz (Only with worst case margin mode plot):

18-40GHz_Horizontal_802.11a_5745MHz

Report No.: 2501P28089E-RF-00D

Condition : Horizontal
Project No. : 2501P28089E-RF
Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak


Note : 5GWiFi-Band4-A-5745

Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

1 39766.220 22.54 35.81 58.35 80.00 -21.65 Peak

18-40GHz_Vertical_802.11a_5745MHz

Condition : Vertical

Project No. : 2501P28089E-RF Tester : Zenos Qiao

Spectrum setting: Peak reading:RBW:1MHz VBW:3MHz Detector:Peak

Note : 5GWiFi-Band4-A-5745

Read Limit Over
Freq Factor Level Level Line Limit Remark

MHz dB/m dBuV dBuV/m dBuV/m dB

1 39323.410 22.66 35.86 58.52 80.00 -21.48 Peak

RF Conducted data

Emission Bandwidth

Test Information:

Sample No.:	2Y1M-18	Test Date:	2025/02/17~2025/03/06
Test Site:	RF	Test Mode:	Transmitting
Tester:	Cheeb Huang	Test Result:	Pass

Report No.: 2501P28089E-RF-00D

Environmental Conditions:

Temperature: (°C)	24.5-25.7	Relative Humidity: (%)	44-57	ATM Pressure: (kPa)	100.8-101.5
-------------------	-----------	------------------------------	-------	------------------------	-------------

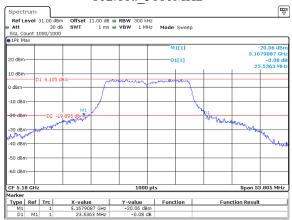
Test Data:

26dB Emission Bandwidth

5150-5250MHz

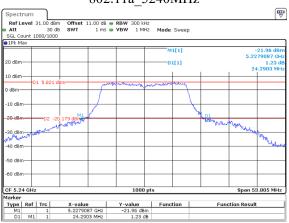
Mode	Test Frequency (MHz)	Result (MHz)
	5180	23.536
802.11a	5200	23.267
	5240	24.290
	5180	23.916
802.11ac20	5200	23.957
	5240	22.403
902.1140	5190	44.044
802.11ac40	5230	44.244
802.11ac80	5210	83.884

Report No.: 2501P28089E-RF-00D

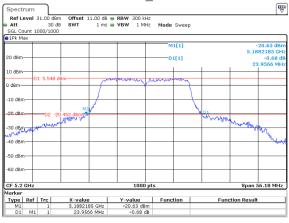

6dB Emission Bandwidth

5725-5850MHz

Mode	Test Frequency (MHz)	Result (MHz)
	5745	16.466
802.11a	5785	16.416
	5825	16.416
	5745	17.668
802.11ac20	5785	17.417
	5825	17.317
902 11 2240	5755	35.836
802.11ac40	5795	35.636
802.11ac80	5775	75.475

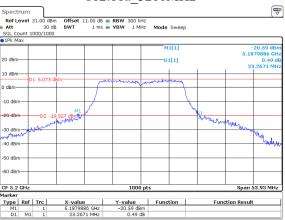

5150-5250MHz

802.11a_5180MHz

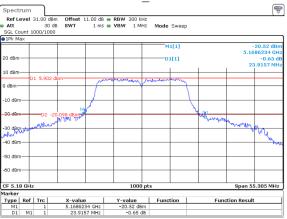

ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 17.FEB.2025 13:37:50

802.11a_5240MHz

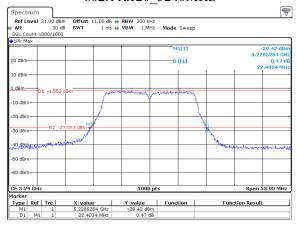
ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 17.FEB.2025 13:43:28


802.11ac20 5200MHz

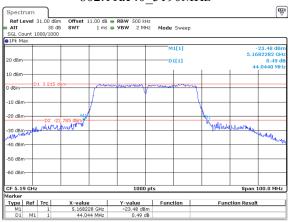
ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 17.FEB.2025 13:49:01


$802.11a_5200MHz$

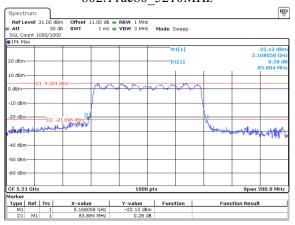
Report No.: 2501P28089E-RF-00D


ProjectNo.:2501P28089B-RF Tester:Cheeb Huang Date: 17.FEB.2025 13:40:41

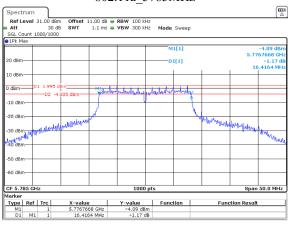
802.11ac20_5180MHz


ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 17.FEB.2025 13:45:53

802.11ac20 5240MHz

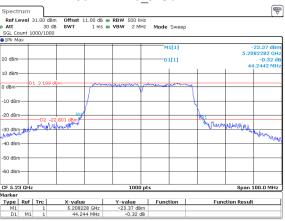

ProjectNo.:2501P28089B-RF Tester:Cheeb Huang Date: 17.FEB.2025 13:51:43

802.11ac40_5190MHz

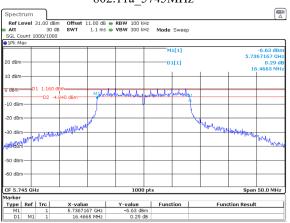

ProjectNo.:2501P28089B-RF Tester:Cheeb Huang Date: 17.FEB.2025 14:03:46

802.11ac80_5210MHz

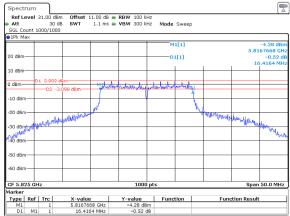
ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 17.FEB.2025 14:07:13


802.11a_5785MHz

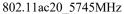
Date: 6.MAR.2025 19:34:02

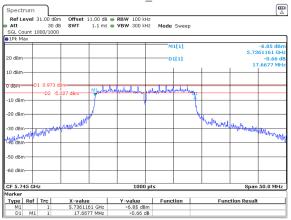

802.11ac40 5230MHz

Report No.: 2501P28089E-RF-00D

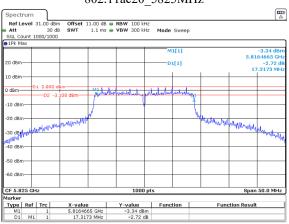

5725-5850MHz

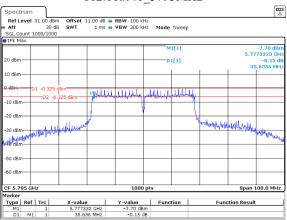
$802.11a_5745MHz$



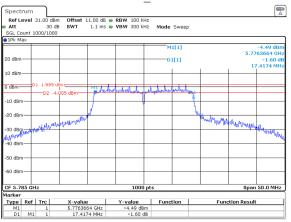

Date: 6.MAR.2025 19:32:48

802.11a 5825MHz


ProjectNo.:2501P28089B-RF Tester:Cheeb Huang Date: 6.MAR.2025 19:34:55

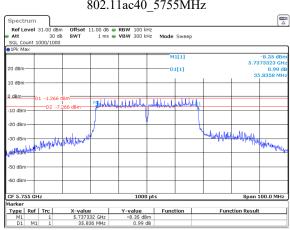

ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 6.MAR.2025 19:36:54

802.11ac20 5825MHz

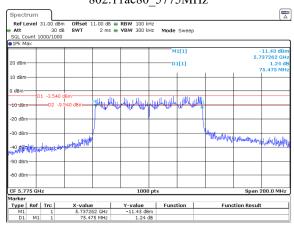


ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 6.MAR.2025 19:39:20

802.11ac40_5795MHz



802.11ac20_5785MHz



ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 6.MAR.2025 19:38:27

802.11ac40 5755MHz

802.11ac80_5775MHz

99% Occupied Bandwidth

Test Information:

Sample No.:	2Y1M-18	Test Date:	2025/02/17
Test Site:	RF	Test Mode:	Transmitting
Tester:	Cheeb Huang	Test Result:	N/A

Report No.: 2501P28089E-RF-00D

Environmental Conditions:

Temperature: (°C)	24.5-24.9	Relative Humidity: (%)	44-47	ATM Pressure: (kPa)	101.3-101.5
-------------------	-----------	------------------------------	-------	---------------------	-------------

Test Data:

5150-5250MHz

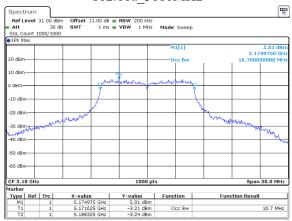
Mode	Test Frequency (MHz)	99% OBW (MHz)
	5180	16.700
802.11a	5200	16.700
	5240	16.750
	5180	17.800
802.11ac20	5200	17.850
	5240	17.800
000.11 40	5190	36.800
802.11ac40	5230	36.800
802.11ac80	5210	76.200

Report No.: 2501P28089E-RF-00D

Note:
The 99% Occupied Bandwidth have not fall into the band 5250-5350MHz, please refer to the test plots of 99% Occupied Bandwidth.

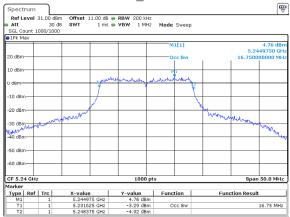
5725-5850MHz

Mode	Test Frequency (MHz)	99% OBW (MHz)
	5745	17.200
802.11a	5785	18.150
	5825	18.950
	5745	18
802.11ac20	5785	18.500
	5825	19.400
902 1140	5755	37.400
802.11ac40	5795	39.500
802.11ac80	5775	76.600

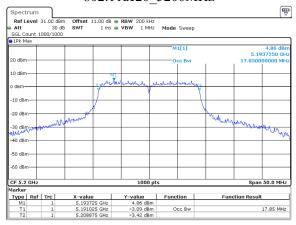

Note:

The 99% Occupied Bandwidth have not fall into the band 5470-5725MHz, please refer to the test plots of 99% Occupied Bandwidth.

TR-EM-RF015 Page 140 of 156 Version 4.0

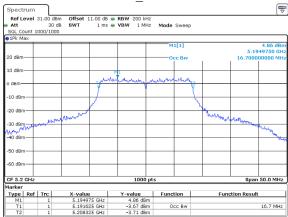

5150-5250MHz

802.11a_5180MHz

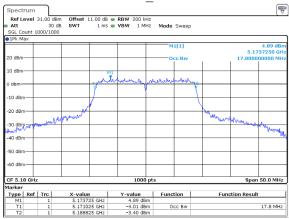

Date: 17.FEB.2025 13:38:36

802.11a_5240MHz

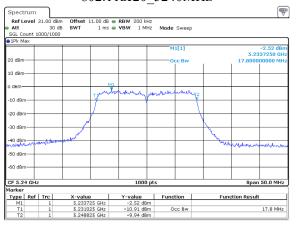
ProjectNo.:2501P28089B-RF Te Date: 17.FEB.2025 13:44:09


802.11ac20 5200MHz

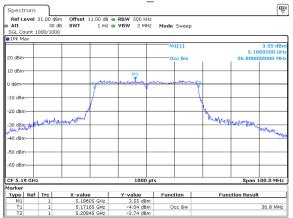
Date: 17.FEB.2025 13:49:38


$802.11a_5200MHz$

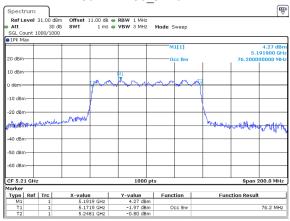
Report No.: 2501P28089E-RF-00D


Date: 17.FEB.2025 13:41:18

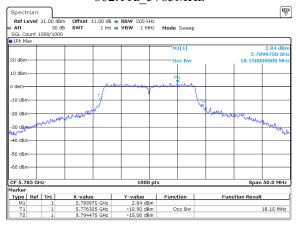
802.11ac20_5180MHz


ProjectNo.:2501P28089E-RF T Date: 17.FEB.2025 13:46:41

802.11ac20 5240MHz

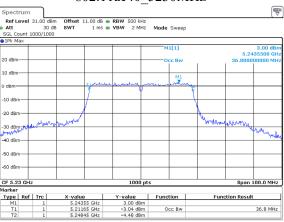

Date: 17.FEB.2025 13:52:24

802.11ac40_5190MHz

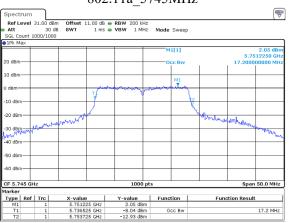

ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 17.FEB.2025 14:04:10

802.11ac80_5210MHz

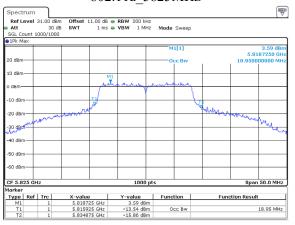
ProjectNo.:2501P28089B-RF Te Date: 17.FEB.2025 14:07:41


802.11a 5785MHz

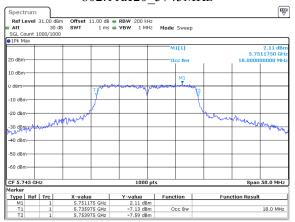
Date: 17.FEB.2025 14:35:53


802.11ac40 5230MHz

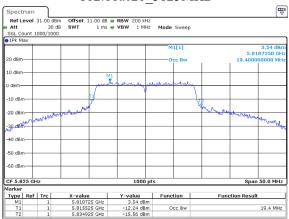
Report No.: 2501P28089E-RF-00D


5725-5850MHz

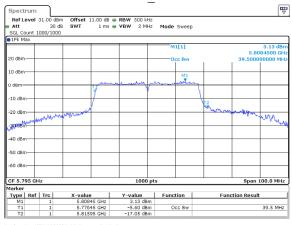
802.11a_5745MHz


ProjectNo.:2501P28089E-RF Te

802.11a 5825MHz

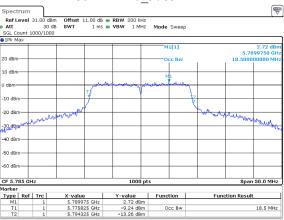

Date: 17.FEB.2025 14:39:33

802.11ac20 5745MHz

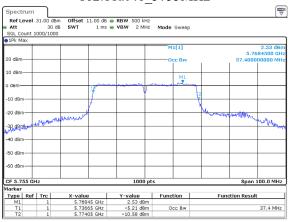

ProjectNo.:2501P28089B-RF Tester:Cheeb Huang Date: 17.FEB.2025 14:47:15

802.11ac20 5825MHz

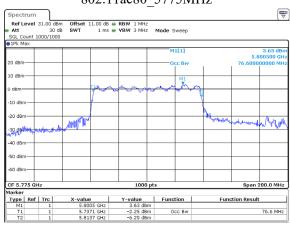
ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 17.FEB.2025 14:53:28


802.11ac40 5795MHz

ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 17.FEB.2025 15:01:19


802.11ac20 5785MHz

Report No.: 2501P28089E-RF-00D


ProjectNo.:2501P28089B-RF Tester:Cheeb Huang Date: 17.FEB.2025 14:51:08

802.11ac40 5755MHz

ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 17.FEB.2025 14:59:43

802.11ac80 5775MHz

ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 17.FEB.2025 15:11:05

Maximum Conducted Output Power

Test Information:

Sample No.:	2Y1M-18	Test Date:	2025/02/17
Test Site:	RF	Test Mode:	Transmitting
Tester:	Cheeb Huang	Test Result:	Pass

Report No.: 2501P28089E-RF-00D

Environmental Conditions:

Temperature: (°C)	24.5-24.9	Relative Humidity: (%)	44-47	ATM Pressure: (kPa)	101.3-101.5
-------------------	-----------	------------------------------	-------	---------------------	-------------

Test Data:

5150-5250MHz

Mode	Test Frequency (MHz)	Average Output Power(dBm)	Limit (dBm)	Verdict
	5180	15.00	24	Pass
802.11a	5200	14.98	24	Pass
	5240	14.36	24	Pass
	5180	15.16	24	Pass
802.11ac20	5200	15.22	24	Pass
	5240	15.11	24	Pass
802.11ac40	5190	13.62	24	Pass
60Z.11aC40	5230	13.17	24	Pass
802.11ac80	5210	12.15	24	Pass

Report No.: 2501P28089E-RF-00D

5725-5850MHz

Mode	Test Frequency (MHz)	Average Output Power(dBm)	Limit (dBm)	Verdict
	5745	12.32	30	Pass
802.11a	5785	13.08	30	Pass
	5825	13.60	30	Pass
	5745	12.35	30	Pass
802.11ac20	5785	13.53	30	Pass
	5825	13.82	30	Pass
802.11ac40	5755	12.38	30	Pass
602.11ac40	5795	12.94	30	Pass
802.11ac80	5775	11.60	30	Pass

Note:

The EUT is a client device.

Power Spectral Density

Test Information:

Sample No.:	2Y1M-18	Test Date:	2025/02/17~2025/03/06
Test Site:	RF	Test Mode:	Transmitting
Tester:	Cheeb Huang	Test Result:	Pass

Report No.: 2501P28089E-RF-00D

Environmental Conditions:

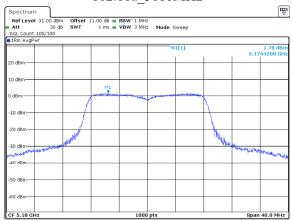
Temperature: (°C)	24.5-25.7	Relative Humidity: (%)	44-57	ATM Pressure: (kPa)	100.8-101.5
-------------------	-----------	------------------------------	-------	---------------------	-------------

Test Data:

5150-5250MHz

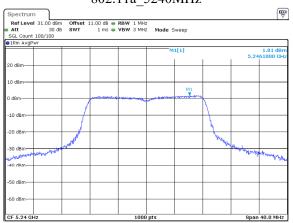
Mode	Test Frequency (MHz)	Reading (dBm/MHz)	Duty Cycle Factor(dB)	Result (dBm/MHz)	Limit (dBm/MHz)	Verdict
	5180	1.78	2.41	4.19	11	Pass
802.11a	5200	1.80	2.41	4.21	11	Pass
	5240	1.81	2.41	4.22	11	Pass
	5180	1.43	2.53	3.96	11	Pass
802.11ac20	5200	1.34	2.53	3.87	11	Pass
	5240	1.26	2.53	3.79	11	Pass
802.11ac40	5190	-4.12	4.13	0.01	11	Pass
602.11ac40	5230	-5.16	4.13	-1.03	11	Pass
802.11ac80	5210	-8.02	6.22	-1.80	11	Pass

Report No.: 2501P28089E-RF-00D


5725-5850MHz

Mode	Test Frequency (MHz)	Reading (dBm/500kHz)	Duty Cycle Factor(dB)	Result (dBm/500kHz)	Limit (dBm/500kHz)	Verdict
	5745	-3.53	2.41	-1.12	30	Pass
802.11a	5785	-2.40	2.41	0.01	30	Pass
	5825	-2.12	2.41	0.29	30	Pass
	5745	-3.97	2.53	-1.44	30	Pass
802.11ac20	5785	-3.12	2.53	-0.59	30	Pass
	5825	-2.56	2.53	-0.03	30	Pass
802.11ac40	5755	-8.73	4.13	-4.60	30	Pass
802.118040	5795	-7.74	4.13	-3.61	30	Pass
802.11ac80	5775	-12.38	6.22	-6.16	30	Pass

Result = Reading + Duty Cycle Factor


5150-5250MHz

802.11a_5180MHz

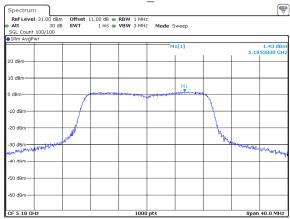
Date: 17.FEB.2025 13:38:53

802.11a_5240MHz

ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 17.FEB.2025 13:44:24

802.11ac20_5200MHz

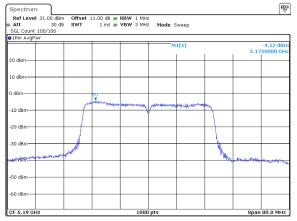
ProjectNo.:2501P28089B-RF Tester:Cheeb Huang Date: 17.FEB.2025 13:49:54


$802.11a_5200MHz$

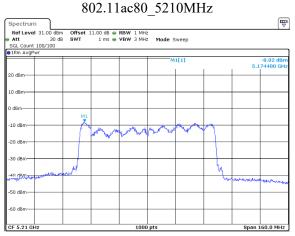
Report No.: 2501P28089E-RF-00D

ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 17.FEB.2025 13:41:34

802.11ac20_5180MHz

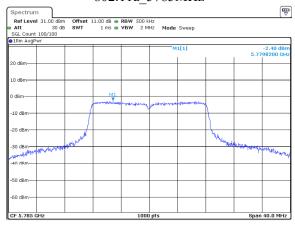

ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 17.FEB.2025 13:46:57

802.11ac20 5240MHz



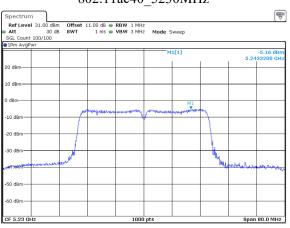
ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 6.MAR.2025 19:56:30

802.11ac40_5190MHz



ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 17.FEB.2025 14:04:27

ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 17.FEB.2025 14:07:58


802.11a_5785MHz

ProjectNo.:2501P28089B-RF Tester:Cheeb Huang Date: 17.FEB.2025 14:36:09

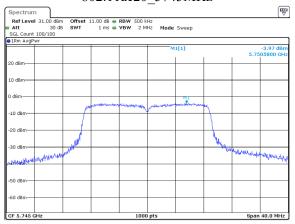
802.11ac40_5230MHz

Report No.: 2501P28089E-RF-00D

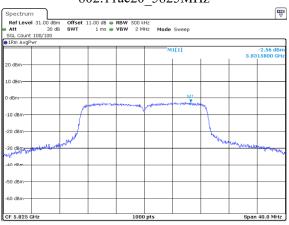
ProjectNo.:2501P28089E-RF Tester:Cheeb Huan


5725-5850MHz

802.11a_5745MHz


ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 17.FEB.2025 14:33:32

802.11a_5825MHz


ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 17.FEB.2025 14:39:49

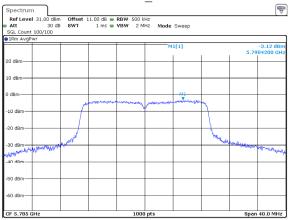
802.11ac20_5745MHz


ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 17.FEB.2025 14:47:31

802.11ac20_5825MHz

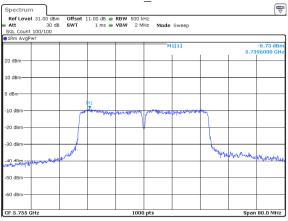
ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 17.FEB.2025 14:53:44

802.11ac40 5795MHz



ProjectNo.:2501P28089E-RF Tester:Cheeb Huang

TR-EM-RF015


802.11ac20_5785MHz

Report No.: 2501P28089E-RF-00D

ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 17.FEB.2025 14:51:24

802.11ac40_5755MHz

ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 17.FEB.2025 14:59:59

802.11ac80 5775MHz

ProjectNo.:2501P28089E-RF Tester:Cheeb Huang

Page 150 of 156

Version 4.0

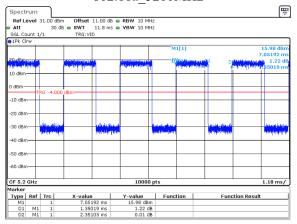
Duty Cycle

Test Information:

Sample No.:	2Y1M-18	Test Date:	2025/02/19
Test Site:	RF	Test Mode:	Transmitting
Tester:	Cheeb Huang	Test Result:	N/A

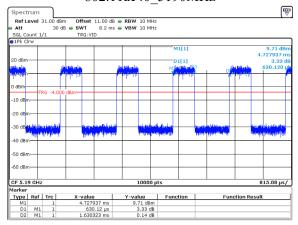
Report No.: 2501P28089E-RF-00D

Environmental Conditions:


Temperature: (°C)	24.5-24.9	Relative Humidity: (%)	44-47	ATM Pressure: (kPa)	101.3-101.5
-------------------	-----------	------------------------------	-------	---------------------	-------------

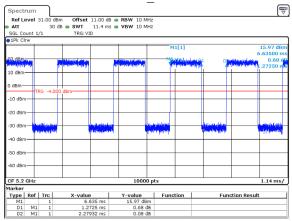
Test Data:

Mode	Test Frequency (MHz)	Ton (ms)	Ton+Toff (ms)	Duty Cycle (%)	Duty Cycle Factor(dB)	1/Ton (Hz)	VBW Setting (kHz)
802.11a	5200	1.350	2.351	57.42	2.41	741	1
802.11ac20	5200	1.273	2.279	55.86	2.53	786	1
802.11ac40	5190	0.630	1.630	38.65	4.13	1587	2
802.11ac80	5210	0.313	1.311	23.87	6.22	3195	5

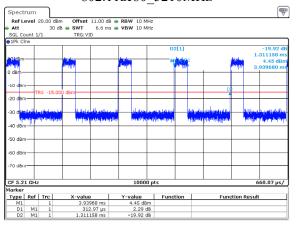

Duty Cycle = Ton/(Ton+Toff)*100%

802.11a_5200MHz

ProjectNo.:2501P28089B-RF Tester:Cheeb Huang Date: 19.FEB.2025 11:40:37


802.11ac40_5190MHz

ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 19.FEB.2025 11:45:35


 $802.11ac20_5200MHz$

Report No.: 2501P28089E-RF-00D

ProjectNo.:2501P28089B-RF Tester:Cheeb Huang Date: 19.FEB.2025 11:44:51

802.11ac80_5210MHz

ProjectNo.:2501P28089E-RF Tester:Cheeb Huang Date: 19.FEB.2025 11:48:14

RF EXPOSURE EVALUATION

MPE-Based Exemption

Applicable Standard

According to subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Report No.: 2501P28089E-RF-00D

According to KDB 447498 D04 v01 Interim General RF Exposure Guidance

MPE-Based Exemption:

General frequency and separation-distance dependent MPE-based effective radiated power(ERP) thresholds are in Table B.1 [Table 1 of § 1.1307(b)(3)(i)(C)] to support an exemption from further evaluation from 300 kHz through 100 GHz.

Table 1 to § 1.1307(b)(3)(i)(C) - Single RF Sources Subject to Routine Environmental Evaluation				
RF Source frequency (MHz)	Threshold ERP (watts)			
0.3-1.34	1,920 R ² .			
1.34-30	3,450 R ² /f ² .			
30-300	3.83 R ² .			
300-1,500	0.0128 R ² f.			
1,500-100,000	19.2R ² .			

R is the minimum separation distance in meters

f = frequency in MHz

For multiple RF sources: Multiple RF sources are exempt if:

in the case of fixed RF sources operating in the same time-averaging period, or of multiple mobile or portable RF sources within a device operating in the same time averaging period, if the sum of the fractional contributions to the applicable thresholds is less than or equal to 1 as indicated in the following equation:

$$\sum_{i=1}^{a} \frac{P_i}{P_{th,i}} + \sum_{j=1}^{b} \frac{ERP_j}{ERP_{th,j}} + \sum_{k=1}^{c} \frac{Evaluated_k}{Exposure\ Limit_k} \le 1$$

Result

			I		I			
Mode	Frequency (MHz)	Tune up conducted	Antenn	Antenna Gain#		# ERP		ERP Limit
	(141112)	power [#] (dBm)	(dBi)	(dBd)	(dBm)	(W)	(m)	(W)
BT	2402-2480	7.5	1.99	-0.16	7.34	0.005	0.2	0.768
BLE	2402-2480	3.5	1.99	-0.16	3.34	0.002	0.2	0.768
2.4G Wi-Fi	2412-2462	22.0	1.99	-0.16	21.84	0.153	0.2	0.768
5G Wi-Fi	5150-5250	15.5	3.52	1.37	16.87	0.049	0.2	0.768
og wi-ri	5725-5850	14.0	3.52	1.37	15.37	0.034	0.2	0.768

Report No.: 2501P28089E-RF-00D

Note: 1. The tune up conducted power and antenna gain was declared by the applicant. 2. The BT, 2.4G Wi-Fi and 5G Wi-Fi cannot transmit at same time.

3. 0dBd=2.15dBi

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant

Bay Area Compliance Laboratories Corp. (Shenzhen)	Report No.: 2501P28089E-RF-00D		
EUT PHOTOGRAPHS			
Please refer to the attachment 2501P28089E-RF External ph	oto and 2501P28089F-RF Internal photo		
2000, 2000, 00 mm mmmm 2001, 2000, 2 mm 2001, 2 mm 200			

TEST SETUP PHOTOGRAPHS

Please refer to the attachment 2501P28089E-RFB Test Setup photo.

***** END OF REPORT *****

Report No.: 2501P28089E-RF-00D