Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Client PG TEST Certificate No: CD1880V3-1002_Feb05 | | to report the experimental and the other manners that the experiment of experime | ත. ආකාල අතුරුතු කාලය කාලයක් දෙන දැන කතු වන කතු කතු කරන සහ | | |---|--|---|---| | Object | CD1880V3 - SN: | 1002 | | | Calibration procedure(s) | QA CAL-20 v2
Calibration proce | dure for dipoles in air | | | Calibration date: | February, 23, 200 |) 5 | | | Condition of the calibrated item | In Tolerance | | | | | cted in the closed laborator | onal standards, which realize the physical units of y facility: environment temperature $(22\pm3)^{\circ}$ C and | | | | | | | | Primary Standards | ID# | Cal Date (Calibrated by, Certificate No.) | Scheduled Calibration | | ·- · | ID #
GB37480704 | Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412) | Scheduled Calibration Oct-05 | | Power meter EPM E442 | | | | | Power meter EPM E442
Power sensor HP 8481A | GB37480704 | 12-Oct-04 (METAS, No. 251-00412) | Oct-05 | | Power meter EPM E442
Power sensor HP 8481A
Reference 20 dB Attenuator | GB37480704
US37292783 | 12-Oct-04 (METAS, No. 251-00412)
12-Oct-04 (METAS, No. 251-00412) | Oct-05
Oct-05 | | Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator | GB37480704
US37292783
SN: 5086 (20g) | 12-Oct-04 (METAS, No. 251-00412)
12-Oct-04 (METAS, No. 251-00412)
10-Aug-04 (METAS, No 251-00402) | Oct-05
Oct-05
Aug-05 | | Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ER3DV6 | GB37480704
US37292783
SN: 5086 (20g)
SN: 5047.2 (10r) | 12-Oct-04 (METAS, No. 251-00412)
12-Oct-04 (METAS, No. 251-00412)
10-Aug-04 (METAS, No 251-00402)
10-Aug-04 (METAS, No 251-00402) | Oct-05
Oct-05
Aug-05
Aug-05 | | Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ER3DV6 DAE4 | GB37480704
US37292783
SN: 5086 (20g)
SN: 5047.2 (10r)
SN 2328 | 12-Oct-04 (METAS, No. 251-00412)
12-Oct-04 (METAS, No. 251-00412)
10-Aug-04 (METAS, No 251-00402)
10-Aug-04 (METAS, No 251-00402)
06-Oct-04 (SPEAG, No. ER3-2328_Oct04) | Oct-05
Oct-05
Aug-05
Aug-05
Oct-05 | | Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards | GB37480704
US37292783
SN: 5086 (20g)
SN: 5047.2 (10r)
SN 2328
SN 601 | 12-Oct-04 (METAS, No. 251-00412)
12-Oct-04 (METAS, No. 251-00412)
10-Aug-04 (METAS, No 251-00402)
10-Aug-04 (METAS, No 251-00402)
06-Oct-04 (SPEAG, No. ER3-2328_Oct04)
07-Jan-05 (SPEAG, No. DAE4-601_Jan05) | Oct-05
Oct-05
Aug-05
Aug-05
Oct-05
Jan-06 | | Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards Power sensor HP 8481A | GB37480704
US37292783
SN: 5086 (20g)
SN: 5047.2 (10r)
SN 2328
SN 601 | 12-Oct-04 (METAS, No. 251-00412)
12-Oct-04 (METAS, No. 251-00412)
10-Aug-04 (METAS, No 251-00402)
10-Aug-04 (METAS, No 251-00402)
06-Oct-04 (SPEAG, No. ER3-2328_Oct04)
07-Jan-05 (SPEAG, No. DAE4-601_Jan05) | Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jan-06 Scheduled Check | | Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards Power sensor HP 8481A | GB37480704
US37292783
SN: 5086 (20g)
SN: 5047.2 (10r)
SN 2328
SN 601 | 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 06-Oct-04 (SPEAG, No. ER3-2328_Oct04) 07-Jan-05 (SPEAG, No. DAE4-601_Jan05) Check Date (in house) 10-Aug-03 (SPEAG, in house check Jan-04) | Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jan-06 Scheduled Check In house check: Oct-05 | | Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards Power sensor HP 8481A Power sensor HP 8481A RF generator Agilent E8251A | GB37480704
US37292783
SN: 5086 (20g)
SN: 5047.2 (10r)
SN 2328
SN 601
ID #
MY41092312
MY41093315 | 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 06-Oct-04 (SPEAG, No. ER3-2328_Oct04) 07-Jan-05 (SPEAG, No. DAE4-601_Jan05) Check Date (in house) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (SPEAG, in house check Jan-04) | Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jan-06 Scheduled Check In house check: Oct-05 In house check: Aug-05 In house check: Nov-05 | | Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards Power sensor HP 8481A Power sensor HP 8481A RF generator Agilent E8251A Network Analyzer HP 8753E | GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 2328 SN 601 ID # MY41092312 MY41093315 US41140111 | 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 06-Oct-04 (SPEAG, No. ER3-2328_Oct04) 07-Jan-05 (SPEAG, No. DAE4-601_Jan05) Check Date (in house) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (Agilent) | Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jan-06 Scheduled Check In house check: Oct-05 In house check: Aug-05 | | Primary Standards Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards Power sensor HP 8481A Power sensor HP 8481A RF generator Agilent E8251A Network Analyzer HP 8753E Probe H3DV6 | GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 2328 SN 601 ID # MY41092312 MY41093315 US41140111 US37390585 S4206 SN: 6065 Name | 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 06-Oct-04 (SPEAG, No. ER3-2328_Oct04) 07-Jan-05 (SPEAG, No. DAE4-601_Jan05) Check Date (in house) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (Agilent) 18-Oct-01 (SPEAG, in house check Nov-04) 10-Oct-04 (SPEAG, No. H3-6065-Oct04) | Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jan-06 Scheduled Check In house check: Oct-05 In house check: Aug-05 In house check: Nov-05 | | Power meter EPM E442 Power sensor HP 8481A Reference 20 dB Attenuator Reference 10 dB Attenuator Reference Probe ER3DV6 DAE4 Secondary Standards Power sensor HP 8481A Power sensor HP 8481A RF generator Agilent E8251A Network Analyzer HP 8753E | GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 2328 SN 601 ID # MY41092312 MY41093315 US41140111 US37390585 S4206 SN: 6065 | 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 06-Oct-04 (SPEAG, No. ER3-2328_Oct04) 07-Jan-05 (SPEAG, No. DAE4-601_Jan05) Check Date (in house) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (SPEAG, in house check Jan-04) 4-Aug-03 (Agilent) 18-Oct-01 (SPEAG, in house check Nov-04) 10-Oct-04 (SPEAG, No. H3-6065-Oct04) | Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jan-06 Scheduled Check In house check: Oct-05 In house check: Oct-05 In house check: Aug-05 In house check: Nov-05 Calibration, Oct-05 | Issued: February 27, 2005 This calibration certificate is issued as an intermediate solution until the specific calibration procedure is submitted and accepted in the frame of the accreditation of the Calibration Laboratory of Schmid & Partner Engineering AG (based on ISO/IEC 17025 International Standard) Certificate No: CD1880V3-1002_Feb05 Page 1 of 6 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland #### References [1] ANSI-PC63.19-2003 (Draft) American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. ### **Methods Applied and Interpretation of Parameters:** - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with standard [1], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the the top edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY4 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E- field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface. - H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the feed point. Certificate No: CD1880V3-1002 Feb05 Page 2 of 6 ### 1 Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY4 | V4.5 B13 | |------------------------------------|------------------|----------------------| | DASY PP Version | SEMCAD | V1.8 B144 | | Phantom | HAC Test Arch | SD HAC P01 BA, #1002 | | Distance Dipole Top - Probe Center | 10 mm | | | Scan resolution | dx, dy = 5 mm | area = 20 x 90 mm | | Frequency | 1880 MHz ± 1 MHz | | | Forward power at dipole connector | 20.0 dBm = 100mW | | | Input power drift | < 0.05 dB | | | | | | ### 2 Maximum Field values | H-field 10 mm above dipole surface | condition | interpolated maximum | |------------------------------------|----------------------|----------------------| | Maximum measured | 100 mW forward power | 0.450 A/m | Uncertainty for H-field measurement: 19.5% (k=2) | E-field 10 mm above dipole surface | condition | interpolated maximum | |------------------------------------|----------------------|----------------------| | Maximum measured above high end | 100 mW forward power | 146.0 V/m | | Maximum measured above low end | 100 mW forward power | 145.6 V/m | | Averaged maximum above arm | 100 mW forward power | 145.8 V/m | Uncertainty for E-field measurement: 21.7% (k=2) ### 3 Appendix ### 3.1 Antenna Parameters | Frequency | Return Loss | Impedance | |-----------|-------------|---------------------| | 1710 MHz | 23.4 dB | (55.2 + j6.1) Ohm | | 1880 MHz | 21.4 dB | (53.9 + j7.4) Ohm | | 1900 MHz | 20.9 dB | (55.8 + j6.7) Ohm | | 1950 MHz | 28.0 dB | (54.1 + j1.9) Ohm | | 2000 MHz | 18.9 dB | (51.2 + j11.9) Ohm | ### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. Certificate No: CD1880V3-1002_Feb05 Page 3 of 6 #### 3.3 Measurement Sheets ### 3.3.1 Return Loss and Smith Chart ### 3.3.2 DASY4 H-field result See page 5 ## 3.3.3 DASY4 E-Field result See page 6 Test Laboratory: SPEAG, Zurich, Switzerland File Name: H CD1880 1002 050223.da4 DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1002 **Program Name: HAC H Dipole** Communication System: CW; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$; mho/m, $\varepsilon_r = 1$; $\rho = 1$ kg/m³ Phantom section: H Dipole Section ### **DASY4** Configuration: - Probe: H3DV6 - SN6065; ; Calibrated: 10.12.2004 - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn901; Calibrated: 29.06.2004 - Phantom: HAC Phantom; Type: SD HAC P01 BA; - Measurement SW: DASY4, V4.5 Build 13; Postprocessing SW: SEMCAD, V1.8 Build 144 # H Scan 10mm above CD 1880 MHz/Hearing Aid Compatibility Test (41x181x1): Measurement grid: dx=5mm, dy=5mm, dz=5.5555mm Maximum value of Total field (slot averaged) = 0.450 A/m Hearing Aid Near-Field Category: M2 (AWF 0 dB) H in A/m (Time averaged) H in A/m (Slot averaged) | Grid 1 | Grid 2 | Grid 3 | Grid 1 | Grid 2 | Grid 3 | |--------|--------|--------|--------|--------|--------| | 0.385 | 0.413 | 0.395 | 0.385 | 0.413 | 0.395 | | Grid 4 | Grid 5 | Grid 6 | Grid 4 | Grid 5 | Grid 6 | | 0.421 | 0.450 | 0.432 | 0.421 | 0.450 | 0.432 | | Grid 7 | Grid 8 | Grid 9 | Grid 7 | Grid 8 | Grid 9 | | 0.376 | 0.401 | 0.386 | 0.376 | 0.401 | 0.386 | 0 dB = 0.450 A/m Test Laboratory: SPEAG, Zurich, Switzerland File Name; E. CD1880 1002 050223.da4 DUT: HAC Dipole 1880 MHz; Type: CD1880V3; Serial: 1002 Program Name: HAC E Dipole Communication System: CW; Frequency: 1880 MHz;Duty Cycle: 1:1 Medium parameters used: σ = 0; mho/m, ε_r = 1; p = 1000 kg/m³ Phantom section: E Dipole Section ### DASY4 Configuration: - Probe: ER3DV6 - SN2328; ConvF(1, 1, 1); Calibrated: 06.10.2004 - Sensor-Surface: (Fix Surface) Electronics: DAE4 Sn901; Calibrated: 29.06.2004 Phantom: HAC Phantom; Type: SD HAC P01 BA; Measurement SW: DASY4, V4.5 Build 13; Postprocessing SW: SEMCAD, V1.8 Build 144 # E Scan 10mm above CD 1880 MHz/Hearing Aid Compatibility Test (41x181x1): Measurement grid: dx=5mm, dy=5mm, dz=5.5555mm Maximum value of Total field (slot averaged) = 146.0 V/m Hearing Aid Near-Field Category: M2 (AWF 0 dB) E in V/m (Time averaged) E in V/m (Slot averaged) | | Grid 2 | | |--------|--------|--------| | 128.7 | 145.6 | 130.5 | | Grid 4 | Grid 5 | Grid 6 | | 90.1 | 92.4 | 88.8 | | Grid 7 | Grid 8 | Grid 9 | | 126.7 | 146.0 | 131.8 | | Grid 1 | Grid 2 | Grid 3 | |--------|-----------------------|--------| | 128.7 | 145.6 | 130.5 | | Grid 4 | Grid 5 | Grid 6 | | | | | | 90.1 | 92.4 | 88.8 | | | 92.4
Grid 8 | | 0 dB = 146.0 V/m Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Client PC TEST Centificate No: (CD835)V3:1003 Feb05 | yarietyationi | | | | |---|---|--|---| | Object | CD835V3 - SN: 1 | 003 | | | Calibration procedure(s) | QA CAL-20 v2
Calibration proce | dure for dipoles in air. | | | Calibration date: | February, 23, 200 | 95 | | | Condition of the calibrated item | In Tolerance | | | | | | | 4 (61) | | | cted in the closed laborator | onal standards, which realize the physical units of
y facility: environment temperature (22 ± 3)°C and | | | all calibrations have been condu | cted in the closed laborator | | | | Il calibrations have been conducation Equipment used (M& | cted in the closed laborator TE critical for calibration) | y facility: environment temperature (22 ± 3)°C and | I humidity < 70%. | | Il calibrations have been condu
alibration Equipment used (M&
rimary Standards
ower meter EPM E442 | cted in the closed laborator TE critical for calibration) ID # | y facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) | humidity < 70%. Scheduled Calibration | | Il calibrations have been condu
alibration Equipment used (M&
rimary Standards
ower meter EPM E442
ower sensor HP 8481A | TE critical for calibration) ID # GB37480704 | y facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412) | Scheduled Calibration Oct-05 | | Il calibrations have been conductalibration Equipment used (M& rimary Standards ower meter EPM E442 ower sensor HP 8481A deference 20 dB Attenuator | TE critical for calibration) ID # GB37480704 US37292783 | y facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) | Scheduled Calibration Oct-05 Oct-05 | | Il calibrations have been conductalibration Equipment used (M& rimary Standards ower meter EPM E442 ower sensor HP 8481A deference 20 dB Attenuator deference 10 dB Attenuator | TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) | y facility: environment temperature (22 ± 3)°C and Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) | Scheduled Calibration Oct-05 Oct-05 Aug-05 | | Il calibrations have been conductalibration Equipment used (M& rimary Standards ower meter EPM E442 ower sensor HP 8481A deference 20 dB Attenuator deference 10 dB Attenuator deference Probe ER3DV6 | TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) | Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No. 251-00402) 10-Aug-04 (METAS, No 251-00402) | Scheduled Calibration Oct-05 Oct-05 Aug-05 Aug-05 | | Il calibrations have been conductalibration Equipment used (M&rimary Standards ower meter EPM E442 ower sensor HP 8481A eference 20 dB Attenuator eference 10 dB Attenuator eference Probe ER3DV6 AE4 | TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 2328 | Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 06-Oct-04 (SPEAG, No. ER3-2328_Oct04) | Scheduled Calibration Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 | | Il calibrations have been conductalibration Equipment used (M&rimary Standards ower meter EPM E442 ower sensor HP 8481A deference 20 dB Attenuator deference 10 dB Attenuator deference Probe ER3DV6 dAE4 decondary Standards | TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 2328 SN 601 | Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 06-Oct-04 (SPEAG, No. ER3-2328_Oct04) 07-Jan-05 (SPEAG, No. DAE4-601_Jan05) | Scheduled Calibration Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jan-06 | | Il calibrations have been conductalibration Equipment used (M&rimary Standards ower meter EPM E442 ower sensor HP 8481A eference 20 dB Attenuator eference 10 dB Attenuator eference Probe ER3DV6 AE4 econdary Standards ower sensor HP 8481A | TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 2328 SN 601 | Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 06-Oct-04 (SPEAG, No. ER3-2328_Oct04) 07-Jan-05 (SPEAG, No. DAE4-601_Jan05) Check Date (in house) | Scheduled Calibration Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jan-06 Scheduled Check | | alibrations have been conductal calibration Equipment used (M& rimary Standards ower meter EPM E442 ower sensor HP 8481A deference 20 dB Attenuator deference 10 dB Attenuator deference Probe ER3DV6 AE4 decondary Standards ower sensor HP 8481A | ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 2328 SN 601 ID # MY41092312 | Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 06-Oct-04 (SPEAG, No. ER3-2328_Oct04) 07-Jan-05 (SPEAG, No. DAE4-601_Jan05) Check Date (in house) 10-Aug-03 (SPEAG, in house check Jan-04) | Scheduled Calibration Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jan-06 Scheduled Check In house check: Oct-05 In house check: Aug-05 | | alibrations have been conductal alibration Equipment used (M& rimary Standards ower meter EPM E442 ower sensor HP 8481A deference 20 dB Attenuator deference 10 dB Attenuator deference Probe ER3DV6 AE4 decondary Standards ower sensor HP 8481A ower sensor HP 8481A ower sensor HP 8481A | TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 2328 SN 601 ID # MY41092312 MY41093315 | Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 06-Oct-04 (SPEAG, No. ER3-2328_Oct04) 07-Jan-05 (SPEAG, No. DAE4-601_Jan05) Check Date (in house) 10-Aug-03 (SPEAG, in house check Jan-04) 10-Aug-03 (SPEAG, in house check Jan-04) | Scheduled Calibration Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jan-06 Scheduled Check In house check: Oct-05 In house check: Oct-05 | | Il calibrations have been condu | TE critical for calibration) ID # GB37480704 US37292783 SN: 5086 (20g) SN: 5047.2 (10r) SN 2328 SN 601 ID # MY41092312 MY41093315 US41140111 | Cal Date (Calibrated by, Certificate No.) 12-Oct-04 (METAS, No. 251-00412) 12-Oct-04 (METAS, No. 251-00412) 10-Aug-04 (METAS, No 251-00402) 10-Aug-04 (METAS, No 251-00402) 06-Oct-04 (SPEAG, No. ER3-2328_Oct04) 07-Jan-05 (SPEAG, No. DAE4-601_Jan05) Check Date (in house) 10-Aug-03 (SPEAG, in house check Jan-04) 4-Aug-03 (Agilent) | Scheduled Calibration Oct-05 Oct-05 Aug-05 Aug-05 Oct-05 Jan-06 Scheduled Check In house check: Oct-05 In house check: Aug-05 | Issued: February 27, 2005 This calibration certificate is issued as an intermediate solution until the specific calibration procedure is submitted and accepted in the frame of the accreditation of the Calibration Laboratory of Schmid & Partner Engineering AG (based on ISO/IEC 17025 International Standard) Approved by: Fin Bomholt Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland #### References [1] ANSI-PC63.19-2003 (Draft) American National Standard for Methods of Measurement of Compatibility between Wireless Communications Devices and Hearing Aids. ## Methods Applied and Interpretation of Parameters: - Coordinate System: y-axis is in the direction of the dipole arms. z-axis is from the basis of the antenna (mounted on the table) towards its feed point between the two dipole arms. x-axis is normal to the other axes. In coincidence with standard [1], the measurement planes (probe sensor center) are selected to be at a distance of 10 mm above the the top edge of the dipole arms. - Measurement Conditions: Further details are available from the hardcopies at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. The forward power to the dipole connector is set with a calibrated power meter connected and monitored with an auxiliary power meter connected to a directional coupler. While the dipole under test is connected, the forward power is adjusted to the same level. - Antenna Positioning: The dipole is mounted on a HAC Test Arch phantom using the matching dipole positioner with the arms horizontal and the feeding cable coming from the floor. The measurements are performed in a shielded room with absorbers around the setup to reduce the reflections. It is verified before the mounting of the dipole under the Test Arch phantom, that its arms are perfectly in a line. It is installed on the HAC dipole positioner with its arms parallel below the dielectric reference wire and able to move elastically in vertical direction without changing its relative position to the top center of the Test Arch phantom. The vertical distance to the probe is adjusted after dipole mounting with a DASY4 Surface Check job. Before the measurement, the distance between phantom surface and probe tip is verified. The proper measurement distance is selected by choosing the matching section of the HAC Test Arch phantom with the proper device reference point (upper surface of the dipole) and the matching grid reference point (tip of the probe) considering the probe sensor offset. The vertical distance to the probe is essential for the accuracy. - Feed Point Impedance and Return Loss: These parameters are measured using a HP 8753E Vector Network Analyzer. The impedance is specified at the SMA connector of the dipole. The influence of reflections was eliminating by applying the averaging function while moving the dipole in the air, at least 70cm away from any obstacles. - E- field distribution: E field is measured in the x-y-plane with an isotropic ER3D-field probe with 100 mW forward power to the antenna feed point. In accordance with [1], the scan area is 20mm wide, its length exceeds the dipole arm length (180 or 90mm). The sensor center is 10 mm (in z) above the top of the dipole arms. Two 3D maxima are available near the end of the dipole arms. Assuming the dipole arms are perfectly in one line, the average of these two maxima (in subgrid 2 and subgrid 8) is determined to compensate for any non-parallelity to the measurement plane as well as the sensor displacement. The E-field value stated as calibration value represents the maximum of the interpolated 3D-E-field, 10mm above the dipole surface. - H-field distribution: H-field is measured with an isotropic H-field probe with 100mW forward power to the antenna feed point, in the x-y-plane. The scan area and sensor distance is equivalent to the E-field scan. The maximum of the field is available at the center (subgrid 5) above the feed point. The H-field value stated as calibration value represents the maximum of the interpolated H-field, 10mm above the dipole surface at the feed point. Page 2 of 6 #### 1 Measurement Conditions DASY system configuration, as far as not given on page 1. | DASY Version | DASY4 | V4.5 B13 | |---------------------------------------|------------------|----------------------| | DASY PP Version | SEMCAD | V1.8 B144 | | Phantom | HAC Test Arch | SD HAC P01 BA, #1002 | | Distance Dipole Top - Probe
Center | 10 mm | | | Scan resolution | dx, $dy = 5 mm$ | area = 20 x 180 mm | | Frequency | 835 MHz ± 1 MHz | | | Forward power at dipole
connector | 20.0 dBm = 100mW | | | Input power drift | < 0.05 dB | | ### 2 Maximum Field values | H-field 10 mm above dipole surface | condition | interpolated maximum | |------------------------------------|----------------------|----------------------| | Maximum measured | 100 mW forward power | 0.470 A/m | Uncertainty for H-field measurement: 19.5% (k=2) | E-field 10 mm above dipole surface | condition | interpolated maximum | |------------------------------------|----------------------|----------------------| | Maximum measured above high end | 100 mW forward power | 187.0 V/m | | Maximum measured above low end | 100 mW forward power | 183.2 V/m | | Averaged maximum above arm | 100 mW forward power | 185.1 V/m | Uncertainty for E-field measurement: 21.7% (k=2) ### 3 Appendix ### 3.1 Antenna Parameters | Frequency | Return Loss | Impedance | |-----------|-------------|----------------------| | 800 MHz | 16.6 dB | (40.5 - j9.6) Ohm | | 835 MHz | 25.2 dB | (55.3 + j2.4) Ohm | | 900 MHz | 16.6 dB | (52.7 - j15.2) Ohm | | 950 MHz | 25.1 dB | (50.9 + j5.5) Ohm | | 960 MHz | 17.2 dB | (61.0 + j10.9) Ohm | ### 3.2 Antenna Design and Handling The calibration dipole has a symmetric geometry with a built-in two stub matching network, which leads to the enhanced bandwidth. The dipole is built of standard semirigid coaxial cable. The internal matching line is open ended. The antenna is therefore open for DC signals. Do not apply force to dipole arms, as they are liable to bend. The soldered connections near the feedpoint may be damaged. After excessive mechanical stress or overheating, check the impedance characteristics to ensure that the internal matching network is not affected. After long term use with 40W radiated power, only a slight warming of the dipole near the feedpoint can be measured. ### 3.3 Measurement Sheets ## 3.3.1 Return Loss and Smith Chart ### 3.3.2 DASY4 H-field result See page 5 ## 3.3.3 DASY4 E-Field result See page 6 Test Laboratory: SPEAG, Zurich, Switzerland File Name: H CD835 1003 050222.da4 DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1003 Program Name: HAC H Dipole Communication System: CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$; mho/m, $\varepsilon_r = 1$; $\rho = 1 \text{ kg/m}^3$ Phantom section: H Dipole Section ### DASY4 Configuration: - Probe: H3DV6 - SN6065; ; Calibrated: 10.12.2004 - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn901; Calibrated: 29.06.2004 - Phantom: HAC Phantom; Type: SD HAC P01 BA; Serial: 1002 - Measurement SW: DASY4, V4.5 Build 13; Postprocessing SW: SEMCAD, V1.8 Build 144 # H Scan 10mm above CD 835 MHz/Hearing Aid Compatibility Test (41x361x1): Measurement grid: dx=5mm, dy=5mm, dz=5.5555mm Maximum value of Total field (slot averaged) = 0.470 A/m Hearing Aid Near-Field Category: M2 (AWF 0 dB) H in A/m (Time averaged) H in A/m (Slot averaged) | Grid 1 | Grid 2 | Grid 3 | G | |--------|--------|--------|----| | 0.365 | 0.397 | 0.380 | 0 | | Grid 4 | Grid 5 | Grid 6 | G | | 0.408 | 0.470 | 0.425 | 0. | | Grid 7 | Grid 8 | Grid 9 | G | | 0.350 | 0.380 | 0.368 | 0. | | Grid 1 | Grid 2 | Grid 3 | |--------|--------|--------| | 0.365 | 0.397 | 0.380 | | Grid 4 | Grid 5 | Grid 6 | | 0.408 | 0.470 | 0.425 | | Grid 7 | Grid 8 | Grid 9 | | 0.350 | 0.380 | 0.368 | 0 dB = 0.470 A/m Test Laboratory: SPEAG, Zurich, Switzerland File Name: E CD835 1003 050223.da4 DUT: HAC-Dipole 835 MHz; Type: D835V3; Serial: 1003 Program Name: HAC E Dipole Communication System: CW; Frequency: 835 MHz;Duty Cycle: 1:1 Medium parameters used: $\sigma = 0$; mho/m, $\varepsilon_r = 1$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: E Dipole Section ### DASY4 Configuration: - Probe: ER3DV6 SN2328; ConvF(1, 1, 1); Calibrated: 06.10.2004 - Sensor-Surface: (Fix Surface) - Electronics: DAE4 Sn901; Calibrated: 29.06.2004 - Phantom: HAC Phantom; Type: SD HAC P01 BA; Serial: 1002 - Measurement SW: DASY4, V4.5 Build 13; Postprocessing SW: SEMCAD, V1.8 Build 144 # E Scan 10mm above CD 835 MHz/Hearing Aid Compatibility Test (41x361x1): Measurement grid: dx=5mm, dy=5mm, dz=5.5555mm Maximum value of Total field (slot averaged) - 187.0 V/m Hearing Aid Near-Field Category: M2 (AWF 0 dB) E in V/m (Time averaged) E in V/m (Slot averaged) | Grid 1 | Grid 2 | Grid 3 | |--------|----------------|--------| | 156.0 | 187.0 | 150.1 | | Grid 4 | Grid 5 | Grid 6 | | | | | | 83.6 | 84.8 | 80.4 | | | 84.8
Grid 8 | | | Grid 1 | Grid 2 | Grid 3 | |--------|----------------|--------| | 156.0 | 187.0 | 150.1 | | Grid 4 | Grid 5 | Grid 6 | | | | | | 83.6 | 84.8 | 80.4 | | | 84.8
Grid 8 | | 0 dB = 187.0 V/m