FCC TEST REPORT						
	FCC ID: 2AUARTK662					
Report No. :	SSP25030083-1E					
Applicant :	THINKCAR TECH CO., LTD.					
Product Name :	Automotive Diagnostic Tool					
Model Name :	TK662					
Test Standard :	FCC Part 15.247					
Date of Issue :	2025-03-26					
CCUT						
Shenzhen CCUT Quality Technology Co., Ltd.						
1F, Building 35, Changxing Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China; (Tel.:+86-755-23406590 website: www.ccuttest.com)						
This test report is limited to the above client company and the product model only. It may not be duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd.						

Test Report Basic Information

Applicant: Address of Applicant	THINKCAR TECH CO., LTD. 2606, building 4, phase II, TiananYungu, Gangtou community, Bantian, Longgang District, Shenzhen, China			
Manufacturer: Address of Manufacturer:	THINKCAR TECH CO., LTD. 2606, building 4, phase II, TiananYungu, Gangtou community, Bantian, Longgang District, Shenzhen, China			
Product Name:	Automotive Diagnostic Tool			
Brand Name:	THINKCAR, XHINKCAR, MUCAR			
Main Model	TK662			
Series Models	MU64SYS			
Test Standard	FCC Part 15 Subpart C ANSI C63.4-2014			
Date of Test	ANSI C63.10-2013 2025-03-11 to 2025-03-26			
Test Result	PASS			
Tested By:	Coke Huang (Coke Huang)			
Reviewed By:	Lieber Ouyang (Lieber Ouyang)			
Authorized Signatory	Lahm Peng (Lahm Peng)			
-	to the above client company and the product model only. It may not be			
duplicated without prior permitted by Shenzhen CCUT Quality Technology Co., Ltd All test data presented in				
this test report is only applicable to presented test sample.				

CONTENTS

1. General Information	5
1.1 Product Information	5
1.2 Test Setup Information	
1.3 Compliance Standards	
1.4 Test Facilities	
1.5 List of Measurement Instruments	-
1.6 Measurement Uncertainty	
2. Summary of Test Results	
3. Antenna Requirement	
3.1 Standard and Limit	
3.2 Test Result	
4. Conducted Emissions	
4.1 Standard and Limit	
4.2 Test Procedure	
4.3 Test Data and Results	
5. Radiated Emissions	
5.1 Standard and Limit	
5.2 Test Procedure 5.3 Test Data and Results	
6. Band-edge Emissions(Radiated)	
6.1 Standard and Limit 6.2 Test Procedure	
6.3 Test Data and Results	
7. Frequency Hopping System	
7.1 Standard and Limit	
7.1 Standard and Limit	
7.3 Test Data and Results	
8. Dwell Time	
0. D wen Timenningen in internet intern	
8.1 Standard and Limit	
8.1 Standard and Limit	26
8.2 Test Procedure	26 26
8.2 Test Procedure 8.3 Test Data and Results	26 26 27
8.2 Test Procedure8.3 Test Data and Results9. Maximum Peak Conducted Output Power	
 8.2 Test Procedure	
8.2 Test Procedure8.3 Test Data and Results9. Maximum Peak Conducted Output Power	
 8.2 Test Procedure	26 27 31 31 31 31 31
 8.2 Test Procedure	26 26 27 31 31 31 31 31 31 34
 8.2 Test Procedure	26 26 27 31 31 31 31 31 31 34 34
 8.2 Test Procedure	26 26 27 31 31 31 31 31 34 34 34 34 34
 8.2 Test Procedure	26 26 27 31 31 31 31 31 34 34 34 34 34
 8.2 Test Procedure	26 26 27 31 31 31 31 31 34 34 34 34 34 38
 8.2 Test Procedure	26 26 27 31 31 31 31 31 34 34 34 34 34 34 38 38 38 38
 8.2 Test Procedure	26 26 27 31 31 31 31 31 34 34 34 34 34 34 34 34 38 38 38 38
 8.2 Test Procedure	26 26 27 31 31 31 31 31 34 34 34 34 34 34 34 34 34 34 34 34 34
 8.2 Test Procedure	26 26 27 31 31 31 31 31 34 34 34 34 34 34 34 34 34 34 34 34 34
 8.2 Test Procedure	26 26 27 31 31 31 31 31 34 34 34 34 34 34 34 34 34 34 34 34 34
 8.2 Test Procedure	26 26 27 31 31 31 31 34 34 34 34 34 34 34 34 34 34 34 34 34
 8.2 Test Procedure	26 26 27 31 31 31 31 31 34 34 34 34 34 34 34 34 34 34 34 34 34
 8.2 Test Procedure	26 26 27 31 31 31 31 34 34 34 34 34 34 34 34 34 34 34 34 34

Revision History

Revision	Issue Date	Description	Revised By
V1.0	2025-03-26	Initial Release	Lahm Peng

1. General Information

1.1 Product Information

Product Name:	Automotive Diagnostic Tool		
Trade Name:	THINKCAR, XHINKCAR, MUCAR		
Main Model:	TK662		
Series Models:	MU64SYS		
Rated Voltage:	DC 3.8V by battery, USB 5V Charing		
Power Adapter:	-		
Battery:	DC 3.8V, 4150mAh		
Test Sample No:	SSP25030083-1		
Hardware Version:	V1.0		
Software Version:	V1.0		
Note 1: The test data is gathered from a production sample, provided by the manufacturer.			
Note 2: The color of appearance and model name of series models listed are different from the main model,			
but the circuit and the electronic construction are the same, declared by the manufacturer.			

Wireless Specification	
Wireless Standard:	Bluetooth BR/EDR
Operating Frequency:	2402MHz ~ 2480MHz
RF Output Power:	-1.16dBm
Number of Channel:	79
Channel Separation:	1MHz
Modulation:	GFSK, Pi/4 DQPSK, 8DPSK
Antenna Gain:	2.75dBi
Type of Antenna:	FPCB Antenna
Type of Device:	Portable Device Device Mobile Device

1.2 Test Setup Information

List of Test Modes							
Test Mode	Description			Remark			
TM1	Low	est Channel		2402MHz(DH5/2DH5/3DH5)			
TM2	Mide	dle Channel		2441MHz(DH5/2D	H5/3DH5)		
TM3	High	est Channel		2480MHz(DH5/2D	H5/3DH5)		
TM4	H	lopping		2402MHz~248	30MHz		
List and Detai	ls of Auxiliary	v Cable					
Descrip	ption	Length (cm)		Shielded/Unshielded	With/Without Ferrite		
USB ca	able	100		Unshielded	Without Ferrite		
-		-		-	-		
List and Detai	ls of Auxiliary	/ Equipment					
Descrij	ption	Manufacturer		Manufacturer		Model	Serial Number
Adap	ter	HUAWEI		HW-110600C02	JL28L4P2D06114		
-		-		-	-		
Test Software & Power level setup of EUT							
	Test Software			Power level setup			
EngineerMode				0			

List of Channels							
No. of	Frequency	No. of	Frequency	No. of	Frequency	No. of	Frequency
Channel	(MHz)	Channel	(MHz)	Channel	(MHz)	Channel	(MHz)
01	2402	21	2422	41	2442	61	2462
02	2403	22	2423	42	2443	62	2463
03	2404	23	2424	43	2444	63	2464
04	2405	24	2425	44	2445	64	2465
05	2406	25	2426	45	2446	65	2466
~	~	~	~	~	~	~	~
16	2417	36	2437	56	2457	76	2477
17	2418	37	2438	57	2458	77	2478
18	2419	38	2439	58	2459	78	2479
19	2420	39	2440	59	2460	79	2480
20	2421	40	2441	60	2461		

1.3 Compliance Standards

Compliance Standards			
FCC Part 15 Subpart C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
	Intentional Radiators		
All measurements contained in this	report were conducted with all above standards		
According to standards for test	nethodology		
ECC Dort 15 Submort C	FEDERAL COMMUNICATIONS COMMISSION, RADIO FREQUENCY DEVICES,		
FCC Part 15 Subpart C	Intentional Radiators		
	American National Standard for Methods of Measurement of Radio-Noise Emissions		
ANSI C63.4-2014	from Low-Voltage Electrical and Electronic Equipment in the range of 9 kHz to 40		
	GHz.		
ANSI C63.10-2013	American National Standard of Procedures for Compliance Testing of Unlicensed		
ANSI C63.10-2015	Wireless Devices		
Maintenance of compliance is the responsibility of the manufacturer or applicant. Any modification of the product, which			
result is lowering the emission, should be checked to ensure compliance has been maintained.			

1.4 Test Facilities

	Shenzhen CCUT Quality Technology Co., Ltd.			
Laboratory Name:	1F, Building 35, Changxing Technology Industrial Park, Yutang Street,			
	Guangming District, Shenzhen, Guangdong, China			
CNAS Laboratory No.:	L18863			
A2LA Certificate No.:	6893.01			
FCC Registration No:	583813			
ISED Registration No.:	CN0164			
All measurement facilities used to collect the measurement data are located at 1F, Building 35, Changxing				
Technology Industrial Park, Yutang Street, Guangming District, Shenzhen, Guangdong, China.				

1.5 List of Measurement Instruments

Description	Manufacturer	Model	Serial Number	Cal. Date	Due. Date	
Conducted Emissions						
AMN	ROHDE&SCHWARZ	ENV216	101097	2024-08-07	2025-08-06	
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100242	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 5	N/A	2024-08-07	2025-08-06	
EMI Test Software	FARA	EZ-EMC	EMEC-3A1+	N/A	N/A	
	·	Radiated Emission	S			
EMI Test Receiver	ROHDE&SCHWARZ	ESPI	100154	2024-08-07	2025-08-06	
Spectrum Analyzer	KEYSIGHT	N9020A	MY48030972	2024-08-07	2025-08-06	
Spectrum Analyzer	ROHDE&SCHWARZ	FSV40-N	101692	2024-08-07	2025-08-06	
Amplifier	SCHWARZBECK	BBV 9743B	00251	2024-08-07	2025-08-06	
Amplifier	HUABO	YXL0518-2.5-45		2024-08-07	2025-08-06	
Amplifier	COM-MW	DLAN-18G-4G-02	10229104	2024-08-07	2025-08-06	
Loop Antenna	DAZE	ZN30900C	21104	2024-08-03	2025-08-02	
Broadband Antenna	SCHWARZBECK	VULB 9168	01320	2024-08-03	2025-08-02	
Horn Antenna	SCHWARZBECK	BBHA 9120D	02553	2024-08-03	2025-08-02	
Horn Antenna	COM-MW	ZLB7-18-40G-950	12221225	2024-08-03	2025-08-02	
Attenuator	QUANJUDA	6dB	220731	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 1	N/A	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 2	N/A	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 3	N/A	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 4	N/A	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 8	N/A	2024-08-07	2025-08-06	
Test Cable	N/A	Cable 9	N/A	2024-08-07	2025-08-06	
EMI Test Software	FARA	EZ-EMC	FA-03A2 RE+	N/A	N/A	
Conducted RF Testing						
RF Test System	MWRFTest	MW100-RFCB	220418SQS-37	2024-08-07	2025-08-06	
Spectrum Analyzer	KEYSIGHT	N9020A	ATO-90521	2024-08-07	2025-08-06	
RF Test Software	MWRFTest	MTS 8310	N/A	N/A	N/A	
Laptop	Lenovo	ThlnkPad E15 Gen 3	SPPOZ22485	N/A	N/A	

1.6 Measurement Uncertainty

Test Item	Conditions	Uncertainty
Conducted Emissions	9kHz ~ 30MHz	±1.64 dB
Radiated Emissions	9kHz ~ 30MHz	±2.88 dB
	30MHz ~ 1GHz	±3.32 dB
	1GHz ~ 18GHz	±3.50 dB
	18 GHz ~ 40 GHz	±3.66 dB
Conducted Output Power	9kHz ~ 26GHz	±0.50 dB
Occupied Bandwidth	9kHz ~ 26GHz	±4.0 %
Conducted Spurious Emission	9kHz ~ 26GHz	±1.32 dB

2. Summary of Test Results

FCC Rule	Description of Test Item	Result
FCC Part 15.203	Antenna Requirement	Passed
FCC Part 15.247(i)	RF Exposure(see the RF exposure report)	Passed
FCC Part 15.207	Conducted Emissions	Passed
FCC Part 15.209, 15.247(d)	Radiated Emissions	Passed
FCC Part 15.247(d)	Band-edge Emissions(Radiated)	Passed
FCC Part 15.247(a)(1), (g), (h)	Frequency Hopping System	Passed
FCC Part 15.247(a)(1)(iii)	Dwell Time	Passed
FCC Part 15.247(b)(1)	Maximum Peak Conducted Output Power	Passed
FCC Part 15.215(c)	Occupied Bandwidth(-20dB)	Passed
FCC Part 15.247(a)(1)	Carrier Frequencies Separation	Passed
FCC Part 15.247(a)(1)(iii)	Number of Hopping Channel	Passed
FCC Part 15.247(d)	Band-edge Emissions(Conducted)	Passed
FCC Part 15.247(d)	Conducted RF Spurious Emissions	Passed
Passed: The EUT complies with the ess Failed: The EUT does not comply with	sential requirements in the standard the essential requirements in the standard	I
N/A: Not applicable		

3. Antenna Requirement

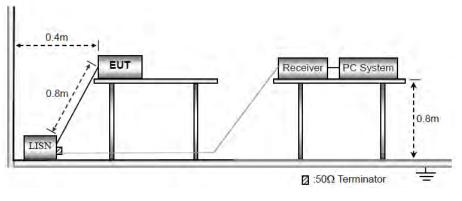
3.1 Standard and Limit

According to FCC Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

3.2 Test Result

This product has an FPCB antenna, fulfill the requirement of this section.

4. Conducted Emissions


4.1 Standard and Limit

According to the rule FCC Part 15.207, Conducted emissions limit, the limit for a wireless device as below:

Frequency of Emission	Conducted emissions (dBuV)						
(MHz)	Quasi-peak	Average					
0.15-0.5	66 to 56	56 to 46					
0.5-5	56	46					
5-30	5-30 60 50						
Note 1: Decreases with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz							
Note 2: The lower limit applies at the band edges							

4.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.2.

Test Setup Block Diagram

a) The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

b) The following is the setting of the receiver
Attenuation: 10dB
Start Frequency: 0.15MHz
Stop Frequency: 30MHz
IF Bandwidth: 9kHz

c) The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipment powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

d) Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

e) I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

f) LISN is at least 80 cm from nearest part of EUT chassis.

g) For the actual test configuration, please refer to the related Item - photographs of the test setup.

4.3 Test Data and Results

All of the modes have been tested, the EUT complied with the FCC Part 15.207 standard limit for a wireless device, and with the worst case as below:

Remark: Level = Reading + Factor, Margin = Level - Limit

Test F	Plots a	ind Data	of Co	ondu	cteo	d En	nis	sio	ns																	
Teste	d Moc	le:		ТМ	1																					
Test V	/oltag	e:		AC	120)V/6	50F	łz																		
Test F	Power	Line:		Ne	Neutral																					
Rema	ırk:																									
90.0	dBu	v		•																						
]	
80							+	+											-				-		1	
70							_	_																	-	
60																		FC	C Pa	at15 C	E-Cla	ss B_	QP			
60							-															_			1	
50																		FC	C Pa	at15 C	E-Cla	ss B_	AVe		-	
40																										
					1		2	3		5 X				_												
30	~~ ~	mm	V-4r	Amon	for 1	Murt	k,AQ	4 4 4- ₇ 9	lafingar production of the	HWD 44	they when the	MAN .	. M	Å	h.m.	<u>a</u> .	4 AL		9	mm				1		
20		m	مممه	agn	2 2010-01	~~~	щł	14.	the way and	- 3 -	Web.nu.	4		<mark>∦ 8</mark> \ &	<u>" </u>	۷V	٧٧	Vγ	(YY)	1 1	Anather	ndana	mynt.	Page and	2pea	ak
10											·		Min	\sqrt{h}	Λ	N	W	M	γÝ	hm	m	andress	an a		AV	G
																							Т <u>ү</u>	- C., P		1
0							+			+				+												
-10	150			0	.500							MH-1				000								30 (
	150			0	.000							(MHz)		5.000			30.000									
No.		equency (MHz)		ading BuV)		Fac (dB			Leve (dBu∖			nit uV)	Mar (dl		Detecto	or F	P/F	F	Rem	ark						
1	0).5190	22	2.04		9.3	9		31.43	3	56	.00	-24	.57	QP		Ρ									
2	_).5190		.64		9.3			19.03		46		-26		AVG		Ρ									_
3	_	0.8475		5.90 7.01		9.4		_	35.30			.00	-20		QP		P									_
4 * 5	_).8475 .3965		2.01 2.90	-	9.4 9.4		+	26.41 32.34		46	.00 .00	-19 -23		AVG QP		P P									_
6	_	.3965			+	9.4		+	21.14			.00	-23		AVG		P									-
7		3.3720		3.26	+	9.5		+	27.77			.00	-28		QP		P									-
8	3	3.3720		.15	1	9.5		+	18.66	3	46	.00	-27	.34	AVG	;	Ρ									-
9	_	9.5550	15	5.57		9.5			25.14			.00	-34		QP		Ρ									
10	_	.5550		.31		9.5			14.88			.00	-35		AVG		Ρ									
11	_	8.9770		2.70		10.1		_	22.80			.00	-37		QP		P									_
12	2	8.9770	5.	.67		10.1	0		15.77	(50	.00	-34	.23	AVG		P									

Test F	Plots and Data o	of Conduct	ed Emissi	ons									
Teste	d Mode:	TM1											
Test V	/oltage:	AC 12	AC 120V/60Hz										
Test F	Power Line:	Live	live										
Rema	rk:												
90.0	dBu¥												
80													
70													
60									FCC Part15 CE-Class B_QP				
									FQC Pait15 CE-Class B_AVe				
50													
40	1		3										
30	Ann	man	3			_7							
	maril		×	§	www.villester.viretury	MA M	hằh	un					
20		man	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	Key Station and the	monal marked	****	10		In the start of th				
10													
0													
-10													
0. ¹	150	0.50	0		(MHz)		5.0	00	30.000				
No.		Reading	Factor	Level	Limit	Margin	Detector	P/F	Remark				
	(MHz)	(dBuV)	(dB)	(dBuV)	(dBuV)	(dB)							
1	0.2895	25.10 13.17	9.57 9.57	34.67 22.74	60.54 50.54	-25.87 -27.80	QP AVG	P P					
3	0.8430	25.04	9.59	34.63	56.00	-21.37	QP	P					
4 *		15.34	9.59	24.93	46.00	-21.07	AVG	P					
5	1.3335	22.90	9.63	32.53	56.00	-23.47	QP	Р					
6	1.3335	11.29	9.63	20.92	46.00	-25.08	AVG	Ρ					
7	2.8184	17.53	9.69	27.22	56.00	-28.78	QP	Р					
8	2.8184	5.83	9.69	15.52	46.00	-30.48	AVG	P					
9	4.5780	16.04	9.75	25.79	56.00	-30.21	QP	Р					
10	4.5780	3.07	9.75	12.82	46.00	-33.18	AVG	Р					
11	8.1510	13.37	9.77	23.14	60.00	-36.86	QP	Ρ					
12	8.1510	0.33	9.77	10.10	50.00	-39.90	AVG	P					

5. Radiated Emissions

5.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

	The of the full of								
	Eroquer au of emission (MUL)	Radiated emissions (3m)							
	Frequency of emission (MHz)	Quasi-peak (dBuV/m)							
	30-88	40							
	88-216	43.5							

46

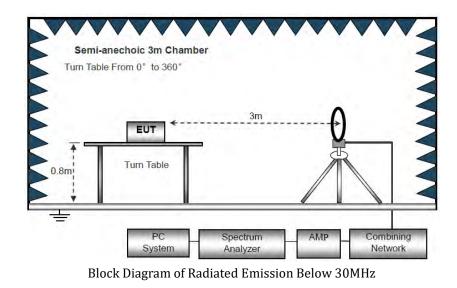
54

According to the rule FCC Part 15.209, Radiated emission limit for a wireless device as below:

The provisions in §15.35 for limiting peak emissions apply. Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.

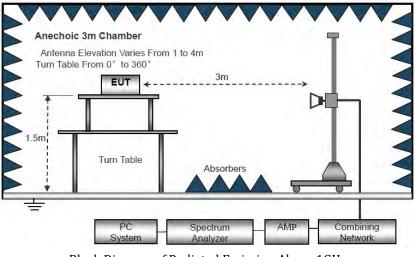
The emission limit in this paragraph is based on measurement instrumentation employing an average detector.

Note: Spurious Radiated Emissions measurements starting below or at the lowest crystal frequency.


5.2 Test Procedure

216-960

Above 960


Note: The more stringent limit applies at transition frequencies.

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6.

Semi-anechoic 3m Chamber Antenna Elevation Varies From 1 to 4m Turn Table From 0° to 360° EUT Turn Table PC System Amp Combining Network

Block Diagram of Radiated Emission From 30MHz to 1GHz

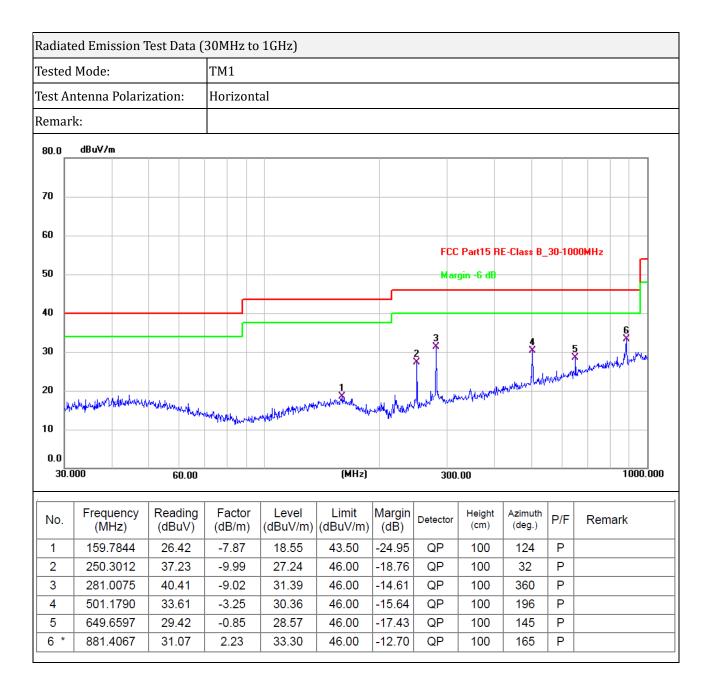
Block Diagram of Radiated Emission Above 1GHz

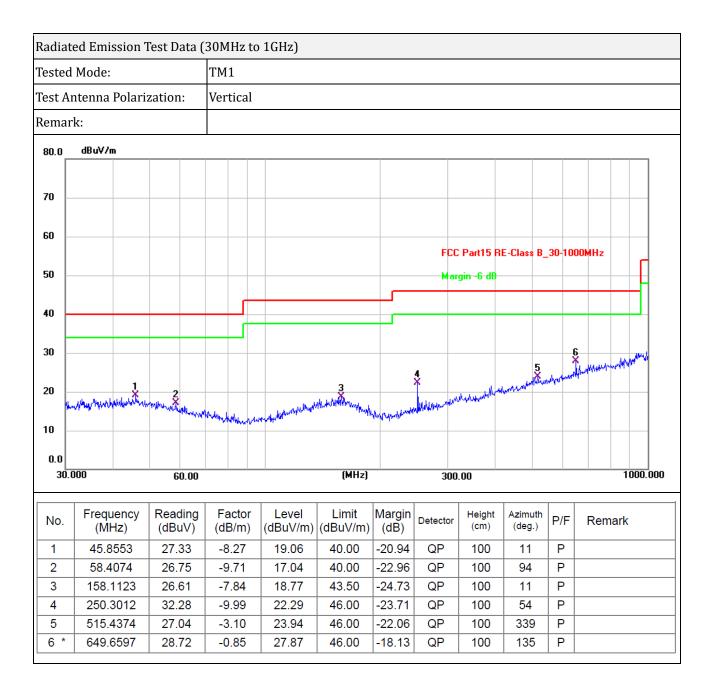
a) The EUT is placed on a turntable, which is 0.8m above ground plane for test frequency range blew 1GHz, and 1.5m above ground plane for test frequency range above 1GHz.

b) EUT is set 3m away from the receiving antenna, which is varied from 1m to 4m to find out the highest emissions.

c) Use the following spectrum analyzer settings: Span = wide enough to fully capture the emission being measured RBW = 1 MHz for $f \ge 1$ GHz, 100 kHz for f < 1 GHz, 10kHz for f < 30MHz VBW \ge RBW, Sweep = auto Detector function = peak Trace = max hold

d) Follow the guidelines in ANSI C63.4-2014 with respect to maximizing the emission by rotating the EUT, adjusting the measurement antenna height and polarization, etc. The peak reading of the emission, after being corrected by the antenna factor, cable loss, pre-amp gain, etc., is the peak field strength, submit this data. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.


e) The peak level, once corrected, must comply with the limit specified in Section 15.209. Set the RBW = 1MHz, VBW = 10Hz, Detector = PK for AV value, while maintaining all of the other instrument settings.


f) For the actual test configuration, please refer to the related item - EUT test photos.

5.3 Test Data and Results

All of the GFSK, $\pi/4$ DQPSK and 8DPSK modes have been tested, the EUT complied with the FCC Part 15.247 standard limit for a wireless device, and with the worst case GFSK_2402MHz as below:

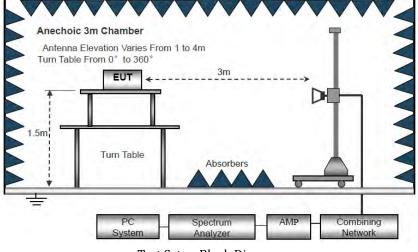
Remark: Level = Reading + Factor, Margin = Level - Limit

Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV
		Lo	west Channel (GFSK_2402M	Hz)		
4804	79.27	-14.72	64.55	74	-9.45	Н	РК
4804	61.2	-14.72	46.48	54	-7.52	Н	AV
7206	65.59	-8.41	57.18	74	-16.82	Н	РК
7206	48.37	-8.41	39.96	54	-14.04	Н	AV
4804	77.25	-14.72	62.53	74	-11.47	V	РК
4804	60.57	-14.72	45.85	54	-8.15	V	AV
7206	65.07	-8.41	56.66	74	-17.34	V	РК
7206	48.25	-8.41	39.84	54	-14.16	V	AV
		Lo	west Channel ((GFSK_2441M	Hz)		
4882	77.03	-14.64	62.39	74	-11.61	Н	РК
4882	61.3	-14.64	46.66	54	-7.34	Н	AV
7323	62.44	-8.28	54.16	74	-19.84	Н	РК
7323	47.02	-8.28	38.74	54	-15.26	Н	AV
4882	73.61	-14.64	58.97	74	-15.03	V	РК
4882	59.52	-14.64	44.88	54	-9.12	V	AV
7323	62.6	-8.28	54.32	74	-19.68	V	РК
7323	45.01	-8.28	36.73	54	-17.27	V	AV
		Lo	west Channel ((GFSK_2480M	Hz)		
4960	79.86	-14.53	65.33	74	-8.67	Н	РК
4960	59.43	-14.53	44.9	54	-9.1	Н	AV
7440	64.27	-8.13	56.14	74	-17.86	Н	РК
7440	45.32	-8.13	37.19	54	-16.81	Н	AV
4960	76.29	-14.53	61.76	74	-12.24	V	РК
4960	59.17	-14.53	44.64	54	-9.36	V	AV
7440	63.59	-8.13	55.46	74	-18.54	V	РК
7440	48.01	-8.13	39.88	54	-14.12	V	AV

Note 1: All of the GFSK, $\pi/4$ DQPSK and 8DPSK modes have been tested. This EUT was tested in 3 orthogonal positions and the worst case position data of GFSK was reported.

Note 2: Testing is carried out with frequency rang 9kHz to the tenth harmonics. The measurements greater than 20dB below the limit from 9kHz to 30MHz.

Note 3: Other emissions are attenuated 20dB below the limits from 9kHz to 30MHz, so it does not recorded report, 18GHz-26GHz not recorded for no spurious point have a margin of less than 6 dB with respect to the limits.


6. Band-edge Emissions(Radiated)

6.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

6.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.3 to 6.6 and section 6.10.

Test Setup Block Diagram

As the radiated emissions testing, set the Lowest and Highest Transmitting Channel, observed the outside band of 2310MHz to 2400MHz and 2483.5MHz to 2500MHz, than mark the higher-level emission for comparing with the FCC rules.

6.3 Test Data and Results

All of the GFSK, $\pi/4$ DQPSK and 8DPSK modes have been tested, the EUT complied with the FCC Part 15.247 standard limit, and with the worst case GFSK as below:

Test Mode	Frequency	Limit	Result
Test Mode	MHz	Result	
Louroat	2310.00	<54 dBuV	Pass
Lowest	2390.00	<54 dBuV	Pass
Uighost	2483.50	<54 dBuV	Pass
Highest	2500.00	<54 dBuV	Pass

Radiated Em	ission Test Dat	ta (Band edge	emissions)							
Frequency	Reading	Correct	Result	Limit	Margin	Polar	Detector			
MHz	dBuV/m	dB/m	dBuV/m	dBuV/m	dB	H/V	PK/AV			
Lowest Channel (GFSK_2402MHz)										
2310	66.61	-21.34	45.27	74	-28.73	Н	РК			
2310	52.4	-21.34	31.06	54	-22.94	Н	AV			
2390	68.51	-20.96	47.55	74	-26.45	Н	РК			
2390	52.22	-20.96	31.26	54	-22.74	Н	AV			
2400	70.02	-20.91	49.11	74	-24.89	Н	РК			
2400	56.05	-20.91	35.14	54	-18.86	Н	AV			
2310	64.81	-21.34	43.47	74	-30.53	V	РК			
2310	50.59	-21.34	29.25	54	-24.75	V	AV			
2390	68.12	-20.96	47.16	74	-26.84	V	РК			
2390	51.59	-20.96	30.63	54	-23.37	V	AV			
2400	70.84	-20.91	49.93	74	-24.07	V	РК			
2400	56.68	-20.91	35.77	54	-18.23	V	AV			
		Hig	shest Channel	(GFSK_2480M	Hz)					
2483.50	71.24	-20.51	50.73	74	-23.27	Н	РК			
2483.50	53.83	-20.51	33.32	54	-20.68	Н	AV			
2500	68.12	-20.43	47.69	74	-26.31	Н	РК			
2500	49.29	-20.43	28.86	54	-25.14	Н	AV			
2483.50	72.52	-20.51	52.01	74	-21.99	V	РК			
2483.50	53.74	-20.51	33.23	54	-20.77	V	AV			
2500	68.86	-20.43	48.43	74	-25.57	V	РК			
2500	49.34	-20.43	28.91	54	-25.09	V	AV			

Remark: Level = Reading + Factor, Margin = Level - Limit

7. Frequency Hopping System

7.1 Standard and Limit

According to FCC Part 15.247(a)(1), The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

(g) Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.

(h) The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

7.2 Test Procedure

This device uses Bluetooth radio which operates in 2400-2483.5 MHz band. Bluetooth uses a radio technology called frequency-hopping spread spectrum, which chops up the data being sent and transmits chunks of it on up to 79 bands (1 MHz each; centred from 2402 to 2480 MHz) in the range 2,400-2,483.5 MHz. The transmitter switches hop frequencies 1,600 times per second to assure a high degree of data security. All Bluetooth devices participating in a given piconet are synchronized to the frequency-hopping channel for the piconet. The frequency hopping sequence is determined by the master's device address and the phase of the hopping sequence (the frequency to hop at a specific time) is determined by the master's internal clock. Therefore, all slaves in a piconet must know the master's device address and must synchronize their clocks with the master's clock.

Adaptive Frequency Hopping (AFH) was introduced in the Bluetooth specification to provide an effective way for a Bluetooth radio to counteract normal interference. AFH identifies "bad" channels, where either other wireless devices are interfering with the Bluetooth signal or the Bluetooth signal is interfering with another device. The AFH-enabled Bluetooth device will then communicate with other devices within its piconet to share details of any identified bad channels. The devices will then switch to alternative available "good" channels, away from the areas of interference, thus having no impact on the bandwidth used.

This device was tested with an bluetooth system receiver to check that the device maintained hopping synchronization, and the device complied with these requirements for DA 00-705 and FCC Part 15.247 rule.

7.3 Test Data and Results

Pseudorandom Frequency Hopping Sequence Table as below:

Channel: 08, 24, 40, 56, 40, 56, 72, 09, 01, 09, 33, 41, 33, 41, 65, 73, 53, 69, 06, 22, 04, 20, 36, 52, 38, 46, 70, 78, 68, 76, 21, 29, 10, 26, 42, 58, 44, 60, 76, 13, 03, 11, 35, 43, 37, 45, 69, 77, 55, 71, 08, 24, 08, 24, 40, 56, 40, 48, 72, 01, 72, 01, 25, 33, 12, 28, 44, 60, 42, 58, 74, 11, 05, 13, 37, 45 etc.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals.

8. Dwell Time

8.1 Standard and Limit

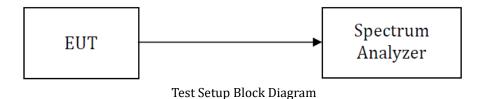
According to 15.247 (a)(1)(iii), Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

8.2 Test Procedure

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Spectrum Setting: RBW=1MHz, VBW=3MHz, Span=0Hz, Detector=Peak

3) Use video trigger with the trigger level set to enable triggering only on full pulses.

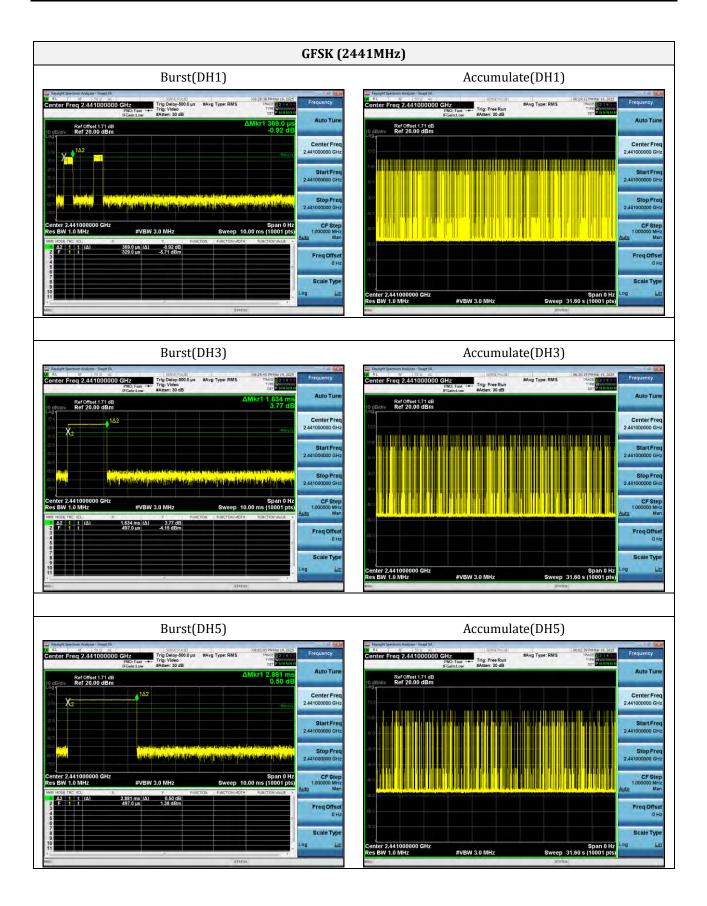

4) Sweep Time is more than once pulse time.

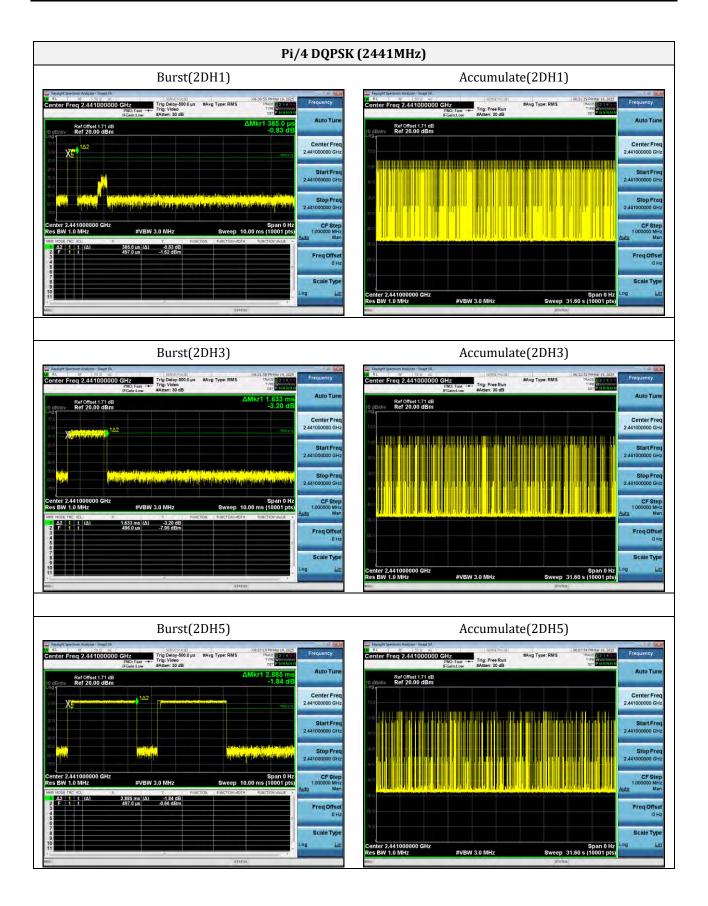
5) Set the center frequency on any frequency would be measure and set the frequency span to zero span.

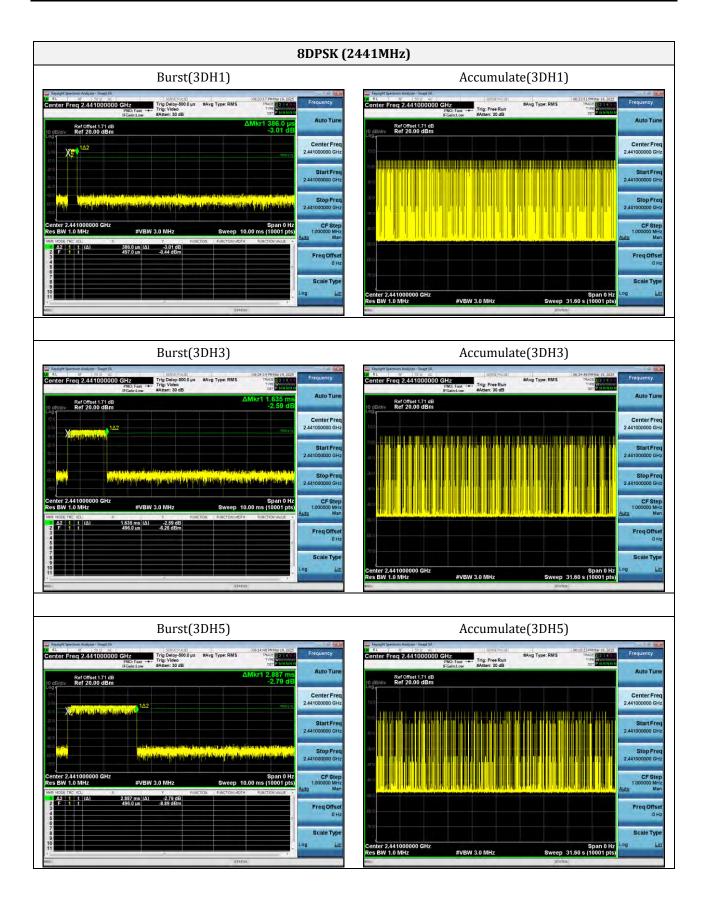
6) Measure the maximum time duration of one single pulse.

7) Set the EUT for packet transmitting.

- 8) Measure the maximum time duration of one single pulse.
- 9) The EUT was set to the Hopping Mode for Dwell Time Test.


FCC Test Report


8.3 Test Data	and Results
---------------	-------------


Test Mode	Data Packet	Channel (MHz)	Pulse Duration (ms)	Burst Count	Dwell Time (ms)	Limit (ms)	Result
GFSK	DH1	2441	0.369	314	115.866	<400	Pass
	DH3	2441	1.634	157	256.538	<400	Pass
	DH5	2441	2.881	104	299.624	<400	Pass
D: //	2DH1	2441	0.385	312	120.12	<400	Pass
Pi/4 DQPSK	2DH3	2441	1.633	156	254.748	<400	Pass
DQF3K	2DH5	2441	2.885	101	291.385	<400	Pass
	3DH1	2441	0.386	317	122.362	<400	Pass
8DPSK	3DH3	2441	1.635	155	253.425	<400	Pass
	3DH5	2441	2.887	104	300.248	<400	Pass

Note:

1. Pulse Duration*Burst Count= Dwell Time

9. Maximum Peak Conducted Output Power

9.1 Standard and Limit

According to 15.247(b)(1). For frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725–5850 MHz band: 1 watt. For all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

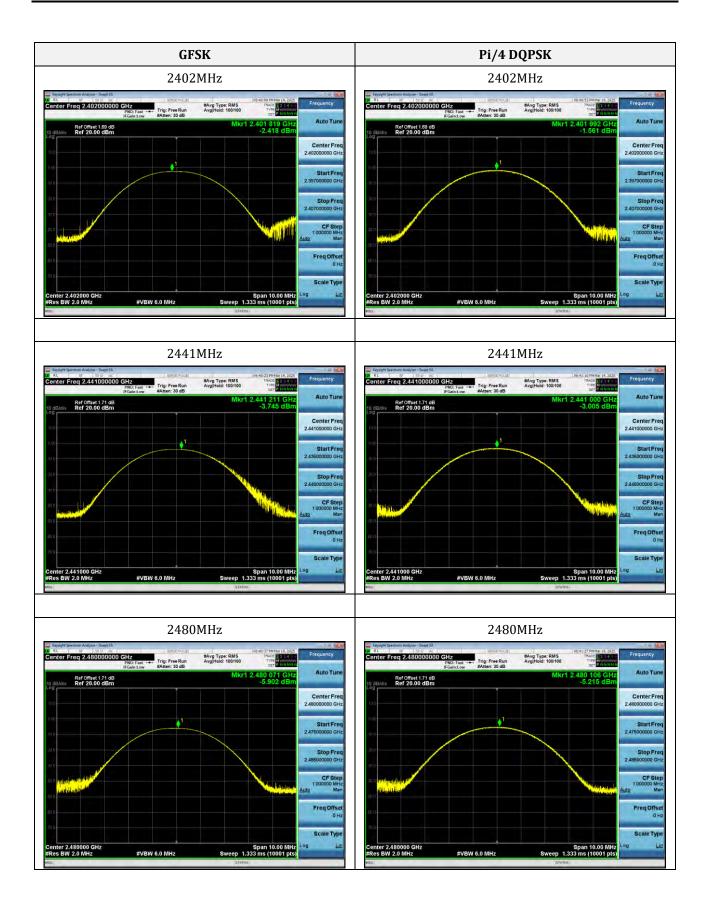
9.2 Test Procedure

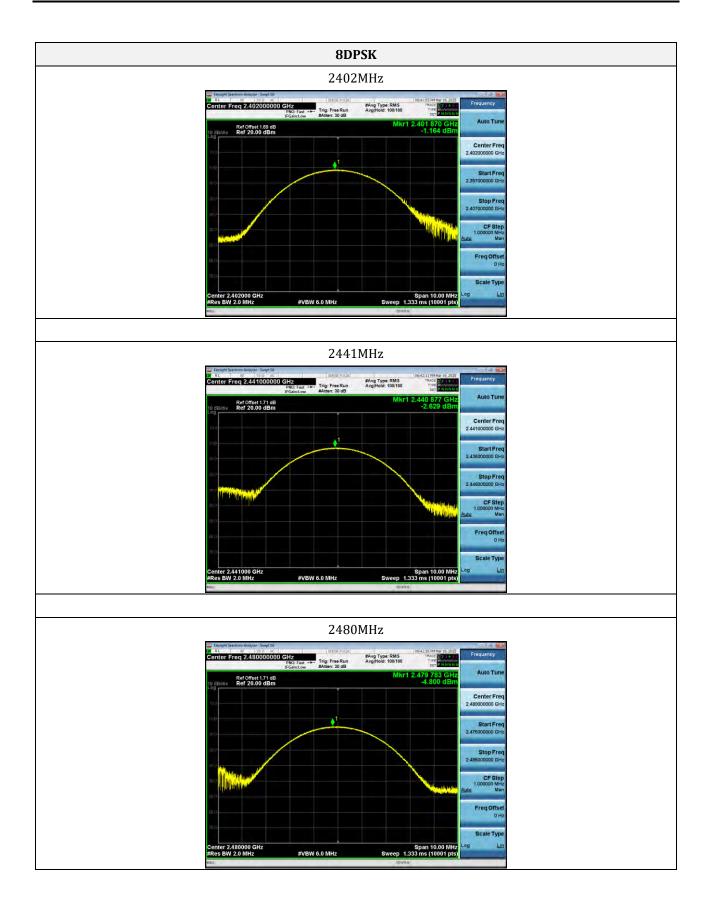
1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 2MHz, VBW = 6MHz, Sweep = Auto, Detector = Peak.

4) Measure the highest amplitude appearing on spectral display and mark the value.


5) Repeat the above procedures until all frequencies measured were complete.



Test Setup Block Diagram

9.3 Test Data and Results

Test Mode	Test Channel MHz	Conducted Output Power (dBm)	Limit (dBm)	Test Result
	2402	-2.42	21	Pass
GFSK	2441	-3.75	21	Pass
	2480	-5.9	21	Pass
	2402	-1.56	21	Pass
Pi/4 DQPSK	2441	-3.01	21	Pass
	2480	-5.22	21	Pass
	2402	-1.16	21	Pass
8DPSK	2441	-2.63	21	Pass
	2480	-4.8	21	Pass

10. Occupied Bandwidth(-20dB)

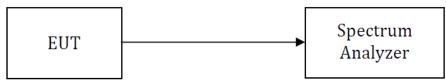
10.1 Standard and Limit

According to 15.215 (c), intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated. The requirement to contain the designated bandwidth of the emission within the specified frequency band includes the effects from frequency sweeping, frequency hopping and other modulation techniques that may be employed as well as the frequency stability of the transmitter over expected variations in temperature and supply voltage. If a frequency stability is not specified in the regulations, it is recommended that the fundamental emission be kept within at least the central 80% of the permitted band in order to minimize the possibility of out-of-band operation.

10.2 Test Procedure

According to the ANSI 63.10-2013, section 6.9, the emission bandwidth test method as follows.

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.


2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 30kHz, VBW = 100kHz, Sweep = Auto.

4) Set a reference level on the measuring instrument equal to the highest peak value.

5) Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.

6) Repeat the above procedures until all frequencies measured were complete.

Test Setup Block Diagram

10.3 Test Data and Results

Test Mode	Test Channel	20dB Bandwidth	99% Bandwidth
Test Mode	(MHz)	(MHz)	(kHz)
	2402	1.029	907.78
GFSK	2441	0.972	898.08
	2480	0.981	898.04
	2402	1.276	1183.5
Pi/4 DQPSK	2441	1.307	1178
	2480	1.315	1184.2
	2402	1.27	1177.2
8DPSK	2441	1.291	1183.7
	2480	1.306	1192.8

11. Carrier Frequencies Separation

11.1 Standard and Limit

According to FCC 15.247(a)(1), frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, and frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

11.2 Test Procedure

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 30kHz, VBW = 100kHz, Sweep = Auto, Detector = Peak.

4) By using the Max Hold function, record the separation of two adjacent channels.

5) Measure the frequency difference of these two adjacent channels by spectrum analyzer mark function. and then plot the result on the screen of the spectrum analyzer.

6) Repeat above procedures until all frequencies measured were complete.

Test Setup Block Diagram

Test Mode	Test Channel	Test Freq. 1 (MHz)	Test Freq. 2 (MHz)	CFS (MHz)	Limit (MHz)
GFSK	Lowest	2401.916	2402.942	1.026	0.686
	Middle	2440.912	2442.102	1.19	0.648
	Highest	2478.918	2479.966	1.048	0.654
Pi/4 DQPSK	Lowest	2402.112	2402.964	0.852	0.851
	Middle	2440.96	2441.862	0.902	0.871
	Highest	2478.95	2480.12	1.17	0.877
8DPSK	Lowest	2401.956	2402.806	0.85	0.847
	Middle	2440.974	2442.124	1.15	0.861
	Highest	2479.05	2480.098	1.048	0.871

11.3 Test Data and Results

Note: CFS(Channel Frequency Separation) = Test Freq. 2 - Test Freq. 1

12. Number of Hopping Channel

12.1 Standard and Limit

According to FCC 15.247(a)(1), frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, and frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.

12.2 Test Procedure

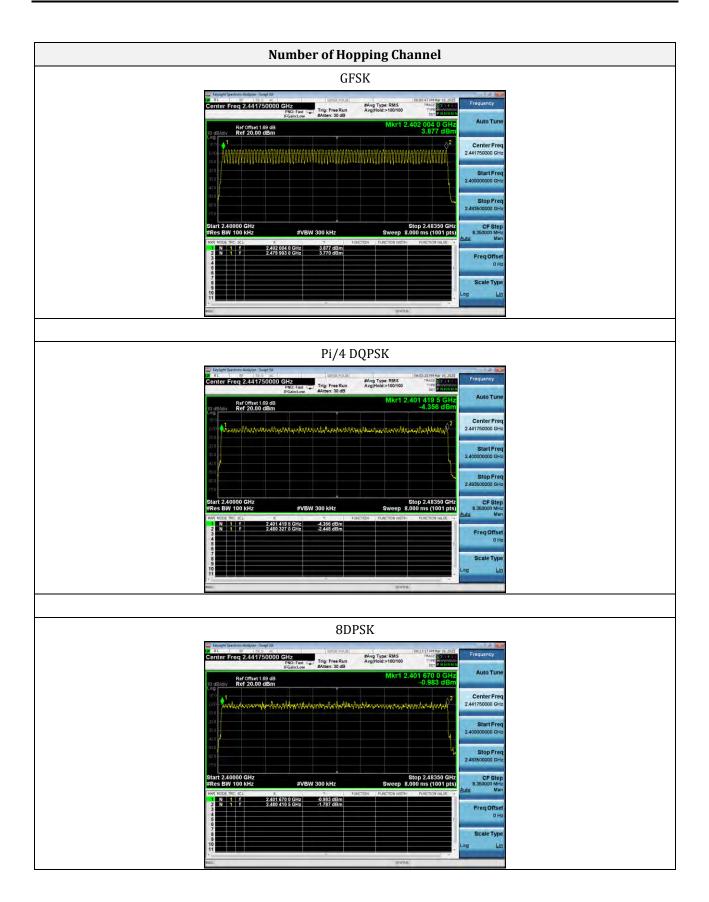
1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = Peak.

4) Set the spectrum analyzer on Max hold mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.

5) Set the spectrum analyzer on View mode and then plot the result on the screen of the spectrum analyzer.


6) Repeat the above procedures until all frequencies measured were complete.

Test Setup Block Diagram

12.3 Test Data and Results

Test Mode	Number of Hopping Channel	Limit	Test Result
GFSK	79	15	Pass
Pi/4 DQPSK	79	15	Pass
8DPSK	79	15	Pass

13. Band-edge Emission(Conducted)

13.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

13.2 Test Procedure

Test is conducting under the description of ANSI C63.10 - 2013 section 6.10.

1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

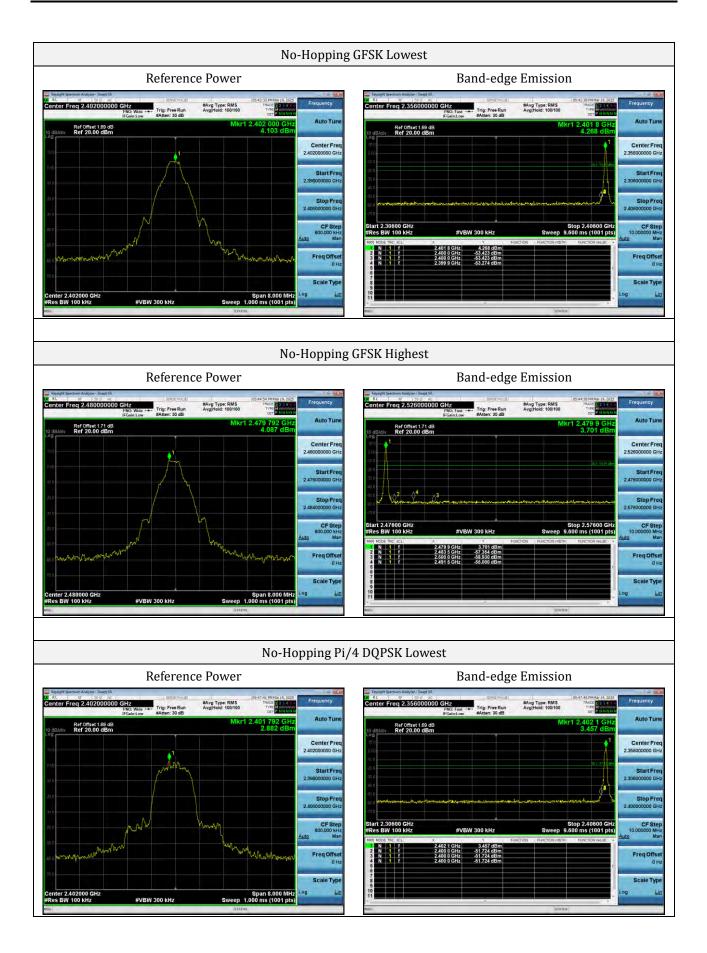
2) Set the spectrum analyzer to any one measured frequency within its operating range.

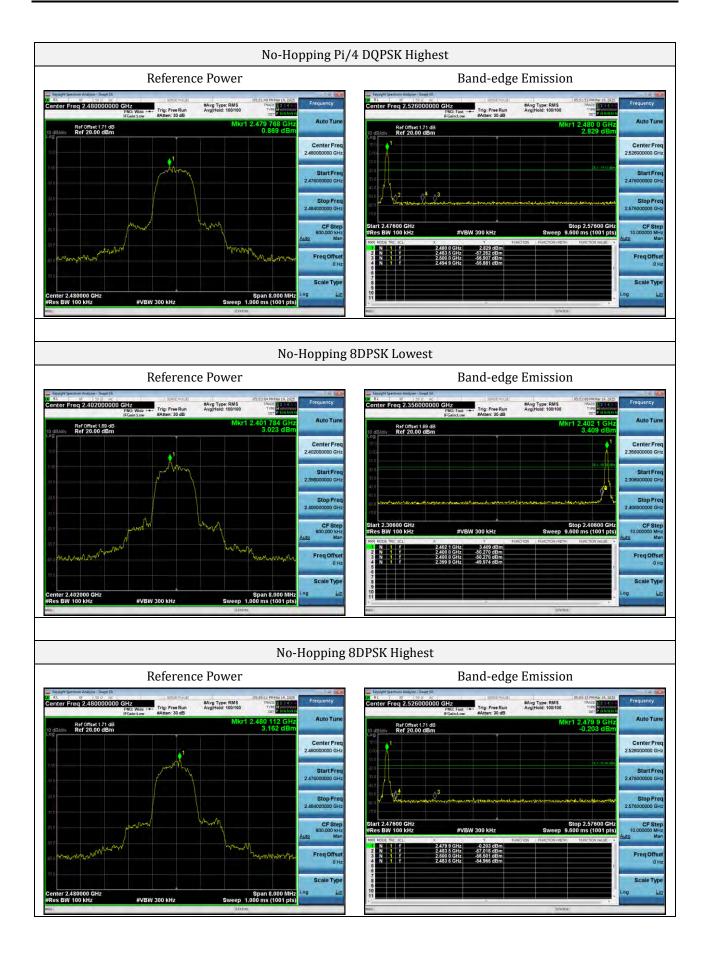
3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = Peak.

4) Measure the highest amplitude appearing on spectral display and set it as a reference level.

5) Set a convenient frequency span including 100 kHz bandwidth from band edge.

6) Measure the emission and marking the edge frequency.


7) Repeat above procedures until all frequencies measured were complete.



Test Setup Block Diagram


13.3 Test Data and Results

Test Mode	Band-edge	Test Channel (MHz)	Max. Value (dBc)	Limit (dBc)	Test Result		
No-Hopping							
GFSK	Lowest	2402	-57.37	-20	Pass		
	Highest	2480	-59.09	-20	Pass		
Pi/4 DQPSK	Lowest	2402	-54.6	-20	Pass		
	Highest	2480	-56.75	-20	Pass		
8DPSK	Lowest	2402	-52.99	-20	Pass		
	Highest	2480	-58.12	-20	Pass		
Hopping							
GFSK	Lowest	2402	-58.68	-20	Pass		
	Highest	2480	-57.71	-20	Pass		
Pi/4 DQPSK	Lowest	2402	-58.11	-20	Pass		
	Highest	2480	-56.2	-20	Pass		
8DPSK	Lowest	2402	-57.78	-20	Pass		
	Highest	2480	-57.8	-20	Pass		

14. Conducted RF Spurious Emissions

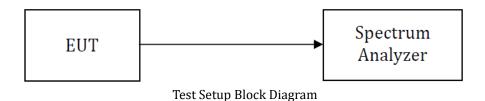
14.1 Standard and Limit

According to §15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.205(c)).

14.2 Test Procedure

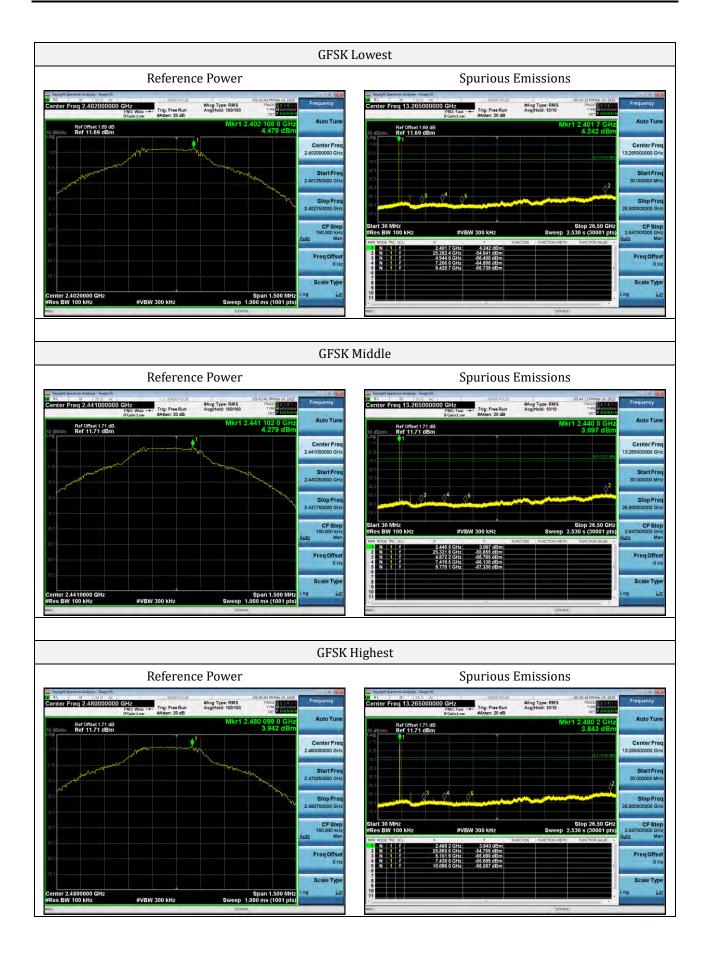
Test is conducting under the description of ANSI C63.10 - 2013 section 6.7.

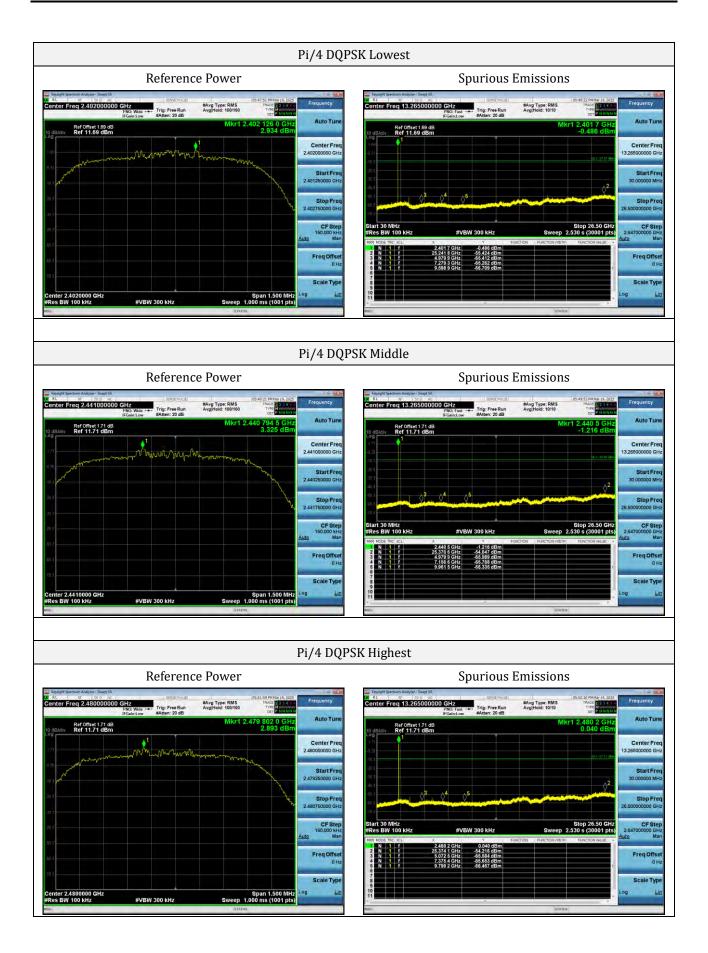
1) Remove the antenna from the EUT and connect to the spectrum analyzer via a low loss RF cable.

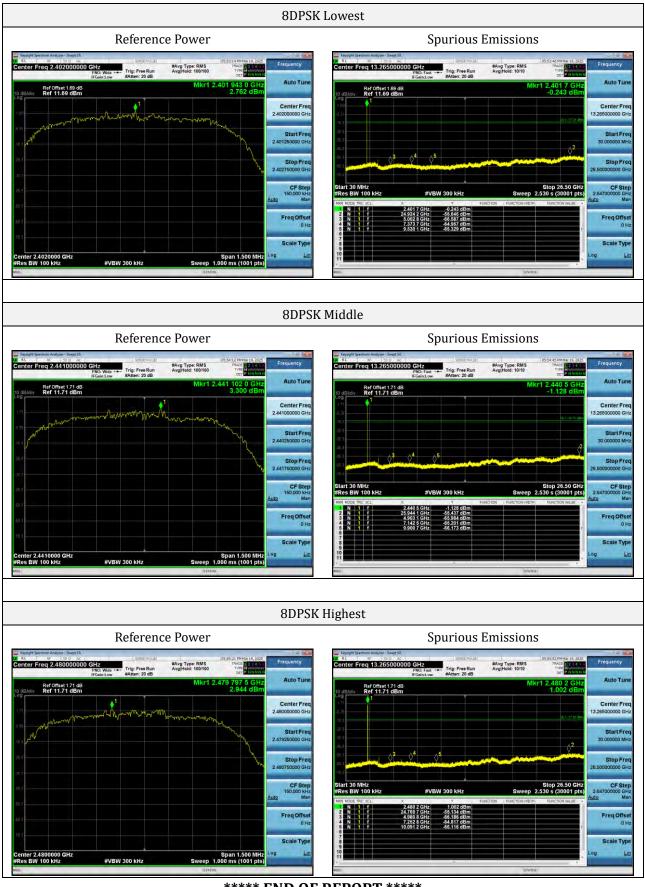

2) Set the spectrum analyzer to any one measured frequency within its operating range.

3) Set RBW = 100kHz, VBW = 300kHz, Sweep = Auto, Detector = Peak.

4) Measure the highest amplitude appearing on spectral display and set it as a reference level.


5) Measure the spurious emissions with frequency range from 9kHz to 26.5GHz.


6) Repeat above procedures until all measured frequencies were complete.



14.3 Test Data and Results

Note: The measurement frequency range is from 9kHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions measurement data.

***** END OF REPORT *****