

FCC TEST REPORT

Test report
On Behalf of
Shenzhen Xiangyou Technology Co.LTD
For
Magnetic Fast Wireless Car Charger
Model No.: WXC-001

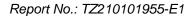
FCC ID: 2AYTX-WXC-001

Prepared for: Shenzhen Xiangyou Technology Co.LTD

Room 3A18, Building A5, Hangcheng Innovation Pioneer Park, No.159 Hangcheng Avenue, Sanwei Community, Hangcheng Street, Baoan District,

Shenzhen, China

Prepared By: Shenzhen Tongzhou Testing Co.,Ltd

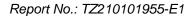

1th Floor, Building 1, Haomai High-tech Park, Huating Road 387, Dalang

Street, Longhua, Shenzhen, China

Date of Test: Jan. 21, 2021 ~ Jan. 30, 2021

Date of Report: Jan. 31, 2021 Report Number: TZ210101955-E1

The test report apply only to the specific sample(s) tested under stated test conditions It is not permitted to copy extracts of these test result without the written permission of the test laboratory.



TEST RESULT CERTIFICATION

Applicant's name:	Shenzhen Xiangyou Technology Co.LTD				
Address:	Room 3A18, Building A5, Hangcheng Innovation Pioneer Park, No.159 Hangcheng Avenue, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen, China				
Manufacture's Name:	Shenzhen Xiangyou Technology Co.LTD				
Address:	Room 3A18, Building A5, Hangcheng Innovation Pioneer Park, No.159 Hangcheng Avenue, Sanwei Community, Hangcheng Street, Baoan District, Shenzhen, China				
Product description	,				
Trade Mark:	N/A				
Product name:	Magnetic Fast Wireless Car Charger				
Model and/or type reference :	WXC-001				
Standards:	FCC Rules and Regulations Part 15 Subpart C (Section 15.209), ANSI C63.10: 2013				
the Shenzhen Tongzhou Testing material. Shenzhen Tongzhou	: Jan. 21, 2021 ~ Jan. 30, 2021 : Jan. 31, 2021				
rest ivesuit					
Testing Engine	eer : Nancy Li (Nancy Li)				
Technical Man					
Authorized Sig	gnatory: Andy Zhang				

(Andy Zhang)

	lable of Contents	Page
1 TEST SUMMA	RY	4
1.1	TEST PROCEDURES AND RESULTS	4
1.2	TEST FACILITY	4
1.3 2 GENERAL INF	MEASUREMENT UNCERTAINTYFORMATION	
2.1	General Description of EUT	5
2.2	Operation of EUT during testing	6
	Description of Test SetupInstruments ListEMISSION TEST	8
4.1	Block Diagram of Test Setup	9
4.2	Conducted Power Line Emission Limit	9
4.3	Test Procedure	9
4.4 5 Bandwidth	Test Result	
5.1	Block Diagram of Test Setup	12
5.2	Rules and specifications	12
5.3	Test Procedure	12
5.4 6 RADIA TED EN	Test ResultMISSIONS	
6.1	Block Diagram of Test Setup	14
6.2	Rules and specifications	15
6.3	Test Procedure	16
	Test ResultQUIREMENTH OF TEST	19
8.1	Radiated Emission	20
8.2 9 PHOTOGRAPI	Conducted Emission	

1 TEST SUMMARY

1.1 TEST PROCEDURES AND RESULTS

DESCRIPTION OF TEST	RESULT
CONDUCTED EMISSIONS TEST	COMPLIANT
RADIATED EMISSION TEST	COMPLIANT
OCCUPIED BANDWIDTH MEASUREMENT	COMPLIANT
ANTENNA REQUIREMENT	COMPLIANT

1.2 TEST FACILITY

Test Firm : Shenzhen Tongzhou Testing Co.,Ltd

Address 1th Floor, Building 1, Haomai High-tech Park, Huating Road 387,

Dalang Street, Longhua, Shenzhen, China

1.3 MEASUREMENT UNCERTAINTY

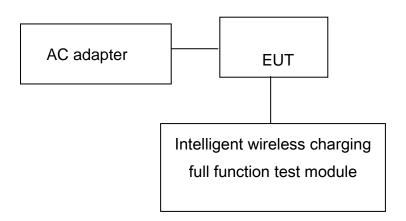
Measurement Uncertainty

Conducted Emission Expanded Uncertainty = 2.23dB, k=2 Radiated emission expanded uncertainty(9kHz-30MHz) = 3.08dB, k=2 Radiated emission expanded uncertainty(30MHz-1000MHz) = 4.42dB, k=2 Radiated emission expanded uncertainty(Above 1GHz) = 4.06dB, k=2

2 GENERAL INFORMATION

2.1 General Description of EUT

Equipment	Magnetic Fast Wireless Car Charger
Model Name	WXC-001
Serial No.	N/A
Model Difference	N/A
Trade Mark	N/A
FCC ID	2AYTX-WXC-001
Antenna Type	Coil Antenna
Antenna Gain	0dBi
Operation frequency	110 – 205 KHz
Modulation Type	ASK
Dower Doting	Input: 5V==3A, 9V==2A, 12V==2A
Power Rating	Output: 5V==1.0A, 9V==1.12A, 9V==1.67A
Test Sample ID	TZ210101955-1#



2.2 Operation of EUT during testing

Test Mo	Test Modes:					
Mode 1	AC/DC Adapter (12V/2A) + EUT + Wireless charger tester (Load 15W)	Record				
Mode 2	AC/DC Adapter (12V/2A) + EUT + Wireless charger tester (Load 10W)	Pre-tested				
Mode 3	AC/DC Adapter (12V/2A) + EUT + Wireless charger tester (Load 5W)	Pre-tested				
Mode 4	AC/DC Adapter (9V/2A) + EUT + Wireless charger tester (Load 10W)	Pre-tested				
Mode 5	AC/DC Adapter (9V/2A) + EUT + Wireless charger tester (Load 5W)	Pre-tested				
Mode 6	AC/DC Adapter (5V/3A) + EUT + Wireless charger tester (Load 5W)	Pre-tested				
Note: All test modes were pre-tested, but we only recorded the worst case in this report.						

2.3 Description of Test Setup

Operation of EUT during testing

Setup: Transmission mode

 AC adapter information Model: MDY-10-EH

Input: 100-240VAC, 50/60Hz 0.7A

Output: 5V==3A, 9V==3A, 12V==2.25A, 20V==1.35A

Intelligent wireless charging full function test module information
 Manufacturer: YBZ

2.4 Description of Test Facility

FCC

Designation Number: CN1275

Test Firm Registration Number: 167722

Shenzhen Tongzhou Testing Co.,Ltd has been listed on the US Federal Communications

Commission

list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA

Certificate Number: 5463.01

Shenzhen Tongzhou Testing Co.,Ltd has been listed by American Association for Laboratory

Accreditation to perform electromagnetic emission measurement.

IC

ISED#: 22033

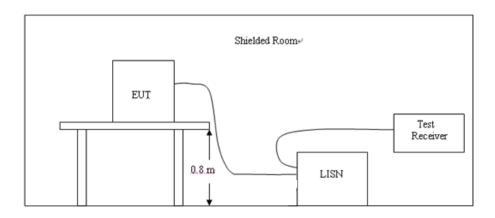
CAB identifier: CN0099

Shenzhen Tongzhou Testing Co.,Ltd has been listed by Innovation, Science and Economic

Development Canada to perform electromagnetic emission measurement.

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010

3 MEASUREMENT INSTRUMENTS LIST


Item	Test Equipment	Manufacturer	Model No.	Serial No.	Calibration Date	Calibration Due Date
1	Wideband Antenna	schwarzbeck	VULB 9163	958	2019/11/16	2022/11/15
2	EMI Test Receiver	R&S	ESCI	100849/003	2021/1/4	2022/1/3
3	Controller	MF	MF7802	N/A	N/A	N/A
4	RF Cable(below 1GHz)	HUBER+SUHNE R	RG214	N/A	2021/1/4	2022/1/3
5	RF Cable(above 1GHz)	HUBER+SUHNE R	RG214	N/A	2021/1/4	2022/1/3
6	RE test software	Tonscend	JS32-RE	V2.0.2.0	N/A	N/A
7	Loop Antenna	schwarzbeck	FMZB 1519 B	23	2019/11/16	2022/11/15
8	Artificial Mains	ROHDE & SCHWARZ	ENV 216	101333-IP	2021/1/4	2022/1/3
9	EMI Test Software	ROHDE & SCHWARZ	ESK1	V1.71	N/A	N/A
10	MXA Signal Analyzer	Keysight	N9020A	MY52091623	2021/1/4	2022/1/3

4 CONDUCTED EMISSION TEST

4.1 Block Diagram of Test Setup

4.2 Conducted Power Line Emission Limit

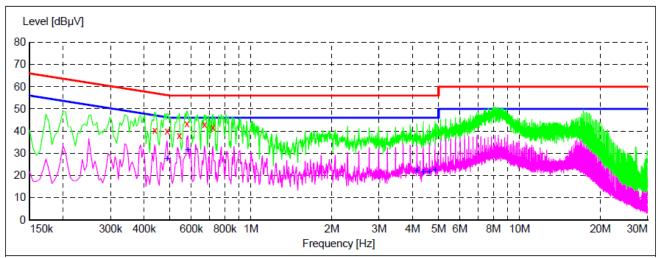
According to FCC Part 15.207(a)

F	Maximum RF Line Voltage (dΒμV)				
Frequency (MHz)	CLAS	SS A	CLASS B		
(11112)	Q.P.	Ave.	Q.P.	Ave.	
0.15 - 0.50	79	66	66-56*	56-46*	
0.50 - 5.00	73	60	56	46	
5.00 - 30.0	73	60	60	50	

^{*} Decreasing linearly with the logarithm of the frequency For intentional device, according to §15.207Line Conducted Emission Limit is same as above table.

4.3 Test Procedure

- 1, The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10.
- 2, Support equipment, if needed, was placed as per ANSI C63.10.
- 3, All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10.
- 4, If a EUT received DC power from the USB Port of Notebook PC, the PC's adapter received AC120V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5, All support equipments received AC power from a second LISN, if any.
- 6, The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load; the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7, Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes

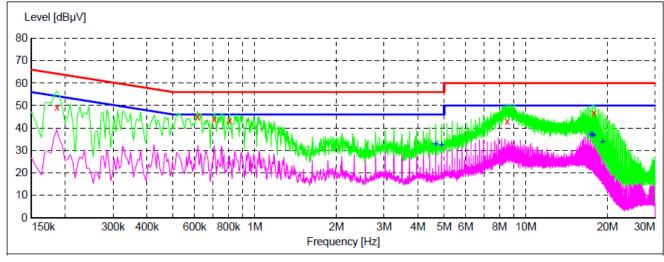


4.4 Test Result PASS

Temperature	22.8°C	Humidity	55%
Test Engineer	Tony Luo	Configurations	Mode 1

Please refer to following diagram for individual

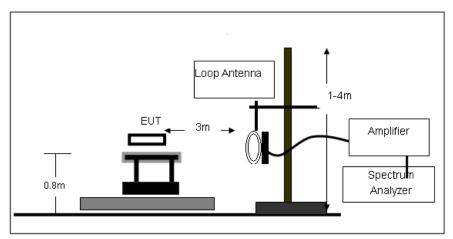
Test Specification: Line


Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.438000 0.487500 0.541500 0.577500 0.672000 0.721500	40.50 40.10 38.00 43.40 43.10 41.60	10.0 10.0 9.9 9.9 9.9	57 56 56 56 56 56	16.6 16.1 18.0 12.6 12.9 14.4	QP QP QP QP QP QP	L1 L1 L1 L1 L1	GND GND GND GND GND GND
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.487500 0.582000 4.150500 4.384500 4.618500 4.848000	27.30 31.40 22.20 21.40 21.40 22.50	10.0 9.9 9.7 9.8 9.8 9.8	46 46 46 46 46	18.9 14.6 23.8 24.6 24.6 23.5	AV AV AV AV AV	L1 L1 L1 L1 L1	GND GND GND GND GND GND

Remark: Margin = Limit - Level

Test Specification: Neutral

Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
0.186000 0.613500 0.708000 0.807000 8.529000 17.799000	49.40 45.10 43.80 43.20 43.10 46.70	10.4 9.9 9.9 9.8 9.8 10.2	64 56 56 56 60	14.8 10.9 12.2 12.8 16.9 13.3	QP QP QP QP QP QP	N N N N N	GND GND GND GND GND GND
Frequency MHz	Level dBµV	Transd dB	Limit dBµV	Margin dB	Detector	Line	PE
4.654500 4.888500 17.335500 17.569500 17.799000	32.60 32.50 37.10 37.00 36.60	9.8 9.8 10.1 10.1	46 46 50 50	13.4 13.5 12.9 13.0 13.4	AV AV AV AV	N N N N	GND GND GND GND GND
19.198500	33.80	10.3	50	16.2	AV	N	GND


Remark: Margin = Limit – Level

5 BANDWIDTH

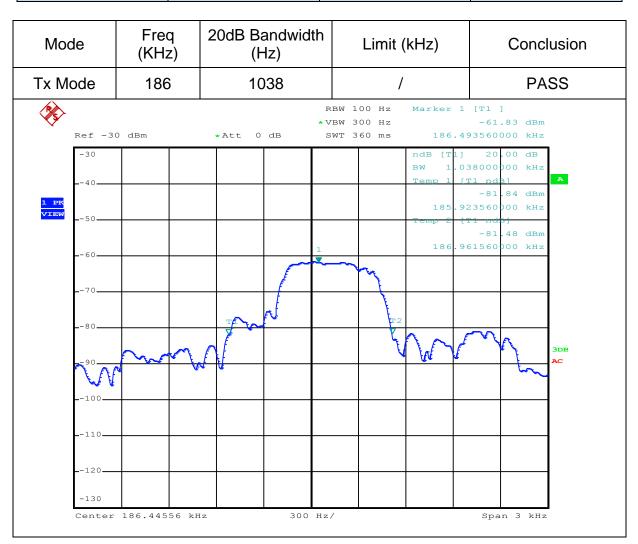
5.1 Block Diagram of Test Setup

5.2 Rules and specifications

CFR 47 Part 15.215(c)

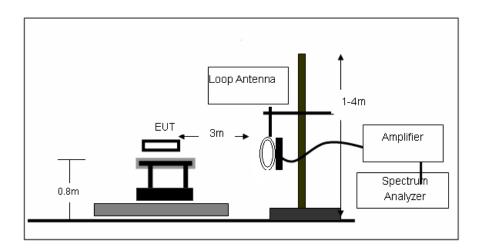
ANSI C63.10-2013

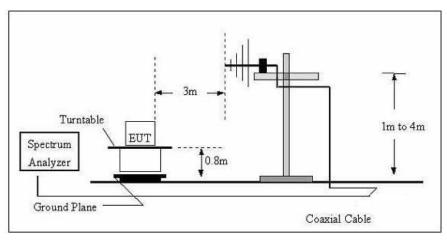
5.3 Test Procedure


Intentional radiators operating under the alternative provisions to the general emission limits, as contained in §§15.217 through 15.257 and in subpart E of this part, must be designed to ensure that 20dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equip compliance with the 20dB attenuation specification may base on measurement at the intentional radiator's antenna output terminal unless the intentional radiator uses a permanently attached antenna, in which case compliance shall be deomonstrated by measuring the radiated emissions.

5.4 Test Result PASS

Temperature	22.8°C	Humidity	55%
Test Engineer	Tony Luo	Configurations	Mode 1





6 RADIA TED EMISSIONS

6.1 Block Diagram of Test Setup

6.2 Rules and specifications

CFR 47 Part 15, section 15.205

Only spurious emissions are permitted in any of the frequency bands listed the tables in these sections.

MHz	MHz	MHz	GHz
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15
\1\ 0.495-0.505	16.69475-16.69525	608-614	5.35-5.46
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7
6.26775-6.26825	108-121.94	1718.8-1722.2	13.25-13.4
6.31175-6.31225	123-138	2200-2300	14.47-14.5
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0
12.29-12.293.	167.72-173.2	3332-3339	31.2-31.8
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5
12.57675-12.57725	322-335.4	3600-4400	(\2\)
13.36-13.41			

CFR 47 Part 15, section 15.209

The emissions from an intentional radiator shall not exceed the limits in the tables in these sections using an average detector

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88–216	150**	3
216–960	200**	3
Above 960	500	3

Limit calculation and transfer to 3m distance as showed in the following table:

Frequency	Limit	Distance		
(MHz)	(dBuV/m)	(m)		
0.009-0.490	20log(2400/F(KHz))+40log(300/3)	3		
0.490-1.705	20log(24000/F(KHz))+40log(30/3)	3		
1.705-30.0	69.5	3		
30-88	40.0	3		
88-216	43.5	3		
216-960	46.0	3		
Above 960	54.0	3		

CFR 47 Part 15, section 15.35

When average radiated emission measurements are specified, the limit on the peak level of the radio Frequency emission is 20dB above the maximum permitted average emission limit.

Transmitter Spurious Emissions 9KHz-30MHz							
9-150KHz 150-490KHz 490KHz-30MHz							
Resolution Bandwidth	200Hz	9KHz	9KHz				
Video Bandwidth	2KHz	100KHz	100KHz				
Detector	Peak	Peak	Peak				
Trace Mode	Max Hold	Max Hold	Max Hold				
Sweep Time	Auto	Auto	Auto				

6.3 Test Procedure

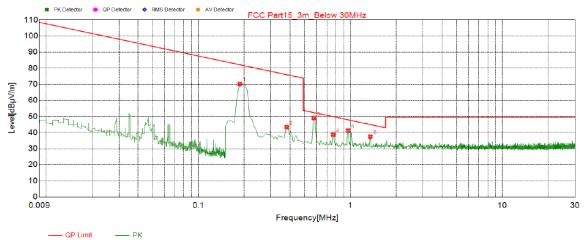
Measurement distance 3m

For the measurement range up to 30MHz in the following plots the field strength result from 3m Distance measurement are extrapolated to 300m and 30m distance respectively, by 40dB/decade, According to part 15.31(f)(2), per antenna factor scaling.

Measurements below 1000MHz are performed with a peak detector and compared to average limits, Measurements with an average detector are not required.

Note:

For battery operated equipment, the equipment tests shall be performed using a new battery.


6.4 Test Result

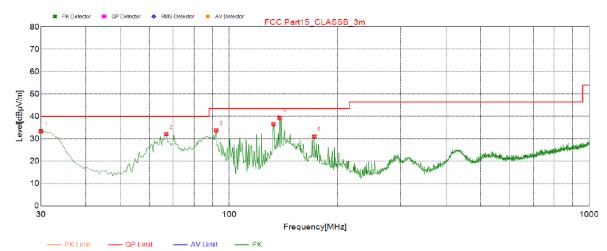
PASS

Temperature	22.8°C	Humidity	55%
Test Engineer	Tony Luo	Configurations	Mode 1


For 9KHz-30MHz

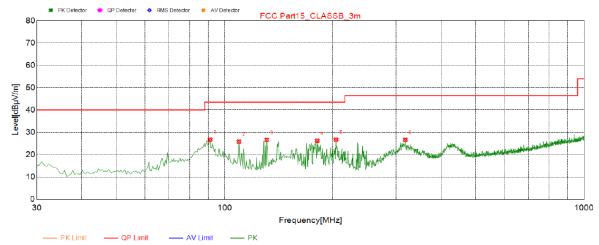
Note: Measured at both 0 degree and 90 degree, recorded worst case at 90 degree.

Susp	Suspected List								
NO.	Freq.	Result Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle[°]	Polarity	
1	0.187	70.17	19.51	82.16	11.99	100	244	Horizontal	
2	0.381	43.4	19.64	75.98	32.58	100	164	Horizontal	
3	0.575	49.02	19.73	52.42	3.40	100	136	Horizontal	
4	0.769	38.68	19.81	49.89	11.21	100	175	Horizontal	
5	0.963	41.27	19.89	47.95	6.68	100	222	Horizontal	
6	1.351	37.47	19.94	45.01	7.54	100	203	Horizontal	


Remark : Actual FS = Reading + Factor; Margin = Limits - Actual FS

For 30MHz-1GHz

Antenna polarity: V



Susp	Suspected List								
NO.	Freq.	Result Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle[°]	Polarity	
1	30.000	33.34	-16.22	40.00	6.66	100	195	Vertical	
2	66.860	32.1	-17.40	40.00	7.90	100	165	Vertical	
3	92.080	33.76	-17.33	43.50	9.74	100	24	Vertical	
4	132.820	36.54	-19.19	43.50	6.96	100	173	Vertical	
5	138.155	39.32	-19.42	43.50	4.18	100	317	Vertical	
6	172.590	31.05	-17.91	43.50	12.45	100	148	Vertical	

Remark: Factor = Cable lose + Antenna factor - Pre-amplifier; Margin = Limit – Level

Antenna polarity: H

Susp	Suspected List								
NO.	Freq.	Result Level [dBµV/m]	Factor [dB/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle[°]	Polarity	
1	91.110	26.72	-17.49	43.50	16.78	300	87	Horizontal	
2	109.540	25.82	-16.01	43.50	17.68	100	95	Horizontal	
3	130.880	26.62	-19.10	43.50	16.88	100	154	Horizontal	
4	180.835	26.25	-17.37	43.50	17.25	100	101	Horizontal	
5	204.115	26.73	-15.31	43.50	16.77	100	95	Horizontal	
6	318.090	26.64	-12.32	46.50	19.86	100	73	Horizontal	

Remark: Factor = Cable lose + Antenna factor - Pre-amplifier; Margin = Limit – Level

7 ANTENNA REQUIREMENT

Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

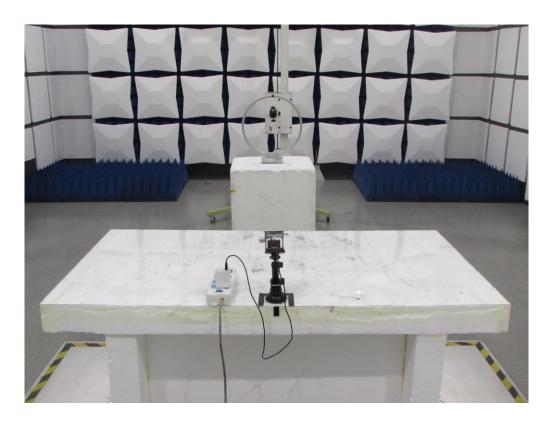
Refer to statement below for compliance.

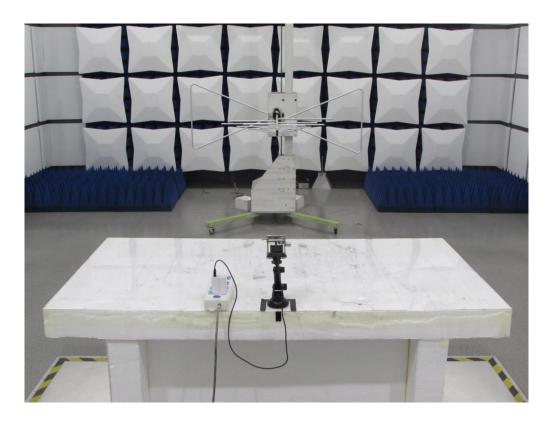
The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not apply to intentional radiators that must be professionally installed.

Antenna Connected Construction

The antenna used in this product is a Coil Antenna, The directional gains of antenna used for transmitting is 0dBi.

ANTENNA





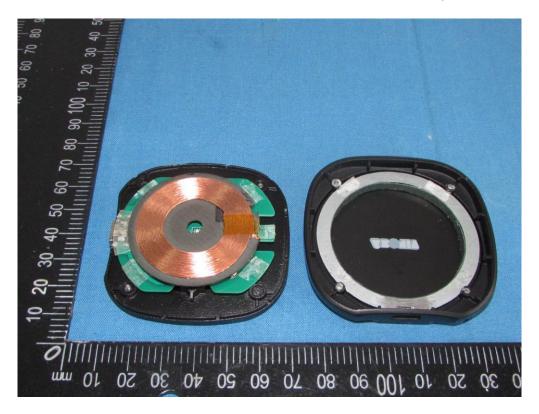
8 PHOTOGRAPH OF TEST

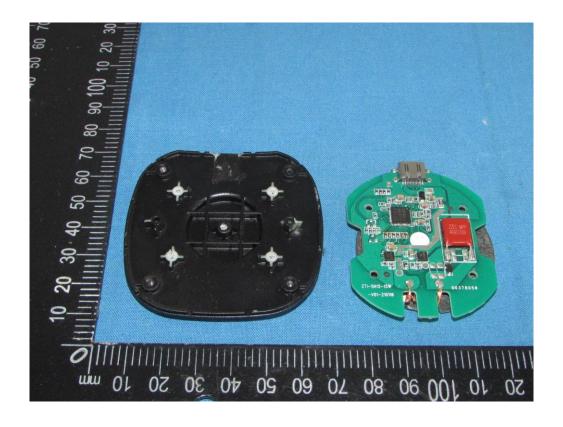
8.1 Radiated Emission

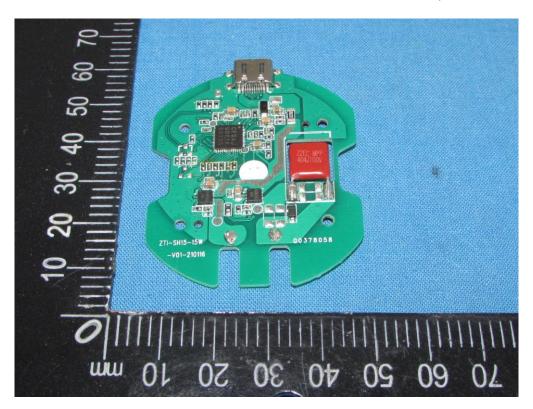
8.2 Conducted Emission

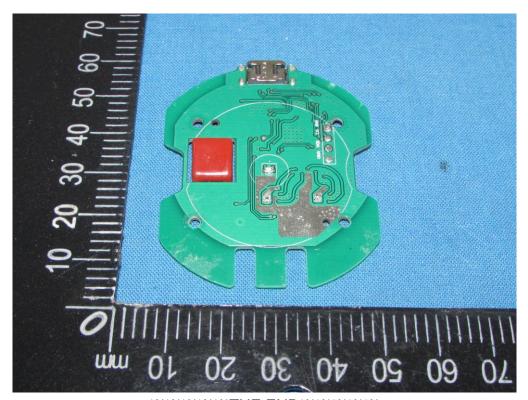
9 PHOTOGRAPH OF EUT

External Photos


Internal Photos







*****THE END****