APPENDIX A: SAR TEST DATA

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02854

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.52 \text{ MHz}; \ \sigma = 0.903 \text{ S/m}; \ \epsilon_r = 40.592; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 02/07/2020; Ambient Temp: 22.3°C; Tissue Temp: 20.2°C

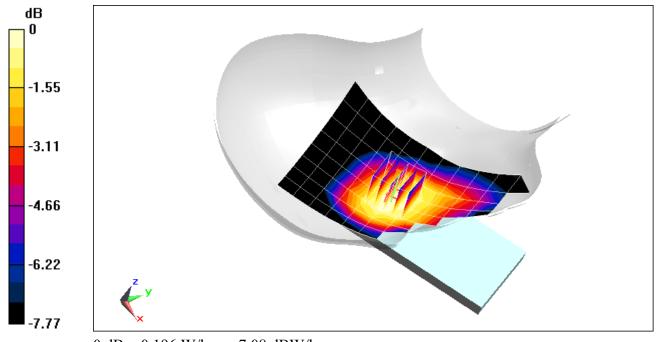
Probe: EX3DV4 - SN7410; ConvF(9.88, 9.88, 9.88) @ 836.52 MHz; Calibrated: 7/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: Cell. EVDO Rev. A, Right Head, Cheek, Mid.ch


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.28 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.210 W/kg

SAR(1 g) = 0.171 W/kg

0 dB = 0.196 W/kg = -7.08 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02847

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.903 \text{ S/m}; \ \epsilon_r = 40.592; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 02/07/2020; Ambient Temp: 22.3°C; Tissue Temp: 20.2°C

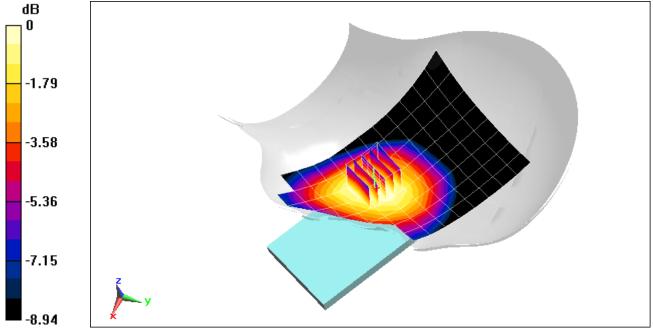
Probe: EX3DV4 - SN7410; ConvF(9.88, 9.88, 9.88) @ 836.6 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: GPRS 850, Left Head, Cheek, Mid.ch, 2 Tx slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 11.32 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.130 W/kg

SAR(1 g) = 0.106 W/kg

0 dB = 0.123 W/kg = -9.10 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02847

Communication System: UID 0, UMTS; Frequency: 836.6 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.934 \text{ S/m}; \ \epsilon_r = 41.048; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 02/02/2020; Ambient Temp: 24.3°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7417; ConvF(10.07, 10.07, 10.07) @ 836.6 MHz; Calibrated: 2/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/13/2019

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: UMTS 850, Left Head, Cheek, Mid.ch

Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.14 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 0.226 W/kg

SAR(1 g) = 0.176 W/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02854

Communication System: UID 0, UMTS; Frequency: 1732.4 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used (interpolated): $f = 1732.4 \text{ MHz}; \ \sigma = 1.346 \text{ S/m}; \ \epsilon_r = 39.287; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

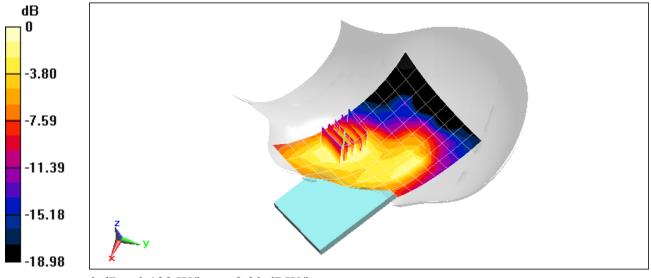
Test Date: 02/02/2020; Ambient Temp: 21.1°C; Tissue Temp: 20.3°C

Probe: EX3DV4 - SN3914; ConvF(8.16, 8.16, 8.16) @ 1732.4 MHz; Calibrated: 2/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: UMTS 1750, Left Head, Cheek, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.815 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 0.151 W/kg

SAR(1 g) = 0.098 W/kg

0 dB = 0.129 W/kg = -8.89 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02847

Communication System: UID 0, PCS CDMA; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.424 \text{ S/m}; \ \epsilon_r = 39.245; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

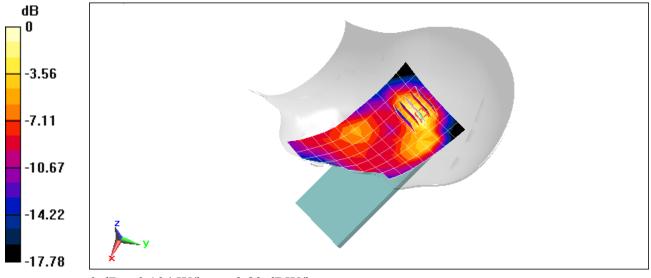
Test Date: 02/03/2020; Ambient Temp: 21.9°C; Tissue Temp: 19.4°C

Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1880 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: PCS EVDO Rev A, Left Head, Tilt, Mid.ch


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.104 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.127 W/kg

SAR(1 g) = 0.069 W/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02854

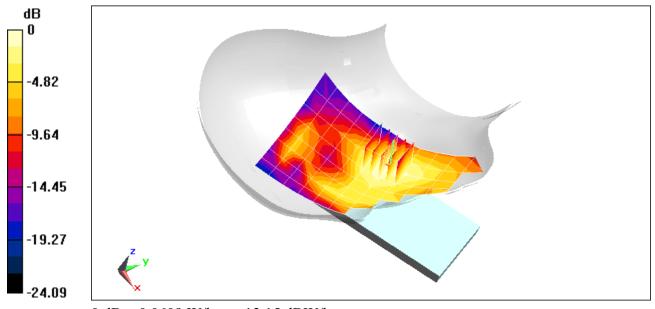
Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Head; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.424 \text{ S/m}; \ \epsilon_r = 39.245; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 02/03/2020; Ambient Temp: 21.9°C; Tissue Temp: 19.4°C

Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1880 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/11/2019
Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: GPRS 1900, Right Head, Cheek, Mid.ch, 2 Tx slots


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 6.037 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.0710 W/kg

SAR(1 g) = 0.047 W/kg

0 dB = 0.0609 W/kg = -12.15 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02847

Communication System: UID 0, UMTS; Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.424 \text{ S/m}; \ \epsilon_r = 39.245; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 02/03/2020; Ambient Temp: 21.9°C; Tissue Temp: 19.4°C

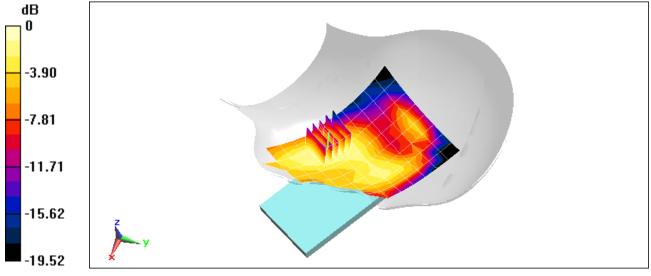
Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1880 MHz; Calibrated: 7/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: UMTS 1900, Left Head, Cheek, Mid.ch


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 7.252 V/m; Power Drift = 0.08 dB

Peak SAR (extrapolated) = 0.108 W/kg

SAR(1 g) = 0.069 W/kg

0 dB = 0.0928 W/kg = -10.32 dBW/kg

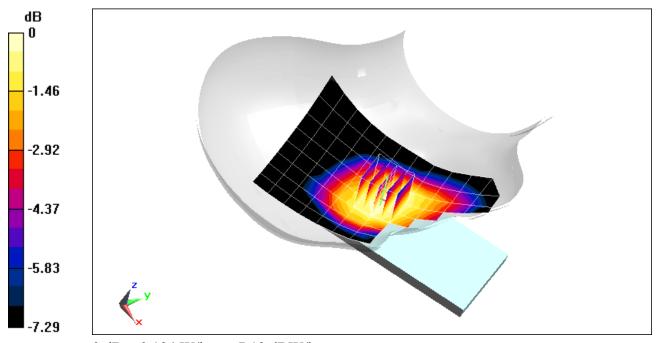
DUT: ZNFV600VM; Type: Portable Handset; Serial: 02862

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Head; Medium parameters used (interpolated): $f = 707.5 \text{ MHz}; \ \sigma = 0.868 \text{ S/m}; \ \epsilon_r = 41.483; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 02/05/2020; Ambient Temp: 22.3°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7410; ConvF(9.95, 9.95, 9.95) @ 707.5 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/11/2019
Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 12, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.97 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.200 W/kg

SAR(1 g) = 0.175 W/kg

0 dB = 0.194 W/kg = -7.12 dBW/kg

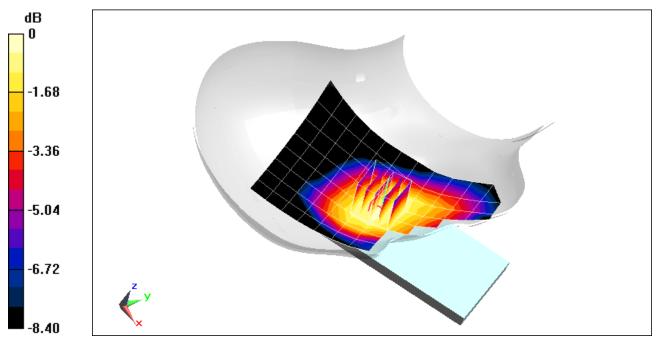
DUT: ZNFV600VM; Type: Portable Handset; Serial: 02862

Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 Head; Medium parameters used (interpolated): $f = 782 \text{ MHz}; \ \sigma = 0.894 \text{ S/m}; \ \epsilon_r = 41.223; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 02/05/2020; Ambient Temp: 22.3°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7410; ConvF(9.95, 9.95, 9.95) @ 782 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019 Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 13, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.45 V/m; Power Drift = -0.15 dB

Peak SAR (extrapolated) = 0.200 W/kg

SAR(1 g) = 0.169 W/kg

0 dB = 0.190 W/kg = -7.21 dBW/kg

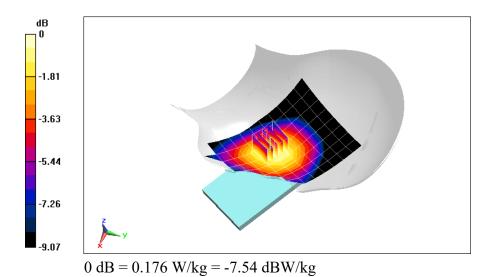
DUT: ZNFV600VM; Type: Portable Handset; Serial: 02862

Communication System: UID 0, LTE Band 14; Frequency: 793 MHz; Duty Cycle: 1:1 Medium: 750 Head; Medium parameters used (interpolated): $f = 793 \text{ MHz}; \ \sigma = 0.898 \text{ S/m}; \ \epsilon_r = 41.191; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 02/05/2020; Ambient Temp: 22.3°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7410; ConvF(9.95, 9.95, 9.95) @ 793 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1322; Calibrated: 7/11/2019
Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 14, Left Head, Cheek, Mid.ch, QPSK, 10 MHz Bandwidth, 1 RB, 0 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.56 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 0.183 W/kg

SAR(1 g) = 0.154 W/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02862

Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.917 \text{ S/m}; \ \epsilon_r = 40.059; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 02/09/2020; Ambient Temp: 21.4°C; Tissue Temp: 20.5°C

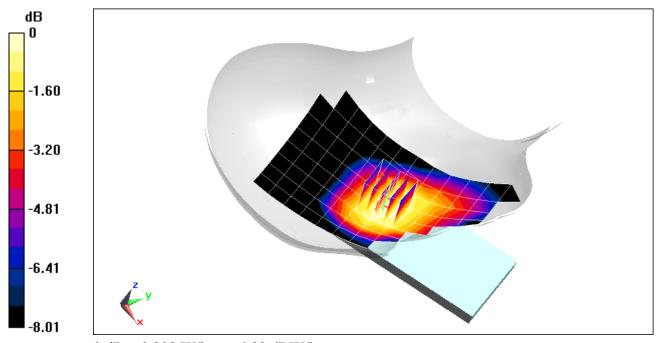
Probe: EX3DV4 - SN7410; ConvF(9.88, 9.88, 9.88) @ 836.5 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 5 (Cell.), Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 25 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.76 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.220 W/kg

SAR(1 g) = 0.178 W/kg

0 dB = 0.208 W/kg = -6.82 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02862

Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used: $f = 1770 \text{ MHz}; \ \sigma = 1.368 \text{ S/m}; \ \epsilon_r = 39.228; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

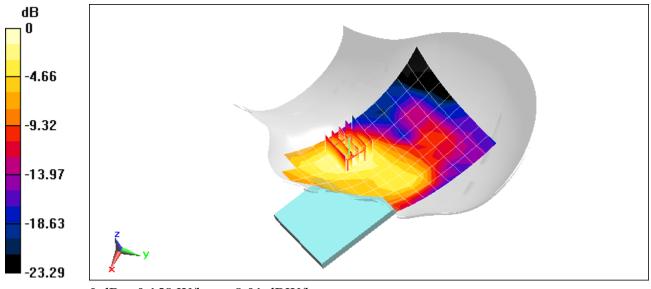
Test Date: 02/02/2020; Ambient Temp: 21.1°C; Tissue Temp: 20.3°C

Probe: EX3DV4 - SN3914; ConvF(8.16, 8.16, 8.16) @ 1770 MHz; Calibrated: 2/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 66 (AWS), Left Head, Cheek, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 10.09 V/m; Power Drift = 0.06 dB

Peak SAR (extrapolated) = 0.182 W/kg

SAR(1 g) = 0.118 W/kg

0 dB = 0.158 W/kg = -8.01 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02862

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1880 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.424 \text{ S/m}; \ \epsilon_r = 39.245; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 02/03/2020; Ambient Temp: 21.9°C; Tissue Temp: 19.4°C

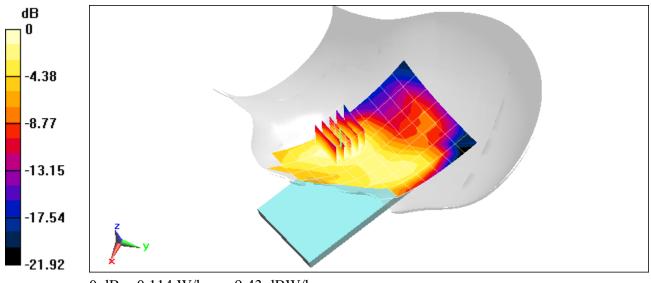
Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1880 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 2 (PCS), Left Head, Cheek, Mid.ch, 20 MHz Bandwidth, QPSK, 1 RB, 99 RB Offset


Area Scan (8x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.578 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 0.132 W/kg

SAR(1 g) = 0.086 W/kg

0 dB = 0.114 W/kg = -9.43 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02862

Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used: $f = 2310 \text{ MHz}; \ \sigma = 1.7 \text{ S/m}; \ \epsilon_r = 41.202; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

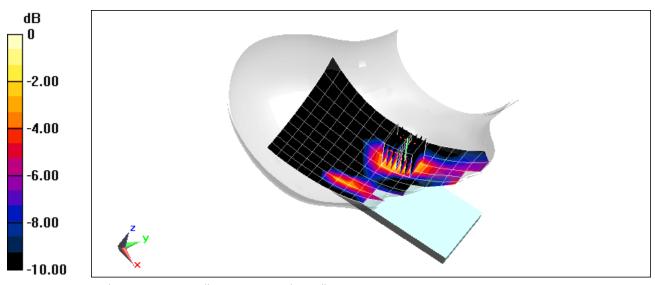
Test Date: 01/30/2020; Ambient Temp: 22.5°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7417; ConvF(7.73, 7.73, 7.73) @ 2310 MHz; Calibrated: 2/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/13/2019

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 30, Right Head, Cheek, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.564 V/m; Power Drift = 0.17 dB

Peak SAR (extrapolated) = 0.0830 W/kg

SAR(1 g) = 0.045 W/kg;

0 dB = 0.0678 W/kg = -11.69 dBW/kg

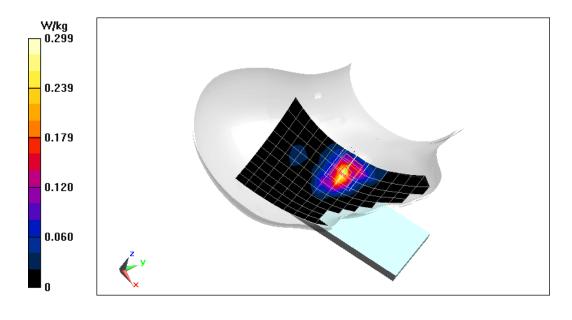
DUT: ZNFV600VM; Type: Portable Handset; Serial: 02870

Communication System: UID 0, LTE Band 48; Frequency: 3560 MHz; Duty Cycle: 1:1.58 Medium: 3600 Head; Medium parameters used: $f = 3560 \text{ MHz}; \ \sigma = 2.953 \text{ S/m}; \ \epsilon_r = 36.916; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 02/11/2020; Ambient Temp: 21.8°C; Tissue Temp: 21.4°C

Probe: EX3DV4 - SN7488; ConvF(7.3, 7.3, 7.3) @ 3560 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1530; Calibrated: 1/13/2020
Phantom: Twin-SAM V4.0 left 20; Type: QD 000 P40 CC; Serial: 1687
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 48, Right Head, Cheek, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 8.400 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.443 W/kg

SAR(1 g) = 0.153 W/kg

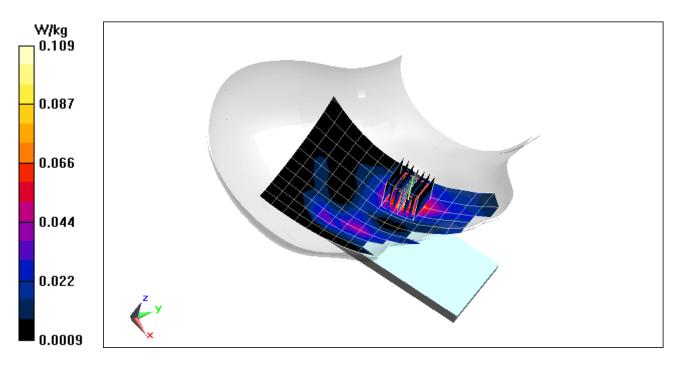
DUT: ZNFV600VM; Type: Portable Handset; Serial: 02888

Communication System: UID 0, LTE Band 41; Frequency: 2636.5 MHz; Duty Cycle: 1:1.58 Medium: 2450 Head; Medium parameters used (interpolated): $f = 2636.5 \text{ MHz}; \ \sigma = 2 \text{ S/m}; \ \epsilon_r = 39.302; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 02/08/2020; Ambient Temp: 22.2°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN3589; ConvF(6.6, 6.6, 6.6) @ 2636.5 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1558; Calibrated: 1/13/2020
Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 41, Right Head, Cheek, Mid-High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.507 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.133 W/kg

SAR(1 g) = 0.070 W/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02896

Communication System: UID 0, NR Band n5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Head; Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.93 \text{ S/m}; \ \epsilon_r = 43.267; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Left Section

Test Date: 02/20/2020; Ambient Temp: 23.7°C; Tissue Temp: 20.2°C

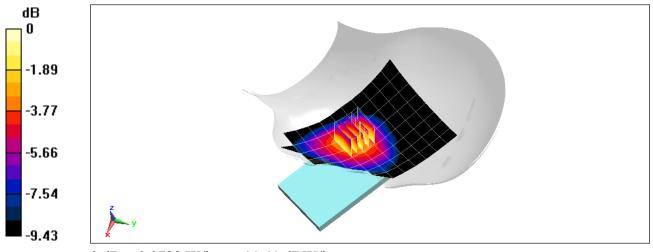
Probe: EX3DV4 - SN7410; ConvF(9.88, 9.88, 9.88) @ 836.5 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: NR Band n5, Left Head, Cheek, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 167300, 1 RB, 1 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 8.790 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.0780 W/kg

SAR(1 g) = 0.063 W/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02896

Communication System: UID 0, NR Band n66; Frequency: 1720 MHz; Duty Cycle: 1:1 Medium: 1750 Head; Medium parameters used: $f = 1720 \text{ MHz}; \ \sigma = 1.338 \text{ S/m}; \ \epsilon_r = 39.305; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

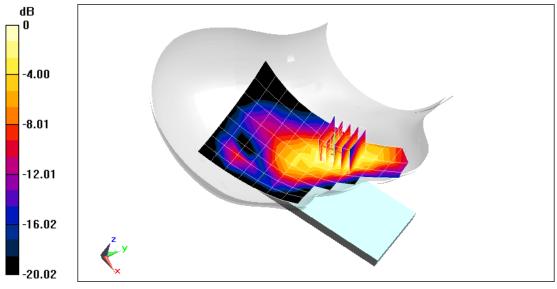
Test Date: 02/02/2020; Ambient Temp: 21.1°C; Tissue Temp: 20.3°C

Probe: EX3DV4 - SN3914; ConvF(8.16, 8.16, 8.16) @ 1720 MHz; Calibrated: 2/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1646

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: NR Band n66, Right Head, Cheek, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 344000, 1 RB, 104 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 14.51 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 0.412 W/kg

SAR(1 g) = 0.259 W/kg

0 dB = 0.356 W/kg = -4.49 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02904

Communication System: UID 0, NR Band n2; Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Head; Medium parameters used: Medium parameters used: $f = 1860 \text{ MHz}; \ \sigma = 1.412 \text{ S/m}; \ \epsilon_r = 39.273; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 02/03/2020; Ambient Temp: 21.9°C; Tissue Temp: 19.4°C

Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1860 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: NR Band n2, Right Head, Cheek, 20 MHz Bandwidth, CP-OFDM QPSK, Ch. 372000, 1 RB, 1 RB Offset


Area Scan (9x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 12.32 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.308 W/kg

SAR(1 g) = 0.198 W/kg

0 dB = 0.261 W/kg = -5.83 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02805

Communication System: UID 0, IEEE 802.11n; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used (interpolated): $f = 2437 \text{ MHz}; \ \sigma = 1.826 \text{ S/m}; \ \epsilon_r = 38.359; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

Test Date: 02/17/2020; Ambient Temp: 21.9°C; Tissue Temp: 20.9°C

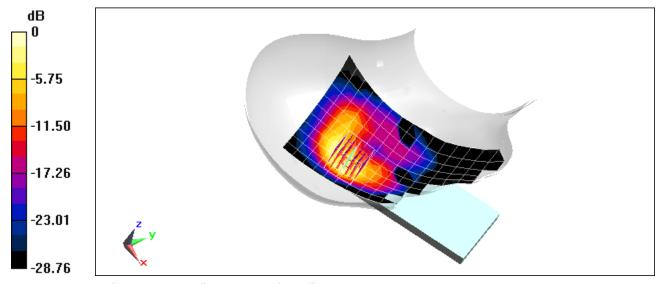
Probe: EX3DV4 - SN7570; ConvF(7.52, 7.52, 7.52) @ 2437 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn859; Calibrated: 12/18/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: IEEE 802.11n, MIMO, 20 MHz Bandwidth, Right Head, Cheek, Ch 6, 13 Mbps


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.994 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.477 W/kg

0 dB = 0.986 W/kg = -0.06 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02953

Communication System: UID 0, 802.11n 5.2-5.8 GHz Band; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head; Medium parameters used: $f = 5500 \text{ MHz}; \ \sigma = 5.002 \text{ S/m}; \ \epsilon_r = 36.357; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

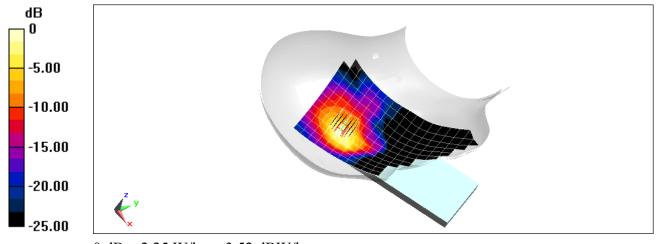
Test Date: 02/14/2020; Ambient Temp: 21.4°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7406; ConvF(4.94, 4.94, 4.94) @ 5500 MHz; Calibrated: 5/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/8/2019

Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: IEEE 802.11n, U-NII-2C, MIMO, 20 MHz Bandwidth, Right Head, Cheek, Ch 100, 13.0 Mbps


Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 6.354 V/m; Power Drift = 0.16 dB

Peak SAR (extrapolated) = 3.88 W/kg

SAR(1 g) = 0.958 W/kg

0 dB = 2.25 W/kg = 3.52 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02953

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.294 Medium: 2450 Head; Medium parameters used (interpolated): $f = 2441 \text{ MHz}; \ \sigma = 1.832 \text{ S/m}; \ \epsilon_r = 38.943; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Right Section

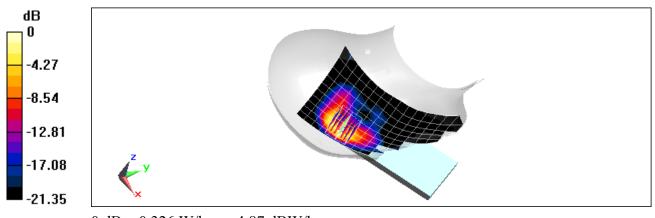
Test Date: 02/11/2020; Ambient Temp: 24.3°C; Tissue Temp: 23.0°C

Probe: EX3DV4 - SN3589; ConvF(6.85, 6.85, 6.85) @ 2441 MHz; Calibrated: 1/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: Bluetooth, Right Head, Cheek, Ch 39, 1 Mbps


Area Scan (11x19x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 10.65 V/m; Power Drift = 0.14 dB

Peak SAR (extrapolated) = 0.451 W/kg

SAR(1 g) = 0.178 W/kg

0 dB = 0.326 W/kg = -4.87 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02847

Communication System: UID 0, CDMA; Frequency: 848.31 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 848.31 \text{ MHz}; \ \sigma = 0.975 \text{ S/m}; \ \epsilon_r = 54.462; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

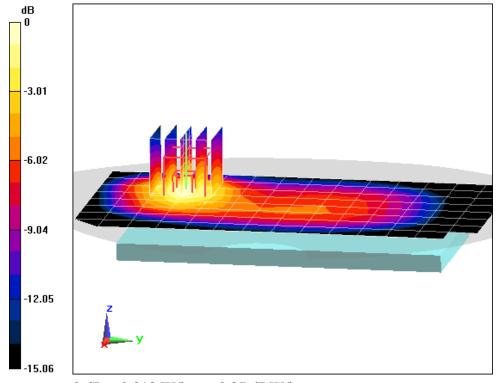
Test Date: 02/07/2020; Ambient Temp: 21.5°C; Tissue Temp: 20.7°C

Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 848.31 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: Cell. CDMA, Body SAR, Back side, High.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.88 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.10 W/kg

SAR(1 g) = 0.651 W/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02847

Communication System: UID 0, CDMA; Frequency: 836.52 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.52 \text{ MHz}; \ \sigma = 0.97 \text{ S/m}; \ \epsilon_r = 54.496; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

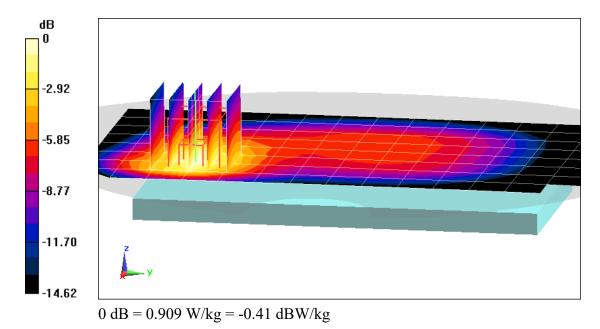
Test Date: 02/07/2020; Ambient Temp: 21.5°C; Tissue Temp: 20.7°C

Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 836.52 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019 Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: Cell. EVDO, Body SAR, Front side, Mid.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.67 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.643 W/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02847

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 836.6 MHz; Duty Cycle: 1:4.15 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.6 \text{ MHz}; \ \sigma = 0.982 \text{ S/m}; \ \epsilon_r = 52.897; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/05/2020; Ambient Temp: 21.5°C; Tissue Temp: 21.1°C

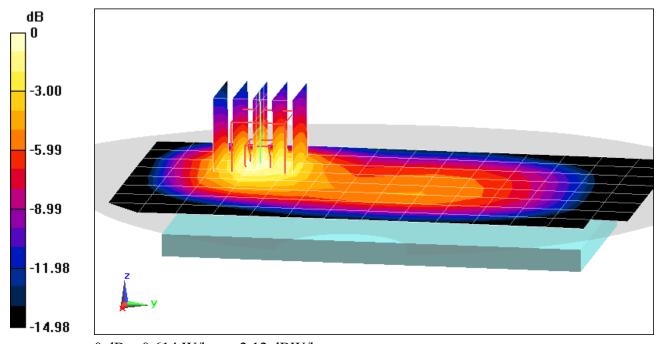
Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 836.6 MHz; Calibrated: 9/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: GPRS 850, Body SAR, Back side, Mid.ch, 2 Tx Slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.18 V/m; Power Drift = -0.18 dB

Peak SAR (extrapolated) = 0.723 W/kg

SAR(1 g) = 0.438 W/kg

0 dB = 0.614 W/kg = -2.12 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02854

Communication System: UID 0, UMTS; Frequency: 846.6 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 846.6 \text{ MHz}; \ \sigma = 0.986 \text{ S/m}; \ \epsilon_r = 52.874; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/05/2020; Ambient Temp: 21.5°C; Tissue Temp: 21.1°C

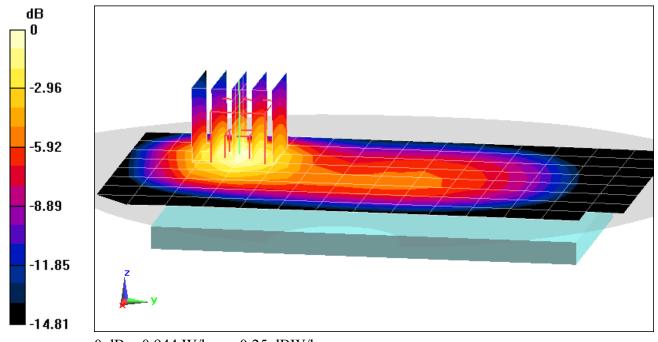
Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 846.6 MHz; Calibrated: 9/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: UMTS 850, Body SAR, Back side, High.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 27.08 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.12 W/kg

SAR(1 g) = 0.672 W/kg

0 dB = 0.944 W/kg = -0.25 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02854

Communication System: UID 0, UMTS; Frequency: 846.6 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 846.6 \text{ MHz}; \ \sigma = 0.986 \text{ S/m}; \ \epsilon_r = 52.874; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/05/2020; Ambient Temp: 21.5°C; Tissue Temp: 21.1°C

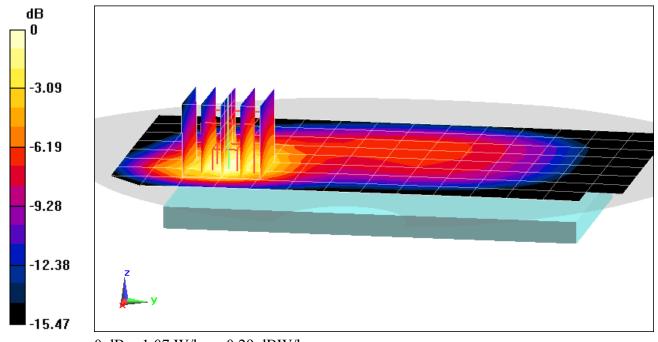
Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 846.6 MHz; Calibrated: 9/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: UMTS 850, Body SAR, Front side, High.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 28.55 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.751 W/kg

0 dB = 1.07 W/kg = 0.29 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02854

Communication System: UID 0, UMTS; Frequency: 1752.6 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used (interpolated): $f = 1752.6 \text{ MHz}; \ \sigma = 1.522 \text{ S/m}; \ \epsilon_r = 54.327; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

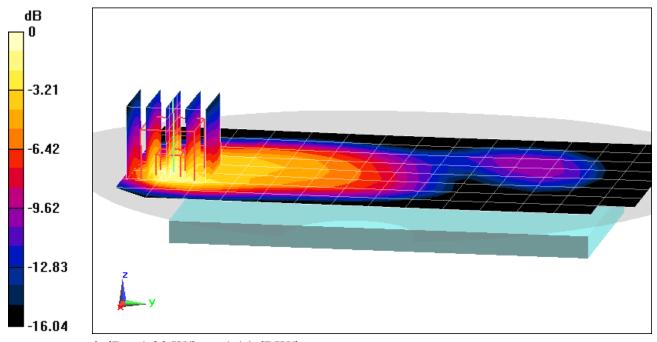
Test Date: 02/05/2020; Ambient Temp: 21.8°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1752.6 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: UMTS 1750, Body SAR, Back side, High.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.08 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 1.52 W/kg

SAR(1 g) = 0.854 W/kg

0 dB = 1.30 W/kg = 1.14 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02862

Communication System: UID 0, UMTS; Frequency: 1752.6 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used (interpolated): $f = 1752.6 \text{ MHz}; \ \sigma = 1.522 \text{ S/m}; \ \epsilon_r = 54.327; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

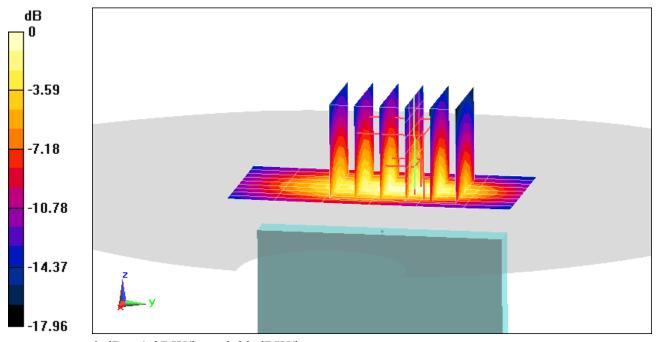
Test Date: 02/05/2020; Ambient Temp: 21.8°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1752.6 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: UMTS 1750, Body SAR, Bottom Edge, High.ch


Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.70 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.27 W/kg

SAR(1 g) = 0.711 W/kg

0 dB = 1.07 W/kg = 0.29 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02854

Communication System: UID 0, CDMA; Frequency: 1851.25 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): f = 1851.25 MHz; $\sigma = 1.515$ S/m; $\epsilon_r = 52.163$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/04/2020; Ambient Temp: 22.0°C; Tissue Temp: 23.4°C

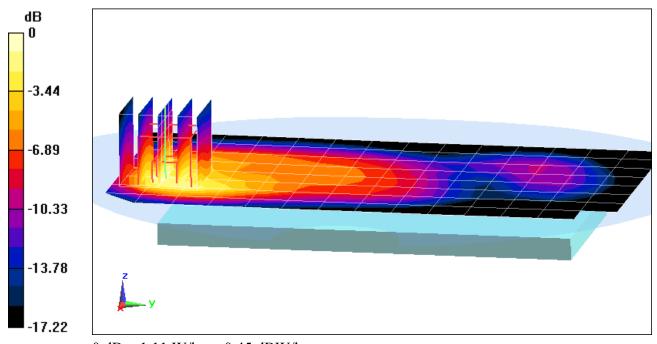
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1851.25 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: PCS CDMA, Body SAR, Back side, Low.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.72 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.29 W/kg

SAR(1 g) = 0.737 W/kg

0 dB = 1.11 W/kg = 0.45 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02870

Communication System: UID 0, CDMA; Frequency: 1908.75 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): $f = 1908.75 \text{ MHz}; \ \sigma = 1.578 \text{ S/m}; \ \epsilon_r = 51.95; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/04/2020; Ambient Temp: 22.0°C; Tissue Temp: 23.4°C

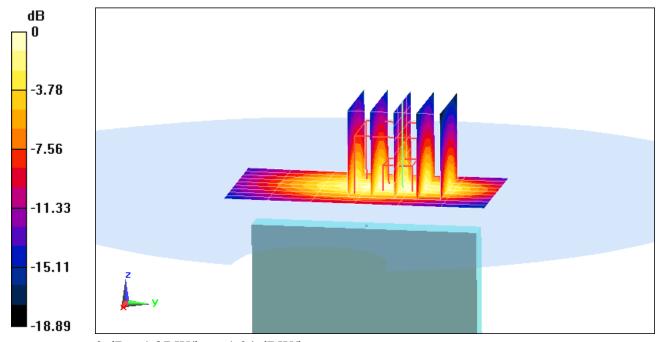
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1908.75 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: PCS EVDO, Body SAR, Bottom Edge, High.ch


Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.44 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.49 W/kg

SAR(1 g) = 0.837 W/kg

0 dB = 1.27 W/kg = 1.04 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02854

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1880 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body; Medium parameters used: $f = 1880 \text{ MHz}; \ \sigma = 1.542 \text{ S/m}; \ \epsilon_r = 51.669; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/12/2020; Ambient Temp: 23.5°C; Tissue Temp: 23.5°C

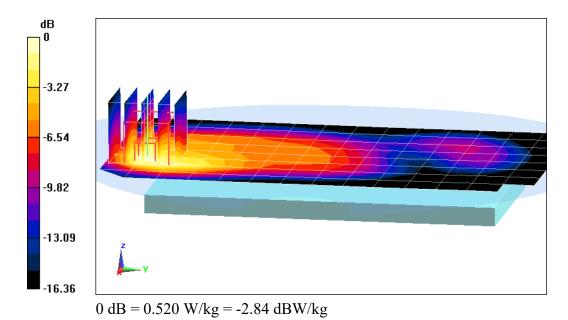
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1880 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: GPRS 1900, Body SAR, Back side, Mid.ch, 2 Tx Slots


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.20 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 0.617 W/kg

SAR(1 g) = 0.349 W/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02854

Communication System: UID 0, GSM GPRS; 2 Tx slots; Frequency: 1909.8 MHz; Duty Cycle: 1:4.15 Medium: 1900 Body; Medium parameters used: $f = 1910 \text{ MHz}; \ \sigma = 1.58 \text{ S/m}; \ \epsilon_r = 51.945; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/04/2020; Ambient Temp: 22.0°C; Tissue Temp: 23.4°C

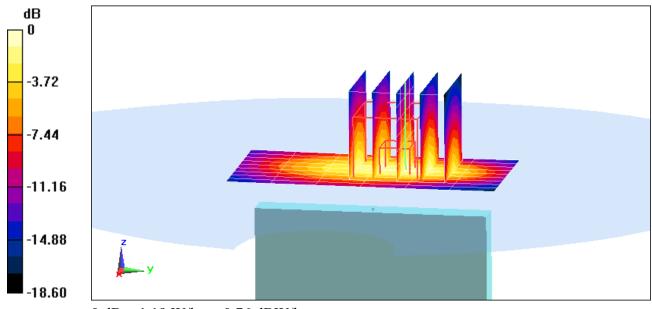
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1909.8 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: GPRS 1900, Body SAR, Bottom Edge, High.ch, 2 Tx Slots


Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.04 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 1.40 W/kg

SAR(1 g) = 0.803 W/kg

0 dB = 1.19 W/kg = 0.76 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02854

Communication System: UID 0, UMTS; Frequency: 1852.4 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): $f = 1852.4 \text{ MHz}; \ \sigma = 1.483 \text{ S/m}; \ \epsilon_r = 51.924; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/01/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.8°C

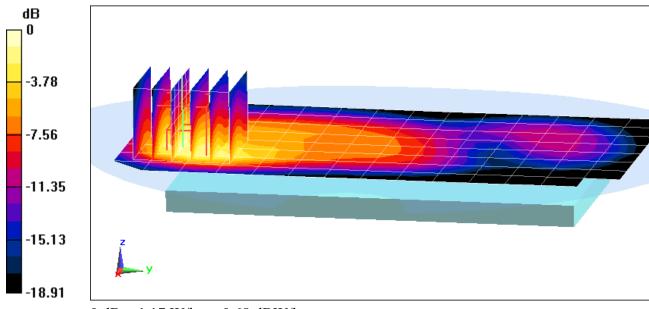
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1852.4 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: UMTS 1900, Body SAR, Back side, Low.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.82 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 1.37 W/kg

SAR(1 g) = 0.766 W/kg

0 dB = 1.17 W/kg = 0.68 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02870

Communication System: UID 0, UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): $f = 1907.6 \text{ MHz}; \ \sigma = 1.543 \text{ S/m}; \ \epsilon_r = 51.712; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/01/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.8°C

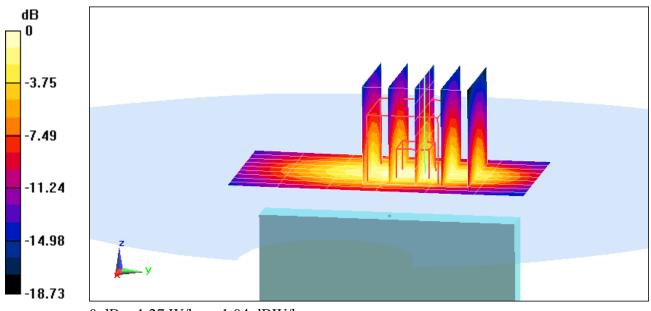
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1907.6 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: UMTS 1900, Body SAR, Bottom Edge, High.ch


Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.97 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.49 W/kg

SAR(1 g) = 0.844 W/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02888

Communication System: UID 0, LTE Band 12; Frequency: 707.5 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): f = 707.5 MHz; $\sigma = 0.933$ S/m; $\varepsilon_r = 53.583$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/03/2020; Ambient Temp: 23.1°C; Tissue Temp: 19.5°C

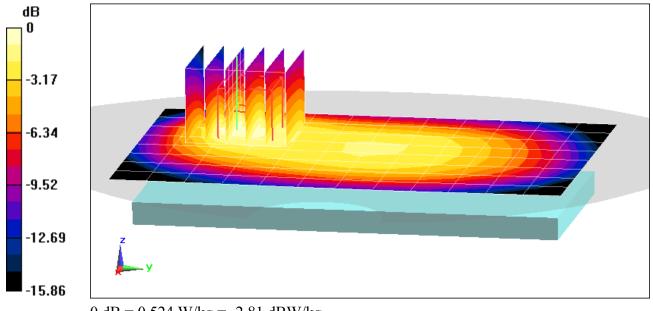
Probe: EX3DV4 - SN7547; ConvF(9.81, 9.81, 9.81) @ 707.5 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1323; Calibrated: 7/11/2019

Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 12, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 49 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 20.65 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 0.625 W/kg

SAR(1 g) = 0.393 W/kg

0 dB = 0.524 W/kg = -2.81 dBW/kg

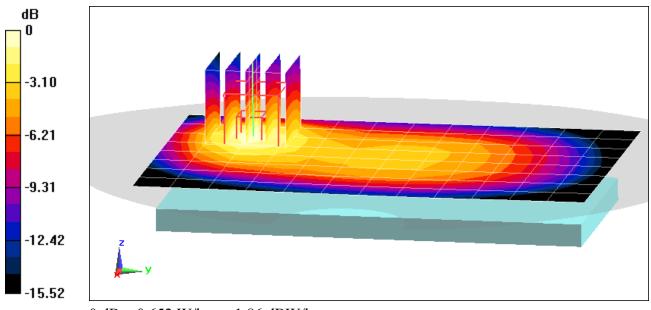
DUT: ZNFV600VM; Type: Portable Handset; Serial: 02888

Communication System: UID 0, LTE Band 13; Frequency: 782 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): $f = 782 \text{ MHz}; \ \sigma = 0.962 \text{ S/m}; \ \epsilon_r = 53.394; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/03/2020; Ambient Temp: 23.1°C; Tissue Temp: 19.5°C

Probe: EX3DV4 - SN7547; ConvF(9.81, 9.81, 9.81) @ 782 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 7/11/2019
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375
Measurement SW: DASY52, Version 52.10 (2):SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 13, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.05 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.799 W/kg

SAR(1 g) = 0.476 W/kg

0 dB = 0.652 W/kg = -1.86 dBW/kg

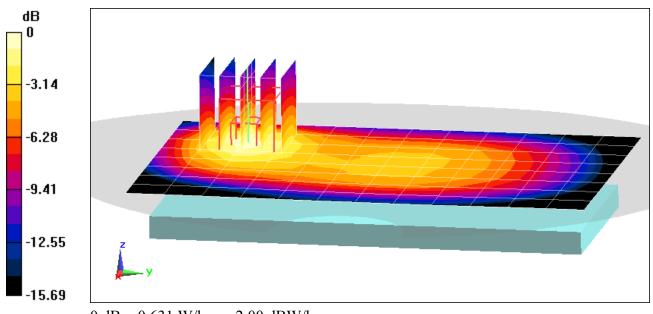
DUT: ZNFV600VM; Type: Portable Handset; Serial: 02888

Communication System: UID 0, LTE Band 14; Frequency: 793 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used (interpolated): $f = 793 \text{ MHz}; \ \sigma = 0.967 \text{ S/m}; \ \epsilon_r = 53.362; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/03/2020; Ambient Temp: 23.1°C; Tissue Temp: 19.5°C

Probe: EX3DV4 - SN7547; ConvF(9.81, 9.81, 9.81) @ 793 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 7/11/2019
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375
Measurement SW: DASY52, Version 52.10 (2):SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 14, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x13x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 22.44 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 0.769 W/kg

SAR(1 g) = 0.455 W/kg

0 dB = 0.631 W/kg = -2.00 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02862

Communication System: UID 0, LTE Band 5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.982 \text{ S/m}; \ \epsilon_r = 52.898; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/05/2020; Ambient Temp: 21.5°C; Tissue Temp: 21.1°C

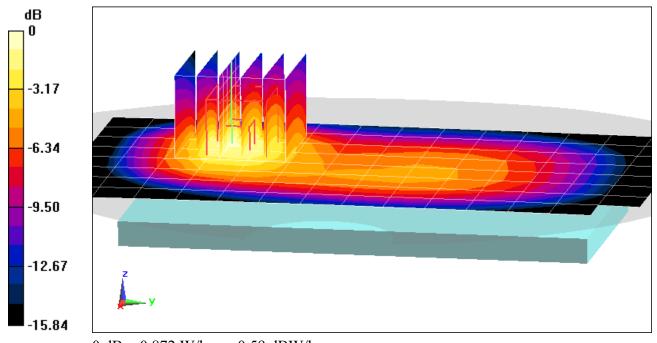
Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 836.5 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 5 (Cell.), Body SAR, Back side, PCC: 10 MHz Bandwidth, QPSK, Ch. 20525, 1 RB, 0 RB Offset SCC: 5 MHz Bandwidth, QPSK, Ch. 20453, 1 RB, 24 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 25.62 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 1.04 W/kg

SAR(1 g) = 0.617 W/kg

0 dB = 0.872 W/kg = -0.59 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02862

Communication System: UID 0, LTE Band 5 (Cell.); Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.982 \text{ S/m}; \ \epsilon_r = 52.898; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/05/2020; Ambient Temp: 21.5°C; Tissue Temp: 21.1°C

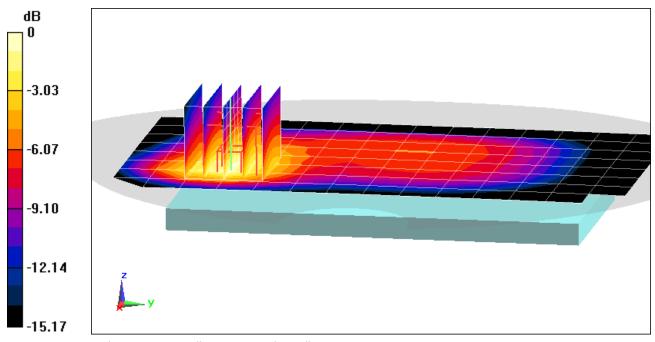
Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 836.5 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (2):SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 5 (Cell.), Body SAR, Front side, PCC: 10 MHz Bandwidth, QPSK, Ch. 20525, 1 RB, 0 RB Offset SCC: 5 MHz Bandwidth, QPSK, Ch. 20453, 1 RB, 24 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 26.80 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 1.11 W/kg

SAR(1 g) = 0.654 W/kg

0 dB = 0.937 W/kg = -0.28 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02862

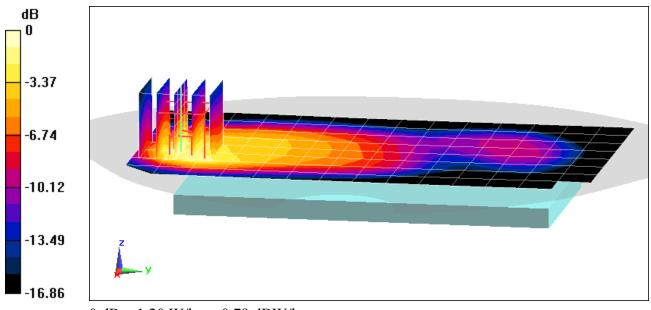
Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1770 \text{ MHz}; \ \sigma = 1.525 \text{ S/m}; \ \epsilon_r = 54.712; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/03/2020; Ambient Temp: 21.5°C; Tissue Temp: 20.3°C

Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1770 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 66 (AWS), Body SAR, Back side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.10 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 1.40 W/kg

SAR(1 g) = 0.805 W/kg

0 dB = 1.20 W/kg = 0.79 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02847

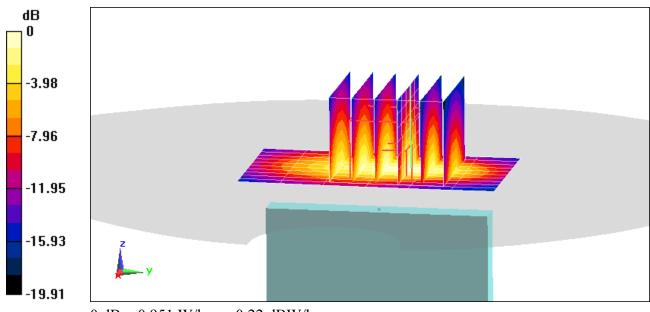
Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1770 \text{ MHz}; \ \sigma = 1.525 \text{ S/m}; \ \epsilon_r = 54.712; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/03/2020; Ambient Temp: 21.5°C; Tissue Temp: 20.3°C

Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1770 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 66 (AWS), Body SAR, Bottom Edge, High.ch, 20 MHz Bandwidth, QPSK, 50 RB, 25 RB Offset


Area Scan (11x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 21.50 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 1.28 W/kg

SAR(1 g) = 0.722 W/kg

0 dB = 0.951 W/kg = -0.22 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02870

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: $f = 1860 \text{ MHz}; \ \sigma = 1.491 \text{ S/m}; \ \epsilon_r = 51.894; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/01/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.8°C

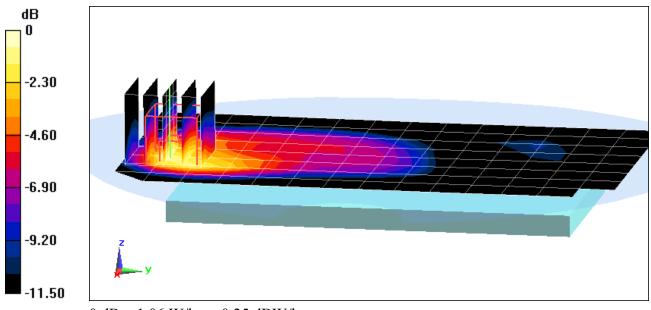
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1860 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 2 (PCS), Body SAR, Back side, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 23.25 V/m; Power Drift = -0.03 dB

Peak SAR (extrapolated) = 1.26 W/kg

SAR(1 g) = 0.721 W/kg

0 dB = 1.06 W/kg = 0.25 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02854

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.535 \text{ S/m}; \ \epsilon_r = 51.741; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/01/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.8°C

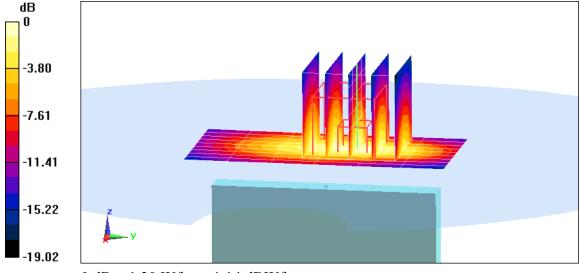
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 2 (PCS), Body SAR, Bottom Edge, High.ch, 20 MHz Bandwidth, QPSK, 50 RB, 25 RB Offset


Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 24.98 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 1.53 W/kg

SAR(1 g) = 0.866 W/kg

0 dB = 1.30 W/kg = 1.14 dBW/kg

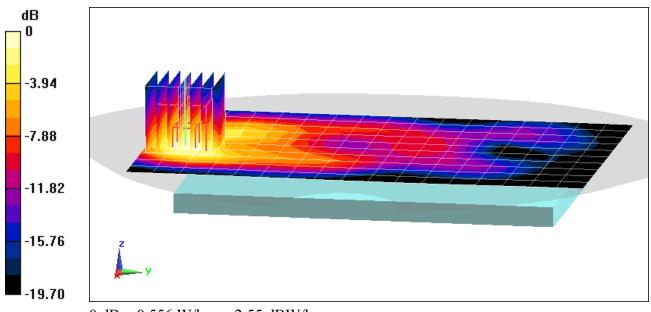
DUT: ZNFV600VM; Type: Portable Handset; Serial: 02888

Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: $f = 2310 \text{ MHz}; \ \sigma = 1.867 \text{ S/m}; \ \epsilon_r = 51.767; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01/30/2020; Ambient Temp: 23.9°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN7547; ConvF(7.47, 7.47, 7.47) @ 2310 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 7/11/2019
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 30, Body SAR, Back side, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 14.82 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 0.671 W/kg

SAR(1 g) = 0.363 W/kg

0 dB = 0.556 W/kg = -2.55 dBW/kg

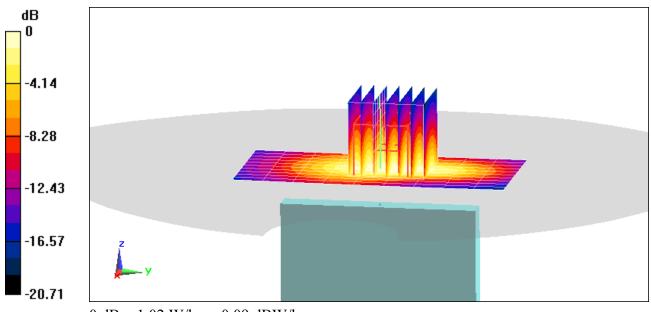
DUT: ZNFV600VM; Type: Portable Handset; Serial: 02888

Communication System: UID 0, LTE Band 30; Frequency: 2310 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: $f = 2310 \text{ MHz}; \ \sigma = 1.867 \text{ S/m}; \ \epsilon_r = 51.767; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01/30/2020; Ambient Temp: 23.9°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN7547; ConvF(7.47, 7.47, 7.47) @ 2310 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 7/11/2019
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 30, Body SAR, Bottom Edge, Mid.ch, 10 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (11x10x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 19.98 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 1.23 W/kg

SAR(1 g) = 0.661 W/kg

0 dB = 1.02 W/kg = 0.09 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02870

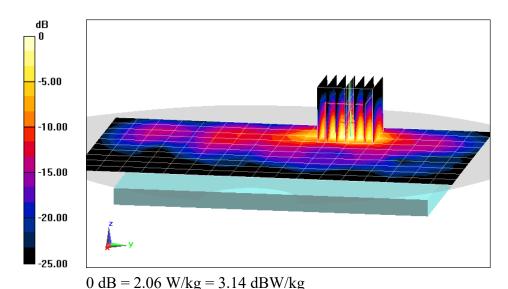
Communication System: UID 0, LTE Band 48; Frequency: 3560 MHz; Duty Cycle: 1:1.58 Medium: 3600 Body; Medium parameters used: $f = 3560 \text{ MHz}; \ \sigma = 3.466 \text{ S/m}; \ \epsilon_r = 49.817; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/14/2020; Ambient Temp: 21.8°C; Tissue Temp: 21.4°C

Probe: EX3DV4 - SN7488; ConvF(7, 7, 7) @ 3560 MHz; Calibrated: 1/21/2020 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1530; Calibrated: 1/13/2020

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 48, Body SAR, Back side, Low.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (11x18x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 18.94 V/m; Power Drift = 0.02 dB

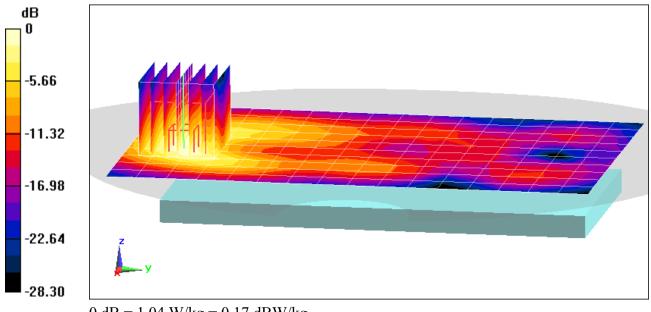
Peak SAR (extrapolated) = 2.83 W/kg

SAR(1 g) = 1.05 W/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02888

Communication System: UID 0, LTE Band 41 (Class 3), Frequency: 2680 MHz; Duty Cycle: 1:1.58 Medium: 2450 Body; Medium parameters used: f = 2680 MHz; $\sigma = 2.336 \text{ S/m}$; $\varepsilon_r = 50.612$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01/29/2020; Ambient Temp: 23.0°C; Tissue Temp: 21.0°C


Probe: EX3DV4 - SN7410; ConvF(7.43, 7.43, 7.43) @ 2680 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 41, Body SAR, Back side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset

Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm **Zoom Scan (8x7x7)/Cube 0:** Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 17.14 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 1.36 W/kg SAR(1 g) = 0.610 W/kg

0 dB = 1.04 W/kg = 0.17 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02888

Communication System: UID 0, LTE Band 41 (Class 3); Frequency: 2680 MHz; Duty Cycle: 1:1.58 Medium: 2450 Body; Medium parameters used: $f = 2680 \text{ MHz}; \ \sigma = 2.336 \text{ S/m}; \ \epsilon_r = 50.612; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01/29/2020; Ambient Temp: 23.0°C; Tissue Temp: 21.0°C

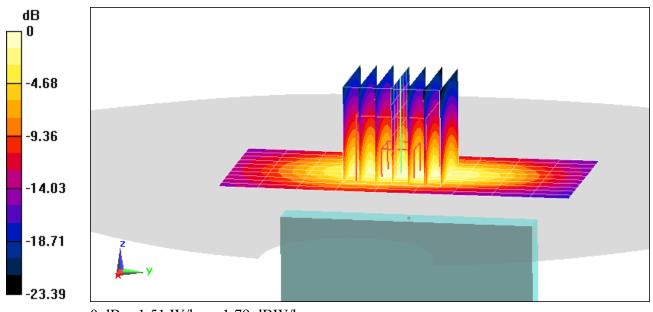
Probe: EX3DV4 - SN7410; ConvF(7.43, 7.43, 7.43) @ 2680 MHz; Calibrated: 7/16/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 41, Body SAR, Bottom Edge, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 50 RB Offset


Area Scan (11x10x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 20.79 V/m; Power Drift = -0.07 dB

Peak SAR (extrapolated) = 1.92 W/kg

SAR(1 g) = 0.894 W/kg

0 dB = 1.51 W/kg = 1.79 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02896

Communication System: UID 0, NR Band n5; Frequency: 836.5 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used (interpolated): $f = 836.5 \text{ MHz}; \ \sigma = 0.992 \text{ S/m}; \ \epsilon_r = 53.154; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

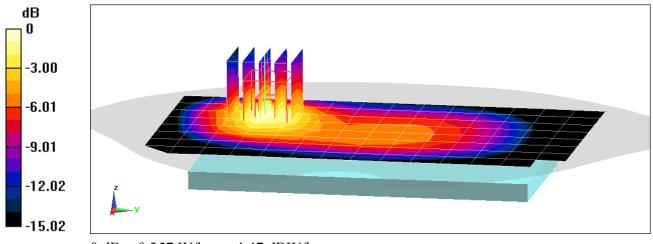
Test Date: 02/19/2020; Ambient Temp: 21.9°C; Tissue Temp: 20.7°C

Probe: EX3DV4 - SN7552; ConvF(9.94, 9.94, 9.94) @ 836.5 MHz; Calibrated: 9/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1449; Calibrated: 9/12/2019

Phantom: Left Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: NR Band n5, Body SAR, Back Side, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 167300, 1 RB, 1 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 16.59 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.420 W/kg

SAR(1 g) = 0.250 W/kg

0 dB = 0.357 W/kg = -4.47 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02896

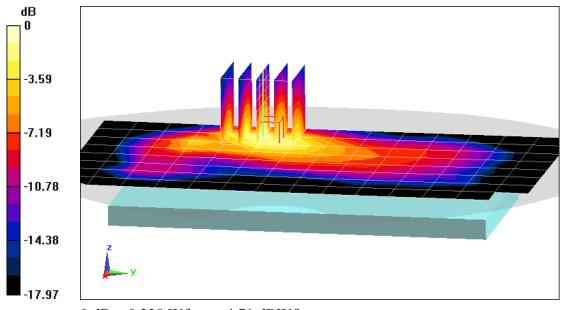
Communication System: UID 0, NR Band n66; Frequency: 1720 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1720 \text{ MHz}; \ \sigma = 1.457 \text{ S/m}; \ \epsilon_r = 55.198; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/10/2020; Ambient Temp: 21.5°C; Tissue Temp: 20.5°C

Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1720 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: NR Band n66, Body SAR, Back Side, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 344000, 1 RB, 104 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.11 V/m; Power Drift = -0.05 dB

Peak SAR (extrapolated) = 0.410 W/kg

SAR(1 g) = 0.229 W/kg

0 dB = 0.338 W/kg = -4.71 dBW/kg

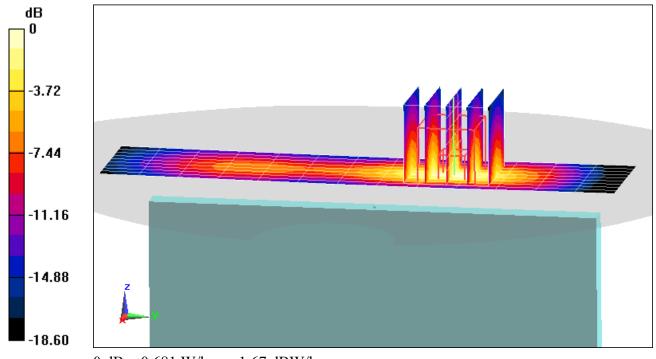
DUT: ZNFV600VM; Type: Portable Handset; Serial: 02896

Communication System: UID 0, NR Band n66; Frequency: 1720 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1720 \text{ MHz}; \ \sigma = 1.457 \text{ S/m}; \ \epsilon_r = 55.198; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/10/2020; Ambient Temp: 21.5°C; Tissue Temp: 20.5°C

Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1720 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1407; Calibrated: 4/18/2019
Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: NR Band n66, Body SAR, Right Edge, 20 MHz Bandwidth, DFT-s-OFDM QPSK, Ch. 344000, 1 RB, 104 RB Offset


Area Scan (10x14x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 18.48 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.804 W/kg

SAR(1 g) = 0.436 W/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02904

Communication System: UID 0, NR Band n2; Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: $f = 1860 \text{ MHz}; \ \sigma = 1.52 \text{ S/m}; \ \epsilon_r = 51.726; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

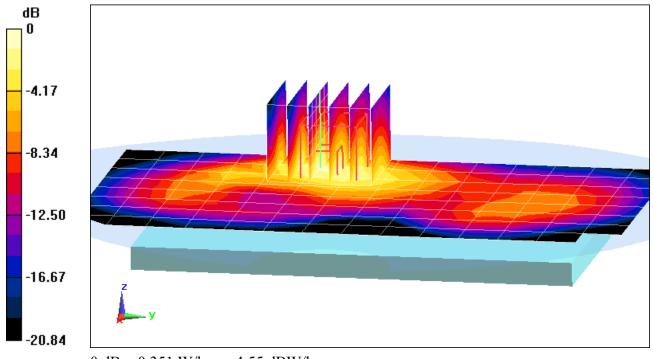
Test Date: 02/12/2020; Ambient Temp: 23.5°C; Tissue Temp: 23.5°C

Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1860 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1533; Calibrated: 12/5/2019 Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: NR Band n2, Body SAR, Back Side, 20 MHz Bandwidth, CP-OFDM QPSK, Ch. 372000, 1 RB, 1 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (6x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 13.10 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 0.426 W/kg

SAR(1 g) = 0.253 W/kg

0 dB = 0.351 W/kg = -4.55 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02904

Communication System: UID 0, NR Band n2; Frequency: 1860 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: $f = 1860 \text{ MHz}; \ \sigma = 1.52 \text{ S/m}; \ \epsilon_r = 51.726; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/12/2020; Ambient Temp: 23.5°C; Tissue Temp: 23.5°C

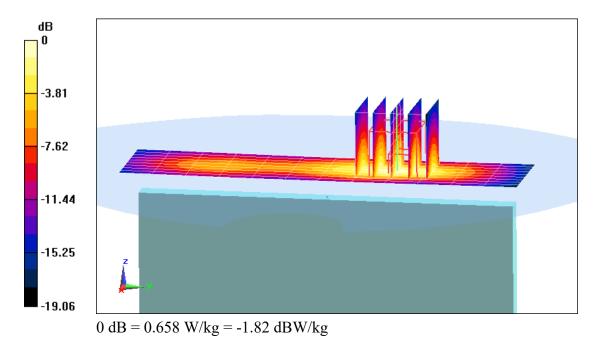
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1860 MHz; Calibrated: 12/11/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: NR Band n2, Body SAR, Right Edge, 20 MHz Bandwidth, CP-OFDM QPSK, Ch. 372000, 1 RB, 1 RB Offset


Area Scan (10x13x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Reference Value = 17.56 V/m; Power Drift = -0.06 dB

Peak SAR (extrapolated) = 0.808 W/kg

SAR(1 g) = 0.498 W/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02813

Communication System: UID 0, 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used (interpolated): $f = 2437 \text{ MHz}; \ \sigma = 2.009 \text{ S/m}; \ \epsilon_r = 51.429; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01/30/2020; Ambient Temp: 23.9°C; Tissue Temp: 22.8°C

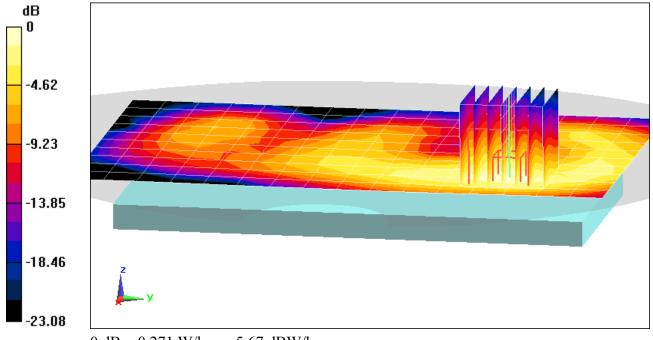
Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2437 MHz; Calibrated: 7/15/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019

Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: IEEE 802.11b, Antenna 1, 22 MHz Bandwidth, Body SAR, Ch 6, 1 Mbps, Back Side


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 5.524 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 0.334 W/kg

SAR(1 g) = 0.174 W/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02813

Communication System: UID 0, 802.11b; Frequency: 2437 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used (interpolated): $f = 2437 \text{ MHz}; \ \sigma = 2.019 \text{ S/m}; \ \epsilon_r = 51.382; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

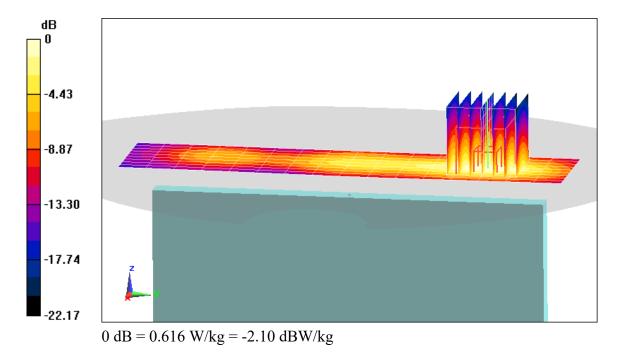
Test Date: 02/17/2020; Ambient Temp: 23.5°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2437 MHz; Calibrated: 7/15/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019

Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: IEEE 802.11b, Antenna 1, 22 MHz Bandwidth, Body SAR, Ch 6, 1 Mbps, Left Side,


Area Scan (10x17x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 9.073 V/m; Power Drift = 0.11 dB

Peak SAR (extrapolated) = 0.769 W/kg

SAR(1 g) = 0.387 W/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02813

Communication System: UID 0, 802.11n 5.2-5.8 GHz Band; Frequency: 5280 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body; Medium parameters used: $f = 5280 \text{ MHz}; \ \sigma = 5.471 \text{ S/m}; \ \epsilon_r = 49.543; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

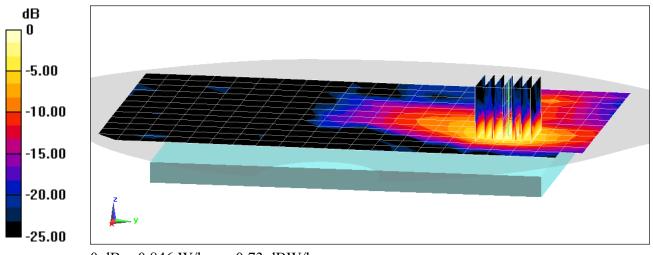
Test Date: 02/17/2020; Ambient Temp: 22.3°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN7409; ConvF(4.7, 4.7, 4.7) @ 5280 MHz; Calibrated: 6/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: IEEE 802.11n, UNII-2A, MIMO, 20 MHz Bandwidth, Body SAR, Ch 56, 13 Mbps, Back Side


Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 8.800 V/m; Power Drift = 0.05 dB

Peak SAR (extrapolated) = 1.32 W/kg

SAR(1 g) = 0.368 W/kg

0 dB = 0.846 W/kg = -0.73 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02813

Communication System: UID 0, 802.11n 5.2-5.8 GHz Band; Frequency: 5200 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body; Medium parameters used: $f = 5200 \text{ MHz}; \ \sigma = 5.36 \text{ S/m}; \ \epsilon_r = 49.686; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

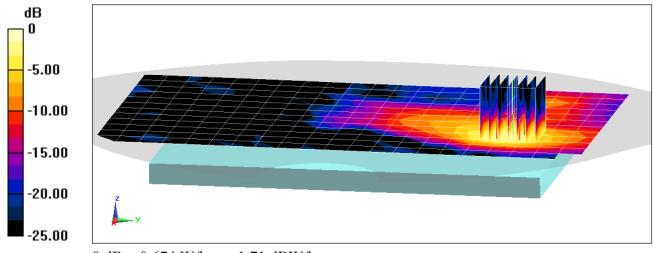
Test Date: 02/17/2020; Ambient Temp: 22.3°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN7409; ConvF(4.7, 4.7, 4.7) @ 5200 MHz; Calibrated: 6/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: IEEE 802.11n, UNII-1, MIMO, 20 MHz Bandwidth, Body SAR, Ch 40, 13 Mbps, Back Side


Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 7.862 V/m; Power Drift = 0.03 dB

Peak SAR (extrapolated) = 1.09 W/kg

SAR(1 g) = 0.295 W/kg

0 dB = 0.674 W/kg = -1.71 dBW/kg

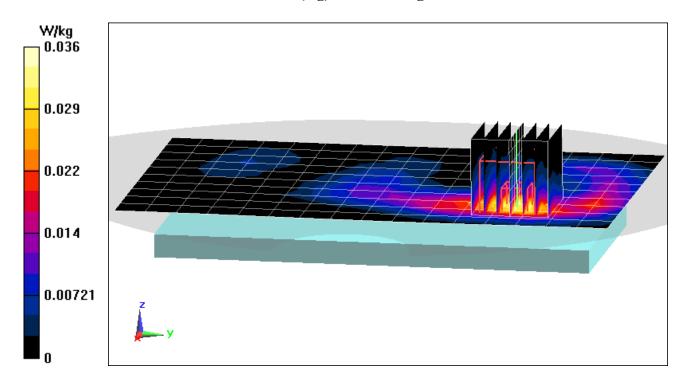
DUT: ZNFV600VM; Type: Portable Handset; Serial: 02953

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.294 Medium: 2450 Body; Medium parameters used (interpolated): $f = 2441 \text{ MHz}; \ \sigma = 2.029 \text{ S/m}; \ \epsilon_r = 51.056; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/11/2020; Ambient Temp: 22.3°C; Tissue Temp: 23.0°C

Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2441 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 7/11/2019
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: Bluetooth, Body SAR, Ch 39, 1 Mbps, Back Side


Area Scan (11x17x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 3.508 V/m; Power Drift = 0.13 dB

Peak SAR (extrapolated) = 0.0460 W/kg

SAR(1 g) = 0.023 W/kg

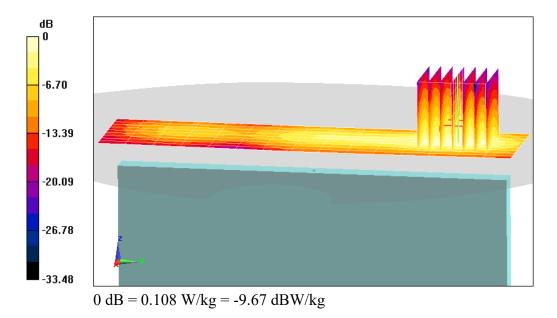
DUT: ZNFV600VM; Type: Portable Handset; Serial: 02953

Communication System: UID 0, Bluetooth; Frequency: 2441 MHz; Duty Cycle: 1:1.294 Medium: 2450 Body; Medium parameters used (interpolated): $f = 2441 \text{ MHz}; \ \sigma = 2.029 \text{ S/m}; \ \epsilon_r = 51.056; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/11/2020; Ambient Temp: 22.3°C; Tissue Temp: 23.0°C

Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2441 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 7/11/2019
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

Mode: Bluetooth, Body SAR, Ch 39, 1 Mbps, Left Edge


Area Scan (10x16x1): Measurement grid: dx=5mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.080 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 0.133 W/kg

SAR(1 g) = 0.065 W/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02854

Communication System: UID 0, UMTS; Frequency: 1752.6 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used (interpolated): $f = 1752.6 \text{ MHz}; \ \sigma = 1.522 \text{ S/m}; \ \epsilon_r = 54.327; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.1 cm

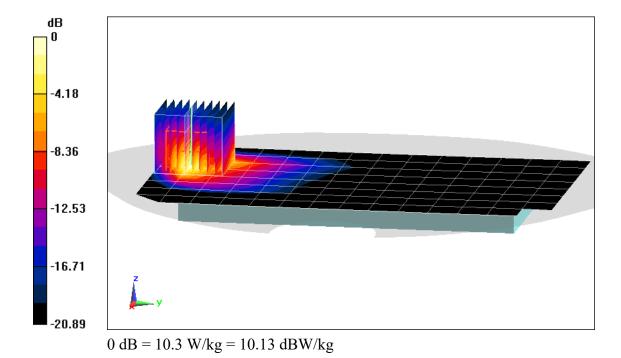
Test Date: 02/05/2020; Ambient Temp: 21.8°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1752.6 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: UMTS 1750, Phablet SAR, Front side, High.ch


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 62.50 V/m; Power Drift = 0.09 dB

Peak SAR (extrapolated) = 15.4 W/kg

SAR(10 g) = 2.23 W/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02870

Communication System: UID 0, CDMA; Frequency: 1908.75 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): $f = 1908.75 \text{ MHz}; \ \sigma = 1.578 \text{ S/m}; \ \epsilon_r = 51.95; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 02/04/2020; Ambient Temp: 22.0°C; Tissue Temp: 23.4°C

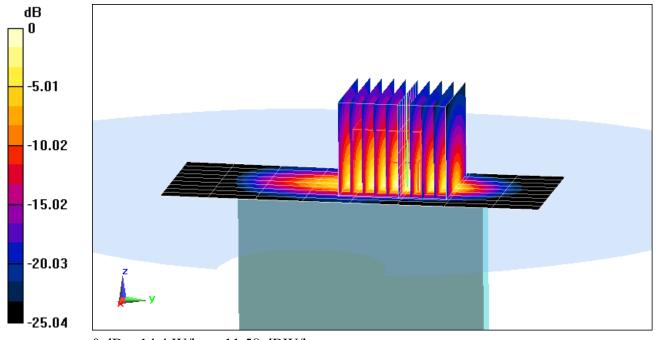
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1908.75 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: PCS EVDO, Phablet SAR, Bottom Edge, High.ch


Area Scan (10x9x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 72.60 V/m; Power Drift = -0.16 dB

Peak SAR (extrapolated) = 25.0 W/kg

SAR(10 g) = 2.76 W/kg

0 dB = 14.4 W/kg = 11.58 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02870

Communication System: UID 0, UMTS; Frequency: 1907.6 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used (interpolated): $f = 1907.6 \text{ MHz}; \ \sigma = 1.577 \text{ S/m}; \ \epsilon_r = 51.954; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 02/04/2020; Ambient Temp: 22.0°C; Tissue Temp: 23.4°C

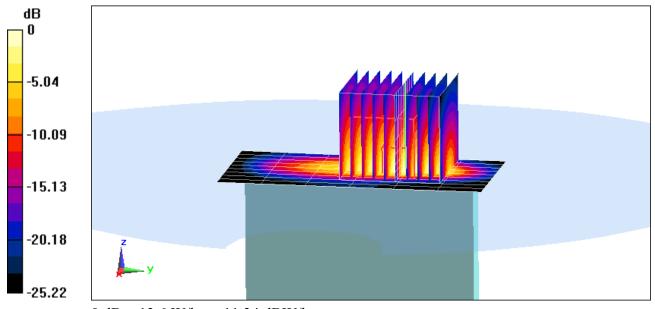
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1907.6 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: UMTS 1900, Phablet SAR, Bottom Edge, High.ch


Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (10x10x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 70.61 V/m; Power Drift = 0.10 dB

Peak SAR (extrapolated) = 23.2 W/kg

SAR(10 g) = 2.71 W/kg

0 dB = 13.6 W/kg = 11.34 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02862

Communication System: UID 0, LTE Band 66 (AWS); Frequency: 1770 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1770 \text{ MHz}; \ \sigma = 1.525 \text{ S/m}; \ \epsilon_r = 54.712; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.1 cm

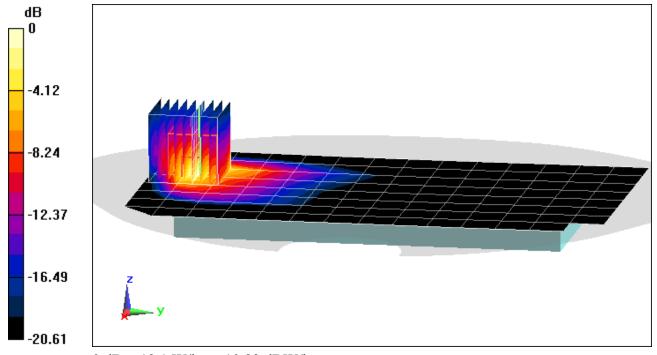
Test Date: 02/03/2020; Ambient Temp: 21.5°C; Tissue Temp: 20.3°C

Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1770 MHz; Calibrated: 4/24/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1407; Calibrated: 4/18/2019 nantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial:

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 66 (AWS), Phablet SAR, Front side, High.ch, 20 MHz Bandwidth, QPSK, 1 RB, 0 RB Offset


Area Scan (9x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (9x9x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 68.56 V/m; Power Drift = 0.00 dB

Peak SAR (extrapolated) = 18.8 W/kg

SAR(10 g) = 2.62 W/kg

0 dB = 12.1 W/kg = 10.83 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02854

Communication System: UID 0, LTE Band 2 (PCS); Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body; Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.569 \text{ S/m}; \ \epsilon_r = 51.982; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

Test Date: 02/04/2020; Ambient Temp: 22.0°C; Tissue Temp: 23.4°C

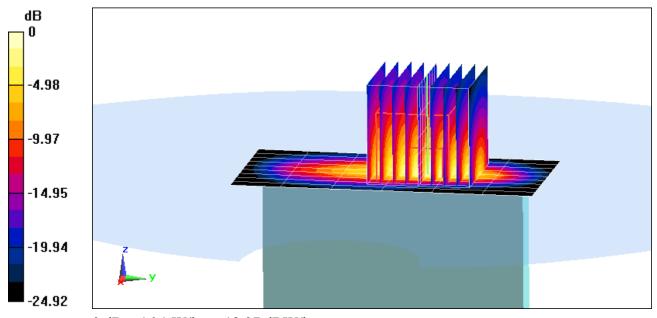
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: LTE Band 2 (PCS), Phablet SAR, Bottom Edge, High.ch, 20 MHz Bandwidth, QPSK, 50 RB, 25 RB Offset


Area Scan (10x7x1): Measurement grid: dx=5mm, dy=15mm

Zoom Scan (9x9x8)/Cube 0: Measurement grid: dx=3.8mm, dy=3.8mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 73.80 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 28.0 W/kg

SAR(10 g) = 2.86 W/kg

0 dB = 16.1 W/kg = 12.07 dBW/kg

DUT: ZNFV600VM; Type: Portable Handset; Serial: 02953

Communication System: UID 0, 802.11n 5.2-5.8 GHz Band; Frequency: 5500 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body; Medium parameters used: $f = 5500 \text{ MHz}; \ \sigma = 5.87 \text{ S/m}; \ \epsilon_r = 46.664; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 0.0 cm

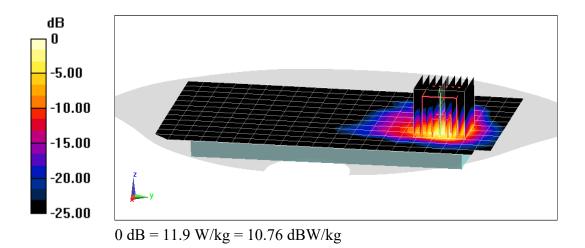
Test Date: 02/10/2020; Ambient Temp: 22.3°C; Tissue Temp: 23.1°C

Probe: EX3DV4 - SN7409; ConvF(4.22, 4.22, 4.22) @ 5500 MHz; Calibrated: 6/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

Mode: IEEE 802.11n, U-NII-2C, MIMO, 20 MHz Bandwidth, Phablet SAR, Ch 100, 13 Mbps, Back Side


Area Scan (13x22x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (9x9x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Reference Value = 26.04 V/m; Power Drift = -0.11 dB

Peak SAR (extrapolated) = 22.9 W/kg

SAR(10 g) = 1.36 W/kg

APPENDIX B: SYSTEM VERIFICATION

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1161

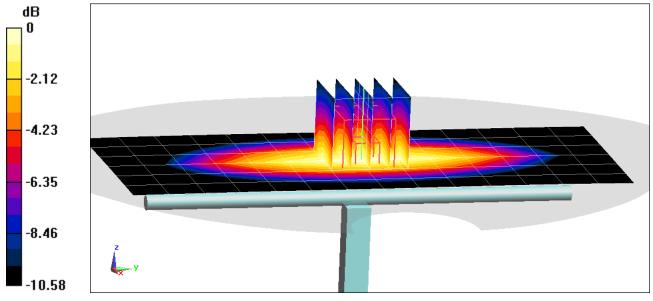
Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Head Medium parameters used: $f = 750 \text{ MHz}; \ \sigma = 0.883 \text{ S/m}; \ \epsilon_r = 41.32; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 02/05/2020; Ambient Temp: 22.3°C; Tissue Temp: 20.6°C

Probe: EX3DV4 - SN7410; ConvF(9.95, 9.95, 9.95) @ 750 MHz; Calibrated: 7/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966


Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

750 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.50 W/kgSAR(1 g) = 1.74 W/kgDeviation(1 g) = 8.34%

0 dB = 2.25 W/kg = 3.52 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d047

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.933 \text{ S/m}; \ \epsilon_r = 41.052; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

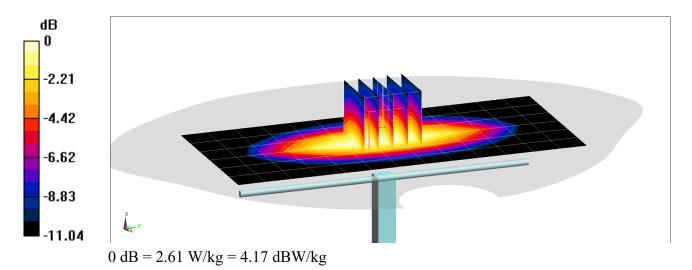
Test Date: 02/02/2020; Ambient Temp: 24.3°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7417; ConvF(10.07, 10.07, 10.07) @ 835 MHz; Calibrated: 2/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/13/2019

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.96 W/kg

SAR(1 g) = 1.93 W/kg

Deviation(1 g) = 2.44%

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132

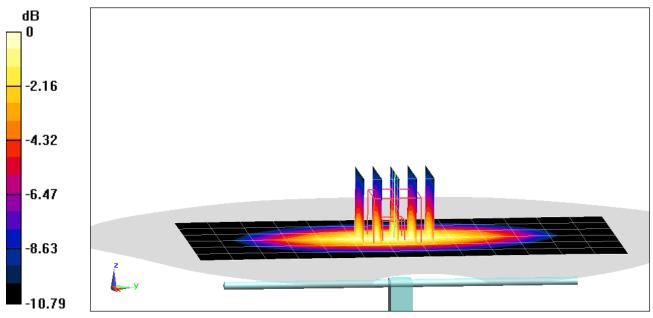
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.902 \text{ S/m}; \ \epsilon_r = 40.598; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 02/07/2020; Ambient Temp: 22.3°C; Tissue Temp: 20.2°C

Probe: EX3DV4 - SN7410; ConvF(9.88, 9.88, 9.88) @ 835 MHz; Calibrated: 7/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966


Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.85 W/kgSAR(1 g) = 1.89 W/kgDeviation(1 g) = -2.07%

0 dB = 2.53 W/kg = 4.03 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d133

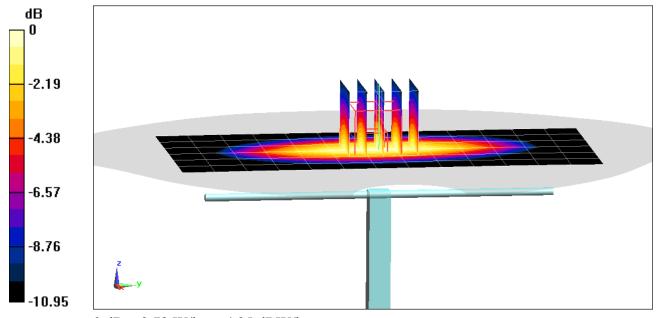
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.916 \text{ S/m}; \ \epsilon_r = 40.063; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 02/09/2020; Ambient Temp: 21.4°C; Tissue Temp: 20.5°C

Probe: EX3DV4 - SN7410; ConvF(9.88, 9.88, 9.88) @ 835 MHz; Calibrated: 7/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966


Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 3.06 W/kgSAR(1 g) = 2.03 W/kgDeviation(1 g) = 7.64%

0 dB = 2.72 W/kg = 4.35 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132

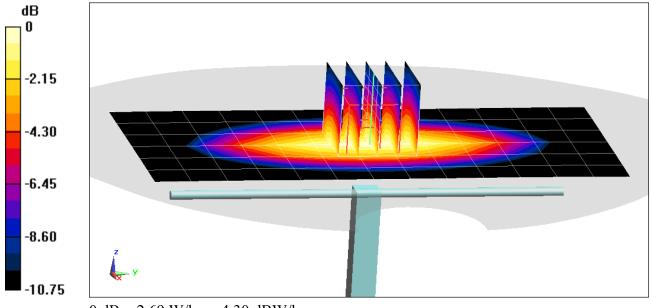
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Head Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.929 \text{ S/m}; \ \epsilon_r = 43.271; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 02/20/2020; Ambient Temp: 23.7°C; Tissue Temp: 20.2°C

Probe: EX3DV4 - SN7410; ConvF(9.88, 9.88, 9.88) @ 835 MHz; Calibrated: 7/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966


Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

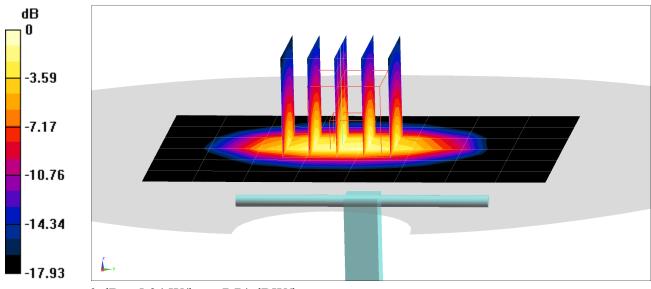
Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 3.03 W/kgSAR(1 g) = 2.01 W/kgDeviation(1 g) = 4.15%

DUT: Dipole 1750 MHz; Type: D1765V2; Serial: 1008

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Head Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.357 \text{ S/m}; \ \epsilon_r = 39.267; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/02/2020; Ambient Temp: 21.1°C; Tissue Temp: 20.3°C


Probe: EX3DV4 - SN3914; ConvF(8.16, 8.16, 8.16) @ 1750 MHz; Calibrated: 2/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1272; Calibrated: 2/14/2019

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.17 W/kg SAR(1 g) = 3.8 W/kg Deviation(1 g) = 4.97%

0 dB = 5.94 W/kg = 7.74 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d148

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Head Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.436 \text{ S/m}; \ \epsilon_r = 39.218; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/03/2020; Ambient Temp: 21.9°C; Tissue Temp: 19.4°C

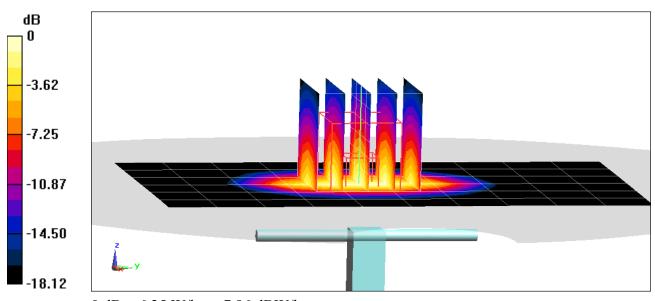
Probe: EX3DV4 - SN7410; ConvF(8.11, 8.11, 8.11) @ 1900 MHz; Calibrated: 7/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1966

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.43 W/kg

SAR(1 g) = 4 W/kg

Deviation(1 g) = 2.30%

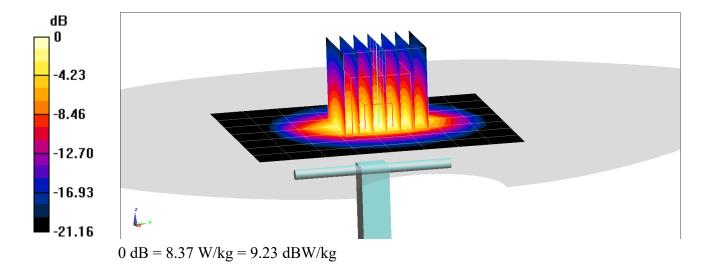
0 dB = 6.25 W/kg = 7.96 dBW/kg

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: 1073

Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: $f = 2300 \text{ MHz}; \ \sigma = 1.693 \text{ S/m}; \ \epsilon_r = 41.215; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01/30/2020; Ambient Temp: 22.5°C; Tissue Temp: 21.6°C

Probe: EX3DV4 - SN7417; ConvF(7.73, 7.73, 7.73) @ 2300 MHz; Calibrated: 2/19/2019


Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn665; Calibrated: 2/13/2019

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

2300 MHz System Verification at 20.0 dBm (100 mW)

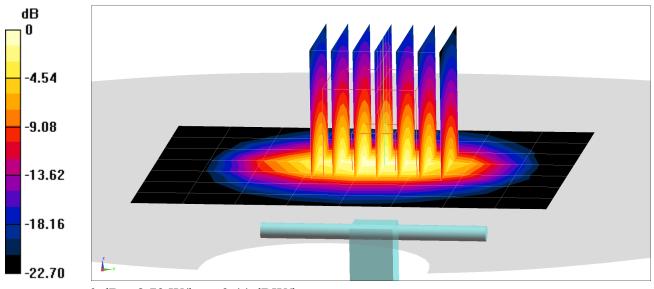
Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.3 W/kg SAR(1 g) = 5.02 W/kg Deviation(1 g) = 2.03%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.847 \text{ S/m}; \ \epsilon_r = 39.584; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/08/2020; Ambient Temp: 22.2°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN3589; ConvF(6.85, 6.85, 6.85) @ 2450 MHz; Calibrated: 1/21/2020


Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.1 W/kg SAR(1 g) = 5.24 W/kg Deviation(1 g) = 0.19%

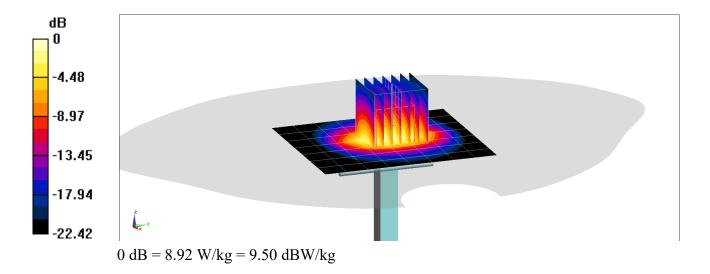
0 dB = 8.79 W/kg = 9.44 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 719

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.839 \text{ S/m}; \ \epsilon_r = 38.931; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/11/2020; Ambient Temp: 24.3°C; Tissue Temp: 23.0°C

Probe: EX3DV4 - SN3589; ConvF(6.85, 6.85, 6.85) @ 2450 MHz; Calibrated: 1/21/2020


Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

2450 MHz System Verification at 20.0 dBm (100 mW)

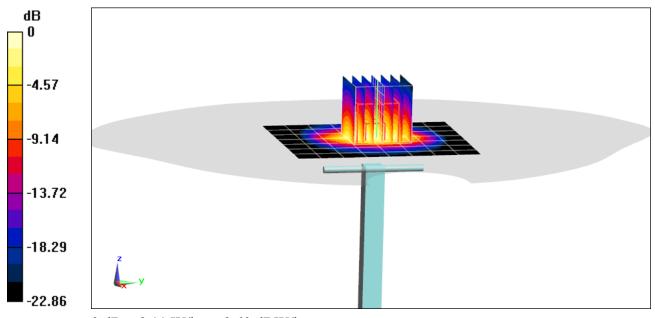
Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.2 W/kg SAR(1 g) = 5.3 W/kg Deviation(1 g) = -0.19%

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 1.837 \text{ S/m}; \ \epsilon_r = 38.339; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/17/2020; Ambient Temp: 21.9°C; Tissue Temp: 20.9°C

Probe: EX3DV4 - SN7570; ConvF(7.52, 7.52, 7.52) @ 2450 MHz; Calibrated: 12/11/2019


Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn859; Calibrated: 12/18/2019

Phantom: Twin-SAM V8.0; Type: QD 000 P41 Ax; Serial: 1964

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 11.5 W/kg SAR(1 g) = 5.36 W/kg Deviation(1 g) = 1.71%

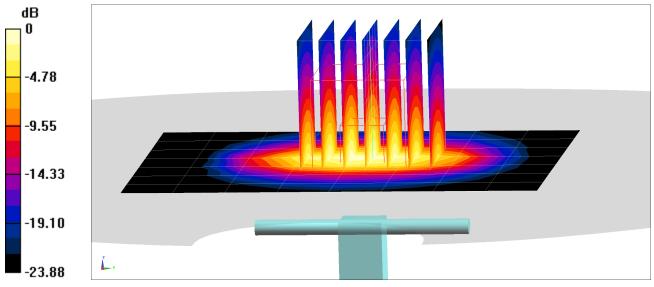
0 dB = 9.11 W/kg = 9.60 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1064

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Head; Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 1.968 \text{ S/m}; \ \epsilon_r = 39.376; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/08/2020; Ambient Temp: 22.2°C; Tissue Temp: 21.5°C

Probe: EX3DV4 - SN3589; ConvF(6.6, 6.6, 6.6) @ 2600 MHz; Calibrated: 1/21/2020


Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1558; Calibrated: 1/13/2020

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1647

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.3 W/kg SAR(1 g) = 5.6 W/kg Deviation(1 g) = -3.61%

0 dB = 9.64 W/kg = 9.84 dBW/kg

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: 1059

Communication System: UID 0, CW; Frequency: 3500 MHz; Duty Cycle: 1:1 Medium: 3600 Head; Medium parameters used: $f = 3500 \text{ MHz}; \ \sigma = 2.906 \text{ S/m}; \ \epsilon_r = 36.992; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

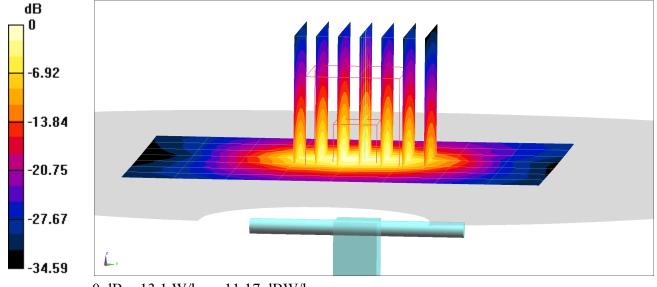
Test Date: 02/11/2020; Ambient Temp: 21.8°C; Tissue Temp: 21.4°C

Probe: EX3DV4 - SN7488; ConvF(7.3, 7.3, 7.3) @ 3500 MHz; Calibrated: 1/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020

Phantom: Twin-SAM V4.0 left 20; Type: QD 000 P40 CC; Serial: 1687 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

3500 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 18.4 W/kg

SAR(1 g) = 6.66 W/kg

Deviation(1 g) = 3.10%

0 dB = 13.1 W/kg = 11.17 dBW/kg

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: 1018

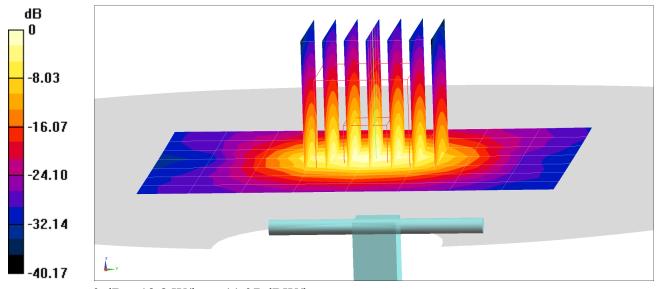
Communication System: UID 0, CW; Frequency: 3700 MHz; Duty Cycle: 1:1 Medium: 3600 Head; Medium parameters used: $f = 3700 \text{ MHz}; \ \sigma = 3.066 \text{ S/m}; \ \epsilon_r = 36.72; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/11/2020; Ambient Temp: 21.8°C; Tissue Temp: 21.4°C

Probe: EX3DV4 - SN7488; ConvF(7.2, 7.2, 7.2) @ 3700 MHz; Calibrated: 1/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020

Phantom: Twin-SAM V4.0 left 20; Type: QD 000 P40 CC; Serial: 1687 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)


3700 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 18.3 W/kg

SAR(1 g) = 6.3 W/kg Deviation(1 g) = -4.26%

0 dB = 12.8 W/kg = 11.07 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057

Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head; Medium parameters used: f = 5250 MHz; $\sigma = 4.713$ S/m; $\varepsilon_r = 36.795$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

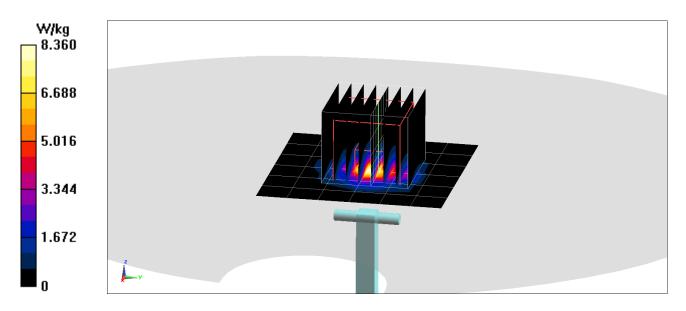
Test Date: 02/14/2020; Ambient Temp: 21.4°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7406; ConvF(5.54, 5.54, 5.54) @ 5250 MHz; Calibrated: 5/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/8/2019

Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

5250 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 14.8 W/kg

SAR(1 g) = 3.64 W/kg

Deviation(1 g) = -8.08%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057

Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head; Medium parameters used: f = 5600 MHz; $\sigma = 5.123$ S/m; $\varepsilon_r = 36.159$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

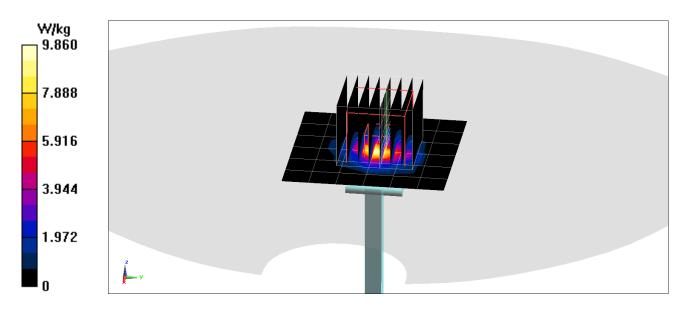
Test Date: 02/14/2020; Ambient Temp: 21.4°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7406; ConvF(4.94, 4.94, 4.94) @ 5600 MHz; Calibrated: 5/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/8/2019

Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

5600 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 18.5 W/kg

SAR(1 g) = 4.14 W/kg

SAR(1 g) = 4.14 W/kg Deviation(1 g) = -1.55%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057

Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head; Medium parameters used: f = 5750 MHz; $\sigma = 5.31$ S/m; $\varepsilon_r = 35.91$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

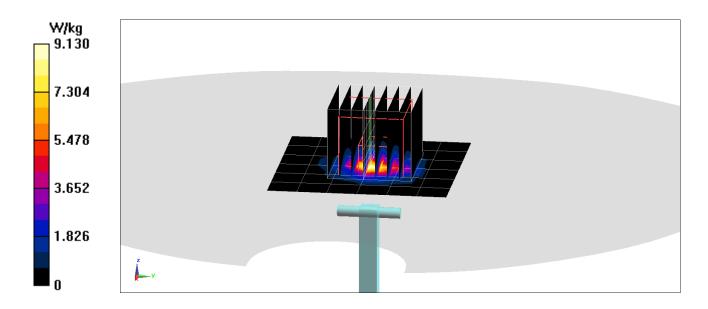
Test Date: 02/14/2020; Ambient Temp: 21.4°C; Tissue Temp: 21.3°C

Probe: EX3DV4 - SN7406; ConvF(5.23, 5.23, 5.23) @ 5750 MHz; Calibrated: 5/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/8/2019

Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

5750 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 17.3 W/kg

SAR(1 g) = 3.71 W/kg

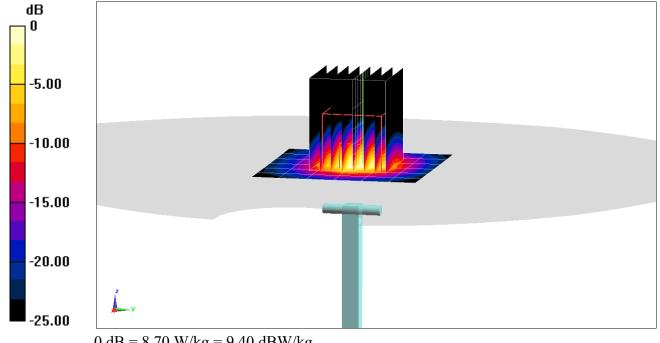
Deviation(1 g) = -7.83%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057

Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head; Medium parameters used: f = 5250 MHz; $\sigma = 4.592 \text{ S/m}$; $\varepsilon_r = 34.919$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/24/2020; Ambient Temp: 23.0°C; Tissue Temp: 20.3°C

Probe: EX3DV4 - SN7406; ConvF(5.54, 5.54, 5.54) @ 5250 MHz; Calibrated: 5/16/2019


Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/8/2019

Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.12 (7470)

5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm **Zoom Scan (8x8x8)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 15.6 W/kg SAR(1 g) = 3.71 W/kg

Deviation(1 g) = -6.31%

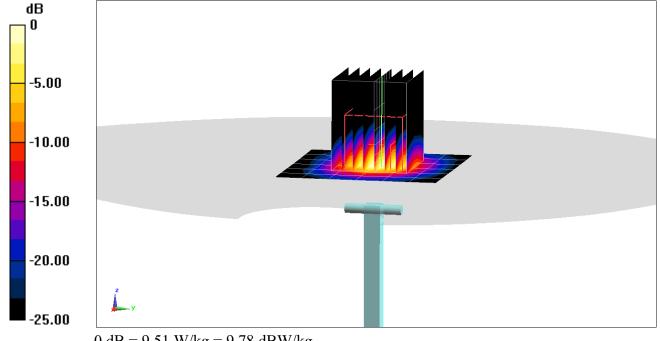
0 dB = 8.70 W/kg = 9.40 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057

Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head; Medium parameters used: f = 5600 MHz; $\sigma = 4.989 \text{ S/m}$; $\varepsilon_r = 34.292$; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/24/2020; Ambient Temp: 23.0°C; Tissue Temp: 20.3°C

Probe: EX3DV4 - SN7406; ConvF(4.94, 4.94, 4.94) @ 5600 MHz; Calibrated: 5/16/2019


Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/8/2019

Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4); SEMCAD X Version 14.6.12 (7470)

5600 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm **Zoom Scan (8x8x8)/Cube 0:** Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 17.5 W/kgSAR(1 g) = 3.9 W/kg

Deviation(1 g) = -7.25%

0 dB = 9.51 W/kg = 9.78 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057

Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Head; Medium parameters used: f = 5750 MHz; $\sigma = 5.168$ S/m; $\varepsilon_r = 34.041$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

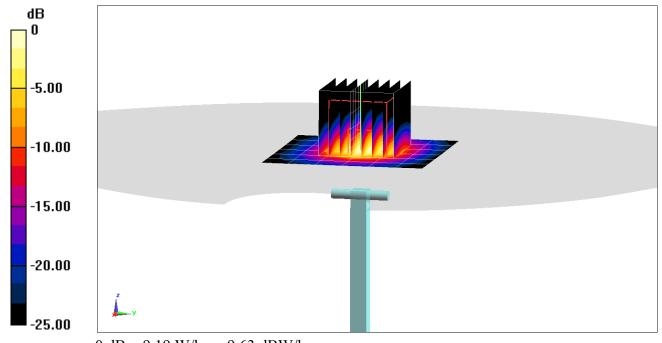
Test Date: 02/24/2020; Ambient Temp: 23.0°C; Tissue Temp: 20.3°C

Probe: EX3DV4 - SN7406; ConvF(5.23, 5.23, 5.23) @ 5750 MHz; Calibrated: 5/16/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn728; Calibrated: 5/8/2019

Phantom: Twin-SAM V5.0 Right 20; Type: QD 000 P40 CD; Serial: 1759 Measurement SW: DASY52, Version 52.10 (4);SEMCAD X Version 14.6.12 (7470)

5750 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 17.9 W/kg

SAR(1 g) = 3.81 W/kg

Deviation(1 g) = -5.34%

0 dB = 9.19 W/kg = 9.63 dBW/kg

DUT: Dipole 750 MHz; Type: D750V3; Serial: 1054

Communication System: UID 0, CW; Frequency: 750 MHz; Duty Cycle: 1:1 Medium: 750 Body; Medium parameters used: $f = 750 \text{ MHz}; \ \sigma = 0.95 \text{ S/m}; \ \epsilon_r = 53.477; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

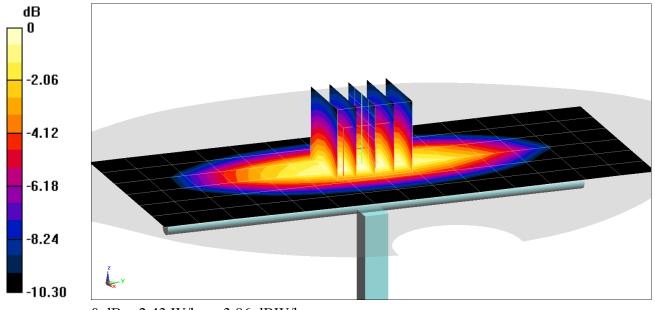
Test Date: 02/03/2020; Ambient Temp: 23.1°C; Tissue Temp: 19.5°C

Probe: EX3DV4 - SN7547; ConvF(9.81, 9.81, 9.81) @ 750 MHz; Calibrated: 7/15/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019

Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375 Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

750 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x15x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 2.73 W/kg

SAR(1 g) = 1.83 W/kg

Deviation(1 g) = 7.02%

0 dB = 2.43 W/kg = 3.86 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.981 \text{ S/m}; \ \epsilon_r = 52.901; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 02/05/2020; Ambient Temp: 21.5°C; Tissue Temp: 21.1°C

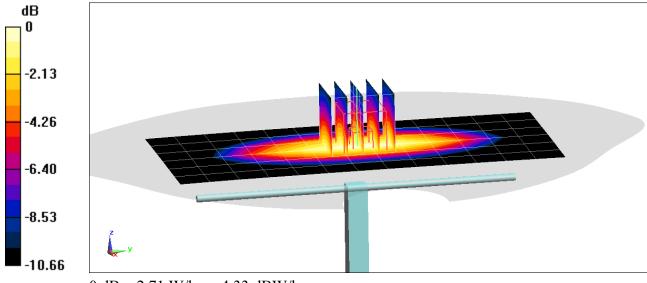
Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 835 MHz; Calibrated: 9/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 3.10 W/kg

SAR(1 g) = 2.02 W/kg

Deviation(1 g) = 1.41%

0 dB = 2.71 W/kg = 4.33 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132

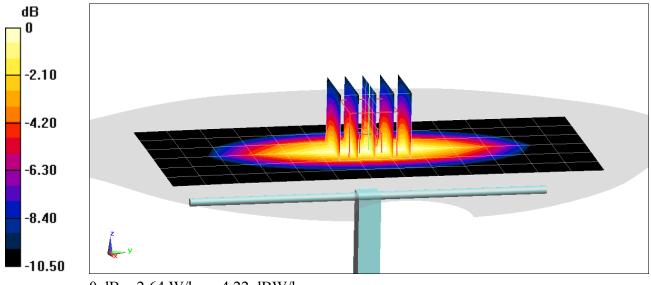
Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body; Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.969 \text{ S/m}; \ \epsilon_r = 54.501; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

Test Date: 02/07/2020; Ambient Temp: 21.5°C; Tissue Temp: 20.7°C

Probe: EX3DV4 - SN7551; ConvF(9.92, 9.92, 9.92) @ 835 MHz; Calibrated: 9/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1333; Calibrated: 9/17/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1792


Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

835 MHz System Verification at 23.0 dBm (200 mW)

Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 3.01 W/kgSAR(1 g) = 1.96 W/kgDeviation(1 g) = -1.61%

0 dB = 2.64 W/kg = 4.22 dBW/kg

DUT: Dipole 835 MHz; Type: D835V2; Serial: 4d132

Communication System: UID 0, CW; Frequency: 835 MHz; Duty Cycle: 1:1 Medium: 835 Body Medium parameters used: $f = 835 \text{ MHz}; \ \sigma = 0.991 \text{ S/m}; \ \epsilon_r = 53.158; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.5 cm

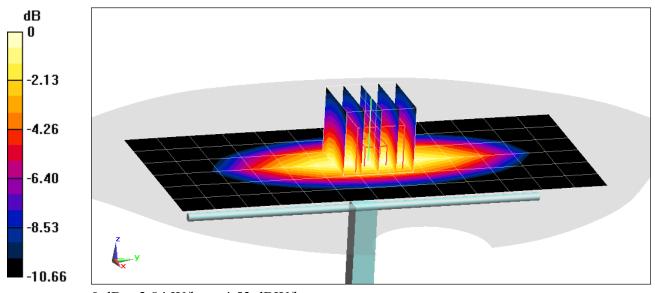
Test Date: 02/19/2020; Ambient Temp: 21.9°C; Tissue Temp: 20.7°C

Probe: EX3DV4 - SN7552; ConvF(9.94, 9.94, 9.94) @ 835 MHz; Calibrated: 9/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1449; Calibrated: 9/12/2019

Phantom: Left Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1792 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

835 MHz System Verification at 23.0 dBm (200 mW)


Area Scan (7x14x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 3.25 W/kg

SAR(1 g) = 2.1 W/kg

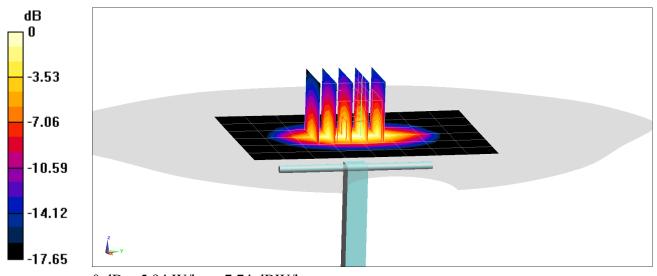
Deviation(1 g) = 5.42%

0 dB = 2.84 W/kg = 4.53 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.504 \text{ S/m}; \ \epsilon_r = 54.787; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/03/2020; Ambient Temp: 21.5°C; Tissue Temp: 20.3°C


Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1750 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

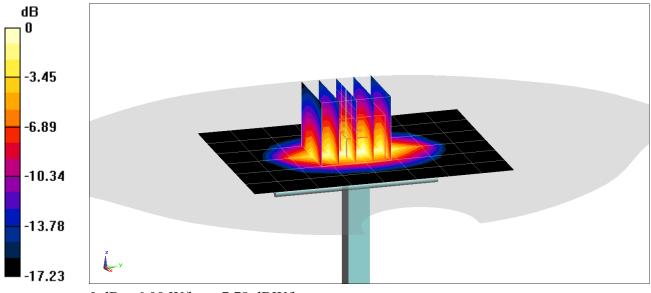
1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.19 W/kg SAR(1 g) = 3.93 W/kg; SAR(10 g) = 2.08 W/kg Deviation(1 g) = 4.24%; Deviation(10 g) = 5.05%

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.52 \text{ S/m}; \ \epsilon_r = 54.334; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/05/2020; Ambient Temp: 21.8°C; Tissue Temp: 20.9°C


Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1750 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

1750 MHz System Verification at 20.0 dBm (100 mW)

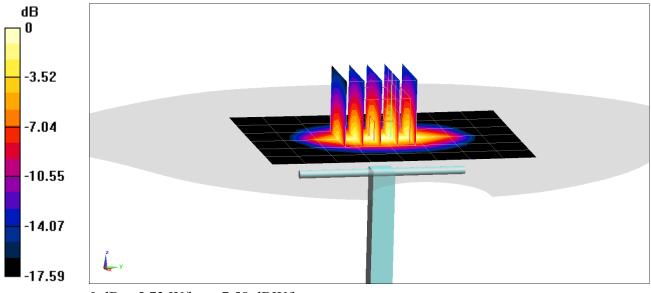
Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.20 W/kg SAR(1 g) = 3.98 W/kg; SAR(10 g) = 2.11 W/kg Deviation(1 g) = 5.57%; Deviation(10 g) = 6.57%

0 dB = 6.00 W/kg = 7.78 dBW/kg

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: 1148

Communication System: UID 0, CW; Frequency: 1750 MHz; Duty Cycle: 1:1 Medium: 1750 Body; Medium parameters used: $f = 1750 \text{ MHz}; \ \sigma = 1.492 \text{ S/m}; \ \epsilon_r = 55.102; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/10/2020; Ambient Temp: 21.5°C; Tissue Temp: 20.5°C


Probe: EX3DV4 - SN7357; ConvF(8.26, 8.26, 8.26) @ 1750 MHz; Calibrated: 4/24/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1407; Calibrated: 4/18/2019

Phantom: Right Back Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1692 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

1750 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x9x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 6.91 W/kg SAR(1 g) = 3.81 W/kg Deviation(1 g) = 1.06%

0 dB = 5.73 W/kg = 7.58 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149

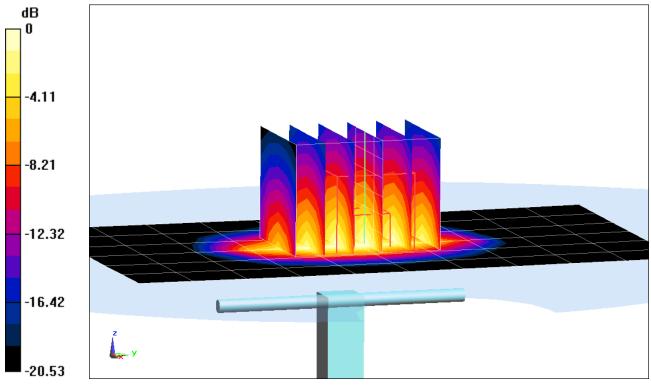
Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.535 \text{ S/m}; \ \epsilon_r = 51.741; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/01/2020; Ambient Temp: 23.1°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375


Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x6x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.82 W/kgSAR(1 g) = 4.19 W/kgDeviation(1 g) = 6.35%

0 dB = 6.58 W/kg = 8.18 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149

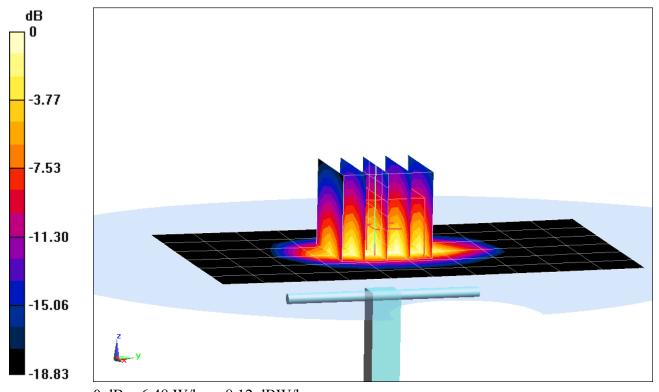
Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.569 \text{ S/m}; \ \epsilon_r = 51.982; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/04/2020; Ambient Temp: 22.0°C; Tissue Temp: 23.4°C

Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375


Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

1900 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mmZoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mmPeak SAR (extrapolated) = 7.77 W/kg

SAR(1 g) = 4.21 W/kg; SAR(10 g) = 2.16 W/kg

Deviation(1 g) = 6.85%; Deviation(10 g) = 4.35%

0 dB = 6.48 W/kg = 8.12 dBW/kg

DUT: Dipole 1900 MHz; Type: D1900V2; Serial: 5d149

Communication System: UID 0, CW; Frequency: 1900 MHz; Duty Cycle: 1:1 Medium: 1900 Body Medium parameters used: $f = 1900 \text{ MHz}; \ \sigma = 1.564 \text{ S/m}; \ \epsilon_r = 51.603; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/12/2020; Ambient Temp: 23.5°C; Tissue Temp: 23.5°C

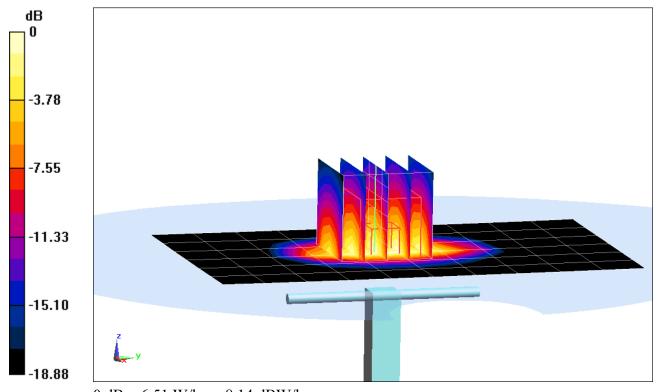
Probe: EX3DV4 - SN7571; ConvF(7.56, 7.56, 7.56) @ 1900 MHz; Calibrated: 12/11/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1533; Calibrated: 12/5/2019

Phantom: SAM Left; Type: QD000P40CC; Serial: TP: 1375

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

1900 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (7x11x1): Measurement grid: dx=15mm, dy=15mm

Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=8mm, dy=8mm, dz=5mm

Peak SAR (extrapolated) = 7.79 W/kg

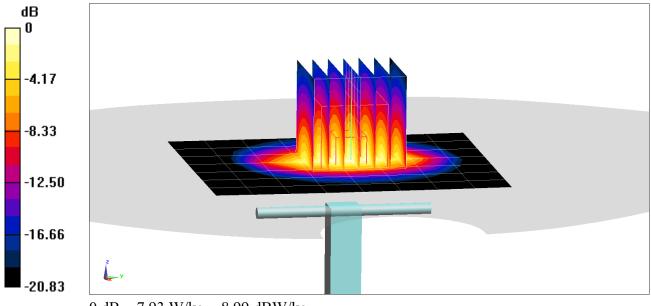
SAR(1 g) = 4.24 W/kg

Deviation(1 g) = 7.61%

0 dB = 6.51 W/kg = 8.14 dBW/kg

DUT: Dipole 2300 MHz; Type: D2300V2; Serial: 1073

Communication System: UID 0, CW; Frequency: 2300 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: $f = 2300 \text{ MHz}; \ \sigma = 1.856 \text{ S/m}; \ \epsilon_r = 51.797; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm


Test Date: 01/30/2020; Ambient Temp: 23.9°C; Tissue Temp: 22.8°C

Probe: EX3DV4 - SN7547; ConvF(7.47, 7.47, 7.47) @ 2300 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1323; Calibrated: 7/11/2019 Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375

Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

2300 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 9.60 W/kg SAR(1 g) = 4.85 W/kg Deviation(1 g) = 1.68%

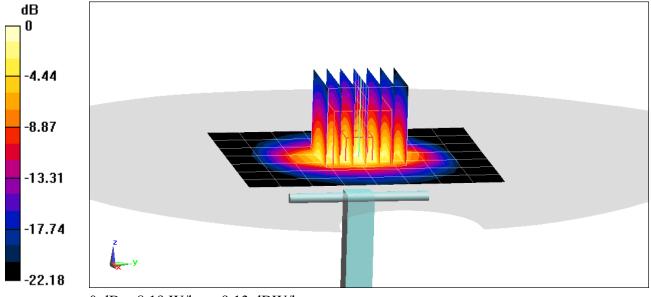
0 dB = 7.93 W/kg = 8.99 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.013 \text{ S/m}; \ \epsilon_r = 51.575; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01/29/2020; Ambient Temp: 23.0°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN7410; ConvF(7.44, 7.44, 7.44) @ 2450 MHz; Calibrated: 7/16/2019


Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

2450 MHz System Verification at 20.0 dBm (100 mW)

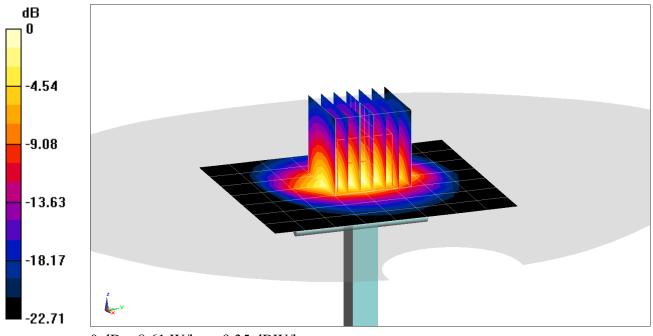
Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.2 W/kg SAR(1 g) = 4.86 W/kg Deviation(1 g) = -4.52%

0 dB = 8.19 W/kg = 9.13 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.024 \text{ S/m}; \ \epsilon_r = 51.394; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01/30/2020; Ambient Temp: 23.9°C; Tissue Temp: 22.8°C


Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2450 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 7/11/2019
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375
Measurement SW: DASY52, Version 52.10 (2):SEMCAD X Version 14.6.12 (7470)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

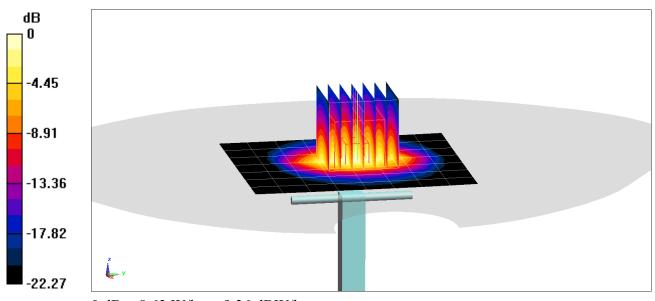
Peak SAR (extrapolated) = 10.8 W/kgSAR(1 g) = 5.17 W/kgDeviation(1 g) = 1.17%

0 dB = 8.61 W/kg = 9.35 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 797

Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.04 \text{ S/m}; \ \epsilon_r = 51.03; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/11/2020; Ambient Temp: 22.3°C; Tissue Temp: 23.0°C


Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2450 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 7/11/2019
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

2450 MHz System Verification at 20.0 dBm (100 mW)

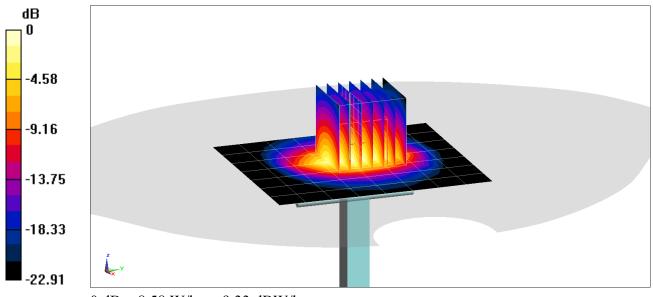
Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Peak SAR (extrapolated) = 10.8 W/kgSAR(1 g) = 5.15 W/kgDeviation(1 g) = 0.78%

0 dB = 8.63 W/kg = 9.36 dBW/kg

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: 981


Communication System: UID 0, CW; Frequency: 2450 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: $f = 2450 \text{ MHz}; \ \sigma = 2.034 \text{ S/m}; \ \epsilon_r = 51.346; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/17/2020; Ambient Temp: 23.5°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN7547; ConvF(7.3, 7.3, 7.3) @ 2450 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 7/11/2019
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

2450 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 10.7 W/kg SAR(1 g) = 5.16 W/kg Deviation(1 g) = 1.38%

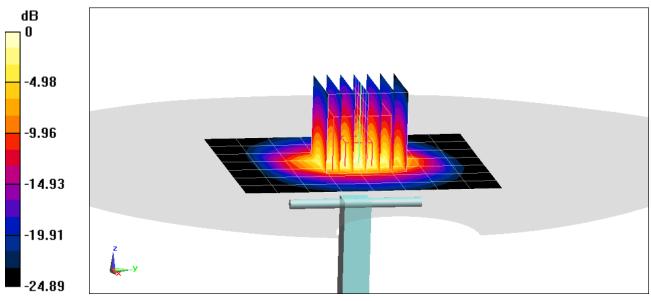
0 dB = 8.58 W/kg = 9.33 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1064

Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Body Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 2.225 \text{ S/m}; \ \epsilon_r = 50.951; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 01/29/2020; Ambient Temp: 23.0°C; Tissue Temp: 21.0°C

Probe: EX3DV4 - SN7410; ConvF(7.43, 7.43, 7.43) @ 2600 MHz; Calibrated: 7/16/2019


Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1322; Calibrated: 7/11/2019

Phantom: Twin-SAM V5.0; Type: QD 000 P40 CD; Serial: 1630

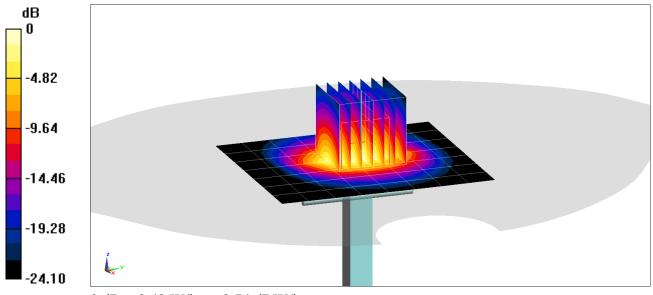
Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.1 W/kg SAR(1 g) = 5.39 W/kg Deviation(1 g) = -3.06%

0 dB = 9.41 W/kg = 9.74 dBW/kg

DUT: Dipole 2600 MHz; Type: D2600V2; Serial: 1064


Communication System: UID 0, CW; Frequency: 2600 MHz; Duty Cycle: 1:1 Medium: 2450 Body; Medium parameters used: $f = 2600 \text{ MHz}; \ \sigma = 2.211 \text{ S/m}; \ \epsilon_r = 50.915; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/17/2020; Ambient Temp: 23.5°C; Tissue Temp: 22.6°C

Probe: EX3DV4 - SN7547; ConvF(7.18, 7.18, 7.18) @ 2600 MHz; Calibrated: 7/15/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1323; Calibrated: 7/11/2019
Phantom: LeftTwin-SAM V5.0; Type: QD 000 P40 CD; Serial: TP1375
Measurement SW: DASY52, Version 52.10 (2);SEMCAD X Version 14.6.12 (7470)

2600 MHz System Verification at 20.0 dBm (100 mW)

Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mmZoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mmPeak SAR (extrapolated) = 12.0 W/kg SAR(1 g) = 5.5 W/kg Deviation(1 g) = -1.08%

0 dB = 9.42 W/kg = 9.74 dBW/kg

DUT: Dipole 3500 MHz; Type: D3500V2; Serial: 1059

Communication System: UID 0, CW; Frequency: 3500 MHz; Duty Cycle: 1:1 Medium: 3600 Body; Medium parameters used: $f = 3500 \text{ MHz}; \ \sigma = 3.399 \text{ S/m}; \ \epsilon_r = 49.901; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

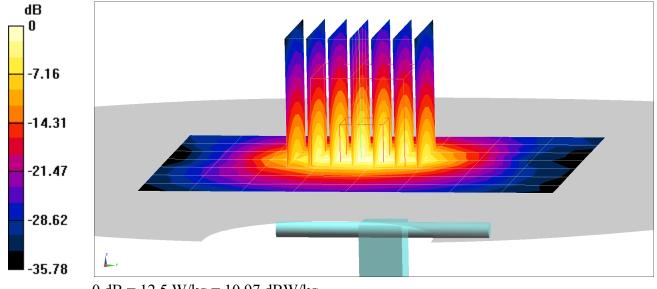
Test Date: 02/14/2020; Ambient Temp: 21.8°C; Tissue Temp: 21.4°C

Probe: EX3DV4 - SN7488; ConvF(7, 7, 7) @ 3500 MHz; Calibrated: 1/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

3500 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 16.7 W/kg

SAR(1 g) = 6.41 W/kg

Deviation(1 g) = -1.54%

0 dB = 12.5 W/kg = 10.97 dBW/kg

DUT: Dipole 3700 MHz; Type: D3700V2; Serial: 1018

Communication System: UID 0, CW; Frequency: 3700 MHz; Duty Cycle: 1:1 Medium: 3600 Body; Medium parameters used: $f = 3700 \text{ MHz}; \ \sigma = 3.613 \text{ S/m}; \ \epsilon_r = 49.596; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

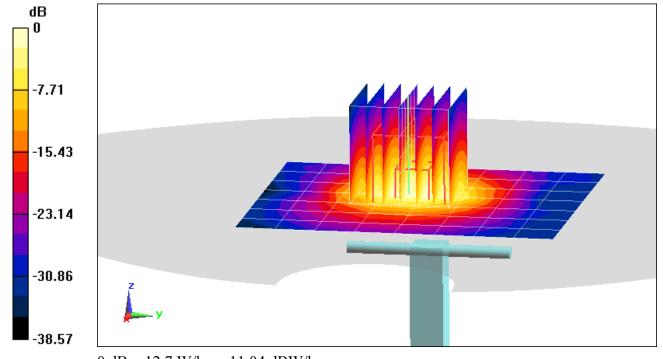
Test Date: 02/14/2020; Ambient Temp: 21.8°C; Tissue Temp: 21.4°C

Probe: EX3DV4 - SN7488; ConvF(6.85, 6.85, 6.85) @ 3700 MHz; Calibrated: 1/21/2020

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1530; Calibrated: 1/13/2020

Phantom: Twin-SAM V5.0 (30); Type: QD 000 P40 CD; Serial: 1646 Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

3700 MHz System Verification at 20.0 dBm (100 mW)


Area Scan (8x9x1): Measurement grid: dx=12mm, dy=12mm

Zoom Scan (7x7x8)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 17.3 W/kg

SAR(1 g) = 6.56 W/kg

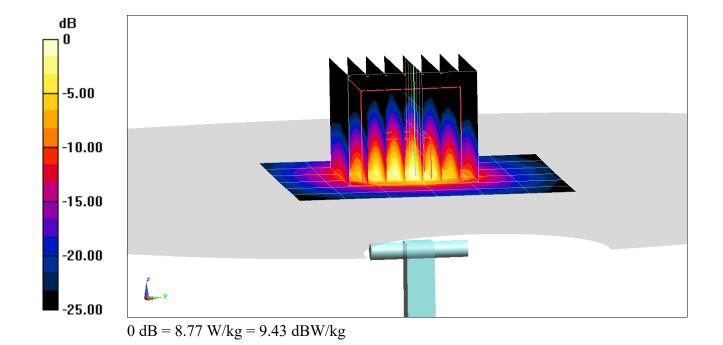
SAR(1 g) = 6.56 W/kg Deviation(1 g) = 2.02%

0 dB = 12.7 W/kg = 11.04 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057

Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: f = 5250 MHz; $\sigma = 5.54$ S/m; $\varepsilon_r = 47.095$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/10/2020; Ambient Temp: 22.3°C; Tissue Temp: 23.1°C


Probe: EX3DV4 - SN7409; ConvF(4.7, 4.7, 4.7) @ 5250 MHz; Calibrated: 6/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mmZoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 15.3 W/kg SAR(10 g) = 1.04 W/kg Deviation(10 g) = -1.42%

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057

Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: f = 5600 MHz; $\sigma = 6.006$ S/m; $\varepsilon_r = 46.496$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

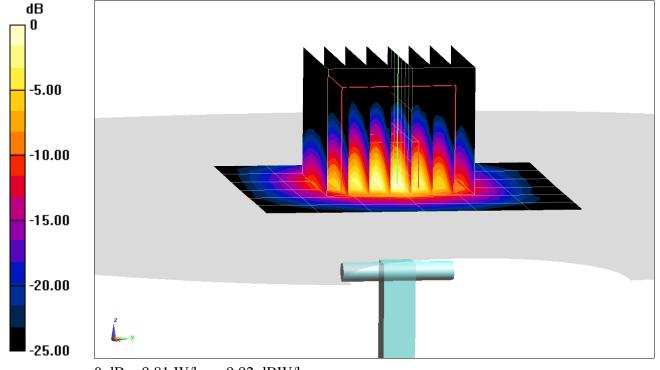
Test Date: 02/10/2020; Ambient Temp: 22.3°C; Tissue Temp: 23.1°C

Probe: EX3DV4 - SN7409; ConvF(4.22, 4.22, 4.22) @ 5600 MHz; Calibrated: 6/19/2019 Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

5600 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 18.0 W/kg

SAR(10 g) = 1.1 W/kg

Deviation(10 g) = -1.35%

0 dB = 9.81 W/kg = 9.92 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1057

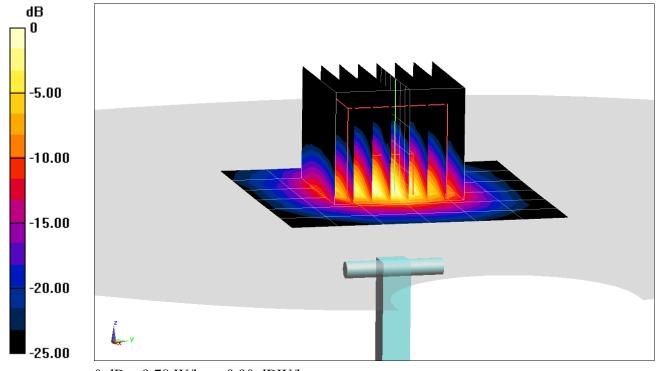
Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5200-5800 Body Medium parameters used: f = 5750 MHz; $\sigma = 6.219$ S/m; $\varepsilon_r = 46.246$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

Test Date: 02/10/2020; Ambient Temp: 22.3°C; Tissue Temp: 23.1°C

Probe: EX3DV4 - SN7409; ConvF(4.23, 4.23, 4.23) @ 5750 MHz; Calibrated: 6/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)


5750 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4 Peak SAR (extrapolated) = 18.1 W/kg

SAR(10 g) = 1.06 W/kg

Deviation(10 g) = 0.00%

0 dB = 9.78 W/kg = 9.90 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191

Communication System: UID 0, CW; Frequency: 5250 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: $f = 5250 \text{ MHz}; \ \sigma = 5.428 \text{ S/m}; \ \epsilon_r = 49.59; \ \rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section; Space: 1.0 cm

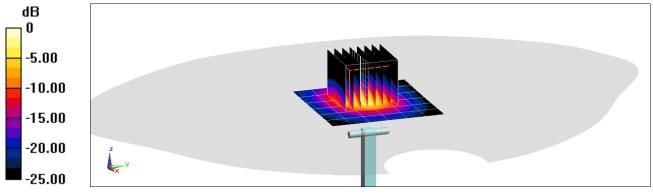
Test Date: 02/17/2020; Ambient Temp: 22.3°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN7409; ConvF(4.7, 4.7, 4.7) @ 5250 MHz; Calibrated: 6/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 6/20/2019

Phantom: Front; Type: QD 000 P40 CD; Serial: 1686

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)


5250 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 15.3 W/kg

SAR(1 g) = 3.69 W/kg Deviation(1 g) = -4.16%

0 dB = 8.76 W/kg = 9.43 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191

Communication System: UID 0, CW; Frequency: 5600 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Body Medium parameters used: f = 5600 MHz; $\sigma = 5.899$ S/m; $\varepsilon_r = 49.019$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

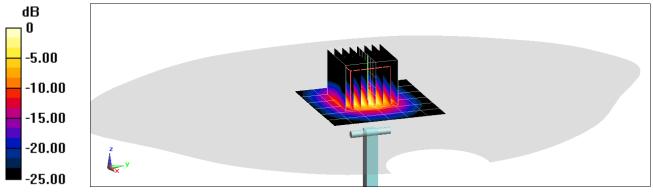
Test Date: 02/17/2020; Ambient Temp: 22.3°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN7409; ConvF(4.22, 4.22, 4.22) @ 5600 MHz; Calibrated: 6/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn1334; Calibrated: 6/20/2019 Phantom: Front; Type: QD 000 P40 CD; Serial: 1686

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)

5600 MHz System Verification at 17.0 dBm (50 mW)


Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 18.3 W/kg

SAR(1 g) = 3.99 W/kg

Deviation(1 g) = 1.53%

0 dB = 9.84 W/kg = 9.93 dBW/kg

DUT: Dipole 5 GHz; Type: D5GHzV2; Serial: 1191

Communication System: UID 0, CW; Frequency: 5750 MHz; Duty Cycle: 1:1 Medium: 5 GHz Body Medium parameters used: f = 5750 MHz; $\sigma = 6.111$ S/m; $\varepsilon_r = 48.804$; $\rho = 1000$ kg/m³ Phantom section: Flat Section; Space: 1.0 cm

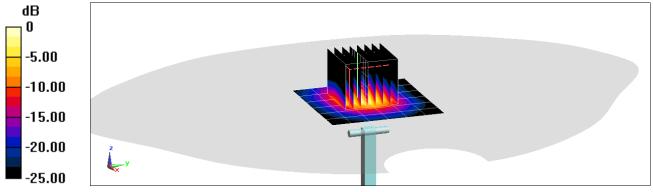
Test Date: 02/17/2020; Ambient Temp: 22.3°C; Tissue Temp: 22.7°C

Probe: EX3DV4 - SN7409; ConvF(4.23, 4.23, 4.23) @ 5750 MHz; Calibrated: 6/19/2019

Sensor-Surface: 1.4mm (Mechanical Surface Detection)
Electronics: DAE4 Sn1334; Calibrated: 6/20/2019
Plantage Front Town OD 000 R40 GD, Sarial 1686

Phantom: Front; Type: QD 000 P40 CD; Serial: 1686

Measurement SW: DASY52, Version 52.10 (2); SEMCAD X Version 14.6.12 (7470)


5750 MHz System Verification at 17.0 dBm (50 mW)

Area Scan (7x7x1): Measurement grid: dx=10mm, dy=10mm

Zoom Scan (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm; Graded Ratio: 1.4

Peak SAR (extrapolated) = 18.2 W/kg

SAR(1 g) = 3.77 W/kg Deviation(1 g) = -1.95%

0 dB = 9.27 W/kg = 9.67 dBW/kg

APPENDIX C: SAR TISSUE SPECIFICATIONS

Measurement Procedure for Tissue verification:

- 1) The network analyzer and probe system was configured and calibrated.
- 2) The probe was immersed in the tissue. The tissue was placed in a nonmetallic container. Trapped air bubbles beneath the flange were minimized by placing the probe at a slight angle.
- 3) The complex admittance with respect to the probe aperture was measured
- 4) The complex relative permittivity ϵ can be calculated from the below equation (Pournaropoulos and Misra):

$$Y = \frac{j2\omega\varepsilon_{r}\varepsilon_{0}}{[\ln(b/a)]^{2}} \int_{a}^{b} \int_{a}^{b} \int_{0}^{\pi} \cos\phi' \frac{\exp[-j\omega r(\mu_{0}\varepsilon_{r}\varepsilon_{0})^{1/2}]}{r} d\phi' d\rho' d\rho$$

where Y is the admittance of the probe in contact with the sample, the primed and unprimed coordinates refer to source and observation points, respectively, $r^2 = \rho^2 + \rho'^2 - 2\rho\rho'\cos\phi'$, ω is the angular frequency, and $j = \sqrt{-1}$.

3 Composition / Information on ingredients

3.2 Mixtures

Description: Aqueous solution with surfactants and inhibitors

Declarable, or hazardous components:

CAS: 107-21-1	Ethanediol	>1.0-4.9%
EINECS: 203-473-3	STOT RE 2, H373;	
Reg.nr.: 01-2119456816-28-0000	Acute Tox. 4, H302	
CAS: 68608-26-4	Sodium petroleum sulfonate	< 2.9%
EINECS: 271-781-5	Eye Irrit. 2, H319	
Reg.nr.: 01-2119527859-22-0000		
CAS: 107-41-5	Hexylene Glycol / 2-Methyl-pentane-2,4-diol	< 2.9%
EINECS: 203-489-0	Skin Irrit. 2, H315; Eye Irrit. 2, H319	
Reg.nr.: 01-2119539582-35-0000		
CAS: 68920-66-1	Alkoxylated alcohol, > C ₁₆	< 2.0%
NLP: 500-236-9	Aquatic Chronic 2, H411;	
Reg.nr.: 01-2119489407-26-0000	Skin Irrit. 2, H315; Eye Irrit. 2, H319	

Figure C-1

Note: Liquid recipes are proprietary SPEAG. Since the composition is approximate to the actual liquids utilized, the manufacturer tissue-equivalent liquid data sheets are provided below.

FCC ID: ZNFV600VM	@\PCTEST	SAR EVALUATION REPORT	LG	
	DUT Type:			APPENDIX C:
01/29/20 - 02/24/20	Portable Handset			Page 1 of 3

© 2020 PCTEST REV 21.4 M 09/11/2019

p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

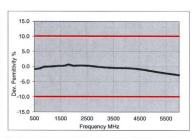
Item Name Body Tissue Simulating Liquid (MBBL600-6000V6) Product No. SL AAM U16 BC (Batch: 181029-1) Manufacturer SPEAG

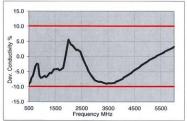
Measurement Method

TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters
Target parameters as defined in the KDB 865664 compliance standard.

Test Condition


Ambient Condition 22°C; 30% humidity TSL Temperature 22°C


Test Date 30-Oct-18 Operator CL Additional Information

TSL Density

TSL Heat-capa

TO S	Measu	ured		Targe	t	Diff.to Tar	get [%]
f [MHz]	e'	е"	sigma	eps	sigma	Δ-eps	Δ-sigma
800	55.1	21.3	0.95	55.3	0.97	-0.4	-2.1
825	55.1	20.8	0.96	55.2	0.98	-0.3	-2.0
835	55.1	20.6	0.96	55.1	0.99	0.0	-2.5
850	55.1	20.4	0.96	55.2	0.99	-0.1	-3.0
900	55.0	19.7	0.98	55.0	1.05	0.0	-6.7
1400	54.2	15.6	1.22	54.1	1.28	0.2	-4.7
1450	54.1	15.4	1.24	54.0	1.30	0.2	-4.6
1500	54.1	15.3	1.27	53.9	1.33	0.3	-4.5
1550	54.0	15.1	1.30	53.9	1.36	0.2	-4.4
1600	53.9	15.0	1.33	53.8	1.39	0.2	-4.3
1625	53.9	14.9	1.35	53.8	1.41	0.3	-4.3
1640	53.9	14.9	1.36	53.7	1.42	0.3	-4.2
1650	53.8	14.9	1.36	53.7	1.43	0.2	-4.9
1700	53.8	14.8	1.40	53.6	1.46	0.4	-4.1
1750	53.7	14.7	1.43	53.4	1.49	0.5	-4.0
1800	53.7	14.6	1.46	53.3	1.52	0.8	-3.9
1810	53.7	14.6	1.47	53.3	1.52	0.8	-3.3
1825	53.7	14.6	1.48	53.3	1.52	0.8	-2.6
1850	53.6	14.5	1.50	53.3	1.52	0.6	-1.3
1900	53.5	14.5	1.53	53.3	1.52	0.4	0.7
1950	53.5	14.5	1.57	53.3	1.52	0.4	3.3
2000	53.4	14.4	1.60	53.3	1.52	0.2	5.3
2050	53.4	14.4	1.64	53.2	1.57	0.3	4.5
2100	53.3	14.4	1.68	53.2	1.62	0.2	3.7
2150	53.3	14.4	1.72	53.1	1.66	0.4	3.6
2200	53.2	14.4	1.76	53.0	1.71	0.3	2.9
2250	53.1	14.4	1.81	53.0	1.76	0.2	2.8
2300	53.1	14.4	1.85	52.9	1.81	0.4	2.2
2350	53.0	14.5	1.89	52.8	1.85	0.3	2.2
2400	52.9	14.5	1.94	52.8	1.90	0.2	2.1
2450	52.9	14.5	1.98	52.7	1.95	0.4	1.5
2500	52.8	14.6	2.03	52.6	2.02	0.3	0.5
2550	52.7	14.6	2.07	52.6	2.09	0.2	-1.0
2600	52.6	14.7	2.12	52.5	2.16	0.2	-1.9

51.1	15.5	3.02	51.3	3.31	-0.4	-8.8
50.8	15.7	3.24	51.1	3.55	-0.5	-8.8
48.1	18.2	5.27	49.0	5.30	-1.8	-0.6
48.0	18.3	5.34	49.0	5.36	-1.9	-0.4
47.9	18.4	5.41	48.9	5.42	-2.0	-0.2
47.5	18.6	5.70	48.6	5.65	-2.2	0.8
47.3	18.8	5.84	48.5	5.77	-2.3	1.3
47.1	18.9	5.99	48.3	5.88	-2.5	1.8
47.0	19.0	6.14	48.2	6.00	-2.6	2.3
	50.8 48.1 48.0 47.9 47.5 47.3 47.1	50.8 15.7 48.1 18.2 48.0 18.3 47.9 18.4 47.5 18.6 47.3 18.8 47.1 18.9	50.8 15.7 3.24 48.1 18.2 5.27 48.0 18.3 5.34 47.9 18.4 5.41 47.5 18.6 5.70 47.3 18.8 5.84 47.1 18.9 5.99	50.8 15.7 3.24 51.1 48.1 18.2 5.27 49.0 48.0 18.3 5.34 49.0 47.9 18.4 5.41 48.9 47.5 18.6 5.70 48.6 47.3 18.8 5.84 48.5 47.1 18.9 5.99 48.3	50.8 15.7 3.24 51.1 3.55 48.1 18.2 5.27 49.0 5.30 48.0 18.3 5.34 49.0 5.36 47.9 18.4 5.41 48.9 5.42 47.5 18.6 5.70 48.6 5.65 47.3 18.8 5.84 48.5 5.77 47.1 18.9 5.99 48.3 5.88	50.8 15.7 3,24 51.1 3,55 -0.5 48.1 18.2 5.27 49.0 5,30 -1.8 48.0 18.3 5,34 49.0 5,36 -1.9 47.9 18.4 5,41 48.9 5,42 -2.0 47.5 18.6 5.70 48.6 5,65 -22 47.3 18.8 5,84 48.5 5,77 -2.3 47.1 18.9 5,99 48.3 5,88 -2.5

TSL Dielectric Parameters

Figure C-2 600 - 5800 MHz Body Tissue Equivalent Matter

FCC ID: ZNFV600VM	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
	DUT Type: Portable Handset			APPENDIX C: Page 2 of 3

s p e a g

Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Measurement Certificate / Material Test

Head Tissue Simulating Liquid (HBBL600-10000V6) SL AAH U16 BC (Batch: 181031-2) Item Name Product No.

Manufacturer SPEAG

Measurement Method

TSL dielectric parameters measured using calibrated DAK probe.

Target Parameters

Target parameters as defined in the IEEE 1528 and IEC 62209 compliance standards.

Test Condition

Ambient Condition 22°C; 30% humidity

TSL Temperature 22°C Test Date 31-Oct-18 Operator CL

Additional Information

TSL Density TSL Heat-capacity

	Meas	ured	MENT,	Targe	et	Diff.to Tar	get [%]
f [MHz]	e'	е"	sigma	eps	sigma	Δ-eps	Δ-sigma
800	43.8	20.5	0.91	41.7	0.90	5.1	1.4
825	43.8	20.1	0.92	41.6	0.91	5.3	1.5
835	43.8	19.9	0.93	41.5	0.91	5.4	2.0
850	43.7	19.7	0.93	41.5	0.92	5.3	1.5
900	43.5	18.9	0.95	41.5	0.97	4.8	-2.1
1400	42.5	15.0	1.17	40.6	1.18	4.7	-0.8
1450	42.5	14.8	1.19	40.5	1.20	4.9	-0.8
1600	42.2	14.3	1.27	40.3	1.28	4.7	-1.1
1625	42.2	14.2	1.29	40.3	1.30	4.8	-0.7
1640	42.2	14.2	1.30	40.3	1.31	4.8	-0.5
1650	42.1	14.2	1.30	40.2	1.31	4.6	-1.0
1700	42.1	14.0	1.33	40.2	1.34	4.8	-0.9
1750	42.0	13.9	1.36	40.1	1.37	4.8	-0.8
1800	41.9	13.9	1.39	40.0	1.40	4.7	-0.7
1810	41.9	13.8	1.40	40.0	1.40	4.7	0.0
1825	41.9	13.8	1.41	40.0	1.40	4.7	0.7
1850	41.8	13.8	1.42	40.0	1.40	4.5	1.4
1900	41.8	13.7	1.45	40.0	1.40	4.5	3.6
1950	41.7	13.7	1.48	40.0	1.40	4.3	5.7
2000	41.6	13.6	1.51	40.0	1.40	4.0	7.9
2050	41.6	13.6	1.55	39.9	1.44	4.2	7.3
2100	41.5	13.5	1.58	39.8	1.49	4.2	6.1
2150	41.4	13.5	1.62	39.7	1.53	4.2	5.7
2200	41.4	13.5	1.65	39.6	1.58	4.4	4.6
2250	41.3	13.5	1.69	39.6	1.62	4.4	4.2
2300	41.2	13.5	1.72	39.5	1.67	4.4	3.2
2350	41.1	13.5	1.76	39.4	1.71	4.4	2.9
2400	41.1	13.5	1.80	39.3	1.76	4.6	2.5
2450	41.0	13.5	1.84	39.2	1.80	4.6	2.2
2500	40.9	13.5	1.88	39.1	1.85	4.5	1.4
2550	40.8	13.5	1.92	39.1	1.91	4.4	0.6
2600	40.8	13.6	1.96	39.0	1.96	4.6	-0.2
3500	39.2	14.1	2.74	37.9	2.91	3.3	-5.8
3700	38.9	14.2	2.93	37.7	3.12	3.1	-6.1

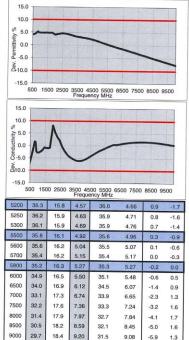


Figure C-3 600 - 5800 MHz Head Tissue Equivalent Matter

9500 28.9 18.5 9.80 31.0 9.71 -6.8 0.9

FCC ID: ZNFV600VM	PCTEST	SAR EVALUATION REPORT	① LG	Approved by: Quality Manager
Test Dates: 01/29/20 - 02/24/20	DUT Type: Portable Handset			APPENDIX C: Page 3 of 3

© 2020 PCTEST **REV 21.4 M** 09/11/2019

APPENDIX D: SAR SYSTEM VALIDATION

Per FCC KDB Publication 865664 D02v01r02, SAR system validation status should be documented to confirm measurement accuracy. The SAR systems (including SAR probes, system components and software versions) used for this device were validated against its performance specifications prior to the SAR measurements. Reference dipoles were used with the required tissue- equivalent media for system validation, according to the procedures outlined in FCC KDB Publication 865664 D01v01r04 and IEEE 1528-2013. Since SAR probe calibrations are frequency dependent, each probe calibration point was validated at a frequency within the valid frequency range of the probe calibration point, using the system that normally operates with the probe for routine SAR measurements and according to the required tissue-equivalent media.

A tabulated summary of the system validation status including the validation date(s), measurement frequencies, SAR probes and tissue dielectric parameters has been included.

Table D-1
SAR System Validation Summary – 1q

	SAR System validation Summary - 19												
SAR	FREQ.		PROBE			COND.	PERM.	C.	W VALIDATIO	N	N	OD. VALIDATIO	N
SYSTEM #	[MHz]	DATE	SN	PROBE C	AL. POINT	(σ)	(εr)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR
L	750	9/24/2019	7410	750	Head	0.878	42.471	PASS	PASS	PASS	N/A	N/A	N/A
E	835	9/20/2019	7417	835	Head	0.912	43.450	PASS	PASS	PASS	GMSK	PASS	N/A
L	835	9/24/2019	7410	835	Head	0.911	42.199	PASS	PASS	PASS	GMSK	PASS	N/A
D	1750	5/24/2019	3914	1750	Head	1.366	41.075	PASS	PASS	PASS	N/A	N/A	N/A
L	1900	9/24/2019	7410	1900	Head	1.442	39.947	PASS	PASS	PASS	GMSK	PASS	N/A
E	2300	9/6/2019	7417	2300	Head	1.737	39.748	PASS	PASS	PASS	N/A	N/A	N/A
Е	2450	2/5/2020	3589	2450	Head	1.823	38.835	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
M	2450	2/17/2020	7570	2450	Head	1.837	38.339	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
Е	2600	2/5/2020	3589	2600	Head	1.933	38.635	PASS	PASS	PASS	TDD	PASS	N/A
D	3500	2/4/2020	7488	3500	Head	2.882	36.886	PASS	PASS	PASS	TDD	PASS	N/A
D	3700	2/4/2020	7488	3700	Head	3.037	36.597	PASS	PASS	PASS	TDD	PASS	N/A
Н	5250	12/7/2019	7406	5250	Head	4.709	35.885	PASS	PASS	PASS	OFDM	N/A	PASS
Н	5600	12/7/2019	7406	5600	Head	5.120	35.211	PASS	PASS	PASS	OFDM	N/A	PASS
Н	5750	12/7/2019	7406	5750	Head	5.309	34.961	PASS	PASS	PASS	OFDM	N/A	PASS
K	750	9/13/2019	7547	750	Body	0.961	55.740	PASS	PASS	PASS	N/A	N/A	N/A
P	835	9/26/2019	7551	835	Body	0.991	54.104	PASS	PASS	PASS	GMSK	PASS	N/A
0	835	2/18/2020	7552	835	Body	1.000	52.700	PASS	PASS	PASS	GMSK	PASS	N/A
- 1	1750	5/21/2019	7357	1750	Body	1.442	55.384	PASS	PASS	PASS	N/A	N/A	N/A
J	1900	1/1/2020	7571	1900	Body	1.579	51.919	PASS	PASS	PASS	GMSK	PASS	N/A
K	2300	9/5/2019	7547	2300	Body	1.893	52.450	PASS	PASS	PASS	N/A	N/A	N/A
L	2450	8/15/2019	7410	2450	Body	2.018	52.505	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
K	2450	9/6/2019	7547	2450	Body	1.996	51.898	PASS	PASS	PASS	OFDM/TDD	PASS	PASS
L	2600	8/16/2019	7410	2600	Body	2.161	52.297	PASS	PASS	PASS	TDD	PASS	N/A
K	2600	9/5/2019	7547	2600	Body	2.716	52.040	PASS	PASS	PASS	TDD	PASS	N/A
D	3500	2/12/2020	7488	3500	Body	3.373	50.003	PASS	PASS	PASS	TDD	PASS	N/A
D	3700	2/12/2020	7488	3700	Body	3.585	49.719	PASS	PASS	PASS	TDD	PASS	N/A
G	5250	10/4/2019	7409	5250	Body	5.223	47.070	PASS	PASS	PASS	OFDM	N/A	PASS
G	5600	10/7/2019	7409	5600	Body	5.884	47.080	PASS	PASS	PASS	OFDM	N/A	PASS
G	5750	10/7/2019	7409	5750	Body	6.111	46.780	PASS	PASS	PASS	OFDM	N/A	PASS

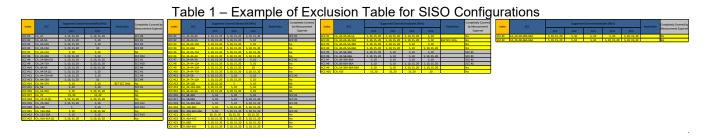
Table D-2
SAR System Validation Summary – 10g

	SAN System validation Summary – 10g																
SAR	FREQ.		PROBE		PROBE CAL. POINT						PERM.	CI	W VALIDATIO	N	M	OD. VALIDATIO	N
SYSTEM #	[MHz]	DATE	SN	PROBE C			(εr)	SENSITIVITY	PROBE LINEARITY	PROBE ISOTROPY	MOD. TYPE	DUTY FACTOR	PAR				
1	1750	5/21/2019	7357	1750	Body	1.442	55.384	PASS	PASS	PASS	N/A	N/A	N/A				
J	1900	1/1/2020	7571	1900	Body	1.579	51.919	PASS	PASS	PASS	GMSK	PASS	N/A				
G	5250	10/4/2019	7409	5250	Body	5.223	47.070	PASS	PASS	PASS	OFDM	N/A	PASS				
G	5600	10/7/2019	7409	5600	Body	5.884	47.080	PASS	PASS	PASS	OFDM	N/A	PASS				
G	5750	10/7/2019	7409	5750	Body	6.111	46.780	PASS	PASS	PASS	OFDM	N/A	PASS				

NOTE: While the probes have been calibrated for both CW and modulated signals, all measurements were performed using communication systems calibrated for CW signals only. Modulations in the table above represent test configurations for which the measurement system has been validated per FCC KDB Publication 865664 D01v01r04 for scenarios when CW probe calibrations are used with other signal types. SAR systems were validated for modulated signals with a periodic duty cycle, such as GMSK, or with a high peak to average ratio (>5 dB), such as OFDM according to FCC KDB Publication 865664 D01v01r04.

FCC ID: ZNFV600VM	PCTEST	SAR EVALUATION REPORT	(LG	Approved by: Quality Manager
Test Dates:	DUT Type:			Appendix D
01/29/20 - 02/24/20	Portable Handset			Page 1 of 1
NON POTEST				REV/ 21 / M

© 2020 PCTEST REV 21.4 M 09/11/2019


APPENDIX F: DOWNLINK LTE CA RF CONDUCTED POWERS

1.1 LTE Downlink Only Carrier Aggregation Test Reduction Methodology

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number of component carriers (CCs) supported by the product implementation. Per April 2018 TCBC Workshop Notes, the following test reduction methodology was applied to determine the combinations required for conducted power measurements.

LTE DLCA Test Reduction Methodology:

- The supported combinations were arranged by the number of component carriers in columns.
- Any limitations on the PCC or SCC for each combination were identified alongside the combination (e.g. CA_2A-2A-12A, but B12 can only be configured as a SCC).
- Power measurements were performed for "supersets" (LTE CA combinations with multiple components carriers) and any "subsets" (LTE CA combinations with fewer component carriers) that were not completely covered by the supersets.
- Only subsets that have the exact same components as a superset were excluded for measurement.
- When there were certain restrictions on component carriers that existed in the superset that were not applied for the subset, the subset configuration was additionally evaluated.
- Both inter-band and intra-band downlink carrier aggregation scenarios were considered.
- Downlink CA combinations for SISO and 4x4 Downlink MIMO operations were measured independently, per May 2017 TCBC Workshop notes.

Note: [CC] indicates component carrier with 4x4 DL MIMO antenna configuration

FCC ID: ZNFV600VM	<u> PCTEST</u>	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX F:
01/29/20 — 02/24/20	Portable Handset			Page 1 of 4

1.2 LTE Downlink Only Carrier Aggregation Test Selection and Setup

SAR test exclusion for LTE downlink Carrier Aggregation is determined by power measurements according to the number component carriers (CCs) supported by the product implementation. For those configurations required by April 2018 TCBC Workshop Notes, conducted power measurements with LTE Carrier Aggregation (CA) (downlink only) active are made in accordance to KDB Publication 941225 D05Av01r02. The RRC connection is only handled by one cell, the primary component carrier (PCC) for downlink and uplink communications. After making a data connection to the PCC, the UE device adds secondary component carrier(s) (SCC) on the downlink only. All uplink communications and acknowledgements remain identical to specifications when downlink carrier aggregation is inactive on the PCC. Additional conducted output powers are measured with the downlink carrier aggregation active for the configuration with highest measured maximum conducted power with downlink carrier aggregation inactive measured among the channel bandwidth, modulation, and RB combinations in each frequency band.

Per FCC KDB Publication 941225 D05Av01r02, no SAR measurements are required for carrier aggregation configurations when the maximum average output power with downlink only carrier aggregation active is not more than 0.25 dB higher than the average output power with downlink only carrier aggregation inactive.

LTE Downlink Carrier Aggregation was fully addressed in the original filing. Per FCC Guidance, only combinations that were impacted with respect to this permissive change were additionally evaluated. Refer RF Exposure Technical Report S/N 1M1911250199-01-R2.ZNF for the excluded combinations which have been addressed per KDB 941225 D05A and April 2018 TCBC Workshop guidance.

General PCC and SCC configuration selection procedure

- PCC uplink channel, channel bandwidth, modulation and RB configurations were selected based on section C)3)b)ii) of KDB 941225 D05 V01r02. The downlink PCC channel was paired with the selected PCC uplink channel according to normal configurations without carrier aggregation.
- To maximize aggregated bandwidth, highest channel bandwidth available for that CA combination was selected for SCC. For inter-band CA, the SCC downlink channels were selected near the middle of their transmission bands. For contiguous intra-band CA, the downlink channel spacing between the component carriers was set to multiple of 300 kHz less than the nominal channel spacing defined in section 5.4.1A of 3GPP TS 36.521. For non-contiguous intra-band CA, the downlink channel spacing between the component carriers was set to be larger than the nominal channel spacing and provided maximum separation between the component carriers.
- All selected PCC and SCC(s) remained fully within the uplink/downlink transmission band of the respective component carrier.

Figure 1
DL CA Power Measurement Setup

FCC ID: ZNFV600VM	<u> PCTEST</u>	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX F:
01/29/20 — 02/24/20	Portable Handset			Page 2 of 4

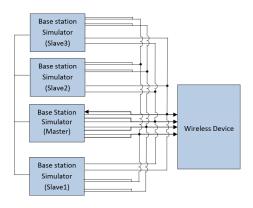


Figure 2
DL CA with DL 4x4 MIMO Power Measurement Setup

1.3 Downlink Carrier Aggregation RF Conducted Powers

1.3.1 **LTE Band 48 as PCC**

Table 1
Maximum Output Powers

					PCC						SI	C1				SCC 2				SCC 3				SCC 4		Po	wer
Combination	PCC Band	PCC BW [MHz]	PCC (UL) Ch.	PCC (UL) Freq. [MHz]	Mod.	PCC UL#	PCC UL RB Offset	PCC (DL) Channel	PCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel	SCC (DL) Freq. [MHz]	SCC Band	SCC BW [MHz]	SCC (DL) Channel		LTE Tx.Power with DL CA Enabled (dBm)	
CA_48E	LTE B48	15	55315	3557.5	QPSK	1	0	55315	3557.5	LTE B48	20	55486	3574.6	LTE B48	20	55684	3594.4	LTE B48	20	55882	3614.2					22.37	22.34
CA_48C-48D	LTE B48	15	55315	3557.5	QPSK	1	0	55315	3557.5	LTE B48	20	55486	3574.6	LTE B48	20	56640	3690	LTE B48	20	56442	3670.2	LTE B48	20	56244	3650.4	22.40	22.34
CA_48D-48C	LTE B48	15	55315	3557.5	QPSK	1	0	55315	3557.5	LTE B48	20	55486	3574.6	LTE B48	20	55684	3594.4	LTE B48	20	56640	3690	LTE B48	20	56442	3670.2	22.44	22.34

FCC ID: ZNFV600VM	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX F:
01/29/20 — 02/24/20	Portable Handset			Page 3 of 4

1.4 DL CA with DL 4x4 MIMO RF Conduction Powers

This device supports downlink 4x4 MIMO operations for some LTE bands. Uplink transmission is limited to a single output stream. When carrier aggregation was applicable, the general test selection and setup procedures described in Section 1.2 were applied.

Per May 2017 TCB Workshop Notes, SAR for 4x4 DL MIMO was not needed since the maximum average output power in 4x4 DL MIMO mode was not more than 0.25 dB higher than the maximum output power with 4x4 DL MIMO inactive. Additionally, SAR for 4x4 MIMO Downlink Carrier Aggregation was not needed since the maximum average output power in 4x4 MIMO Downlink Carrier Aggregation mode was not more than 0.25 dB higher than the maximum output power with 4x4 MIMO Downlink and downlink carrier aggregation inactive.

1.4.1 LTE 4x4 MIMO DL Standalone Powers

Table 2
Maximum Output Powers

LTE Band	Bandwidth [MHz]	Channel	Frequency [MHz]	Modulation	RB Size	RB Offset	4x4 DL MIMO Tx. Power [dBm]	Single Antenna Tx. Power [dBm]	Target Power [dBm]
48	15	55315	3557.5	QPSK	1	0	22.10	22.34	22.0

FCC ID: ZNFV600VM	PCTEST	SAR EVALUATION REPORT	(L) LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX F:
01/29/20 — 02/24/20	Portable Handset			Page 4 of 4

APPENDIX G POWER REDUCTION VERIFICATION

Per the May 2017 TCBC Workshop Notes, demonstration of proper functioning of the power reduction mechanisms is required to support the corresponding SAR configurations. The verification process was divided into two parts: (1) evaluation of output power levels for individual or multiple triggering mechanisms and (2) evaluation of the triggering distances for proximity-based sensors.

Power Verification Procedure G.1

The power verification was performed according to the following procedure:

- 1. A base station simulator was used to establish a conducted RF connection and the output power was monitored. The power measurements were confirmed to be within expected tolerances for all states before and after a power reduction mechanism was triggered. For licensed modes, the device state index as displayed on the device UI was recorded before and after the mechanism was triggered.
- 2. Step 1 was repeated for all relevant modes and frequency bands for the mechanism being investigated.
- 3. Steps 1 and 2 were repeated for all individual power reduction mechanisms and combinations thereof. For the combination cases, one mechanism was switched to a 'triggered' state at a time; powers were confirmed to be within tolerances after each additional mechanism was activated.

G.2 Distance Verification Procedure

The distance verification procedure was performed according to the following procedure:

- 1. A base station simulator was used to establish an RF connection and to monitor the power levels. The device being tested was placed below the relevant section of the phantom with the relevant side or edge of the device facing toward the phantom. For licensed modes, the device state index on the device UI was monitored to determine the triggering state.
- 2. The device was moved toward and away from the phantom to determine the distance at which the mechanism triggers and the output power is reduced, per KDB Publication 616217 D04v01r02 and FCC Guidance. Each applicable test position was evaluated. The distances were confirmed to be the same or larger (more conservative) than the minimum distances provided by the manufacturer.
- 3. Steps 1 and 2 were repeated for low, mid, and high bands, as appropriate (see note below Table G-3 for more details).
- 4. Steps 1 through 3 were repeated for all distance-based power reduction mechanisms.

FCC ID: ZNFV600VM	<u>@PCTEST*</u>	SAR EVALUATION REPORT	L G	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
01/29/20 — 02/24/20	Portable Handset			Page 1 of 4

@ 2020 PCTFST REV 20.05 M

G.3 Main Antenna Verification Summary

Table G-1
Power Measurement Verification for Main Antenna

Mecha	nism(s)		Device State Index					
	•	Manda /Danad		1				
1st	2nd	Mode/Band	Un-triggered (Max)	Mechanism #1 (Reduced)	Mechanism #2 (Reduced)			
Hotspot On		UMTS 1750	1	5				
Hotspot On	Grip	UMTS 1750	1	5	5			
Grip		UMTS 1750	1	8				
Grip	Hotspot On	UMTS 1750	1	8	5			
Hotspot On		UMTS 1900	1	5				
Hotspot On	Grip	UMTS 1900	1	5	5			
Grip		UMTS 1900	1	8				
Grip	Hotspot On	UMTS 1900	1	8	5			
Hotspot On		PCS EVDO	1	5				
Hotspot On	Grip	PCS EVDO	1	5	5			
Grip		PCS EVDO	1	8				
Grip	Hotspot On	PCS EVDO	1	8	5			
Hotspot On		LTE FDD Band 4	1	5				
Hotspot On	Grip	LTE FDD Band 4	1	5	5			
Grip		LTE FDD Band 4	1	8				
Grip	Hotspot On	LTE FDD Band 4	1	8	5			
Hotspot On		LTE FDD Band 66	1	5				
Hotspot On	Grip	LTE FDD Band 66	1	5	5			
Grip		LTE FDD Band 66	1	8				
Grip	Hotspot On	LTE FDD Band 66	1	8	5			
Hotspot On		LTE FDD Band 2	1	5				
Hotspot On	Grip	LTE FDD Band 2	1	5	5			
Grip		LTE FDD Band 2	1	8				
Grip	Hotspot On	LTE FDD Band 2	1	8	5			

*Note: This device uses different Device State Indices (DSI) to configure different time averaged power levels based on certain exposure scenarios. For this device, DSI = 8 represents the case when the grip sensor is active, and DSI = 5 represents the case when hotspot mode is active. DSI = 1 is configured at max power when the device cannot detect the use condition.

Table G-2
Power Measurement Verification for Main Antenna with NR FR2 Active

	i owei wiea	Juicinent Venne	ation for want	Antenna With	IN I INE ACTIVE	·		
	М	Mechanism(s)		Device State Index				
	1st	2nd	Mode/Band	Un-triggered (Max)	Mechanism #1 (Reduced)	Mechanism #2 (Reduced)		
	Hotspot On			1	5			
	Hotspot On	Grip	LTE FDD Band 2	1	5	5		
	Grip			1	8			
mmWave Active	Grip	Hotspot On		1	8	5		
mmvvave Active	Hotspot On			1	5			
	Hotspot On	Grip	175 5DD D 4 66	1	5	5		
	Grip		LTE FDD Band 66	1	8			
	Grip	Hotspot On		1	8	5		

FCC ID: ZNFV600VM	<u>@</u> \PCTEST	SAR EVALUATION REPORT	L G	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
01/29/20 — 02/24/20	Portable Handset			Page 2 of 4

Table G-3
Distance Measurement Verification for Main Antenna

NAs ab an israe (s)	Test Condition	Dand	Distance Measu	Minimum Distance per	
Mechanism(s)	rest condition	Band	Moving Toward	Moving Away	Manufacturer (mm)
Grip	Phablet - Back Side	Mid	4	6	3
Grip	Phablet - Front Side	Mid	3	5	2
Grip	Phablet - Bottom Edge	Mid	5	7	4

*Note: Mid band refers to: CDMA BC1, UMTS B2/4, LTE B2/4/66.

G.4 WIFI Verification Summary

Table G-4
Power Measurement Verification WIFI – Antenna 1

Mechanism(s)		Conducted Power (dBm)				
1st	Mode/Band	Un-triggered (Max)	Mechanism #1 (Reduced)			
Held-to-Ear	802.11b	19.22	14.48			
Held-to-Ear	802.11g	18.63	14.75			
Held-to-Ear	802.11n (2.4GHz)	17.13	14.73			
Held-to-Ear	802.11ac (2.4GHz)	17.17	14.49			

^{*}Note: MIMO and 802.11ax WIFI modes were not evaluated due to equipment limitations.

Table G-5
Power Measurement Verification WIFI – Antenna 2

Mechanism(s)		Conducted F	Power (dBm)		
1st	Mode/Band	Un-triggered (Max)	Mechanism #1 (Reduced)		
Held-to-Ear	802.11b	19.82	14.36		
Held-to-Ear	802.11g	18.36	14.85		
Held-to-Ear	802.11n (2.4GHz)	17.23	14.56		
Held-to-Ear	802.11ac (2.4GHz)	17.33	14.27		

^{*}Note: MIMO and 802.11ax WIFI modes were not evaluated due to equipment limitations.

FCC ID: ZNFV600VM	<u><u><u></u> PCTEST</u></u>	SAR EVALUATION REPORT	L G	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
01/29/20 — 02/24/20	Portable Handset			Page 3 of 4

Table G-6
Power Measurement Verification WIFI with NR FR2 Active – Antenna 1

i ower measurement vermeation v	VII I VVILII IVIX I IXZ /	ACTIVE - AIITEIIIIA	
	Conducted Power (dBm)		
Mode/Band	Un triggorod	Mechanism #1	
	Un-triggered (Max)	mmWave Active	
	(IVIdX)	(Reduced)	
802.11a	17.51	14.47	
802.11n (5GHz, 20MHz BW)	17.46	14.43	
802.11ac (20MHz BW)	17.27	14.20	
802.11n (5GHz, 40MHz BW)	15.22	14.12	
802.11ac (40MHz BW)	15.11	14.07	

*Note: MIMO and 802.11 ax WIFI modes were not evaluated due to equipment limitations.

Table G-7
Power Measurement Verification WIFI with NR FR2 Active – Antenna 2

wer measurement vernication with with NK 1 K2 Active - Antenna 2			
	Conducted Power (dBm)		
Mode/Band	Un-triggered	Mechanism #1	
	(Max)	mmWave Active	
	(IVIAX)	(Reduced)	
802.11a	17.23	14.13	
802.11n (5GHz, 20MHz BW)	17.29	14.08	
802.11ac (20MHz BW)	17.10	14.05	
802.11n (5GHz, 40MHz BW)	15.14	13.97	
802.11ac (40MHz BW)	15.03	13.84	

*Note: MIMO and 802.11ax WIFI modes were not evaluated due to equipment limitations.

FCC ID: ZNFV600VM	<u> PCTEST</u>	SAR EVALUATION REPORT	L G	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX G:
01/29/20 — 02/24/20	Portable Handset			Page 4 of 4

APPENDIX H: IEEE 802.11AX RU SAR EXCLUSION

1.1 IEEE 802.11ax RU SAR Exclusion

To make the most efficient use of the additional available subcarriers (data tones), IEEE 802.11ax can utilize Orthogonal Frequency-Division Multiple Access (OFDMA) which divides the existing 802.11 channels into smaller subchannels called Resource Units (RUs). Possible RU sizes are: 26T, 52T, 106T, 242T, 484T and 996T.

Per FCC Guidance, 802.11ax was considered a higher order 802.11 mode when compared to a/b/g/n/ac to apply KDB Publication 248227 D01v02r02 for OFDM mode selection. Therefore, SAR tests were not required for 802.11ax based on the maximum allowed output powers of OFDM modes and the reported SAR values. Per FCC Guidance, maximum conducted powers were performed for each RU size to demonstrate that the output powers would not be higher than the other OFDM 802.11 modes.

1.2 IEEE 802.11ax RU Target Powers

1.2.1 Maximum 802.11ax RU WLAN Output Power

Tones		SISO (ANT1/2) /in dBm				MIMO (ALL) /in dBm			
Tones		2.4GHz	5GHz/20MHz	5GHz/40MHz	5GHz/80MHz	2.4GHz	5GHz/20MHz	5GHz/40MHz	5GHz/80MHz
26T	Maximum	10.0	10.0	10.0	10.0	13.0	13.0	13.0	13.0
201	Nominal	9.0	9.0	9.0	9.0	12.0	12.0	12.0	12.0
52T	Maximum	10.0	10.0	10.0	10.0	13.0	13.0	13.0	13.0
521	Nominal	9.0	9.0	9.0	9.0	12.0	12.0	12.0	12.0
106T	Maximum	10.0	10.0	10.0	10.0	13.0	13.0	13.0	13.0
1001	Nominal	9.0	9.0	9.0	9.0	12.0	12.0	12.0	12.0
242T	Maximum	10.0	10.0	10.0	10.0	13.0	13.0	13.0	13.0
2421	Nominal	9.0	9.0	9.0	9.0	12.0	12.0	12.0	12.0
484T	Maximum			10.0	10.0			13.0	13.0
4041	Nominal			9.0	9.0			12.0	12.0
996T	Maximum				10.0				13.0
9901	Nominal				9.0				12.0

FCC ID: ZNFV600VM	PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX H:
01/29/20 - 02/24/20	Portable Handset			Page 1 of 9

1.3 IEEE 802.11ax Measured Powers

Table 1
Maximum 2.4 GHz 802.11ax RU Output Power – Ant 1

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)
			0	9.49
2412	1	26T	4	9.39
			8	9.55
			0	9.95
2437	6	26T	4	9.63
			8	9.06
			0	9.48
2462	11	26T	4	9.71
			8	9.55

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)
			37	9.98
2412	1	52T	38	9.89
			40	9.50
			37	9.91
2437	6	52T	38	9.81
			40	9.20
			37	9.58
2462	11	52T	38	9.70
			40	9.48

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)
2412	1	106T	53	9.84
2412	-		54	9.44
2437	6	106T	53	9.27
2437	O	1001	54	9.71
2462	11	106T	53	9.62
2402	11	1001	54	9.69

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)
2412	1	242T	61	9.31
2437	6	242T	61	9.98
2462	11	242T	61	9.84

FCC ID: ZNFV600VM	<u>@PCTEST</u>	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX H:
01/29/20 — 02/24/20	Portable Handset			Page 2 of 9

Table 2
Maximum 2.4 GHz 802.11ax RU Output Power – Ant 2

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)
			0	9.02
2412	1	26T	4	9.03
			8	9.66
			0	9.68
2437	6	26T	4	9.64
			8	9.18
			0	9.01
2462	11	26T	4	9.10
			8	9.15

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)
			37	9.15
2412	1	52T	38	9.12
			40	9.70
			37	9.68
2437	6	52T	38	9.98
			40	9.23
			37	9.28
2462	11	52T	38	9.16
			40	9.07

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)
2412	1	106T	53	9.63
2412	ı	1001	54	9.83
2437	6	106T	53	9.83
2431	0	1001	54	9.45
2462	11	106T	53	9.12
2402	11	1001	54	9.98

Freq [MHz]	Channel	Tones	RU Index	Avg Conducted Powers (dBm)
2412	1	242T	61	9.93
2437	6	242T	61	9.95
2462	11	242T	61	9.75

FCC ID: ZNFV600VM	<u>@</u> PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX H:
01/29/20 - 02/24/20	Portable Handset			Page 3 of 9

Table 3
Maximum 5 GHz 802.11ax RU Output Power – Ant 1

		_			Avg Conducted Power (dBm)			
	Band	Freq [MHz]	Channel	Tones	RU Index			
		[IVITIZ]			0	4	8	
		5180	36	26T	9.11	9.21	9.26	
≥ .	1	5200	40	26T	9.07	9.08	9.11	
BW		5240	48	26T	9.04	9.04	9.02	
		5260	52	26T	9.07	9.11	9.09	
	2A	5280	56	26T	9.02	9.02	9.08	
20MHz		5320	64	26T	9.12	9.08	9.15	
0		5500	100	26T	9.08	9.03	9.02	
Ñ	2C	5600	120	26T	9.16	9.20	9.20	
		5720	144	26T	9.20	9.25	9.31	
		5745	149	26T	9.38	9.26	9.25	
	3	5785	157	26T	9.25	9.34	9.30	
		5825	165	26T	9.49	9.23	9.14	

		_			Avg Co	nducted Power	r (dBm)	
	Band	Freq [MHz]	Channel	Tones	RU Index			
		[IVII IZ]			37	39	40	
		5180	36	52T	9.26	9.41	9.23	
>	1	5200	40	52T	9.19	9.32	9.11	
BW		5240	48	52T	9.22	9.28	9.09	
		5260	52	52T	9.20	9.22	9.17	
	2A	5280	56	52T	9.01	9.10	9.14	
20MHz		5320	64	52T	9.28	9.28	9.14	
6		5500	100	52T	9.13	9.25	9.17	
N	2C	5600	120	52T	9.16	9.20	9.24	
		5720	144	52T	9.35	9.41	9.26	
		5745	149	52T	9.25	9.46	9.23	
	3	5785	157	52T	9.28	9.15	9.40	
		5825	165	52T	9.23	9.47	9.38	

		F			Avg Co	nducted Powe	r (dBm)	
	Band	Freq [MHz]	Channel	Tones	RU Index			
		[IVIITZ]			53	54	N/A	
		5180	36	106T	9.35	9.53		
2	1	5200	40	106T	9.25	9.28		
BW		5240	48	106T	9.18	9.35		
		5260	52	106T	9.29	9.25		
÷	2A	5280	56	106T	9.25	9.18		
5		5320	64	106T	9.33	9.30		
20MHz		5500	100	106T	9.24	9.30		
Ñ	2C	5600	120	106T	9.37	9.40		
-		5720	144	106T	9.44	9.44		
		5745	149	106T	9.51	9.47		
	3	5785	157	106T	9.50	9.51		
		5825	165	106T	9.59	9.47		

		_			Avg C	onducted Power	(dBm)
	Band	Freq [MHz]	Channel	Tones	RU Index		
		[IVIITZ]			61	N/A	N/A
M 1		5180	36	242T	9.61		
	1	5200	40	242T	9.45		
m		5240	48	242T	9.42		
		5260	52	242T	9.47		
÷	2A	5280	56	242T	9.30		
20MHz		5320	64	242T	9.47		
ō		5500	100	242T	9.42		
Ñ	2C	5600	120	242T	9.57		
		5720	144	242T	9.60		
		5745	149	242T	9.74		
	3	5785	157	242T	9.71		
		5825	165	242T	9.69		

FCC ID: ZNFV600VM	<u>@</u> \PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX H:
01/29/20 - 02/24/20	Portable Handset			Page 4 of 9

		Freq			Avg Conducted Power (dBm)			
	Band	Freq [MHz]	Channel	Tones	RU Index			
>		[IVIITZ]			0	8	17	
BW	1	5190	38	26T	9.15	9.57	9.13	
m	'	5230	46	26T	9.17	9.56	9.19	
<u>N</u>	2A	5270	54	26T	9.13	9.54	9.06	
	ZA	5310	62	26T	9.24	9.58	9.16	
40MHz		5510	102	26T	9.04	9.30	9.16	
유	2C	5590	118	26T	9.13	9.53	9.26	
•		5710	142	26T	9.30	9.65	9.35	
	3	5755	151	26T	9.41	9.82	9.31	
	3	5795	159	26T	9.46	9.82	9.35	

		F			Avg Conducted Power (dBm)			
	Band	Freq [MHz]	Channel	Tones	RU Index			
_		[IVITZ]			37	40	44	
BW	4	5190	38	52T	9.20	9.61	9.22	
m	'	5230	46	52T	9.21	9.57	9.17	
<u> </u>	2A	5270	54	52T	9.23	9.51	9.13	
I	ZA	5310	62	52T	9.25	9.54	9.17	
Σ		5510	102	52T	9.11	9.50	9.22	
40MHz	2C	5590	118	52T	9.29	9.61	9.30	
•		5710	142	52T	9.36	9.73	9.35	
	3	5755	151	52T	9.42	9.76	9.40	
	3	5795	159	52T	9.58	9.80	9.39	

		F			Avg Conducted Power (dBm)			
	Band	Freq [MHz]	Channel	Tones		RU Index		
_		[IVIITZ]			53	54	56	
BW	1	5190	38	106T	9.39	9.66	9.43	
m	'	5230	46	106T	9.39	9.63	9.42	
<u>N</u>	2A	5270	54	106T	9.42	9.60	9.31	
	ZA.	5310	62	106T	9.43	9.61	9.35	
40MHz		5510	102	106T	9.38	9.58	9.45	
유	2C	5590	118	106T	9.54	9.76	9.45	
•	`	5710	142	106T	9.61	9.82	9.52	
	3	5755	151	106T	9.71	9.90	9.62	
	J	5795	159	106T	9.72	9.87	9.53	

		_			Avg Conducted Power (dBm)			
	Band	Freq [MHz]	Channel	Tones	RU Index			
_		[IVII 12]			61	62	N/A	
BW	1	5190	38	242T	9.59	9.49		
m	'	5230	46	242T	9.54	9.60		
<u>N</u>	2A	5270	54	242T	9.60	9.48		
<u> </u>	ZA.	5310	62	242T	9.56	9.47		
40MHz		5510	102	242T	9.49	9.42		
유	2C	5590	118	242T	9.57	9.53		
7	7	5710	142	242T	9.66	9.69		
	3	5755	151	242T	9.76	9.75		
		5795	159	242T	9.82	9.68		

		F			Avg Co	nducted Power	(dBm)	
	Band	Freq [MHz]	Channel	Tones	RU Index			
1		[IVII 12]			65	N/A	N/A	
ВМ	1	5190	38	484T	9.56			
<u> </u>	'	5230	46	484T	9.57			
<u>N</u>	2A	5270	54	484T	9.57			
<u> </u>	ZA.	5310	62	484T	9.58			
40MHz		5510	102	484T	9.64			
O ŧ	2C	5590	118	484T	9.66			
7		5710	142	484T	9.74			
	3	5755	151	484T	9.90			
	3	5795	159	484T	9.81			

FCC ID: ZNFV600VM	<u>@</u> \PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX H:
01/29/20 - 02/24/20	Portable Handset			Page 5 of 9

	Band Freq [MHz]		Channel	Tones	Avg Conducted Power (dBm)			
>					RU Index			
BW	<u></u>	[1411 12]			0	18	36	
	1	5210	42	26T	9.10	9.46	9.15	
7	2A	5290	58	26T	9.16	9.38	9.07	
5		5530	106	26T	9.02	9.34	9.13	
ОМН	2C	5610	122	26T	9.14	9.32	9.20	
$\widetilde{\mathbf{\infty}}$		5690	138	26T	9.12	9.40	9.06	
	3	5775	155	26T	9.45	9.67	9.01	

		Freq			Avg Conducted Power (dBm)			
>	Band		Channel	Tones	RU Index			
BW	[MHz]	37			44	52		
	1	5210	42	52T	9.18	9.45	9.34	
 	2A	5290	58	52T	9.27	9.48	9.19	
3		5530	106	52T	9.06	9.30	9.13	
80MHz	2C	5610	122	52T	9.21	9.51	9.27	
8(5690	138	52T	9.13	9.34	9.12	
	3	5775	155	52T	9.48	9.64	9.34	

	Band Freq		Channel	Tones	Avg Conducted Power (dBm)			
>					RU Index			
BW	[WIF12]	53			56	60		
	1	5210	42	106T	9.25	9.49	9.26	
 	2A	5290	58	106T	9.21	9.49	9.21	
80MHz		5530	106	106T	9.10	9.43	9.07	
6	2C	5610	122	106T	9.29	9.53	9.30	
ω̈		5690	138	106T	9.22	9.46	9.22	
	3	5775	155	106T	9.55	9.73	9.38	

		F			Avg Conducted Power (dBm)			
>	Band Freq		Channel	Tones	RU Index			
ВМ		[MHz]			61	62	64	
	1	5210	42	242T	9.46	9.59	9.43	
우	2A	5290	58	242T	9.32	9.59	9.36	
\$		5530	106	242T	9.32	9.38	9.43	
80MHz	2C	5610	122	242T	9.37	9.51	9.47	
8		5690	138	242T	9.45	9.54	9.42	
	3	5775	155	242T	9.75	9.83	9.59	

		_			Avg Conducted Power (dBm)			
>	Band	Freq	Channel	Tones	RU Index			
BW	[MHz]			65	66	N/A		
	1	5210	42	484T	9.50	9.56		
우	2A	5290	58	484T	9.59	9.58		
\$		5530	106	484T	9.41	9.43		
80MHz	2C	5610	122	484T	9.57	9.47		
8		5690	138	484T	9.47	9.51		
	3	5775	155	484T	9.71	9.63		

		F	(:nannai		Avg Conducted Power (dBm)		
ВМ	Band	Freq [MHz]		Tones	RU Index		
m		[1411 12]			67	N/A	N/A
	1	5210	42	996T	9.34		
÷	2A	5290	58	996T	9.36		
80MHz		5530	106	996T	9.32		
0	2C	5610	122	996T	9.50		
œ		5690	138	996T	9.34		
	3	5775	155	996T	9.68		

FCC ID: ZNFV600VM	<u>@</u> \PCTEST	SAR EVALUATION REPORT	(LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX H:
01/29/20 - 02/24/20	Portable Handset			Page 6 of 9

Table 4

Maximum 5 GHz 802.11ax RU Output Power – Ant 2

		_			Avg Co	nducted Power	r (dBm)	
	Band	Freq [MHz]	Channel	Tones	RU Index			
		[1411 12]			0	4	8	
		5180	36	26T	9.36	9.53	9.59	
≥	1	5200	40	26T	9.68	9.77	9.81	
BW		5240	48	26T	9.85	9.82	9.84	
		5260	52	26T	9.80	9.85	9.56	
	2A	5280	56	26T	9.49	9.30	9.35	
20MHz		5320	64	26T	9.43	9.43	9.44	
0		5500	100	26T	9.43	9.37	9.40	
Ñ	2C	5600	120	26T	9.87	9.86	9.83	
		5720	144	26T	9.38	9.32	9.40	
		5745	149	26T	9.21	9.37	9.37	
	3	5785	157	26T	9.45	9.29	9.39	
		5825	165	26T	9.82	9.79	9.71	

		_			Avg Conducted Power (dBm)			
	Band	Freq [MHz]	Channel	Tones	RU Index			
		[IVII IZ]			37	39	40	
		5180	36	52T	9.53	9.67	9.66	
≥	1	5200	40	52T	9.74	9.90	9.85	
BW		5240	48	52T	9.92	9.98	9.92	
		5260	52	52T	9.92	9.97	9.82	
	2A	5280	56	52T	9.56	9.52	9.43	
20MHz		5320	64	52T	9.46	9.60	9.51	
6		5500	100	52T	9.52	9.54	9.51	
Ñ	2C	5600	120	52T	9.91	9.94	9.87	
		5720	144	52T	9.33	9.52	9.46	
		5745	149	52T	9.28	9.44	9.47	
	3	5785	157	52T	9.51	9.53	9.47	
		5825	165	52T	9.94	9.97	9.82	

		F			Avg Conducted Power (dBm)			
	Band	Freq [MHz]	Channel	Tones	RU Index			
		[1411 12]			53	54	N/A	
		5180	36	106T	9.67	9.78		
2	1	5200	40	106T	9.88	9.91		
BW		5240	48	106T	9.96	9.94		
		5260	52	106T	9.95	9.92		
+	2A	5280	56	106T	9.61	9.50		
20MHz		5320	64	106T	9.65	9.63		
6		5500	100	106T	9.59	9.62		
Ñ	2C	5600	120	106T	9.97	9.95		
		5720	144	106T	9.53	9.53		
		5745	149	106T	9.43	9.46		
	3	5785	157	106T	9.62	9.60		
		5825	165	106T	9.97	9.92		

		_			Avg Co	onducted Power	(dBm)
	Band	Freq [MHz]	Channel	Tones	RU Index		
		[IVIITZ]			61	N/A	N/A
		5180	36	242T	9.89		
BW	1	5200	40	242T	9.95		
m		5240	48	242T	9.97		
		5260	52	242T	9.95		
우	2A	5280	56	242T	9.75		
5		5320	64	242T	9.68		
20MHz		5500	100	242T	9.77		
Ñ	2C	5600	120	242T	9.98		
		5720	144	242T	9.72		
		5745	149	242T	9.69		
	3	5785	157	242T	9.75		
		5825	165	242T	9.77		

FCC ID: ZNFV600VM	<u>@</u> \PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX H:
01/29/20 - 02/24/20	Portable Handset			Page 7 of 9

		-			Avg Co	nducted Power	r (dBm)	
	Band	Freq [MHz]	Channel	Tones	RU Index			
		[IVIITZ]			0	8	17	
BW	1	5190	38	26T	9.03	9.54	9.22	
m		5230	46	26T	9.37	9.61	9.34	
<u> </u>	2A	5270	54	26T	9.37	9.79	9.40	
<u> </u>	ZA.	5310	62	26T	9.04	9.48	9.16	
40MHz		5510	102	26T	9.01	9.43	9.15	
유	2C	5590	118	26T	9.25	9.74	9.44	
•		5710	142	26T	9.01	9.28	9.05	
	3	5755	151	26T	9.02	9.39	9.11	
	3	5795	159	26T	9.32	9.65	9.30	

					Avg Co	nducted Power	r (dBm)	
	Band	Freq [MHz]	Channel	Tones	RU Index			
-		[IVIITZ]			37	40	44	
ВМ	1	5190	38	52T	9.17	9.57	9.40	
<u> </u>		5230	46	52T	9.39	9.75	9.39	
<u>N</u>	2A	5270	54	52T	9.58	9.83	9.46	
Ξ	ZA.	5310	62	52T	9.25	9.60	9.18	
40MHz		5510	102	52T	9.14	9.46	9.28	
유	2C	5590	118	52T	9.53	9.83	9.56	
,		5710	142	52T	9.08	9.33	9.04	
	3	5755	151	52T	9.09	9.50	9.15	
	3	5795	159	52T	9.36	9.73	9.36	

		-			Avg Co	nducted Power	r (dBm)	
	Band	Freq [MHz]	Channel	Tones	RU Index			
-		[1411 12]			53	54	56	
BW	1	5190	38	106T	9.35	9.62	9.49	
m		5230	46	106T	9.59	9.84	9.64	
N	2A	5270	54	106T	9.71	9.93	9.61	
<u> </u>	ZA	5310	62	106T	9.53	9.66	9.41	
40MHz		5510	102	106T	9.34	9.61	9.43	
유	2C	5590	118	106T	9.70	9.90	9.74	
7	`	5710	142	106T	9.10	9.40	9.31	
	3	5755	151	106T	9.37	9.53	9.41	
	3	5795	159	106T	9.64	9.83	9.59	

		Face			Avg Co	onducted Power	r (dBm)		
	Band	Freq [MHz]	Channel	Tones		RU Index			
-		[IVITIZ]			61	62	N/A		
BW	1	5190	38	242T	9.48	9.62			
m	'	5230	46	242T	9.73	9.70			
<u>N</u>	2A	5270	54	242T	9.78	9.80			
40MHz	ZA	5310	62	242T	9.56	9.47			
Σ		5510	102	242T	9.48	9.53			
유	2C	5590	118	242T	9.71	9.75			
•		5710	142	242T	9.30	9.31			
	3	5755	151	242T	9.37	9.53			
	3	5795	159	242T	9.73	9.63			

					Avg Co	nducted Power	(dBm)
	Band	Freq [MHz]	Channel	Tones	RU Index		
1		[IVII 12]			65	N/A	N/A
ВМ	1	5190	38	484T	9.56		
<u> </u>		5230	46	484T	9.73		
<u>N</u>	2A	5270	54	484T	9.77		
Ξ	ZA	5310	62	484T	9.54		
40MHz		5510	102	484T	9.50		
유	2C	5590	118	484T	9.76		
,		5710	142	484T	9.28		
	3	5755	151	484T	9.44		
	3	5795	159	484T	9.69		

FCC ID: ZNFV600VM	PCTEST	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX H:
01/29/20 - 02/24/20	Portable Handset			Page 8 of 9

	Fuer				Avg Conducted Power (dBm)			
>	Band	Freq [MHz]	Channel	Tones	RU Index			
BW		[1411 12]			0	18	36	
	1	5210	42	26T	9.03	9.59	9.37	
1 7	2A	5290	58	26T	8.86	9.01	8.70	
80MHz		5530	106	26T	9.03	9.26	9.10	
6	2C	5610	122	26T	9.35	9.73	9.45	
8(5690	138	26T	8.75	9.09	9.05	
	3	5775	155	26T	8.92	9.18	9.06	

		rnd Freq [MHz]		Tones	Avg Conducted Power (dBm)			
≥	Band		Channel		RU Index			
BW					37	44	52	
	1	5210	42	52T	9.19	9.66	9.53	
1	2A	5290	58	52T	8.86	9.03	8.84	
5		5530	106	52T	9.02	9.33	9.30	
80MHz	2C	5610	122	52T	9.47	9.85	9.64	
œ		5690	138	52T	8.80	9.16	9.16	
	3	5775	155	52T	9.01	9.43	9.18	

		F		Tones	Avg Conducted Power (dBm)			
>	Band	Freq [MHz]	Channel		RU Index			
BW		[1411 12]			53	56	60	
	1	5210	42	106T	9.27	9.73	9.50	
1 7	2A	5290	58	106T	9.06	9.22	9.02	
5		5530	106	106T	9.16	9.40	9.32	
80MHz	2C	5610	122	106T	9.63	9.85	9.68	
œ		5690	138	106T	9.02	9.18	9.18	
	3	5775	155	106T	9.17	9.47	9.28	

		_			Avg Conducted Power (dBm)			
>	Band Band	Freq [MHz]	Channel	Tones	RU Index			
m					61	62	64	
	1	5210	42	242T	9.41	9.70	9.72	
1 7	2A	5290	58	242T	9.05	9.19	9.01	
80MHz		5530	106	242T	9.21	9.43	9.42	
6	2C	5610	122	242T	9.71	9.86	9.81	
8		5690	138	242T	9.07	9.27	9.35	
	3	5775	155	242T	9.35	9.51	9.38	

		Freq Channel			Avg Co	nducted Power	r (dBm)
≥	Band		Tones	RU Index			
BW		[IVIITIZ]			65	66	N/A
	1	5210	42	484T	9.62	9.98	
1 7	2A	5290	58	484T	9.21	9.79	
\$		5530	106	484T	9.32	9.79	
80MHz	2C	5610	122	484T	9.77	9.96	
œ		5690	138	484T	9.14	9.79	
	3	5775	155	484T	9.41	9.80	

	Band Freq [MHz]	i ' I (:hannel			Avg Co	nducted Power	(dBm)
>			Channel	el Tones		RU Index	
m				67	N/A	N/A	
	1	5210	42	996T	9.51		
무	2A	5290	58	996T	9.02		
80MHz		5530	106	996T	9.22		
6	2C	5610	122	996T	9.66		
œ		5690	138	996T	9.16		
	3	5775	155	996T	9.32		

FCC ID: ZNFV600VM	<u> PCTEST</u>	SAR EVALUATION REPORT	LG	Reviewed by: Quality Manager
Test Dates:	DUT Type:			APPENDIX H:
01/29/20 — 02/24/20	Portable Handset			Page 9 of 9

APPENDIX I: PROBE AND DIPOLE CALIBRATION CERTIFICATES

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service sulsse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D750V3-1161_Oct18

Object	D750V3 - SN:116	j)	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	dure for dipole validation kits abo	ve 700 MHz
			,
Calibration date:	October 19, 2018		its of measurements (SI). BNV
			10-30-20
his calibration certificate documer	nts the traceability to nati	onal standards, which realize the physical un	its of measurements (Si), BNV9
		robability are given on the following pages an	d are part of the certificate. 10-20
	·	, ,	
All calibrations have been conducte	ed in the closed laborator	y facility: environment temperature (22 ± 3)°(C and humidity < 70%.
			-
Calibration Equipment used (M&TE	critical for calibration)		
Primans Standarda	lin a	Cai Data (Carliffonta No.)	0-1-1-1-1-0-0-01-0-0-01-0
	ID#	Cai Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power meter NRP Power sensor NRP-Z91	SN: 104778 SN: 103244	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672)	Apr-19 Apr-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 104778 SN: 103244 SN: 103245	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	Apr-19 Apr-19 Apr-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682)	Apr-19 Apr-19 Apr-19 Apr-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17)	Apr-19 Apr-19 Apr-19 Apr-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18
Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (In house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-20 In house check: Oct-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer Agilent E8358A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047,2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Retwork Analyzer Agilent E8358A	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047,2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US41080477 Name	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 04-Oct-18 (No. DAE4-601_Oct18) Check Date (in house) 07-Oct-15 (in house check Oct-18) 07-Oct-15 (in house check Oct-18) 15-Jun-15 (in house check Oct-18) 31-Mar-14 (in house check Oct-18)	Apr-19 Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-19 Scheduled Check In house check: Oct-20 In house check: Oct-19

.

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D750V3-1161_Oct18

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D750V3-1161_Oct18 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy , $dz = 5 mm$	
Frequency	750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.9	0.89 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.8 ± 6 %	0.89 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	8.03 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.32 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	5.26 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.5	0.96 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	55.1 ± 6 %	0.96 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	***	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.11 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	8.43 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.39 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	5.55 W/kg ± 16.5 % (k=2)

Certificate No: D750V3-1161_Oct18 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	55.6 Ω - 1.9 jΩ
Return Loss	- 25.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.6 Ω - 4.2 jΩ
Return Loss	- 27.6 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.032 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 19, 2015

Certificate No: D750V3-1161_Oct18 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 19.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.89 \text{ S/m}$; $\varepsilon_r = 40.8$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63,19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.22, 10.22, 10.22) @ 750 MHz; Calibrated: 30.12.2017

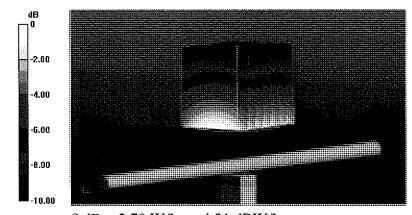
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018

• Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 58.51 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 3.04 W/kg

SAR(1 g) = 2.02 W/kg; SAR(10 g) = 1.32 W/kg

Maximum value of SAR (measured) = 2.70 W/kg

0 dB = 2.70 W/kg = 4.31 dBW/kg

Certificate No: D750V3-1161_Oct18

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 19.10.2018

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN:1161

Communication System: UID 0 - CW; Frequency: 750 MHz

Medium parameters used: f = 750 MHz; $\sigma = 0.96 \text{ S/m}$; $\varepsilon_r = 55.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.19, 10.19, 10.19) @ 750 MHz; Calibrated: 30.12.2017

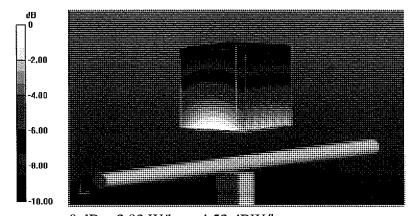
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.10.2018

• Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

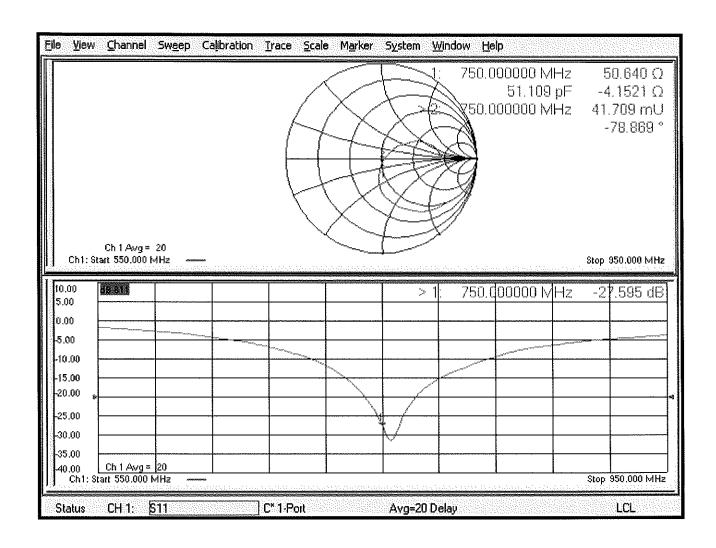
DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 57.57 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.18 W/kg


SAR(1 g) = 2.11 W/kg; SAR(10 g) = 1.39 W/kg

Maximum value of SAR (measured) = 2.83 W/kg

0 dB = 2.83 W/kg = 4.52 dBW/kg

Impedance Measurement Plot for Body TSL

PCTEST ENGINEERING LABORATORY, INC.

7185 Oakland Mills Road, Columbia, MD 21046 USA Tel. +1.410.290.6652 / Fax +1.410.290.6654 http://www.pctest.com

Certification of Calibration

Object D750V3 – SN:1161

Calibration procedure(s) Procedure for Calibration Extension for SAR Dipoles.

Extended Calibration date: October 18, 2019

Description: SAR Validation Dipole at 750 MHz.

Calibration Equipment used:

Manufacturer	Model	Description	Cal Date	Cal Interval	Cal Due	Serial Number
Control Company	4040	Therm./Clock/Humidity Monitor	6/29/2019	Biennial	6/29/2021	192291470
Control Company	4352	Ultra Long Stem Thermometer	8/2/2018	Biennial	8/2/2020	181334684
Amplifier Research	15S1G6	Amplifier	CBT	N/A	CBT	433971
Narda	4772-3	Attenuator (3dB)	CBT	N/A	CBT	9406
Keysight Technologies	85033E	Standard Mechanical Calibration Kit (DC to 9GHz, 3.5mm)	7/2/2019	Annual	7/2/2020	MY53401181
Rohde & Schwarz	ZNLE6	Vector Network Analyzer	10/11/2019	Annual	10/11/2020	101307
Mini-Circuits	BW-N20W5+	DC to 18 GHz Precision Fixed 20 dB Attenuator	CBT	N/A	CBT	N/A
SPEAG	DAKS-3.5	Portable Dielectric Assessment Kit	8/13/2019	Annual	8/13/2020	1041
Anritsu	MA2411B	Pulse Power Sensor	8/14/2019	Annual	8/14/2020	1315051
Anritsu	MA2411B	Pulse Power Sensor	8/8/2019	Annual	8/8/2020	1339008
Anritsu	ML2495A	Power Meter	11/20/2018	Annual	11/20/2019	1039008
Agilent	N5182A	MXG Vector Signal Generator	8/19/2019	Annual	8/19/2020	MY47420837
Seekonk	NC-100	Torque Wrench	5/9/2018	Biennial	5/9/2020	22217
Mini-Circuits	NLP-2950+	Low Pass Filter DC to 2700 MHz	CBT	N/A	CBT	N/A
MiniCircuits	ZHDC-16-63-S+	Bidirectional Coupler	CBT	N/A	CBT	N/A
MiniCircuits	VLF-6000+	Low Pass Filter	CBT	N/A	CBT	N/A
SPEAG	EX3DV4	SAR Probe	4/24/2019	Annual	4/24/2020	7357
SPEAG	EX3DV4	SAR Probe	7/16/2019	Annual	7/16/2020	7410
SPEAG	DAE4	Dasy Data Acquisition Electronics	7/11/2019	Annual	7/11/2020	1322
SPEAG	DAE4	Dasy Data Acquisition Electronics	4/18/2019	Annual	4/18/2020	1407

Note: CBT (Calibrated Before Testing). Prior to testing, the measurement paths containing a cable, amplifier, attenuator, coupler or filter were connected to a calibrated source (i.e. a signal generator) to determine the losses of the measurement path.

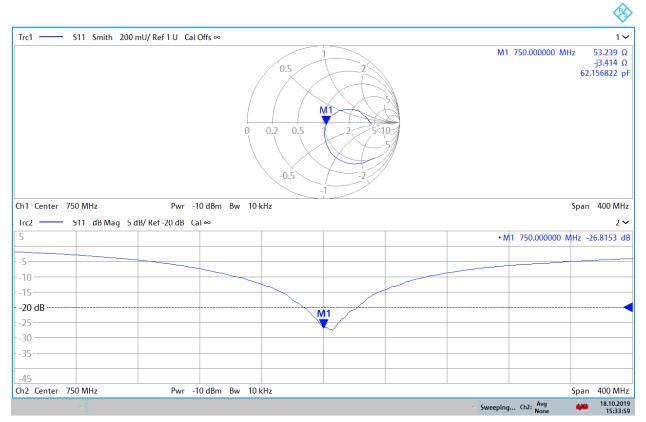
Measurement Uncertainty = ±23% (k=2)

	Name	Function	Signature
Calibrated By:	Brodie Halbfoster	Team Lead Engineer	BRODIE HALBFOSTER
Approved By:	Kaitlin O'Keefe	Senior Technical Manager	XDK-

Object:	Date Issued:	Page 1 of 4
D750V3 - SN:1161	10/18/2019	Page 1 of 4

DIPOLE CALIBRATION EXTENSION

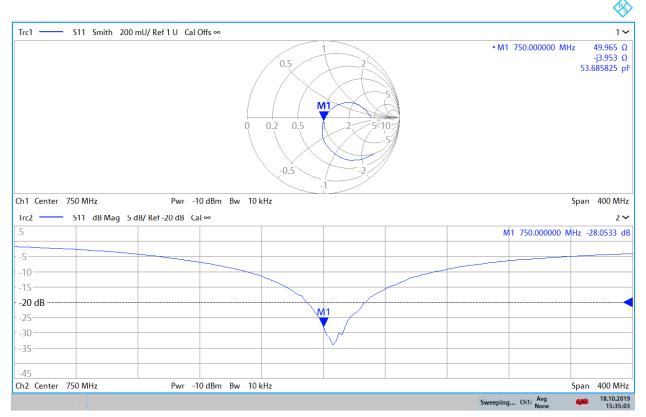
Per KDB 865664 D01, calibration intervals of up to three years may be considered for reference dipoles when it is demonstrated that the SAR target, impedance and return loss of a dipole have remained stable according to the following requirements:


- 1. The measured SAR does not deviate more than 10% from the target on the calibration certificate.
- 2. The return-loss does not deviate more than 20% from the previous measurement and meets the required 20dB minimum return-loss requirement.
- 3. The measurement of real or imaginary parts of impedance does not deviate more than 5Ω from the previous measurement.

The following dipole was checked to pass the above 3 requirements to have 2-year calibration period from the calibration date:

Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Head (1g) W/kg @ 23.0 dBm	Head SAR (1g)	(96)	Certificate SAR Target Head (10g) W/kg @ 23.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Head (Ohm) Real	Measured Impedance Head (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Head (Ohm) Imaginary	Measured Impedance Head (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Head (dB)	Measured Return Loss Head (dB)	Deviation (%)	PASS/FAIL
10/19/2018	10/18/2019	1.032	1.61	1.64	2.12%	1.05	1.08	2.66%	55.6	53.2	2.4	-1.9	-3.4	1.5	-25	-26.8	-7.30%	PASS
Calibration Date	Extension Date	Certificate Electrical Delay (ns)	Certificate SAR Target Body (1g) W/kg @ 23.0 dBm	Measured Body SAR (1g) W/kg @ 23.0 dBm	(96)	Certificate SAR Target Body (10g) W/kg @ 23.0 dBm	(10a) W/ka @	Deviation 10g (%)	Certificate Impedance Body (Ohm) Real	Measured Impedance Body (Ohm) Real	Difference (Ohm) Real	Certificate Impedance Body (Ohm) Imaginary	Measured Impedance Body (Ohm) Imaginary	Difference (Ohm) Imaginary	Certificate Return Loss Body (dB)	Measured Return Loss Body (dB)	Deviation (%)	PASS/FAIL
10/19/2018	10/18/2019	1.032	1.69	1.76	4.39%	1.11	1.17	5.41%	50.6	50	0.6	-4.2	-4	0.2	-27.6	-28.1	-1.60%	PASS

Object:	Date Issued:	Page 2 of 4
D750V3 - SN:1161	10/18/2019	Fage 2 01 4


Impedance & Return-Loss Measurement Plot for Head TSL

15:34:00 18.10.2019

Object:	Date Issued:	Page 3 of 4
D750V3 - SN:1161	10/18/2019	Page 3 of 4

Impedance & Return-Loss Measurement Plot for Body TSL

15:35:04 18.10.2019

Object:	Date Issued:	Page 4 of 4
D750V3 - SN:1161	10/18/2019	Page 4 of 4

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura S **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108

Client

PC Test

Certificate No: D835V2-4d047 Mar19

CALIBRATION CERTIFICATE

Object D835V2 - SN:4d047

QA CAL-05.v11 Calibration procedure(s)

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

Calibration date:

March 13, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%,

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-18 (No. 217-02682)	Apr-19
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-18 (No. 217-02683)	Apr-19
Reference Probe EX3DV4	SN: 7349	31-Dec-18 (No. EX3-7349_Dec18)	Dec-19
DAE4	SN: 601	04-Oct-18 (No. DAE4-601_Oct18)	Oct-19
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	07-Oct-15 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Manu Seitz	Laboratory Technician	
Approved by	Red Balan	<u> </u>	
Approved by:	Katja Pokovic	Technical Manager	ISM

Issued: March 13, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D835V2-4d047_Mar19

Page 1 of 8

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF N/A sensitivity in TSL / NORM x,y,z

not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D835V2-4d047_Mar19 Page 2 of 8

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	15 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5 mm	
Frequency	835 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	41.5	0.90 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	41.9 ± 6 %	0.91 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	2.37 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	9.42 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	1.54 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	6.13 W/kg ± 16.5 % (k=2)

Body TSL parametersThe following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	55.2	0.97 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	54.3 ± 6 %	1.01 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	****	

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	2.45 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	9.47 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	1.61 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	6.27 W/kg ± 16.5 % (k=2)

Certificate No: D835V2-4d047_Mar19 Page 3 of 8

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.4 Ω - 2.6 jΩ
Return Loss	- 30.7 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	46.8 Ω - 6.1 jΩ
Return Loss	- 22.9 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.387 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG

Certificate No: D835V2-4d047_Mar19 Page 4 of 8

DASY5 Validation Report for Head TSL

Date: 13.03.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 0.91$ S/m; $\varepsilon_r = 41.9$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10, 10, 10) @ 835 MHz; Calibrated: 31.12.2018

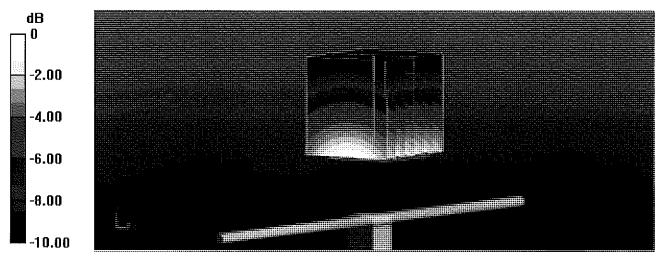
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 04.10.2018

• Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001

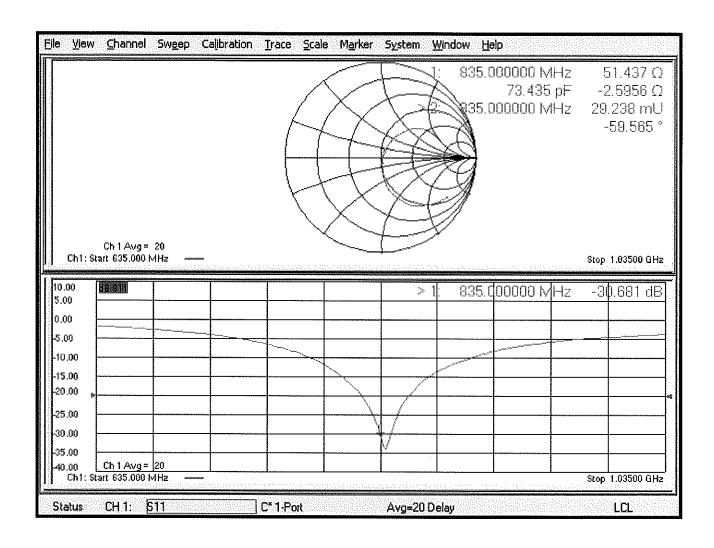
• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 62.48 V/m; Power Drift = -0.08 dB

Peak SAR (extrapolated) = 3.60 W/kg


SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.54 W/kg

Maximum value of SAR (measured) = 3.18 W/kg

0 dB = 3.18 W/kg = 5.02 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 13.03.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d047

Communication System: UID 0 - CW; Frequency: 835 MHz

Medium parameters used: f = 835 MHz; $\sigma = 1.01 \text{ S/m}$; $\varepsilon_r = 54.3$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(10.15, 10.15, 10.15) @ 835 MHz; Calibrated: 31.12.2018

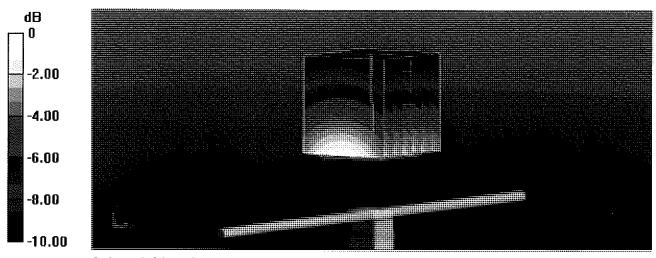
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 04.10.2018

• Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005

• DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

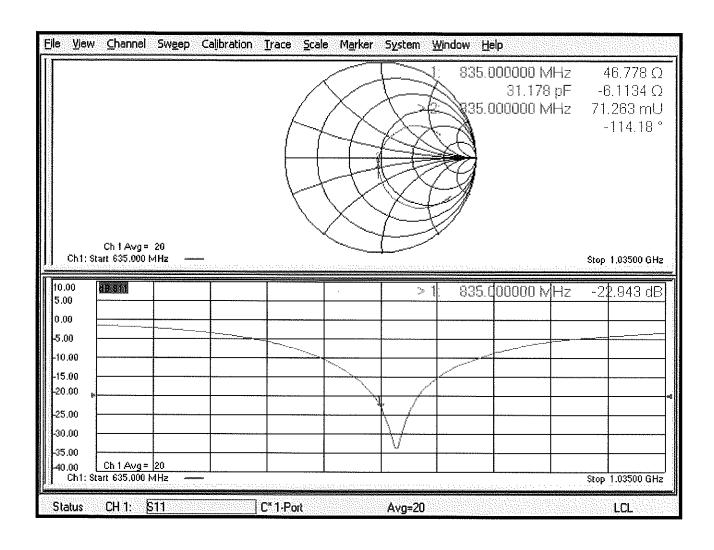
Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 60.49 V/m; Power Drift = -0.02 dB

Peak SAR (extrapolated) = 3.58 W/kg

SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.61 W/kg


Maximum value of SAR (measured) = 3.23 W/kg

0 dB = 3.23 W/kg = 5.09 dBW/kg

Certificate No: D835V2-4d047_Mar19

Impedance Measurement Plot for Body TSL

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kallbrierdienst
Service suisse d'étalonnage
Servizio svizzero di taratura

Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

PC Test

Certificate No: D1750V2-1148_May19

CALIBRATION CERTIFICATE

Object

D1750V2 - SN:1148

Calibration procedure(s)

QA CAL-05.v11

Calibration Procedure for SAR Validation Sources between 0.7-3 GHz

05-23-20

Calibration date:

May 15, 2019

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	03-Apr-19 (No. 217-02892/02893)	Apr-20
Power sensor NRP-Z91	SN: 103244	03-Apr-19 (No. 217-02892)	Apr-20
Power sensor NRP-Z91	SN: 103245	03-Apr-19 (No. 217-02893)	Apr-20
Reference 20 dB Attenuator	SN: 5058 (20k)	04-Apr-19 (No. 217-02894)	Apr-20
Type-N mismatch combination	SN: 5047.2 / 06327	04-Apr-19 (No. 217-02895)	Apr-20
Reference Probe EX3DV4	SN: 7349	31-Dec-18 (No. EX3-7349_Dec18)	Dec-19
DAE4	SN: 601	30-Apr-19 (No. DAE4-601_Apr19)	Apr-20
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power meter E4419B	SN: GB39512475	30-Oct-14 (in house check Feb-19)	In house check: Oct-20
Power sensor HP 8481A	SN: US37292783	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
Power sensor HP 8481A	SN: MY41092317	07-Oct-15 (in house check Oct-18)	In house check: Oct-20
RF generator R&S SMT-06	SN: 100972	15-Jun-15 (in house check Oct-18)	In house check: Oct-20
Network Analyzer Agilent E8358A	SN: US41080477	31-Mar-14 (in house check Oct-18)	In house check: Oct-19
	Name	Function	Signature
Calibrated by:	Leif Klysner	Laboratory Technician	Seif Algan
Approved by:	Katja Pokovic	Technical Manager	AU.

Issued: May 15, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: D1750V2-1148_May19

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1750V2-1148_May19 Page 2 of 11

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.2
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	40.0 ± 6 %	1.34 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.13 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.0 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.83 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

<u> </u>	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.5 ± 6 %	1.47 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.35 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.7 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.93 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.8 W/kg ± 16.5 % (k=2)

Certificate No: D1750V2-1148_May19 Page 3 of 11

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	51.4 Ω - 0.2 jΩ
Return Loss	- 37.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.4 Ω - 0.5 jΩ
Return Loss	- 31.4 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.222 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by SPEAG

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

	Phantom	SAM Head Phantom	For usage with cSAR3DV2-R/L
- 1			

SAR result with SAM Head (Top)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.38 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.9 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.3 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.34 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.8 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.04 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.3 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.6 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.9 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	7.11 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	28.7 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	3.98 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	16.0 W/kg ± 16.9 % (k=2)

Certificate No: D1750V2-1148_May19

DASY5 Validation Report for Head TSL

Date: 08.05.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.34$ S/m; $\varepsilon_r = 40$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.59, 8.59, 8.59) @ 1750 MHz; Calibrated: 31.12.2018

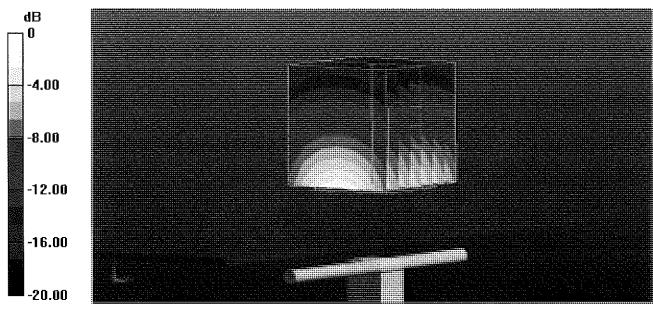
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

• Electronics: DAE4 Sn601; Calibrated: 30.04.2019

Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001

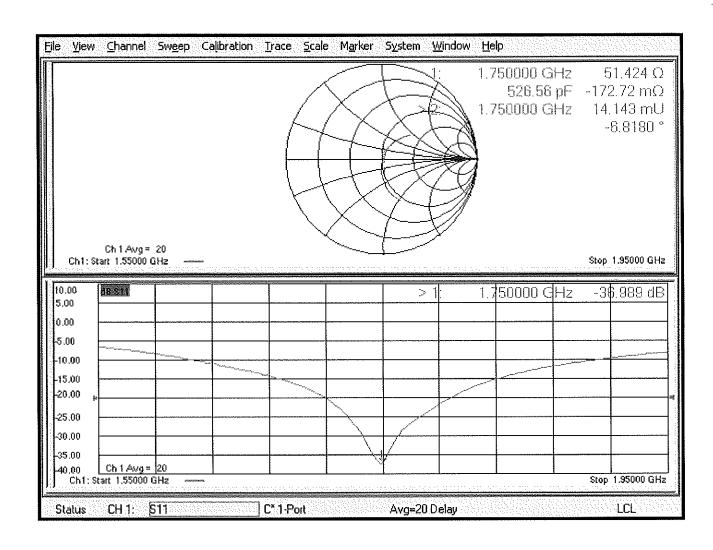
DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.8 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 16.7 W/kg


SAR(1 g) = 9.13 W/kg; SAR(10 g) = 4.83 W/kg

Maximum value of SAR (measured) = 14.1 W/kg

0 dB = 14.1 W/kg = 11.49 dBW/kg

Impedance Measurement Plot for Head TSL

DASY5 Validation Report for Body TSL

Date: 08.05,2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.47 \text{ S/m}$; $\varepsilon_r = 53.5$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

Probe: EX3DV4 - SN7349; ConvF(8.43, 8.43, 8.43) @ 1750 MHz; Calibrated: 31.12.2018

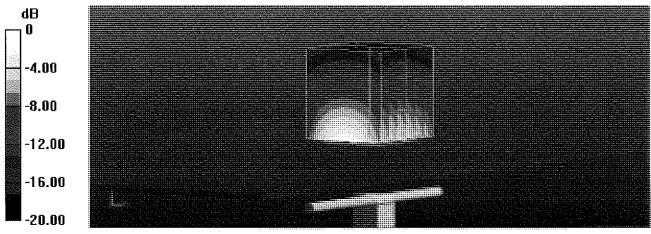
• Sensor-Surface: 1.4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 30.04.2019

Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002

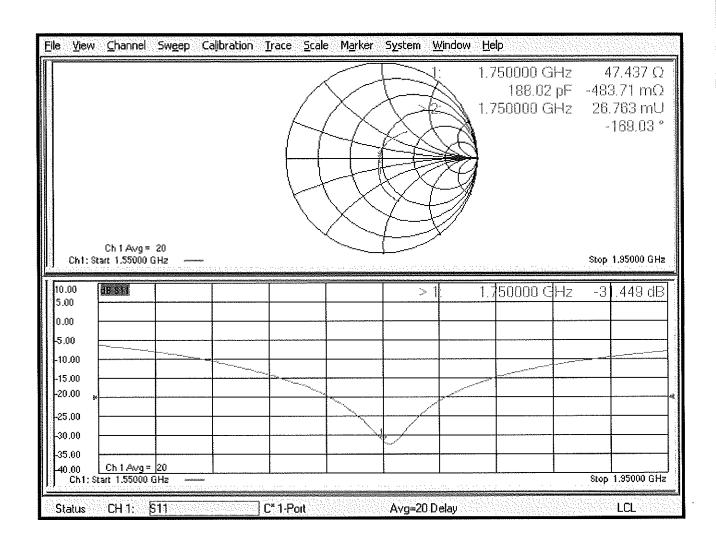
DASY52 52.10.2(1495); SEMCAD X 14.6.12(7450)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:


Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 103.1 V/m; Power Drift = -0.04 dB

Peak SAR (extrapolated) = 17.2 W/kg


SAR(1 g) = 9.35 W/kg; SAR(10 g) = 4.93 W/kg

Maximum value of SAR (measured) = 14.4 W/kg

0 dB = 14.4 W/kg = 11.58 dBW/kg

Impedance Measurement Plot for Body TSL

DASY5 Validation Report for SAM Head

Date: 15.05.2019

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 1750 MHz; Type: D1750V2; Serial: D1750V2 - SN:1148

Communication System: UID 0 - CW; Frequency: 1750 MHz

Medium parameters used: f = 1750 MHz; $\sigma = 1.37 \text{ S/m}$; $\varepsilon_r = 42.1$; $\rho = 1000 \text{ kg/m}^3$

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN7349; ConvF(8.59, 8.59, 8.59) @ 1750 MHz; Calibrated: 31.12.2018
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 30.04.2019
- · Phantom: SAM Head
- DASY52 52.10.2(1495); SEMCAD X 14.6,12(7450)

SAM Head/Top/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 107.2 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 16.6 W/kg

SAR(1 g) = 9.38 W/kg; SAR(10 g) = 5.04 W/kg

Maximum value of SAR (measured) = 14.2 W/kg

SAM Head/Mouth/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 104.7 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 16.5 W/kg

SAR(1 g) = 9.34 W/kg; SAR(10 g) = 5.04 W/kg

Maximum value of SAR (measured) = 13.9 W/kg

SAM Head/Neck/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

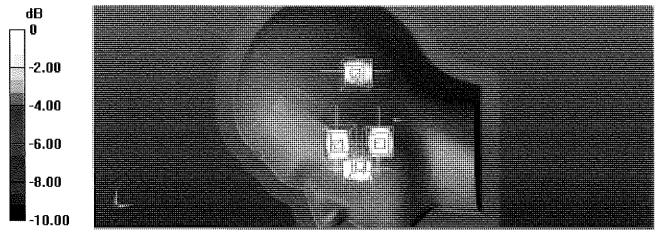
Reference Value = 103.3 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 15.5 W/kg

SAR(1 g) = 9.06 W/kg; SAR(10 g) = 4.95 W/kg

Maximum value of SAR (measured) = 13.1 W/kg

SAM Head/Ear/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm


Reference Value = 90.82 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 12.0 W/kg

SAR(1 g) = 7.11 W/kg; SAR(10 g) = 3.98 W/kg

Maximum value of SAR (measured) = 10.2 W/kg

Certificate No: D1750V2-1148_May19

0 dB = 10.2 W/kg = 10.09 dBW/kg

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
S wiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

CALIBRATION CERTIFICATE

Accreditation No.: SCS 0108

Issued: May 23, 2018

Client

PC Test

Certificate No: D1765V2-1008_May18

	D1765V2 - SN:1	008	
Calibration procedure(s)	QA CAL-05.v10 Calibration proce	edure for dipole validation kits ab	OVE 700 MHz 7/16/2018 BNV 05/2012
Calibration date:	May 23, 2018		BN 05/2012
This calibration certificate docum The measurements and the unce	ents the traceability to nat rtainties with confidence p	ional standards, which realize the physical ur probability are given on the following pages ar	nits of measurements (SI). nd are part of the certificate.
All calibrations have been conduc	cted in the closed laborato	ory facility: environment temperature (22 ± 3)°	C and humidity < 70%.
Calibration Equipment used (M&7	ΓE critical for calibration)		
Primary Standards	iD#	Cal Date (Certificate No.)	Scheduled Calibration
ower meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
ower sensor NRP-Z91	SN: 104778 SN: 103244	04-Apr-18 (No. 217-02672/02673) 04-Apr-18 (No. 217-02672)	Apr-19 Apr-19
Power sensor NRP-Z91 Power sensor NRP-Z91			Apr-19
Power sensor NRP-Z91 Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19 Apr-19
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator	SN: 103244 SN: 103245	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673)	Apr-19 Apr-19 Apr-19
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination	SN: 103244 SN: 103245 SN: 5058 (20k)	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683)	Apr-19 Apr-19 Apr-19 Apr-19
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682)	Apr-19 Apr-19 Apr-19
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17)	Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house)	Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Power meter EPM-442A	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17)	Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID #	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16)	Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB374B0704 SN: US37292783	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16)	Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18
Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17)	Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18
Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A RF generator R&S SMT-06	SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585	04-Apr-18 (No. 217-02672) 04-Apr-18 (No. 217-02673) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02682) 04-Apr-18 (No. 217-02683) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17)	Apr-19 Apr-19 Apr-19 Apr-19 Dec-18 Oct-18 Scheduled Check In house check: Oct-18

Certificate No: D1765V2-1008_May18

Page 1 of 11

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Calibration Laboratory of

Schmid & Partner
Engineering AG
Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL

tissue simulating liquid

ConvF

sensitivity in TSL / NORM x,y,z

N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
- c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: D1765V2-1008_May18 Page 2 of 11

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.10.1
Extrapolation	Advanced Extrapolation	
Phantom	Modular Flat Phantom	
Distance Dipole Center - TSL	10 mm	with Spacer
Zoom Scan Resolution	dx, dy, dz = 5.0 mm	
Frequency	1750 MHz ± 1 MHz	

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permitti∨ity	Conductivity
Nominal Head TSL parameters	22.0 °C	40.1	1.37 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	39.0 ± 6 %	1.34 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C		

SAR result with Head TSL

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	8.94 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	36.2 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.71 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.0 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	53.4	1.49 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	53.2 ± 6 %	1.46 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	9.21 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	37.4 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	4.92 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	19.9 W/kg ± 16.5 % (k=2)

Certificate No: D1765V2-1008_May18 Page 3 of 11

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	47.7 Ω - 6.5 jΩ
Return Loss	- 23.0 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	43.3 Ω - 6.0 jΩ
Return Loss	- 20.3 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.210 ns

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	October 06, 2005

Certificate No: D1765V2-1008_May18 Page 4 of 11

Appendix (Additional assessments outside the scope of SCS 0108)

Measurement Conditions

DASY system configuration, as far as not given on page 1 and 3.

SAR result with SAM Head (Top)

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.4 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	[′] 4.95 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	19.9 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Mouth)

SAR averaged over 1 cm³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.47 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	38.2 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.06 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.4 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Neck)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	9.26 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	37.4 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	5.02 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	20.2 W/kg ± 16.9 % (k=2)

SAR result with SAM Head (Ear)

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	7 .12 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	28.7 W/kg ± 17.5 % (k=2)

SAR averaged over 10 cm³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	4.01 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	16.1 W/kg ± 16.9 % (k=2)

Certificate No: D1765V2-1008_May18 Page 5 of 11