1.1. D835V2 Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client CCIC-HTW (Auden) Certificate No: D835V2-4d238_Feb18 | bject | D835V2 - SN:4d23 | 38 | | |--|--|--|--| | alibration procedure(s) | QA CAL-05.v9
Calibration proced | dure for dipole validation kits abov | e 700 MHz | | alibration date: | February 19, 2018 | В | | | he measurements and the unce | cted in the closed laborator | onal standards, which realize the physical unitrobability are given on the following pages and y facility: environment temperature $(22\pm3)^{\circ}$ C | | | Calibration Equipment assay | Ť | C. I. D. La (Contificato No.) | Scheduled Calibration | | Primary Standards | ID# | Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521) | Apr-18 | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02522) | Apr-18 | | Power sensor NRP-Z91 | SN: 103245 | 07-Apr-17 (No. 217-02528) | Apr-18 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 07-Apr-17 (No. 217-02529) | Apr-18 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 30-Dec-17 (No. EX3-7349_Dec17) | Dec-18 | | Type-14 Illioniator. | SN: 7349 | 26-Oct-17 (No. DAE4-601_Oct17) | Oct-18 | | Reference Probe EX3DV4 | SN: 601 | | | | Reference Probe EX3DV4 | SN: 601 | | Scheduled Check | | Reference Probe EX3DV4
DAE4 | SN: 601 | Check Date (in house) | Scheduled Check In house check: Oct-18 | | Reference Probe EX3DV4 DAE4 Secondary Standards | L | Check Date (in house) 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A | ID# | Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 In house check: Oct-18 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A | ID #
SN: GB37480704 | Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A | ID #
SN: GB37480704
SN: US37292783 | Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 In house check: Oct-18 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | ID # SN: GB37480704 SN: US37292783 SN: MY41092317 | Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A | ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 | Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 Signature | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 | ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 Signature | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name | Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) Function Laboratory Technician | In house check: Oct-18 | | Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A Power sensor HP 8481A Power sensor HP 8481A RF generator R&S SMT-06 Network Analyzer HP 8753E | ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name | Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) Function | In house check: Oct-18 Signature | Certificate No: D835V2-4d238_Feb18 Page 1 of 8 #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage C Servizio svizzero di taratura Accreditation No.: SCS 0108 S **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### Additional Documentation: e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D835V2-4d238_Feb18 Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1. | ASY system configuration, as far as not g | DASY5 | V52.10.0 | |---|------------------------|-------------| | DASY Version | | | | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | | dx, dy , $dz = 5 mm$ | | | Zoom Scan Resolution | 835 MHz ± 1 MHz | | | Frequency | 835 MHz ± 1 MHz | | **Head TSL parameters** The following parameters and calculations were applied. | he following parameters and calculations were appli | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | 1701 | 22.0 °C | 41.5 | 0.90 mho/m | | Nominal Head TSL parameters | (22.0 ± 0.2) °C | 41.2 ± 6 % | 0.92 mho/m ± 6 % | | Measured Head TSL parameters Head TSL temperature change during test | < 0.5 °C | | | ## SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | | 250 mW input power | 2.42 W/kg | | SAR measured | normalized to 1W | 9.51 W/kg ± 17.0 % (k=2) | | SAR for nominal Head TSL parameters | normalized to TVV | 0.01 | | 1 and 10 am ³ (10 a) of Head TSL | condition | | |---
--------------------|--------------------------| | SAR averaged over 10 cm³ (10 g) of Head TSL | 250 mW input power | 1.56 W/kg | | SAR measured | | 6.15 W/kg ± 16.5 % (k=2) | | SAR for nominal Head TSL parameters | normalized to 1W | 0.10 Wing _ 1010 10 (1) | **Body TSL parameters** The following parameters and calculations were applied. | d. Temperature | Permittivity | Conductivity | |-----------------|--------------|---| | 22.0 °C | 55.2 | 0.97 mho/m | | (22.0 ± 0.2) °C | 55.0 ± 6 % | 0.99 mho/m ± 6 % | | | | | | | Temperature | 22.0 °C 55.2 (22.0 ± 0.2) °C 55.0 ± 6 % | ## SAR result with Body TSL | | Condition | | |---|--------------------|---| | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | 0.45 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ | | | 250 mW input power | 2.45 W/kg | | SAR measured | and to 1W | 9.64 W/kg ± 17.0 % (k=2) | | SAR for nominal Body TSL parameters | normalized to 1W | ole i i i i j | | 12 mg (10 m) of Body TSI | condition | | |---|--------------------|--------------------------| | SAR averaged over 10 cm ³ (10 g) of Body TSL | 250 mW input power | 1.60 W/kg | | SAR measured | normalized to 1W | 6.32 W/kg ± 16.5 % (k=2) | | SAR for nominal Body TSL parameters | Hormanzed to 144 | | Certificate No: D835V2-4d238_Feb18 # Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.8 Ω - 4.0 jΩ | |--------------------------------------|-----------------| | Impedance, transformed to reed perm | - 27.8 dB | | Deturn Loss | - 27.6 UD | | Return Loss | | ## Antenna Parameters with Body TSL | 10 St. (1997) | 47.0.0.60.10 | |--------------------------------------|-----------------| | Impedance, transformed to feed point | 47.6 Ω - 6.0 jΩ | | | - 23.6 dB | | Return Loss | | ## **General Antenna Parameters and Design** | L. J. D. J. (consideration) | 1.391 ns | |----------------------------------|----------| | Electrical Delay (one direction) | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | SPEAG | | |---------------|------------------------| | luna 00, 2017 | | | June 02, 2017 | | | | SPEAG
June 02, 2017 | Certificate No: D835V2-4d238_Feb18 Page 4 of 8 ## **DASY5 Validation Report for Head TSL** Date: 19.02.2018 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d238 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.92 S/m; ϵ_r = 41.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.9, 9.9, 9.9); Calibrated: 30.12.2017; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 4.9 (front); Type: QD 00L P49 AA; Serial: 1001 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.44 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 3.69 W/kg SAR(1 g) = 2.42 W/kg; SAR(10 g) = 1.56 W/kg Maximum value of SAR (measured) = 3.25 W/kg 0 dB = 3.25 W/kg = 5.12 dBW/kg Certificate No: D835V2-4d238_Feb18 Page 5 of 8 ## Impedance Measurement Plot for Head TSL Certificate No: D835V2-4d238_Feb18 ## **DASY5 Validation Report for Body TSL** Date: 19.02.2018 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN:4d238 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; σ = 0.99 S/m; ϵ_r = 55; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.05, 10.05, 10.05); Calibrated: 30.12.2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 4.9 (Back); Type: QD 00R P49 AA; Serial: 1005 • DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.24 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 3.70 W/kg SAR(1 g) = 2.45 W/kg; SAR(10 g) = 1.6 W/kg Maximum value of SAR (measured) = 3.21 W/kg 0 dB = 3.21 W/kg = 5.07 dBW/kg Certificate No: D835V2-4d238_Feb18 Page 7 of 8 ## Impedance Measurement Plot for Body TSL Certificate No: D835V2-4d238_Feb18 ## **Extended Dipole Calibrations** Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | Head-835 | | | | | | | |-------------|------------------------|------------|----------------|-------|-----------------|-------| | Date of | Return-loss (dB) | Dolto (9/) | Real Impedance | Delta | Imaginary | Delta | | measurement | Return-1055 (db) Delta | Delta (%) | (ohm) | (ohm) | impedance (ohm) | (ohm) | | 2018/2/19 | -27.8 | | 50.8 | | -4.0 | | | 2019/2/3 | -27.1 | -2.52% | 49.9 | 0.9 | -3.6 | 0.4 | | Body-835 | | | | | | | |-------------|------------------------|------------|----------------|-------|-----------------|-------| | Date of | Poturn loss (dP) | Dolto (9/) | Real Impedance | Delta | Imaginary | Delta | | measurement | Return-loss (dB) Delta | Delta (%) | (ohm) | (ohm) | impedance (ohm) | (ohm) | | 2018/2/19 | -23.6 | | 47.6 | | -6.0 | | | 2019/2/3 | -24.2 | 2.54% | 47.1 | 0.5 | -6.2 | 0.2 | The return loss is <-20dB, within 20% of prior calibration; the impedance is within 50hm of prior calibration. Therefore the verification result should support extended calibration. ### 1.2. D1900V2 Dipole Calibration Certificate **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates CCIC HTW (Audam) | Client CCIC-HTW (Au | CCIC-HTW (Auden) | | Certificate No: D1900V2-5d226_Feb18 | | |--|--|--|-------------------------------------|--| | CALIBRATION (| CERTIFICAT | E | | | | Object | D1900V2 - SN:5 | 5d226 | | | | Calibration procedure(s) | QA CAL-05.v9 | | | | | | Calibration procedure for dipole validation kits above 700 MHz | | | | | | | | | | | Calibration date: | February 22, 20 | 18 | | | | All calibrations have been conducted Calibration Equipment used (M&T | | ory facility: environment temperature (| 22 ± 3)°C and humidity < 70%. | | | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | | | Power meter NRP | SN: 104778 | 04-Apr-17 (No. 217-02521/02522) | Apr-18 | | | Power sensor NRP-Z91 | SN: 103244 | 04-Apr-17 (No. 217-02521) | Apr-18 | | | Power sensor NRP-Z91 | SN: 103245 | 04-Apr-17 (No. 217-02522) | Apr-18 | | | Reference 20 dB Attenuator | SN: 5058 (20k) | 07-Apr-17 (No. 217-02528) | Apr-18 | | | Type-N mismatch combination | SN: 5047.2 / 06327 | 07-Apr-17 (No. 217-02529) | Apr-18 | | | Reference Probe EX3DV4 | SN: 7349 | 30-Dec-17 (No. EX3-7349_Dec17) | Dec-18 | | | DAE4 | SN: 601 | 26-Oct-17 (No. DAE4-601_Oct17) | Oct-18 | | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | | Power meter EPM-442A | SN: GB37480704 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | | Power sensor HP 8481A | SN: US37292783 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | | Power sensor HP 8481A | SN: MY41092317 | 07-Oct-15 (in house check Oct-16) | In house check: Oct-18 | | | RF generator R&S SMT-06 | SN: 100972 | 15-Jun-15 (in house check Oct-16) | In house check: Oct-18 | | | Network Analyzer HP 8753E | SN: US37390585 | 18-Oct-01 (in house check Oct-17) | In house check: Oct-18 | | | | Name | Function | Signature | | | Calibrated by: | Michael Weber | Laboratory Technician | M.NESES | | | Approved by: | Katja Pokovic | Technical Manager | LLUS | | | This calibration certificate shall no | t be reproduced except in | full without written approval of the lab | Issued: February 22, 2018 | | Certificate No: D1900V2-5d226_Feb18 Page 1 of 8 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Accreditation No.: SCS 0108 S Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral
Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D1900V2-5d226_Feb18 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.10.0 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.7 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm ³ (1 g) of Head TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 10.0 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 40.3 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.25 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 21.1 W/kg ± 16.5 % (k=2) | ### **Body TSL parameters** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.2 ± 6 % | 1.48 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | #### SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.71 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.8 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.16 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.9 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d226_Feb18 ## Appendix (Additional assessments outside the scope of SCS 0108) ### Antenna Parameters with Head TSL | Impedance, transformed to feed point | $52.2 \Omega + 6.0 i\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 24.0 dB | | ### Antenna Parameters with Body TSL | Impedance, transformed to feed point | 47.9 Ω + 7.5 iΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 22.0 dB | | ## General Antenna Parameters and Design | Floatrical Delevides all in it | | |----------------------------------|----------| | Electrical Delay (one direction) | 1.195 ns | | | 1.19518 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. ### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|----------------| | Manufactured on | | | | April 16, 2015 | Certificate No: D1900V2-5d226_Feb18 ## **DASY5 Validation Report for Head TSL** Date: 22.02.2018 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d226 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.39 S/m; ϵ_r = 40.7; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.18, 8.18, 8.18); Calibrated: 30.12.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 26.10.2017 - Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 - DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 109.6 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 18.5 W/kg SAR(1 g) = 10 W/kg; SAR(10 g) = 5.25 W/kg Maximum value of SAR (measured) = 15.3 W/kg ## Impedance Measurement Plot for Head TSL Certificate No: D1900V2-5d226_Feb18 ### **DASY5 Validation Report for Body TSL** Date: 22.02.2018 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN:5d226 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; σ = 1.48 S/m; ϵ_r = 55.2; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: - Probe: EX3DV4 SN7349; ConvF(8.15, 8.15, 8.15); Calibrated: 30.12.2017; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 26.10.2017 - Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 - DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 102.8 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 17.2 W/kg SAR(1 g) = 9.71 W/kg; SAR(10 g) = 5.16 W/kg Maximum value of SAR (measured) = 14.3 W/kg 0 dB = 14.3 W/kg = 11.55 dBW/kg ## Impedance Measurement Plot for Body TSL Certificate No: D1900V2-5d226_Feb18 ## **Extended Dipole Calibrations** Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | | | | Head-1900 | | | | |-------------|------------------|------------|----------------|-------|-----------------|-------| | Date of | Deturn lose (dD) | Dolto (9/) | Real Impedance | Delta | Imaginary | Delta | | measurement | Return-loss (dB) | Delta (%) | (ohm) | (ohm) | impedance (ohm) | (ohm) | | 2018/2/22 | -24.0 | | 52.2 | | 6.0 | | | 2019/2/20 | -24.5 | 2.08% | 52.6 | 0.4 | 6.5 | 0.5 | | | | | Body-1900 | | | | |-------------|------------------|-----------|----------------|-------|-----------------|-------| | Date of | Return-loss (dB) | Delta (%) | Real Impedance | Delta | Imaginary | Delta | | measurement | Return-1055 (db) | Della (%) | (ohm) | (ohm) | impedance (ohm) | (ohm) | | 2018/2/22 | -22.0 | | 47.9 | | 7.5 | | | 2019/2/20 | -22.3 | 1.36% | 47.3 | 0.6 | 7.1 | 0.4 | The return loss is <-20dB, within 20% of prior calibration; the impedance is within 50hm of prior calibration. Therefore the verification result should support extended calibration. ### 1.3. D2450V2
Dipole Calibration Certificate Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service** Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Accreditation No.: SCS 0108 | CALIBRATION | CERTIFICAT | 1 2 | | |--|---|--|---| | Object | D2450V2 - SN: | 1009 | | | Calibration procedure(s) | QA CAL-05.v9
Calibration prod | cedure for dipole validation kits | above 700 MHz | | Calibration date: | February 05, 20 | 018 | | | | | ational standards, which realize the physical probability are given on the following page: ory facility: environment temperature (22 \pm | s and are part of the certificate. | | Calibration Equipment used (M& | TE critical for calibration) | | 7070. | | Calibration Equipment used (M& | TE critical for calibration) | | 770/6. | | Calibration Equipment used (M&
Primary Standards | TE critical for calibration) | Cal Date (Certificate No.) | Scheduled Calibration | | Calibration Equipment used (M&
Primary Standards
Power meter NRP | ID # SN: 104778 | Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) | | | Calibration Equipment used (M&
Primary Standards
Power meter NRP
Power sensor NRP-Z91 | ID # SN: 104778 SN: 103244 | Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) | Scheduled Calibration | | Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator | ID # SN: 104778 SN: 103244 SN: 103245 | Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) | Scheduled Calibration Apr-18 | | Calibration Equipment used (M&
Primary Standards
Power meter NRP
Power sensor NRP-Z91
Power sensor NRP-Z91
Reference 20 dB Attenuator | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) | Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) | Scheduled Calibration Apr-18 Apr-18 | | Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | ID # SN: 104778 SN: 103244 SN: 103245 | Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) | Scheduled Calibration Apr-18 Apr-18 Apr-18 | | Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 | Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-7349_Dec17) | Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 | | Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 | Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) | Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 | | Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 | Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) | Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 | | Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Secondary Standards Power meter EPM-442A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 | Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) | Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18 | | Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 RAE4 Recondary Standards Rower meter EPM-442A Rower sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 | Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) | Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18 Scheduled Check | | Calibration Equipment used (M& Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 DECONDARY Standards Power meter EPM-442A Power sensor HP 8481A Dower sensor HP 8481A Decomposition of the 8 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 | Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) | Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 | | Calibration Equipment used (M&Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2
/ 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) | Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 | | Calibration Equipment used (M&Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 PAE4 Recondary Standards Ower meter EPM-442A Ower sensor HP 8481A Ower sensor HP 8481A F generator R&S SMT-06 | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 | Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) | Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 | | Calibration Equipment used (M&Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Standa | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 | Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) | Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 | | Calibration Equipment used (M&Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Standa | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 | Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02522) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) | Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 Signature | | Calibration Equipment used (M&Primary Standards Power meter NRP Power sensor NRP-Z91 Power sensor NRP-Z91 Reference 20 dB Attenuator Type-N mismatch combination Reference Probe EX3DV4 DAE4 Recondary Standards Rower meter EPM-442A Rower sensor HP 8481A | ID # SN: 104778 SN: 103244 SN: 103245 SN: 5058 (20k) SN: 5047.2 / 06327 SN: 7349 SN: 601 ID # SN: GB37480704 SN: US37292783 SN: MY41092317 SN: 100972 SN: US37390585 Name | Cal Date (Certificate No.) 04-Apr-17 (No. 217-02521/02522) 04-Apr-17 (No. 217-02521) 04-Apr-17 (No. 217-02521) 07-Apr-17 (No. 217-02528) 07-Apr-17 (No. 217-02529) 30-Dec-17 (No. EX3-7349_Dec17) 26-Oct-17 (No. DAE4-601_Oct17) Check Date (in house) 07-Oct-15 (in house check Oct-16) 07-Oct-15 (in house check Oct-16) 15-Jun-15 (in house check Oct-16) 18-Oct-01 (in house check Oct-17) | Scheduled Calibration Apr-18 Apr-18 Apr-18 Apr-18 Dec-18 Oct-18 Scheduled Check In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 In house check: Oct-18 | Certificate No: D2450V2-1009_Feb18 Page 1 of 8 ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured # Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### **Additional Documentation:** e) DASY4/5 System Handbook ## Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-1009_Feb18 Page 2 of 8 ## **Measurement Conditions** DASY system configuration, as far as not given on page 1 | DASY Version | DASY5 | | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | V52.10.0 | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy , $dz = 5 mm$ | with Spacer | | Frequency | 2450 MHz ± 1 MHz | | ## **Head TSL parameters** The following parameters and calculations were applied | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.9 ± 6 % | 1.87 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | input power 13.2 W/kg | | |-----------------------|---------------------------------| | 10.2 W/kg | | | ali | alized to 1W 51.5 W/kg ± 17.0 % | | SAR averaged over 10 cm ³ (10 g) of Head TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.13 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.1 W/kg ± 16.5 % (k-2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 51.4 ± 6 % | 2.04 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 250 mW input power | 12.7 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 49.4 W/kg ± 17.0 % (k=2) | | mW input power | | |----------------|--------------------------| | mipat power | 5.92 W/kg | | | 23.3 W/kg ± 16.5 % (k=2) | | | rmalized to 1W | # Appendix (Additional assessments outside the scope of SCS 0108) ## Antenna Parameters with Head TSL | Impedance, transformed to feed point | 50.0 | | | |--------------------------------------|-----------------------------|--|--| | Return Loss | $53.8 \Omega + 2.2 j\Omega$ | | | | | - 27.4 dB | | | ## Antenna Parameters with Body TSL | Impedance, transformed to feed point | 10.0.0 | | | |--------------------------------------|-----------------------------|--|--| | Return Loss | $49.9 \Omega + 4.6 j\Omega$ | | | | | - 26.7 dB | | | ##
General Antenna Parameters and Design | Electrical Delay (one direction) | 1.152 ns | |----------------------------------|-----------| | | 11102 118 | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | CDEAG | | | | |-----------------|------------------|--|--|--| | Manufactured on | SPEAG | | | | | | October 17, 2017 | | | | ## **DASY5 Validation Report for Head TSL** Date: 05.02.2018 Test Laboratory: SPEAG, Zurich, Switzerland # DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:1009 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 1.87 S/m; ϵ_r = 37.9; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.88, 7.88, 7.88); Calibrated: 30.12.2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 5.0 (front); Type: QD 000 P50 AA; Serial: 1001 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 111.8 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 26.6 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.13 W/kg Maximum value of SAR (measured) = 20.5 W/kg 0 dB = 20.5 W/kg = 13.12 dBW/kg ## Impedance Measurement Plot for Head TSL ## **DASY5 Validation Report for Body TSL** Date: 05.02.2018 Test Laboratory: SPEAG, Zurich, Switzerland ## DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:1009 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; σ = 2.04 S/m; ϵ_r = 51.4; ρ = 1000 kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.01, 8.01, 8.01); Calibrated: 30.12.2017; Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 26.10.2017 Phantom: Flat Phantom 5.0 (back); Type: QD 000 P50 AA; Serial: 1002 DASY52 52.10.0(1446); SEMCAD X 14.6.10(7417) # Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.2 V/m; Power Drift = -0.09 dB Peak SAR (extrapolated) = 25.5 W/kg SAR(1 g) = 12.7 W/kg; SAR(10 g) = 5.92 W/kg Maximum value of SAR (measured) = 19.7 W/kg 0 dB = 19.7 W/kg = 12.94 dBW/kg ## Impedance Measurement Plot for Body TSL ## **Extended Dipole Calibrations** Referring to KDB865664 D01, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended. | Head-2450 | | | | | | | |-------------|-----------------------------|----------------|-------|-----------|-----------------|-------| | Date of | Deturn less (dD) Delta (0/) | Real Impedance | Delta | Imaginary | Delta | | | measurement | Return-loss (dB) | dB) Delta (%) | (ohm) | (ohm) | impedance (ohm) | (ohm) | | 2018-02-05 | -27.4 | | 53.8 | | 2.2 | | | 2019-02-03 | -26.8 | -2.19% | 52.9 | 0.9 | 1.9 | 0.3 | | Body-2450 | | | | | | | |-------------|------------------|-------------------|----------------|-------|-----------------|-------| | Date of | Return-loss (dB) | Dolto (9/) | Real Impedance | Delta | Imaginary | Delta | | measurement | Return-1055 (db) | ss (dB) Delta (%) | (ohm) | (ohm) | impedance (ohm) | (ohm) | | 2018-02-05 | -26.7 | | 49.9 | | 4.6 | | | 2019-02-03 | -26.1 | -2.25% | 49.1 | 0.8 | 4.2 | 0.4 | The return loss is <-20dB, within 20% of prior calibration; the impedance is within 5ohm of prior calibration. Therefore the verification result should support extended calibration.