

Shenzhen Huatongwei International Inspection Co., Ltd.

1/F,Bldg 3,Hongfa Hi-tech Industrial Park,Genyu Road,Tianliao,Gongming,Shenzhen,China Phone:86-755-26748019 Fax:86-755-26748089 http://www.szhtw.com.cn

Shayre Zhu Cron Con

TEST REPORT

Report Reference No......: TRE1612009602 R/C......: 46619

FCC ID.....: ZSW-10-008

Applicant's name.....: b mobile HK Limited

Address...... Flat 18; 14/F Block 1; Golden Industrial Building; 16-26 Kwai Tak

Street; Kwai Chung; New Territories, HONG KONG

Manufacturer..... b mobile HK Limited

Address...... Flat 18; 14/F Block 1; Golden Industrial Building;16-26 KwaiTak

Street; Kwai Chung; New Territories; Hong Kong

Test item description: Mobile Phone

Trade Mark Bmobile

Model/Type reference...... W100

Listed Model(s) -

Standard: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of receipt of test sample...... Dec. 16, 2016

Date of testing...... Dec. 19, 2016 - Dec. 29, 2016

Date of issue...... Dec. 29, 2016

Result...... PASS

Compiled by

(position+printedname+signature)...: File administrators Shayne Zhu

Supervised by

(position+printedname+signature)....: Project Engineer Lion Cai

Approved by

(position+printedname+signature)....: RF Manager Hans Hu

Testing Laboratory Name: Shenzhen Huatongwei International Inspection Co., Ltd.

Gongming, Shenzhen, China

Shenzhen Huatongwei International Inspection Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen Huatongwei International Inspection Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen Huatongwei International Inspection Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Report No: TRE1612009602 Page: 2 of 41 Issued: 2016-12-29

Contents

<u>1.</u>	TEST STANDARDS ANDTEST DESCRIPTION	3
1.1.	Test Standards	3
1.2.	Report version	3
<u>2.</u>	TEST DESCRIPTION	4
<u>3.</u>	SUMMARY	5
3.1.	Client Information	5
3.2.	Product Description	5
3.3.	Operation state	6
3.4.	EUT configuration	6
3.5.	Modifications	6
<u>4.</u>	TEST ENVIRONMENT	7
4.1.	Address of the test laboratory	7
4.2.	Test Facility	7
4.3.	Environmental conditions	8
4.4.	Statement of the measurement uncertainty	8
4.5.	Equipments Used during the Test	9
<u>5.</u>	TEST CONDITIONS AND RESULTS	10
5.1.	Antenna requirement	10
5.2.	Conducted Emission (AC Main)	11
5.3.	Conducted Peak Output Power	14
5.4.	20dB Emission Bandwidth	17
5.5.	Carrier Frequencies Separation	20
5.6.	Hopping Channel Number	22
5.7.	Dwell Time	24
5.8. 5.9.	Pseudorandom Frequency Hopping Sequence	27 28
ວ.ອ. 5.10.	Restricted band (radiated) Bandedge and Spurious Emission (conducted)	30
5.10. 5.11.	Spurious Emission (radiated)	34
<u>6.</u>	TEST SETUP PHOTOS OF THE EUT	39
7	EXTERNAL AND INTERNAL PHOTOS OF THE FLIT	41

Report No: TRE1612009602 Page: 3 of 41 Issued: 2016-12-29

1. TEST STANDARDS ANDTEST DESCRIPTION

1.1. Test Standards

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz.

ANSI C63.10-2013: American National Standard for Testing Unlicensed Wireless Devicese

1.2. Report version

Version No.	Date of issue	Description
00	Dec. 29, 2016	Original

Report Template Version: H00 (2016-08)

Report No: TRE1612009602 Page: 4 of 41 Issued: 2016-12-29

2. Test Description

Test Item	Section in CFR 47	sResult
Antenna Requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(1)	Pass
20dB Occupied Bandwidth	15.247 (a)(1)	Pass
Carrier Frequencies Separation	15.247 (a)(1)	Pass
Hopping Channel Number	15.247 (a)(1)	Pass
Dwell Time	15.247 (a)(1)	Pass
Pseudorandom Frequency Hopping Sequence	15.247(b)(4)&TCB Exclusion List (7 July 2002)	Pass
Restricted band	15.247(d)/15.205	Pass
Radiated Emission	15.247(d)/15.209	Pass

Note: The measurement uncertainty is not included in the test result.

Report No: TRE1612009602 Page: 5 of 41 Issued: 2016-12-29

3. **SUMMARY**

3.1. Client Information

Applicant:	b mobile HK Limited
Address:	Flat 18; 14/F Block 1; Golden Industrial Building; 16-26 Kwai Tak Street; Kwai Chung;New Territories,HONG KONG
Manufacturer:	b mobile HK Limited
Address:	Flat 18; 14/F Block 1; Golden Industrial Building; 16-26 Kwai Tak Street; Kwai Chung;New Territories,HONG KONG

3.2. Product Description

Name of EUT	Mobile Phone
Trade Mark:	Bmobile
Model No.:	W100
Listed Model(s):	-
IMEI:	869748022331551
Power supply:	DC 3.7V From internal battery
Adapter information:	Input: 100-240Va.c., 50-60Hz, 0.15A
	Output: 5Vd.c., 500mA
Bluetooth	
Version:	Supported BT2.1+EDR
Modulation:	GFSK, π/4DQPSK, 8DPSK
Operation frequency:	2402MHz~2480MHz
Channel number:	79
Channel separation:	1MHz
Antenna type:	Integral Antenna

Report No: TRE1612009602 Page: 6 of 41 Issued: 2016-12-29

3.3. Operation state

> Test frequency list

According to section 15.31(m), regards to the operating frequency range over 10 MHz, must select three channel which were tested. the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, please see the above gray bottom.

	3 ,
Channel	Frequency (MHz)
0	2402
1	2403
i:	i:
39	2441
i i	:
77	2479
78	2480

Test mode

For RF test items
The engineering test program was provided and enabled to make EUT continuous transmit/receive.
For AC power line conducted emissions:
the EUT was set to connect with the Bluetooth under large package sizes transmission.

3.4. EUT configuration

The following peripheral devices and interface cables were connected during the measurement:

- supplied by the manufacturer
- supplied by the lab

0	PowerCable	Length (m):	/
Shield: /		1	
		Detachable :	1
\circ	Multimeter	Manufacturer :	/
		Model No. :	/

3.5. Modifications

No modifications were implemented to meet testing criteria.

Report No: TRE1612009602 Page: 7 of 41 Issued: 2016-12-29

4. TEST ENVIRONMENT

4.1. Address of the test laboratory

Laboratory: Shenzhen Huatongwei International Inspection Co., Ltd.

Address: 1/F, Bldg 3, Hongfa Hi-tech Industrial Park, Genyu Road, Tianliao, Gongming, Shenzhen, China Phone: 86-755-26748019 Fax: 86-755-26748089

4.2. Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

CNAS-Lab Code: L1225

Shenzhen Huatongwei International Inspection Co., Ltd. has been assessed and proved to be in compliance with CNAS-CL01 Accreditation Criteria for Testing and Calibration Laboratories (identical to ISO/IEC17025: 2005 General Requirements) for the Competence of Testing and Calibration Laboratories, Date of Registration: February 28, 2015. Valid time is until February 27, 2018.

A2LA-Lab Cert. No. 3902.01

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been accredited by A2LA for technical competence in the field of electrical testing, and proved to be in compliance with ISO/IEC 17025: 2005 General Requirements for the Competence of Testing and Calibration Laboratories and any additional program requirements in the identified field of testing. Valid time is until December 31, 2016.

FCC-Registration No.: 317478

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the FCC (Federal Communications Commission). The acceptance letter from the FCC is maintained in our files. Registration 317478, Renewal date Jul. 18, 2014, valid time is until Jul. 18, 2017.

IC-Registration No.: 5377A&5377B

The 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377A on Dec. 31, 2013, valid time is until Dec. 31, 2016.

Two 3m Alternate Test Site of Shenzhen Huatongwei International Inspection Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for the performance of radiated measurements with Registration No. 5377B on Dec.03, 2014, valid time is until Dec.03, 2017.

ACA

Shenzhen Huatongwei International Inspection Co., Ltd. EMC Laboratory can also perform testing for the Australian C-Tick mark as a result of our A2LA accreditation.

Report Template Version: H00 (2016-08)

Report No: TRE1612009602 Page: 8 of 41 Issued: 2016-12-29

4.3. Environmental conditions

During the measurement the environmental conditions were within the listed ranges:

Temperature:	15~35°C
lative Humidity:	30~60 %
Air Pressure:	950~1050mba

4.4. Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01"Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 1"and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM); Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen Huatongwei International Inspection Co., Ltd quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen Huatongweilaboratory is reported:

Test Items	MeasurementUncertainty	Notes
Transmitter power conducted	0.57 dB	(1)
Transmitter power Radiated	2.20 dB	(1)
Conducted spurious emission 9KHz-40 GHz	1.60 dB	(1)
Radiated spurious emission 9KHz-40 GHz	2.20 dB	(1)
Conducted Emission 9KHz-30MHz	3.39 dB	(1)
Radiated Emission30~1000MHz	4.24 dB	(1)
Radiated Emissio 1~18GHz	5.16 dB	(1)
Radiated Emissio 18-40GHz	5.54 dB	(1)
Occupied Bandwidth		(1)

⁽¹⁾ This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=1.96.

Report No: TRE1612009602 Page: 9 of 41 Issued: 2016-12-29

4.5. Equipments Used during the Test

Cond	Conducted Emission (AC Main)					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal	
1	Artificial Mains	Rohde&Schwarz	ESH2-Z5	100028	11/13/2016	
2	EMI Test Receiver	Rohde&Schwarz	ESCI3	100038	11/13/2016	
3	Pulse Limiter	Rohde&Schwarz	ESHSZ2	100044	11/13/2016	
4	EMI Test Software	Rohde&Schwarz	ES-K1 V1.71	N/A	N/A	

Radia	iated Emission				
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal
1	Ultra-Broadband Antenna	ShwarzBeck	VULB9163	538	11/13/2016
2	EMI TEST RECEIVER	Rohde&Schwarz	ESI 26	100009	11/13/2016
3	EMI TEST Software	Audix	E3	N/A	N/A
4	TURNTABLE	ETS	2088	2149	N/A
5	ANTENNA MAST	ETS	2075	2346	N/A
6	EMI TEST Software	Rohde&Schwarz	ESK1	N/A	N/A
7	HORNANTENNA	ShwarzBeck	9120D	1011	11/13/2016
8	Amplifer	Sonoma	310N	E009-13	11/13/2016
9	JS amplifer	Rohde&Schwarz	JS4-00101800- 28-5A	F201504	11/13/2016
10	High pass filter	Compliance Direction systems	BSU-6	34202	11/13/2016
11	HORNANTENNA	ShwarzBeck	9120D	1012	11/13/2016
12	Amplifer	Compliance Direction systems	PAP1-4060	120	11/13/2016
13	Loop Antenna	Rohde&Schwarz	HFH2-Z2	100020	11/13/2016
14	TURNTABLE	MATURO	TT2.0		N/A
15	ANTENNA MAST	MATURO	TAM-4.0-P		N/A
16	Horn Antenna	SCHWARZBECK	BBHA9170	25841	11/13/2016
17	ULTRA-BROADBAND ANTENNA	Rohde&Schwarz	HL562	100015	11/13/2016

Maxir	Maximum Peak Output Power / Power Spectral Density / 6dB Bandwidth / Band Edge Compliance of RF									
Emiss	Emission / Spurious RF Conducted Emission									
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Last Cal					
1	Spectrum Analyzer	Rohde&Schwarz	FSP	1164.4391.40	11/13/2016					

The Cal.Interval was one year

Report No: TRE1612009602 Page: 10 of 41 Issued: 2016-12-29

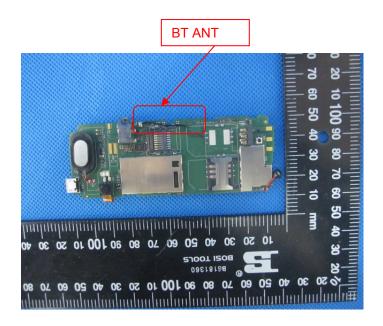
5. TEST CONDITIONS AND RESULTS

5.1. Antenna requirement

Requirement

FCC CFR Title 47 Part 15 Subpart C Section 15.203:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of anantenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


FCC CFR Title 47 Part 15 Subpart C Section 15.247(c) (1)(i):

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

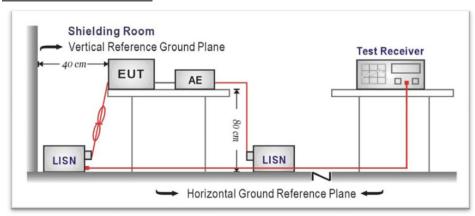
Test Result:

⊠ Passed	☐ Not Applicable
----------	------------------

The antenna is integralantenna, the best case gain of the antenna is-0.72dBi

Report No: TRE1612009602 Page: 11 of 41 Issued: 2016-12-29

5.2. Conducted Emission (AC Main)


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.207

Fraguenov rango (MUZ)	Limit (dBuV)				
Frequency range (MHz)	Quasi-peak	Average			
0.15-0.5	66 to 56*	56 to 46*			
0.5-5	56	46			
5-30	60	50			

^{*} Decreases with the logarithm of the frequency.

TEST CONFIGURATION

TEST PROCEDURE

- The EUT was setup according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT was placed on a platform of nominal size, 1 m by 1.5 m, raised 80 cm above the conducting ground plane. The vertical conducting plane was located 40 cm to the rear of the EUT. All other surfaces of EUT were at least 80 cm from any other grounded conducting surface.
- 3. The EUT and simulators are connected to the main power through a line impedancestabilization network (LISN). The LISN provides a 50 ohm /50uH coupling impedance for themeasuring equipment.
- 4. The peripheral devices are also connected to the main power through aLISN. (Please refer to the block diagram of the test setup and photographs)
- 5. Each current-carrying conductor of the EUT power cord, except the ground (safety) conductor,was individually connected through a LISN to the input power source.
- 6. The excess length of the power cord between the EUT and the LISN receptacle were foldedback and forth at the center of the lead to form a bundle not exceeding 40 cm in length.
- 7. Conducted emissions were investigated over the frequency range from 0.15MHz to 30MHzusing a receiver bandwidth of 9 kHz.
- 8. During the above scans, the emissions were maximized by cable manipulation.

9.

TEST RESULTS

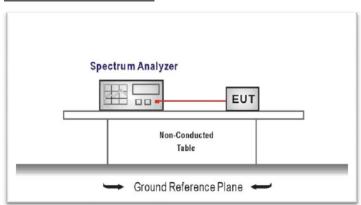
Note:

- 1) Transd=Cable lose+ Pulse Limiter Factor + Artificial Mains Factor
- 2) Margin= Limit -Level

st Line:			L				
Level [dBµV]							
80							
~						! !	
0						' ! !	
0					_ 	i	
0 - γ γ-+			·¦	 	- 	l I	1
o k						! !	
	V/````\^\\\\\\	####JM/M	الفارا والمعاولة والمالية	eleka delekarek barak	Maria de La Carta de La Ca	' 	
[]	1.1.1.	1 1 1 1		X 11 Section 1945	la language de la companyone de la compa	Maria de la compansión	and the state of
0 F - i/ / ^ i	Mar. M Marial	alevat I. vyvalvya			utilia dupudana	of high shall have	
0			שונו בין בים שו טי בו.	The state of the state of	Talahan Lagus de la Calabanda		Catalan and
0							dentification.
150k 300k 40	0k 600k 8	800k 1M	2M Frequency	3M 4M	5M 6M 8M 10	M	20M 30
			rrequericy	[112]			
x x MES GM161221500	8_fin						
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0.163500	47.50	10.4	65	17.8	QP	L1	GND
0.402000	39.40	10.2	58	18.4	QP	L1	GND
0.487500	38.70	10.2	56	17.5	QP	L1	GND
0.622500	37.00	10.2	56	19.0	QP	L1	GND
1.126500	35.30	10.2	56	20.7	QP	L1	GND
2.571000	28.80	10.2	56	27.2	QP	L1	GND
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE
MHz	dΒμV	dB	dΒμV	dB			
0.393000	35.40	10.2	48	12.6	AV	L1	GND
0.510000	26.70	10.2	46	19.3			
					AV	L1	GND
0.559500	25.80 22.80	10.2	46	20.2	AV	L1	GND
0.681000		10.2	46	23.2	AV	L1	GND
22 121500	21 90	10.7	5.0	10 1	7.77	T 1	CINTE
23.131500 29.238000	31.90 30.20	10.7 10.8	50 50	18.1 19.8	AV AV	L1 L1	GND GND

Report No: TRE1612009602 Page: 13 of 41 Issued: 2016-12-29

st Line:			N					
Level [dBµV]								
:Сеver[авру]								
-								
0			<u> </u>			· -		
0		- - +				-		
0 1			¦		- 	!		
10 F V !	/^!\\\\\ <u>\\</u>	thairlian		-		· -¦	¦-+	
,o _≠_ i+_\''_\\\''`\	(<u> </u>	<u>//we/17/17/17/17/17/17/17/17/17/17/17/17/17/</u>			ا بر او مراه او	i ,_ _,	<u>-</u>	الما
0 \ - \ M - ~	/ [//////]] [السنة الملاس				Maria	and the	44
ו יער יע	/ \ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	4797 74 79474	AH haja bah bahan	Halifation to Highly at Section		hard and	and the same	eregi
10			·	- -		The second second	441	
0 150k 300k	400k 600k	800k 1M	2M	3M 4M	5M 6M 8M	10M	20M	301
			Frequency					-
x x MES GM1612215	007 fin							
Frequency	Level	Transd	Limit	Margin	Detector	Line	PE	
		Transd dB	Limit dBµV	Margin dB	Detector	Line	PE	
Frequency	Level			_	Detector	Line	PE GND	
Frequency MHz	Level dBµV	dB	dΒμV	dB				
Frequency MHz	Level dBµV	dB 10.4	dΒμV 65	dB 16.3	QP	N	GND	
Frequency MHz 0.163500 0.276000	Level dBµV 49.00 39.80	dB 10.4 10.2	dВµV 65 61	dB 16.3 21.1	QP QP	N N	GND GND	
Frequency MHz 0.163500 0.276000 0.397500 0.505500 0.807000	Level dBµV 49.00 39.80 45.90 37.10 32.70	dB 10.4 10.2 10.2 10.2	dBμV 65 61 58 56 56	dB 16.3 21.1 12.0 18.9 23.3	QP QP QP	N N N	GND GND GND	
Frequency MHz 0.163500 0.276000 0.397500 0.505500	Level dBµV 49.00 39.80 45.90 37.10	dB 10.4 10.2 10.2	dBμV 65 61 58 56	dB 16.3 21.1 12.0 18.9	QP QP QP QP	N N N	GND GND GND GND	
Frequency MHz 0.163500 0.276000 0.397500 0.505500 0.807000 1.815000	Level dBµV 49.00 39.80 45.90 37.10 32.70	dB 10.4 10.2 10.2 10.2	dBμV 65 61 58 56 56	dB 16.3 21.1 12.0 18.9 23.3 26.0	QP QP QP QP QP	N N N N	GND GND GND GND GND	
Frequency MHz 0.163500 0.276000 0.397500 0.505500 0.807000	Level dBµV 49.00 39.80 45.90 37.10 32.70 30.00	dB 10.4 10.2 10.2 10.2 10.2	dBμV 65 61 58 56 56	dB 16.3 21.1 12.0 18.9 23.3	QP QP QP QP QP QP	N N N N	GND GND GND GND GND GND	
Frequency MHz 0.163500 0.276000 0.397500 0.505500 0.807000 1.815000 Frequency MHz	Level dBµV 49.00 39.80 45.90 37.10 32.70 30.00 Level dBµV	dB 10.4 10.2 10.2 10.2 10.2 10.2 Transd	dBµV 65 61 58 56 56 56	dB 16.3 21.1 12.0 18.9 23.3 26.0 Margin	QP QP QP QP QP QP	N N N N	GND GND GND GND GND GND	
Frequency MHz 0.163500 0.276000 0.397500 0.505500 0.807000 1.815000 Frequency	Level dBµV 49.00 39.80 45.90 37.10 32.70 30.00 Level dBµV	dB 10.4 10.2 10.2 10.2 10.2 10.2 Transd	dBµV 65 61 58 56 56 56	dB 16.3 21.1 12.0 18.9 23.3 26.0 Margin	QP QP QP QP QP QP	N N N N	GND GND GND GND GND GND	
Frequency MHz 0.163500 0.276000 0.397500 0.505500 0.807000 1.815000 Frequency MHz 0.163500 0.226500	Level dBµV 49.00 39.80 45.90 37.10 32.70 30.00 Level dBµV 33.80 30.90	dB 10.4 10.2 10.2 10.2 10.2 10.2 Transd dB	dBµV 65 61 58 56 56 56 Limit dBµV	dB 16.3 21.1 12.0 18.9 23.3 26.0 Margin dB	QP QP QP QP QP QP	N N N N N	GND GND GND GND GND GND	
Frequency MHz 0.163500 0.276000 0.397500 0.505500 0.807000 1.815000 Frequency MHz 0.163500 0.226500 0.402000	Level dBµV 49.00 39.80 45.90 37.10 32.70 30.00 Level dBµV 33.80 30.90 30.40	dB 10.4 10.2 10.2 10.2 10.2 10.2 Transd dB 10.4 10.3 10.2	dBµV 65 61 58 56 56 56 Limit dBµV 55 53 48	dB 16.3 21.1 12.0 18.9 23.3 26.0 Margin dB 21.5 21.7 17.4	QP QP QP QP QP Detector AV AV	N N N N N T Line	GND GND GND GND GND FE GND GND GND	
MHz 0.163500 0.276000 0.397500 0.505500 0.807000 1.815000 Frequency MHz 0.163500 0.226500 0.402000 23.068500	Level dBµV 49.00 39.80 45.90 37.10 32.70 30.00 Level dBµV 33.80 30.90 30.40 31.30	dB 10.4 10.2 10.2 10.2 10.2 10.2 Transd dB 10.4 10.3 10.2 10.7	dBµV 65 61 58 56 56 56 Limit dBµV 55 53 48 50	dB 16.3 21.1 12.0 18.9 23.3 26.0 Margin dB 21.5 21.7 17.4 18.7	QP QP QP QP QP Detector AV AV AV	N N N N N Line	GND GND GND GND GND FE GND GND GND GND	
Frequency MHz 0.163500 0.276000 0.397500 0.505500 0.807000 1.815000 Frequency MHz 0.163500 0.226500 0.402000	Level dBµV 49.00 39.80 45.90 37.10 32.70 30.00 Level dBµV 33.80 30.90 30.40	dB 10.4 10.2 10.2 10.2 10.2 10.2 Transd dB 10.4 10.3 10.2	dBµV 65 61 58 56 56 56 Limit dBµV 55 53 48	dB 16.3 21.1 12.0 18.9 23.3 26.0 Margin dB 21.5 21.7 17.4	QP QP QP QP QP Detector AV AV	N N N N N Line	GND GND GND GND GND FE GND GND GND	


Report No: TRE1612009602 Page: 14 of 41 Issued: 2016-12-29

5.3. Conducted Peak Output Power

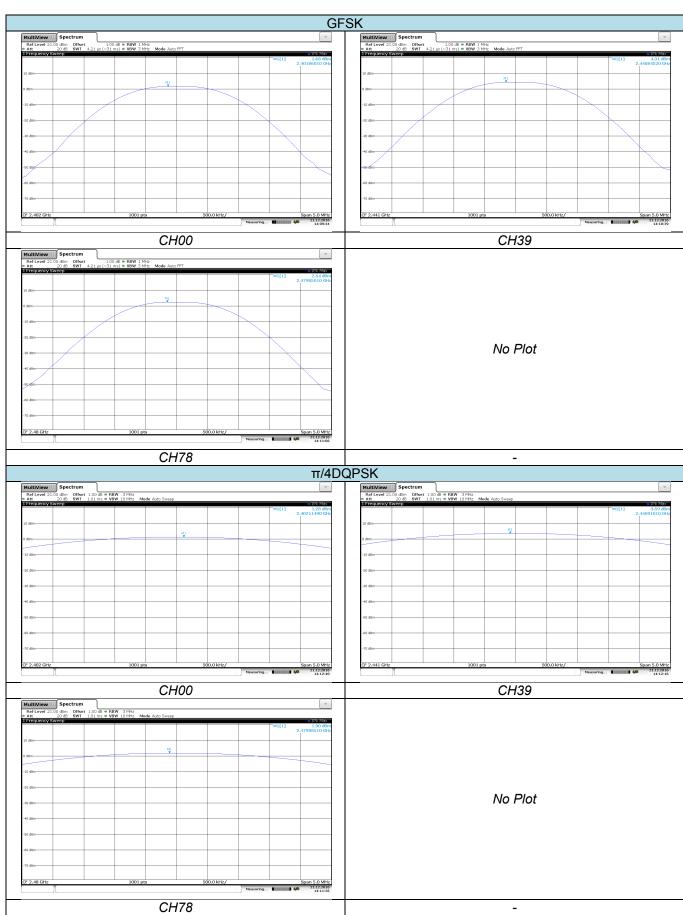
LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (b)(3): 30dBm

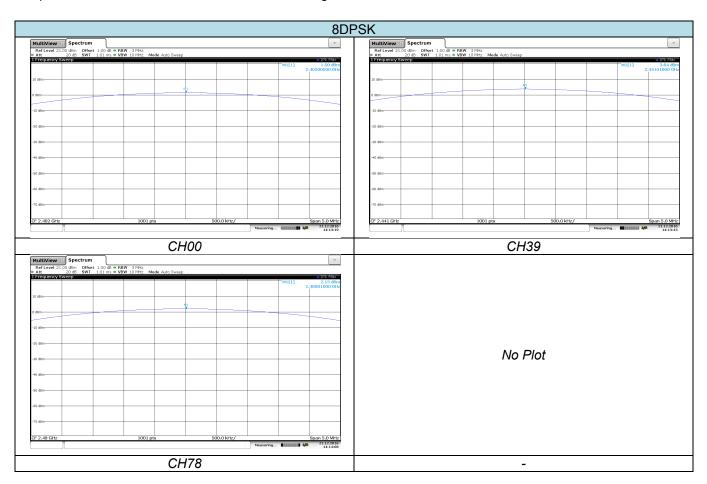
TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings: Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW≥ the 20 dB bandwidth of the emission being measured, VBW ≥ RBW Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.


TEST MODE:

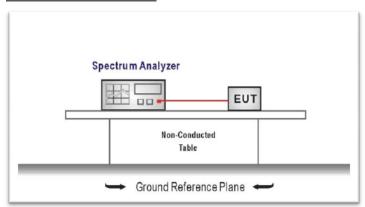
Please refer to the clause 3.3


TEST RESULTS

Modulation type	Channel	Output power (dBm)	Limit (dBm)	Result
	00	1.68		
GFSK	39	4.31	30.00	Pass
	78	2.54		
	00	1.28		
π/4DQPSK	39	3.59	21.00	Pass
	78	1.90		
	00	1.50		
8DPSK	DPSK 39 3.84		21.00	Pass
	78	2.13		

Report No: TRE1612009602 Page: 15 of 41 Issued: 2016-12-29

Report No: TRE1612009602 Page: 16 of 41 Issued: 2016-12-29


Report No: TRE1612009602 Page: 17 of 41 Issued: 2016-12-29

5.4. 20dB Emission Bandwidth

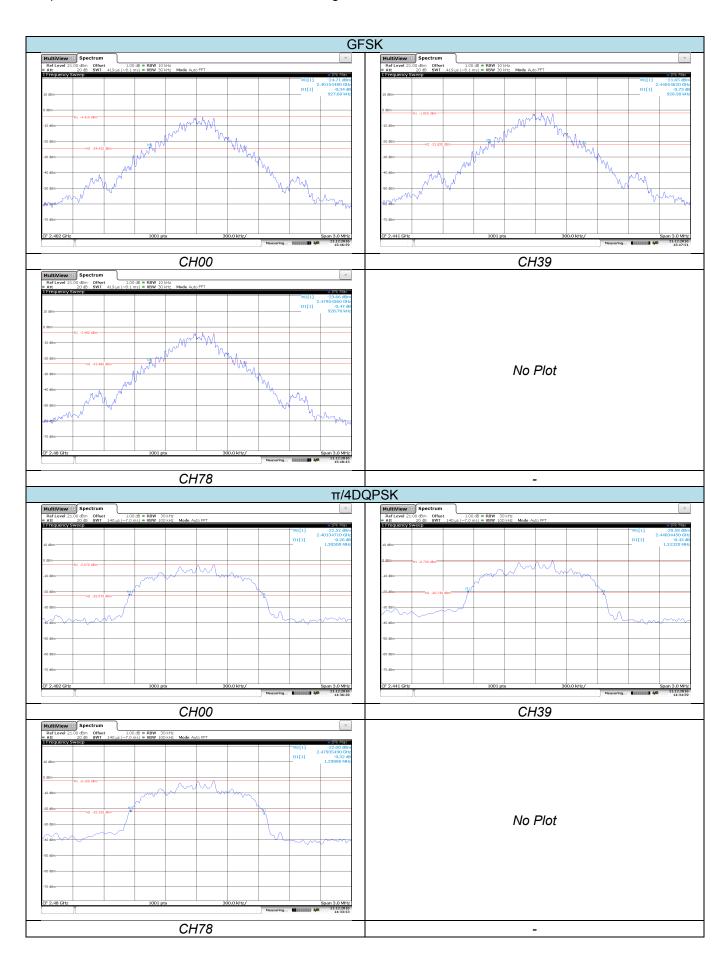
LIMIT

N/A

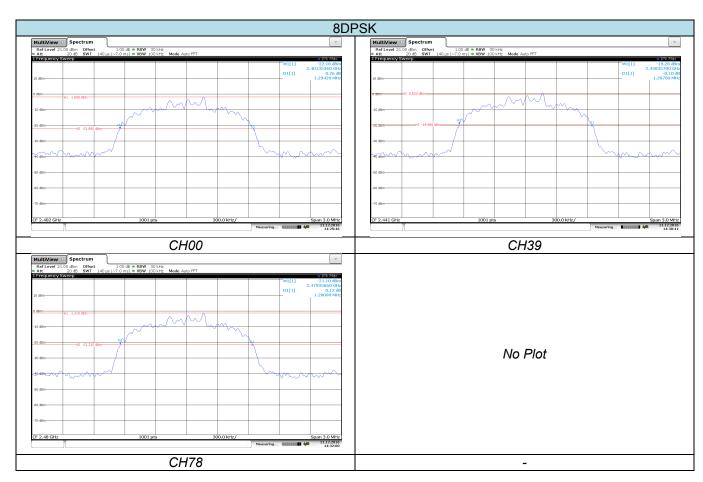
TEST CONFIGURATION

TEST PROCEDURE

- The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings: Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel RBW≥1% of the 20 dB bandwidth, VBW ≥ RBW Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.


TEST MODE:

Please refer to the clause 3.3

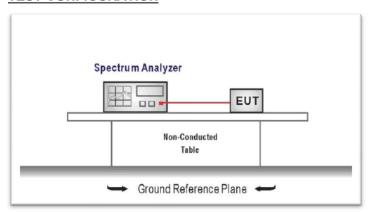

TEST RESULTS

Modulation type	Channel	20dB Bandwidth (MHz)	Limit (MHz)	Result
	00	0.928		
GFSK	39	0.928	-	Pass
	78	0.929		
	00	1.305		
π/4DQPSK	39	1.313	-	Pass
	78	1.299		
	00	1.294		
8DPSK	39	1.288	-	Pass
	78	1.281		

Report No: TRE1612009602 Page: 18 of 41 Issued: 2016-12-29

Report No: TRE1612009602 Page: 19 of 41 Issued: 2016-12-29

Report No: TRE1612009602 Page: 20 of 41 Issued: 2016-12-29


5.5. Carrier Frequencies Separation

LIMIT

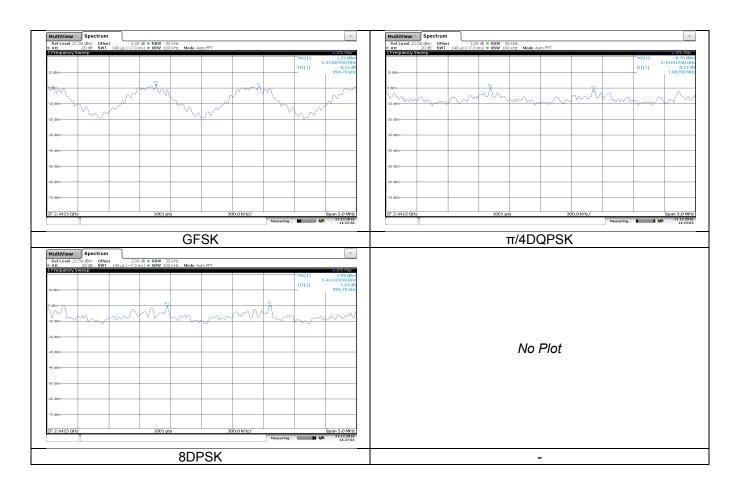
FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3*20dB bandwidth of the hopping channel, whichever is greater.

TEST CONFIGURATION

TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:
 - Span = wide enough to capture the peaks of two adjacent channels
 - RBW≥1% of the span, VBW ≥ RBW
 - Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.


TEST MODE:

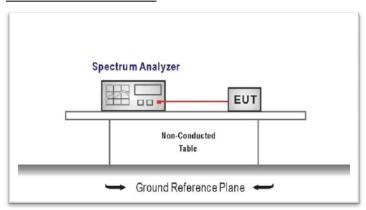
Please refer to the clause 3.3

TEST RESULTS

Modulation type	ype Channel Carrier Frequencies Separation (MHz)		Limit (MHz)	Result
GFSK	39	0.995	0.928	Pass
π/4DQPSK	39	1.003	0.875	Pass
8DPSK	39	0.945	0.854	Pass

Report No: TRE1612009602 Page: 21 of 41 Issued: 2016-12-29

Report No: TRE1612009602 Page: 22 of 41 Issued: 2016-12-29


5.6. Hopping Channel Number

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

TEST CONFIGURATION

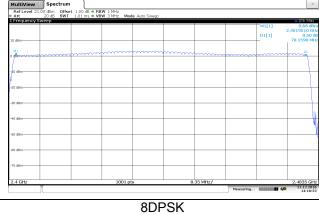
TEST PROCEDURE

- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings:

Span = the frequency band of operation

RBW≥1% of the span, VBW ≥ RBW

Sweep = auto, Detector function = peak, Trace = max hold


4. Measure and record the results in the test report.

TEST MODE:

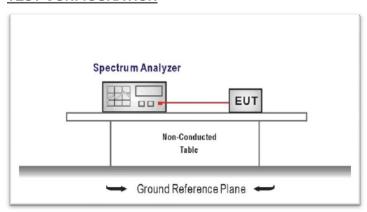
Please refer to the clause 3.3

TEST RESULTS

Modulation type	Channel number	Limit	Result
GFSK	79		
π/4DQPSK	79	15	Pass
8DPSK	79		

No Plot

Report No: TRE1612009602 Page: 24 of 41 Issued: 2016-12-29


5.7. Dwell Time

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a pe-riod of 0.4 seconds multiplied by the number of hopping channels employed.

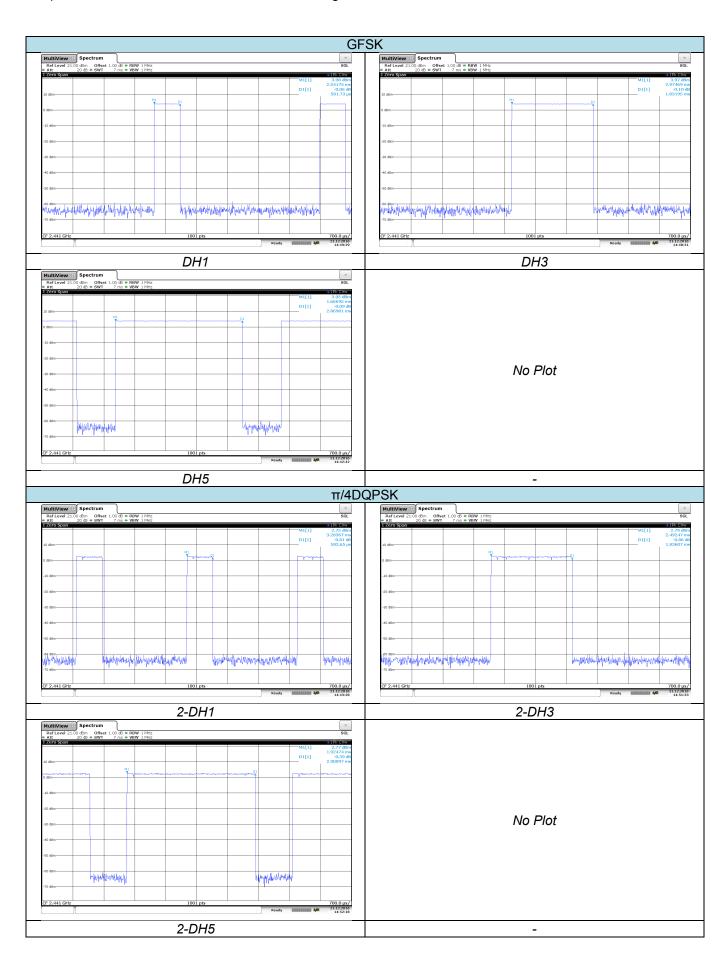
TEST CONFIGURATION

TEST PROCEDURE

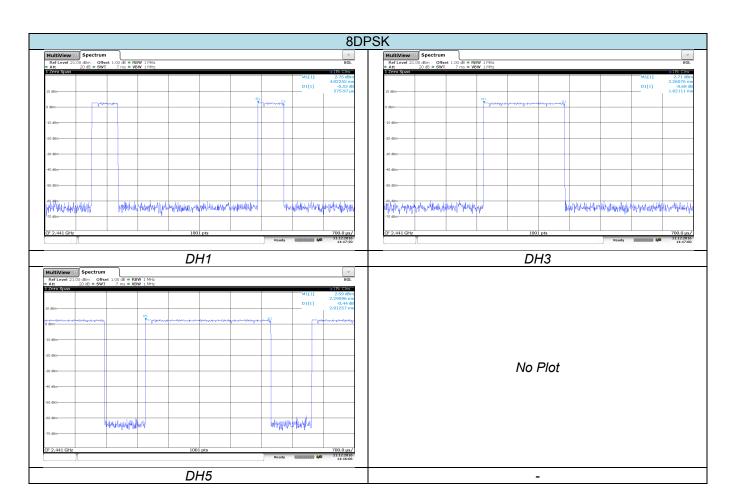
- 1. The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- 3. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel, RBW= 1 MHz, VBW ≥ RBW Sweep = as necessary to capture the entire dwell time per hopping channel, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:

Please refer to the clause 3.3


TEST RESULTS

Modulation type	Channel	Dwell time (Second)	Limit (Second)	Result
	DH1	0.186		
GFSK	DH3	0.293	0.40	Pass
	DH5	0.317		
	2-DH1	0.187		
π/4DQPSK	2-DH3	0.294	0.40	Pass
	2-DH5	0.309		
	3-DH1	0.184		
8DPSK	3-DH3	0.291	0.40	Pass
	3-DH5	0.300		


Note:

- 1. We have tested all mode at high, middle and low channel, and recoreded worst case at middle channel.
- 2. Dwell time=Pulse time (ms) × $(1600 \div 2 \div 79)$ ×31.6 Second for DH1, 2-DH1, 3-DH1 Dwell time=Pulse time (ms) × $(1600 \div 4 \div 79)$ ×31.6 Second for DH3, 2-DH3, 3-DH3 Dwell time=Pulse time (ms) × $(1600 \div 6 \div 79)$ ×31.6 Second for DH5, 2-DH5, 3-DH5

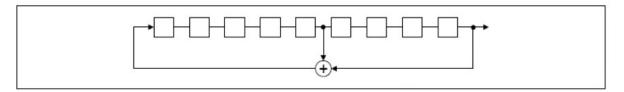
Report No: TRE1612009602 Page: 25 of 41 Issued: 2016-12-29

Report No: TRE1612009602 Page: 26 of 41 Issued: 2016-12-29

Report No: TRE1612009602 Page: 27 of 41 Issued: 2016-12-29

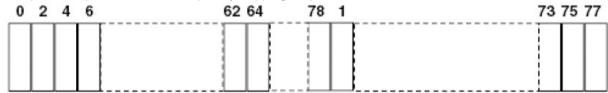
5.8. Pseudorandom Frequency Hopping Sequence

LIMIT


FCC CFR Title 47 Part 15 Subpart C Section 15.247 (a)(1):

Frequency hopping systems shall have hopping channel carrier fre-quencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Al-ternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier fre-quencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo ran-domly ordered list of hopping fre-quencies. Each frequency must be used equally on the average by each trans-mitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their cor-responding transmitters and shall shift frequencies in synchronization with the transmitted signals.

TEST RESULTS


The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5th and 9th stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the friststage. The sequence begins with the frist one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)

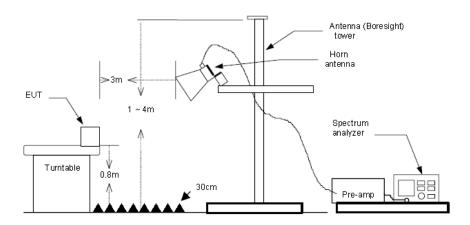
Linear Feedback Shift Register for Generation of the PRBS sequence

An explame of pseudorandom frequency hopping sequence as follows:

Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals.

Report No: TRE1612009602 Page: 28 of 41 Issued: 2016-12-29


5.9. Restricted band (radiated)

LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

TEST CONFIGURATION

TEST PROCEDURE

- 1. The EUT was setup and tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 1.5 meter above ground. The turn table is rotated 360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna. In order to find themaximum emission, all of the interface cables were manipulated according to ANSI C63.10:2013 on radiated measurement.
- The receiver set as follow: RBW=1MHz, VBW=3MHz for Peak value RBW=1MHz, VBW=10Hz for Average value.

TEST MODE:

Please refer to the clause 3.3

TEST RESULTS

Note:

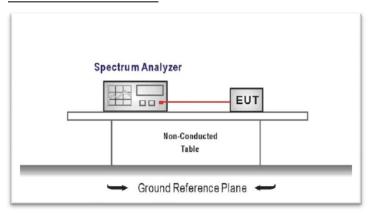
- 1) Final level= Read level + Antenna Factor+ Cable Loss- Preamp Factor
- Have pre-scan all modulation mode, found the GFSK modulation which it was worst case, so only the worst case's data on the test report.

Report No: TRE1612009602 Page: 29 of 41 Issued: 2016-12-29

					CH00				
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value
2310.00	36.33	27.27	6.62	37.65	32.57	74.00	-41.43	Vertical	
2388.75	71.82	27.53	6.75	37.87	68.23	74.00	-5.77	Vertical	
2390.00	46.47	27.53	6.75	37.87	42.88	74.00	-31.12	Vertical	Peak
2310.00	36.91	27.27	6.62	37.65	33.15	74.00	-40.85	Horizontal	Feak
2388.46	63.54	27.53	6.75	37.87	59.95	74.00	-14.05	Horizontal	
2390.00	38.85	27.53	6.75	37.87	35.26	74.00	-38.74	Horizontal	
2310.00	24.70	27.27	6.62	37.65	20.94	54.00	-33.06	Vertical	
2388.75	53.73	27.53	6.75	37.87	50.14	54.00	-3.86	2388.75	
2390.00	26.11	27.53	6.75	37.87	22.52	54.00	-31.48	Vertical	Avorago
2388.46	50.84	27.53	6.75	37.87	47.25	54.00	-6.75	Horizontal	Average
2310.00	24.14	27.27	6.62	37.65	20.38	54.00	-33.62	Horizontal	
2390.00	24.50	27.53	6.75	37.87	20.91	54.00	-33.09	Horizontal]

	CH78											
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value			
2483.50	54.12	27.85	6.83	37.87	50.93	74.00	-23.07	Vertical				
2487.12	56.59	27.85	6.83	37.87	53.40	74.00	-20.60	Vertical				
2500.00	38.54	27.90	6.84	37.87	35.41	74.00	-38.59	Vertical	Peak			
2483.50	50.2	27.85	6.83	37.87	47.01	74.00	-26.99	Horizontal	reak			
2485.37	68.62	27.85	6.83	37.87	65.43	74.00	-8.57	Horizontal				
2500.00	36.39	27.90	6.84	37.87	33.26	74.00	-40.74	Horizontal				
2483.50	34.41	27.85	6.83	37.87	31.22	54.00	-22.78	Vertical				
2487.12	45.66	27.85	6.83	37.87	42.47	54.00	-11.53	Vertical				
2500.00	25.76	27.90	6.84	37.87	22.63	54.00	-31.37	Vertical	Avaraga			
2483.50	32.32	27.85	6.83	37.87	29.13	54.00	-24.87	Horizontal	Average			
2485.37	52.77	27.85	6.83	37.87	49.58	54.00	-4.42	Horizontal				
2500.00	24.64	27.90	6.84	37.87	21.51	54.00	-32.49	Horizontal				

Report No: TRE1612009602 Page: 30 of 41 Issued: 2016-12-29


5.10. Bandedge and Spurious Emission (conducted)

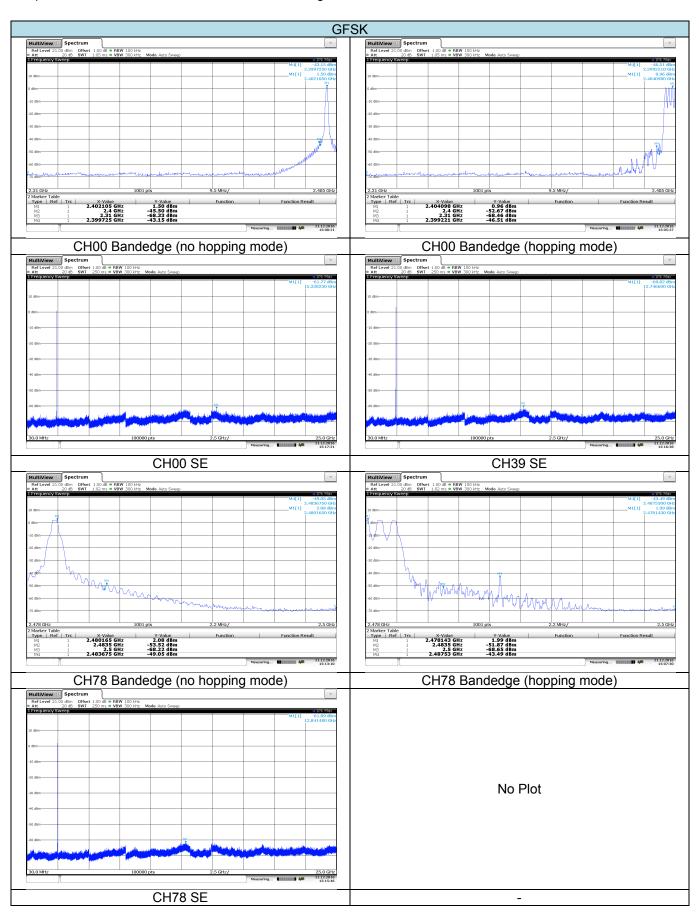
LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.247 (d):

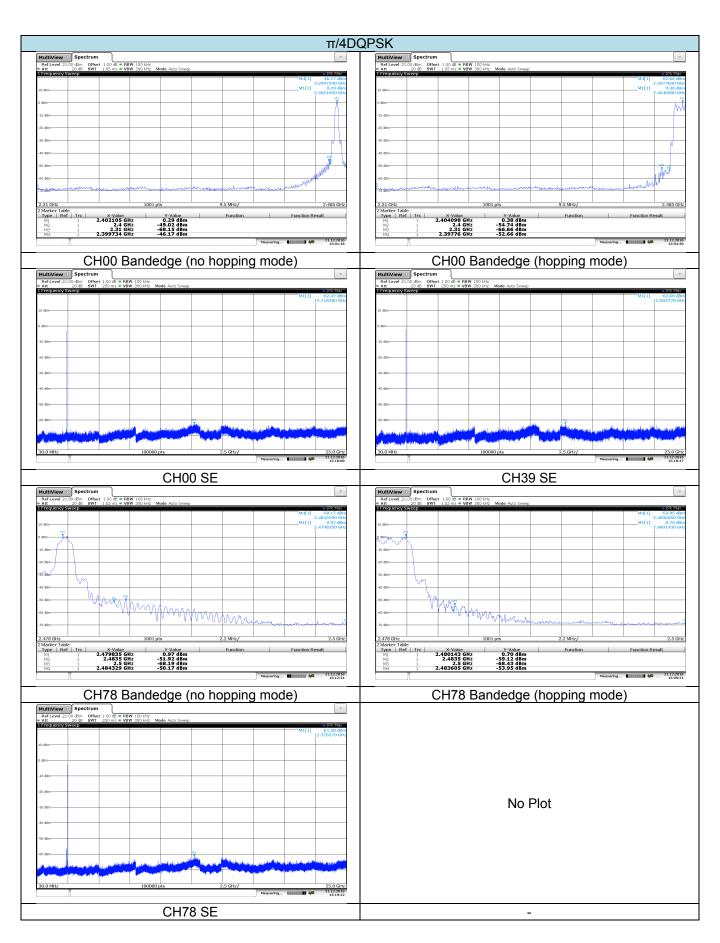
In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.

TEST CONFIGURATION

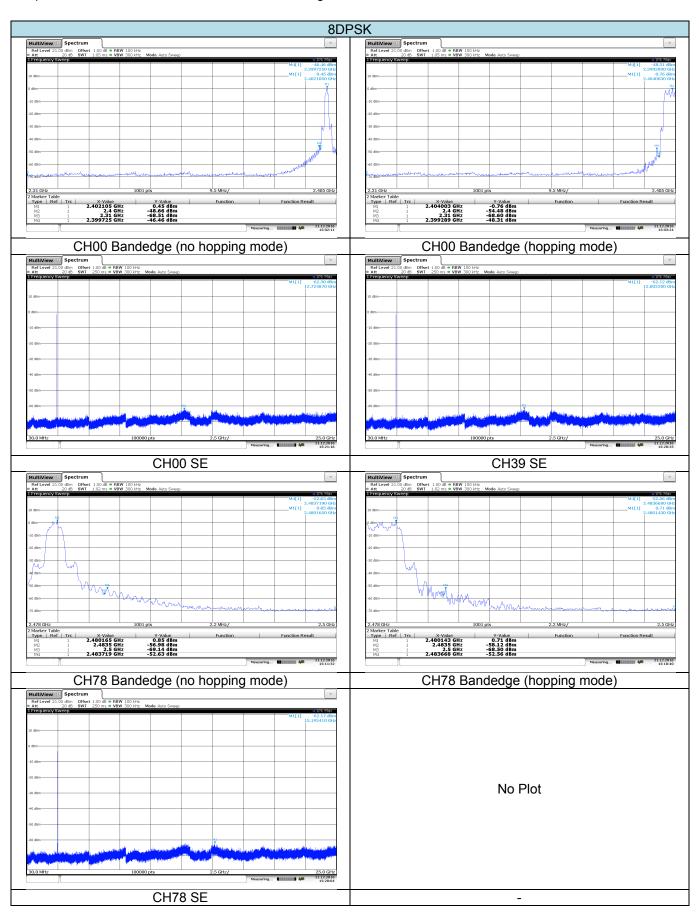
TEST PROCEDURE


- The transmitter output was connected to the spectrum analyzer through an attenuator, the path loss was compensated to the results for each measurement.
- 2. Set to the maximum power setting and enable the EUT transmit continuously
- Use the following spectrum analyzer settings:
 RBW= 100 KHz, VBW ≥ RBW
 Sweep = auto, Detector function = peak, Trace = max hold
- 4. Measure and record the results in the test report.

TEST MODE:


Please refer to the clause 3.3

TEST RESULTS

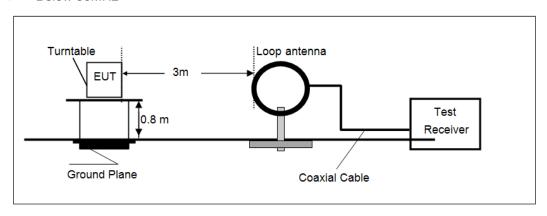

 Report No: TRE1612009602 Page: 31 of 41 Issued: 2016-12-29

Report No: TRE1612009602 Page: 32 of 41 Issued: 2016-12-29

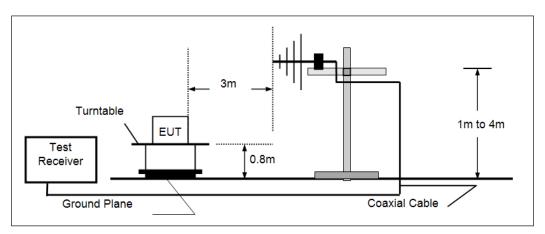
Report No: TRE1612009602 Page: 33 of 41 Issued: 2016-12-29

Report No: TRE1612009602 Page: 34 of 41 Issued: 2016-12-29

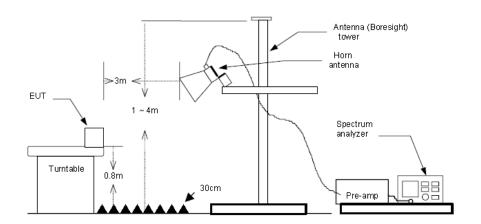
5.11. Spurious Emission (radiated)


LIMIT

FCC CFR Title 47 Part 15 Subpart C Section 15.209


Frequency	Limit (dBuV/m @3m)	Value	
30MHz-88MHz	40.00	Quasi-peak	
88MHz-216MHz	43.50	Quasi-peak	
216MHz-960MHz	46.00	Quasi-peak	
960MHz-1GHz	54.00	Quasi-peak	
Above 1GHz	54.00	Average	
Above IGIIZ	74.00	Peak	

TEST CONFIGURATION


Below 30MHz

> 30MHz~1000MHz

Above 1GHz

Report No: TRE1612009602 Page: 35 of 41 Issued: 2016-12-29

TEST PROCEDURE

- 1. The EUT was tested according to ANSI C63.10:2013 for compliance to FCC 47CFR 15.247 requirements.
- 2. The EUT is placed on a turn table which is 0.8 meter above ground. The turn table is rotated360 degrees to determine the position of the maximum emission level.
- 3. The EUT waspositioned such that the distance from antenna to the EUT was 3 meters.
- 4. The antenna is scanned from 1 meter to 4 meters to find out the maximum emission level. Thisis repeated for both horizontal and vertical polarization of the antenna.
- 5. Use the following spectrum analyzer settings
 - (1) Span shall wide enough to fully capture the emission being measured;
 - (2) Below 1GHz, RBW=120KHz, VBW=300KHz, Sweep=auto, Detector function=peak, Trace=max hold; If the emission level of the EUT measured by the peak detector is 3 dB lower than the applicable limit, the peak emission level will be reported. Otherwise, theemission measurement will be repeated using the guasi-peak detector and reported.
 - (3) Above 1GHz, RBW=1MHz, VBW=3MHz for Peak value RBW=1MHz, VBW=10Hz for Average value.

TEST MODE:

Please refer to the clause 3.3

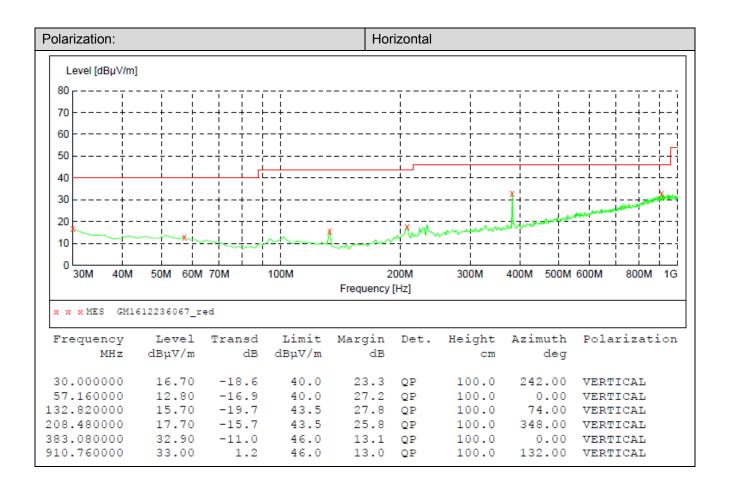
TEST RESULTS

Applicable

Note:

- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- The emission levels of other frequencies are very lower than the limit and not show in test report.
- 3) Below 1GHz, Have pre-scan all modulation mode, found the GFSK modulation Mid channel which it was worst case, so only the worst case's data on the test report.
- 4) Above 1GHz, Have pre-scan all modulation mode, found the GFSK modulation which it was worst case, so only the worst case's data on the test report

→ 9kHz ~ 30MHz


The low frequency, which started from 9 kHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

Report No: TRE1612009602 Page: 36 of 41 Issued: 2016-12-29

> 30MHz ~ 1GHz

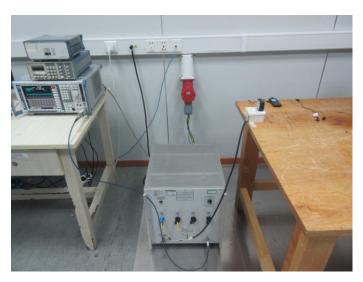
olarization: Vertical								
Level [dBµV/m]								
80								
			-		I I			
70	· <u>+</u>	-+	-+		+ I	+		-+
60					¦			
50		_	<u> </u>		! !	!	_	
						1	1 1	
40			_ †		<u> </u>		<u> </u>	
30	¦ ¦	- + + 	_+		' +			
20					I XX.	l _x x	- June	Market Market
20				mm		Maritania	1	
10		 ╾┼╌┼	_ <u> </u>		<u> </u>	¦		
0			<u> </u>		l I			
0 30M 40M	50M 60M	70M 1	100M		0M	300M 4	00M 500M 6	00M 800M 1G
0 30M 40M	50M 60M	70M 1	100M	20 Frequency [H		300M 4	00M 500M 6	00M 800M 1G
0 30M 40M			100M			300M 4	00M 500M 6	00M 800M 1G
30M 40M	12236066_re	d		Frequency [H	lz]			
30M 40M x x x MES GM16 Frequency	12236066_re Level	d Transd	Limit	Frequency[H		Height	Azimuth	00M 800M 1G
30M 40M	12236066_re	d		Frequency [H	lz]			
30M 40M x x x MES GM16 Frequency	12236066_re Level	d Transd	Limit	Frequency[H	lz]	Height	Azimuth	
30M 40M x x x MES GM16 Frequency MHz 233.700000 241.460000	12236066_re Level dBµV/m	d Transd dB	Limit dBµV/m	Frequency [H Margin dB	Hz]	Height cm	Azimuth deg	Polarizatio
30M 40M x x x MES GM16 Frequency MHz 233.700000	12236066_re Level dBµV/m 22.10	Transd dB	Limit dBµV/m	Margin dB	Det.	Height cm	Azimuth deg	Polarizatio:
30M 40M * * * MES GM16 Frequency MHz 233.700000 241.460000 311.300000 363.680000	Level dBµV/m 22.10 21.50 22.30 22.40	Transd dB -14.8 -14.6 -12.6 -11.4	Limit dBµV/m 46.0 46.0 46.0 46.0	Margin dB 23.9 24.5 23.7 23.6	Det. QP QP	Height cm 100.0 100.0 100.0 100.0	Azimuth deg 133.00 38.00 338.00 327.00	Polarizatio HORIZONTAL HORIZONTAL
30M 40M * * * MES GM16 Frequency MHz 233.700000 241.460000 311.300000	Level dBµV/m 22.10 21.50 22.30	Transd dB -14.8 -14.6 -12.6	Limit dBµV/m 46.0 46.0 46.0	Margin dB 23.9 24.5 23.7	Det. QP QP QP	Height cm 100.0 100.0 100.0	Azimuth deg 133.00 38.00 338.00	Polarizatio HORIZONTAL HORIZONTAL HORIZONTAL

Report No: TRE1612009602 Page: 37 of 41 Issued: 2016-12-29

Report No: TRE1612009602 Page: 38 of 41 Issued: 2016-12-29

> Above 1GHz

CH00 for GFSK										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value	
1549.34	42.35	24.85	5.43	36.65	35.98	74.00	-38.02	Vertical	Peak	
3690.85	42.08	29.02	8.37	38.25	41.22	74.00	-32.78	Vertical	Peak	
4809.50	34.53	31.09	9.55	36.93	38.24	54.00	-15.76	Vertical	Average	
4809.50	53.23	31.09	9.55	36.93	56.94	74.00	-17.06	Vertical	Peak	
7209.01	31.83	35.97	11.87	35.07	44.60	54.00	-9.40	Vertical	Average	
7209.02	48.39	35.97	11.87	35.07	61.16	74.00	-12.84	Vertical	Peak	
1573.19	43.32	24.94	5.49	36.69	37.06	74.00	-36.94	Horizontal	Peak	
3943.39	38.57	29.41	8.70	38.14	38.54	74.00	-35.46	Horizontal	Peak	
4809.50	34.53	31.09	9.55	36.93	38.24	54.00	-15.76	Horizontal	Average	
4809.50	49.39	31.09	9.55	36.93	53.10	74.00	-20.90	Horizontal	Peak	
7209.01	35.40	35.97	11.87	35.07	48.17	54.00	-5.83	Horizontal	Average	
7209.02	52.09	35.97	11.87	35.07	64.86	74.00	-9.14	Horizontal	Peak	

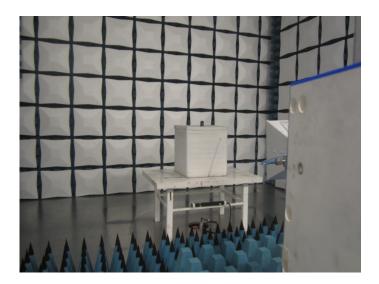

CH39 for GFSK										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value	
1577.20	41.43	24.95	5.51	36.69	35.20	74.00	-38.80	Vertical	Peak	
3834.51	38.94	29.24	8.55	38.21	38.52	74.00	-35.48	Vertical	Peak	
4883.52	36.55	31.14	9.59	36.73	40.55	54.00	-13.45	Vertical	Average	
4883.52	52.55	31.14	9.59	36.73	56.55	74.00	-17.45	Vertical	Peak	
7319.96	28.46	36.07	11.99	34.92	41.60	54.00	-12.40	Vertical	Average	
7319.96	47.56	36.07	11.99	34.92	60.70	74.00	-13.30	Vertical	Peak	
4883.52	42.75	31.14	9.59	36.73	46.75	74.00	-27.25	Horizontal	Peak	
4883.52	34.23	31.14	9.59	36.73	38.23	54.00	-15.77	Horizontal	Average	
7319.96	51.56	36.07	11.99	34.92	64.70	74.00	-9.30	Horizontal	Peak	
7319.96	32.64	36.07	11.99	34.92	45.78	54.00	-8.22	Horizontal	Average	

	CH78 for GFSK										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin Limit (dB)	Polarization	Test value		
1593.34	41.42	24.99	5.55	36.71	35.25	74.00	-38.75	Vertical	Peak		
3192.37	38.35	28.58	7.71	38.2	36.44	74.00	-37.56	Vertical	Peak		
4958.68	35.19	31.18	9.64	36.52	39.49	54.00	-14.51	Vertical	Average		
4958.68	51.49	31.18	9.64	36.52	55.79	74.00	-18.21	Vertical	Peak		
7451.57	32.64	36.17	12.24	34.86	46.19	54.00	-7.81	Vertical	Average		
7451.57	43.93	36.17	12.24	34.86	57.48	74.00	-16.52	Vertical	Peak		
1577.20	44.78	24.95	5.51	36.69	38.55	74.00	-35.45	Horizontal	Peak		
3598.09	38.27	28.87	8.27	38.27	37.14	74.00	-36.86	Horizontal	Peak		
4958.68	32.51	31.18	9.64	36.52	36.81	54.00	-17.19	Horizontal	Average		
4958.68	49.97	31.18	9.64	36.52	54.27	74.00	-19.73	Horizontal	Peak		
7451.57	28.28	36.17	12.24	34.86	41.83	54.00	-12.17	Horizontal	Average		
7451.57	48.20	36.17	12.24	34.86	61.75	74.00	-12.25	Horizontal	Peak		

Report No: TRE1612009602 Page: 39 of 41 Issued: 2016-12-29

6. Test Setup Photos of the EUT

Conducted Emission (AC Mains)



Radiated Emission

Report No: TRE1612009602 Page: 40 of 41 Issued: 2016-12-29

Report No: TRE1612009602 Page: 41 of 41 Issued: 2016-12-29

7. External and Internal Photos of the EUT

Reference to Test Report No.: TRE1612009601.

End of Report.....