	TEST REPOR	Т						
FCC ID :	2ALNA-BTHA2							
Test Report No::	TCT211220E025							
Date of issue:	Jan. 07, 2022							
Testing laboratory: :	SHENZHEN TONGCE TESTING	G LAB						
Testing location/ address:	TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China							
Applicant's name: :	Shenzhen Thousandshores Technology Co., Ltd.							
Address::	5/F, Chuangxin Building, Seven-star Creative Square, No.2North Alley, Chuangye 2nd Road, Bao'an Dis 28th, ShenZhen, 518000 China							
Manufacturer's name :	Shenzhen Thousandshores Technology Co., Ltd.							
Address:	5/F, Chuangxin Building, Seven-star Creative Square, No.2North Alley, Chuangye 2nd Road, Bao'an Dis 28th, ShenZhen, 518000 China							
Standard(s):	FCC CFR Title 47 Part 15 Subpa FCC KDB 558074 D01 15.247 M ANSI C63.10:2013							
Test item description :	True Wireless Earbuds	(C)						
Trade Mark:	Tribit							
Model/Type reference :	BTHA2							
Rating(s):	Rechargeable Li-ion Battery DC	3.7V						
Date of receipt of test item	Dec. 20, 2021							
Date (s) of performance of test:	Dec. 20, 2021 ~ Jan. 07, 2022							
Tested by (+signature) :	Aaron MO	Aaron Marongeen						
Check by (+signature) :	Beryl ZHAO	Boy the TCT						
Approved by (+signature):	Tomsin	Tomsin 10 st						

This report shall not be reproduced except in full, without the written approval of SHENZHEN TONGCE TESTING LAB. This document may be altered or revised by SHENZHEN TONGCE TESTING LAB personnel only, and shall be noted in the revision section of the document. The test results in the report only apply to the tested sample.

Table of Contents

TCT通测检测 TESTING CENTRE TECHNOLOGY

1. General Product Information	
1.1. EUT description	3
1.2. Model(s) list	3
1.3. Operation Frequency	
2. Test Result Summary	
3. General Information	
3.1. Test environment and mode	5
3.2. Description of Support Units	5
4. Facilities and Accreditations	
4.1. Facilities	
4.2. Location	6
4.3. Measurement Uncertainty	6
5. Test Results and Measurement Data	7
5.1. Antenna requirement	7
5.2. Conducted Emission	
5.3. Conducted Output Power	
5.4. 20dB Occupy Bandwidth	13
5.5. Carrier Frequencies Separation	14
5.6. Hopping Channel Number	15
5.7. Dwell Time	
5.8. Pseudorandom Frequency Hopping Sequence	
5.9. Conducted Band Edge Measurement	
5.10.Conducted Spurious Emission Measurement	
5.11.Radiated Spurious Emission Measurement	20
Appendix A: Test Result of Conducted Test	
Appendix B: Photographs of Test Setup	
Appendix C: Photographs of EUT	

1. General Product Information

1.1. EUT description

Test item description:	True Wireless Earbuds	(\mathbf{c})
Model/Type reference:	BTHA2	
Sample Number	TCT211220E025-0101	
Bluetooth Version:	V5.0	
Operation Frequency:	2402MHz~2480MHz	
Transfer Rate:	1/2/3 Mbits/s	
Number of Channel:	79	
Modulation Type:	GFSK, π/4-DQPSK, 8DPSK	
Modulation Technology:	FHSS	
Antenna Type:	Internal Antenna	
Antenna Gain:	2.9dBi	
Rating(s):	Rechargeable Li-ion Battery DC 3.7V	

Note: The antenna gain listed in this report is provided by applicant, and the test laboratory is not responsible for this parameter.

1.2. Model(s) list

1.3. Operation Frequency

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz
19	2421MHz	39	2441MHz	59	2461MHz		(\mathbf{c})
Remark [.]	Channel 0 3	0 & 78 h	ave been te	sted for C	ESK m/4-D	OPSK 8	DPSK

Remark: Channel 0, 39 & 78 have been tested for GFSK, π/4-DQPSK, 8DPSK modulation mode.

Report No.: TCT211220E025

2. Test Result Summary

Requirement	CFR 47 Section	Result
Antenna Requirement	§15.203/§15.247 (c)	PASS
AC Power Line Conducted Emission	§15.207	PASS
Conducted Peak Output Power	§15.247 (b)(1)	PASS
20dB Occupied Bandwidth	§15.247 (a)(1)	PASS
Carrier Frequencies Separation	§15.247 (a)(1)	PASS
Hopping Channel Number	§15.247 (a)(1)	PASS
Dwell Time	§15.247 (a)(1)	PASS
Radiated Emission	§15.205/§15.209	PASS
Band Edge	§15.247(d)	PASS

Note:

1. PASS: Test item meets the requirement.

2. Fail: Test item does not meet the requirement.

3. N/A: Test case does not apply to the test object.

4. The test result judgment is decided by the limit of test standard.

3. General Information

3.1. Test environment and mode

Operating Environment:								
Condition	Conducted Emission	Radiated Emission						
Temperature:	25 °C	24.9 °C						
Humidity:	55 % RH	53 % RH						
Atmospheric Pressure:	1010 mbar	1010 mbar						
Test Software:								
Software Information:	Software Information: Non Signaling Test Tool							
Power Level:	0							
Test Mode:								
Engineering mode:	Keep the EUT in continuous channel and modulations with	.						
The sample was placed 0.8m & 1.5m for the measurement below & above 1GHz above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case(Z axis) are shown in Test Results of the following pages. DH1 DH3 DH5 all have been tested , only worse case DH1 is reported.								

3.2. Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Equipment	Model No.	Serial No.	FCC ID	Trade Name	
Adapter	JD-050200	2012010907576735	/	1	

Note:

1. All the equipment/cables were placed in the worst-case configuration to maximize the emission during the test.

2. Grounding was established in accordance with the manufacturer's requirements and conditions for the intended use.

3. For conducted measurements (Output Power, 20dB Occupied Bandwidth, Carrier Frequencies Separation, Hopping Channel Number, Dwell Time, Spurious Emissions), the antenna of EUT is connected to the test equipment via temporary antenna connector, the antenna connector is soldered on the antenna port of EUT, and the temporary antenna connector is listed in the Test Instruments.

4. Facilities and Accreditations

4.1. Facilities

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 645098

SHENZHEN TONGCE TESTING LAB

Designation Number: CN1205

The testing lab has been registered and fully described in a report with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files.

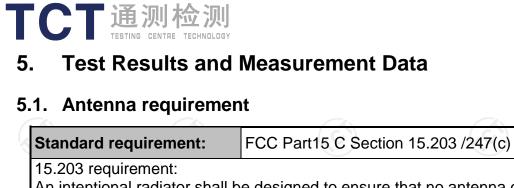
IC - Registration No.: 10668A-1

SHENZHEN TONGCE TESTING LAB

CAB identifier: CN0031

The testing lab has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing.

4.2. Location


SHENZHEN TONGCE TESTING LAB

Address: TCT Testing Industrial Park Fuqiao 5th Industrial Zone, Fuhai Street, Bao'an District Shenzhen, Guangdong, 518103, People's Republic of China TEL: +86-755-27673339

4.3. Measurement Uncertainty

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	MU
1	Conducted Emission	± 3.10 dB
2	RF power, conducted	± 0.12 dB
3	Spurious emissions, conducted	± 0.11 dB
4	All emissions, radiated(<1 GHz)	± 4.56 dB
5	All emissions, radiated(1 GHz - 18 GHz)	± 4.22 dB
6	All emissions, radiated(18 GHz- 40 GHz)	± 4.36 dB

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The Bluetooth antenna is internal antenna which permanently attached, and the best case gain of the antenna is 2.9dBi.

Antenna

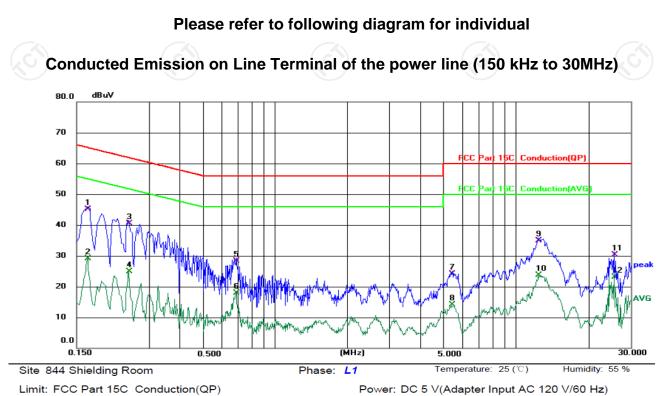
Report No.: TCT211220E025

5.2. Conducted Emission

5.2.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.207							
Test Method:	ANSI C63.10:2013							
Frequency Range:	150 kHz to 30 MHz	\mathcal{C}	$\langle \mathcal{C} \rangle$					
Receiver setup:	RBW=9 kHz, VBW=30) kHz, Sweep time	e=auto					
	Frequency range	Limit (dBuV)					
	(MHz)	Quasi-peak	Áverage 🔨					
Limits:	0.15-0.5	66 to 56*	56 to 46*					
	0.5-5	56	46					
	5-30	60	50					
	Reference	e Plane						
Test Setup:	E.U.T AC powe Test table/Insulation plane Remarkc E.U.T: Equipment Under Test LISN: Line Impedence Stabilization Not Test table height=0.8m	EMI Receiver	AC power					
Test Mode:	Charging + Transmittir	ng Mode						
Test Procedure:	 The E.U.T is connected to an adapter through a line impedance stabilization network (L.I.S.N.). This provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to 							
	ANSI C63 10:2013 d	on conducted mea	asurement					
Test Result:	ANSI C63.10:2013 c	on conducted mea	asurement.					

Page 8 of 94



5.2.2. Test Instruments

	Conducted Emission Shielding Room Test Site (843)												
	Equipment	Manufacturer	Model	Serial Number	Calibration Due								
	EMI Test Receiver	R&S	ESCI3	100898	Jul. 07, 2022								
	Line Impedance Stabilisation Newtork(LISN)	ation Schwarzbeck		8126453	Mar. 11, 2022								
	Line-5 TCT		CE-05	N/A	Jul. 07, 2022								
~	EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A								

5.2.3. Test data

				· · ·					
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1660	35.43	9.59	45.02	65.16	-20.14	QP	
2		0.1660	19.50	9.59	29.09	55.16	-26.07	AVG	
3		0.2460	31.13	9.35	40.48	61.89	-21.41	QP	
4		0.2460	15.56	9.35	24.91	51.89	-26.98	AVG	
5		0.6900	19.20	9.18	28.38	56.00	-27.62	QP	
6		0.6900	8.72	9.18	17.90	46.00	-28.10	AVG	
7		5.4660	14.51	9.57	24.08	60.00	-35.92	QP	
8		5.4660	4.47	9.57	14.04	50.00	-35.96	AVG	
9		12.4140	25.31	9.62	34.93	60.00	-25.07	QP	
10		12.4140	14.02	9.62	23.64	50.00	-26.36	AVG	
11		25.6940	20.41	9.82	30.23	60.00	-29.77	QP	
12		25.6940	13.20	9.82	23.02	50.00	-26.98	AVG	

Note:

 Freq. = Emission frequency in MHz

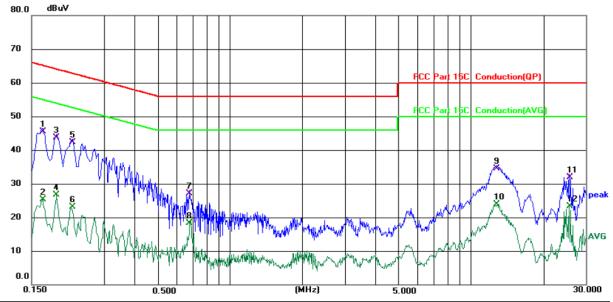
 Reading level (dBμV) = Receiver reading

 Corr. Factor (dB) = LISN factor + Cable loss

 Measurement (dBμV) = Reading level (dBμV) + Corr. Factor (dB)

 Limit (dBμV) = Limit stated in standard

 Margin (dB) = Measurement (dBμV) - Limits (dBμV)


 Q.P. =Quasi-Peak

 AVG =average

 * is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Page 10 of 94

Report No.: TCT211220E025

Conducted Emission on Neutral Terminal of the power line (150 kHz to 30MHz)

Site 844 Shielding Room Phase: N Temperature: 25 (°C) Humidity: 55 %

Lim	it: FC	C Part 15	C Conduct	ion(QP)		Power: DC 5 V(Adapter Input AC 120 V/60 Hz)			
No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1660	35.96	9.58	45.54	65.16	-19.62	QP	
2		0.1660	15.72	9.58	25.30	55.16	-29.86	AVG	
3		0.1900	34.09	9.52	43.61	64.04	-20.43	QP	
4		0.1900	17.11	9.52	26.63	54.04	-27.41	AVG	
5		0.2220	32.91	9.31	42.22	62.74	-20.52	QP	
6		0.2220	13.72	9.31	23.03	52.74	-29.71	AVG	
7		0.6780	17.86	9.21	27.07	56.00	-28.93	QP	
8		0.6780	9.01	9.21	18.22	46.00	-27.78	AVG	
9		12.8100	24.77	9.65	34.42	60.00	-25.58	QP	
10		12.8100	14.35	9.65	24.00	50.00	-26.00	AVG	
11		25.6939	22.09	9.83	31.92	60.00	-28.08	QP	
12		25.6939	13.47	9.83	23.30	50.00	-26.70	AVG	

Note1:

Freq. = Emission frequency in MHz

TCT通测检测 TCT通测检测

Reading level ($dB\mu V$) = Receiver reading

Corr. Factor (dB) = LISN factor + Cable loss

Measurement ($dB\mu V$) = Reading level ($dB\mu V$) + Corr. Factor (dB)

Limit $(dB\mu V) = Limit$ stated in standard

Margin (dB) = Measurement (dB μ V) – Limits (dB μ V)

Q.P. =Quasi-Peak AVG =average

* is meaning the worst frequency has been tested in the frequency range 150 kHz to 30MHz.

Note2:

Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (Lowest channel and 8DPSK) was submitted only.

5.3. Conducted Output Power

5.3.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.2	47 (b)(1)
Test Method:	KDB 558074 D01 v05r02	
Limit:	power of the intentional rad	hopping systems operating nd employing at least 75 nannels, and all frequency 5-5850 MHz band: 1 watt. ping systems in the
Test Setup:	Spectrum Analyzer	EUT
Test Mode:	Transmitting mode with mode	dulation
Test Procedure:	centered on a hopping char RBW > the 20 dB bandwidth measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize.	imes the 20 dB bandwidth, nnel
Test Result:	PASS	

5.3.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.4. 20dB Occupy Bandwidth

5.4.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)			
Test Method:	KDB 558074 D01 v05r02			
Limit:	N/A			
Test Setup:	Spectrum Analyzer EUT			
Test Mode:	Transmitting mode with modulation			
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Use the following spectrum analyzer settings for 20dB Bandwidth measurement. Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. Measure and record the results in the test report. 			
Test Result:	PASS			

5.4.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

5.5. Carrier Frequencies Separation

5.5.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Test Result:	PASS

5.5.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

Page 14 of 94

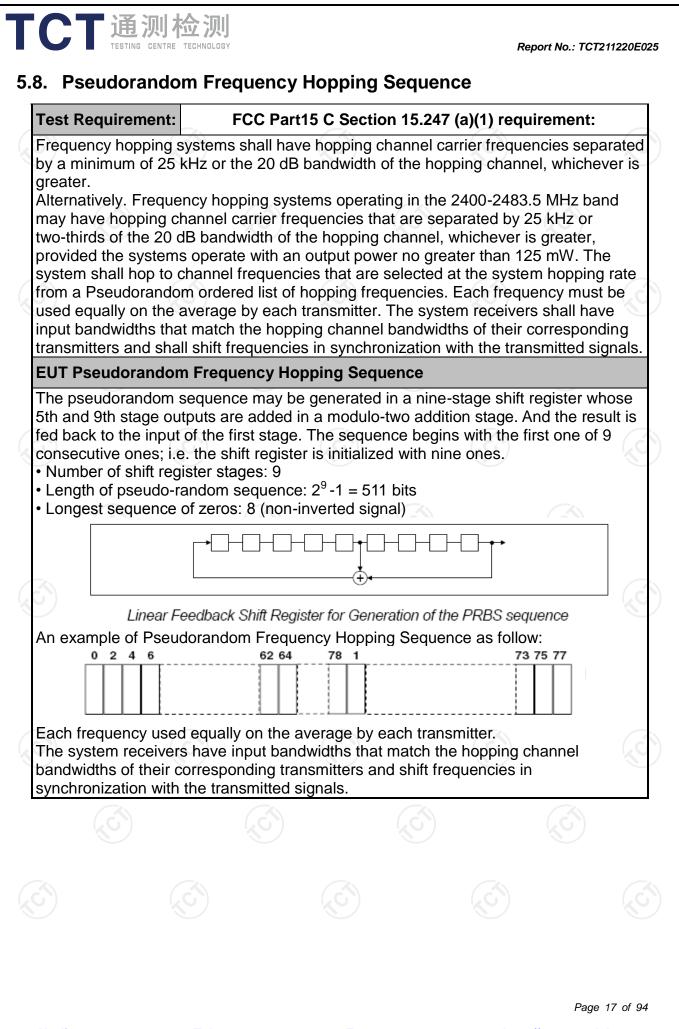
5.6. Hopping Channel Number

5.6.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (a)(1)
Test Method:	KDB 558074 D01 v05r02
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Hopping mode
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. The number of hopping frequency used is defined as the number of total channel. Record the measurement data in report.
Test Result:	PASS

5.6.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022


5.7. Dwell Time

5.7.1. Test Specification

FCC Part15 C Section 15.247 (a)(1)
KDB 558074 D01 v05r02
The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Spectrum Analyzer EUT
Hopping mode
 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
PASS

5.7.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022
		(S)	

5.9. Conducted Band Edge Measurement

5.9.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz (≥1% span=10MHz), VBW = 300 kHz (≥RBW). Band edge emissions must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. The attenuation shall be 30 dB instead of 20 dB when RMS conducted output power procedure is used. Enable hopping function of the EUT and then repeat step 2 and 3. Measure and record the results in the test report.
Test Result:	PASS

5.9.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022

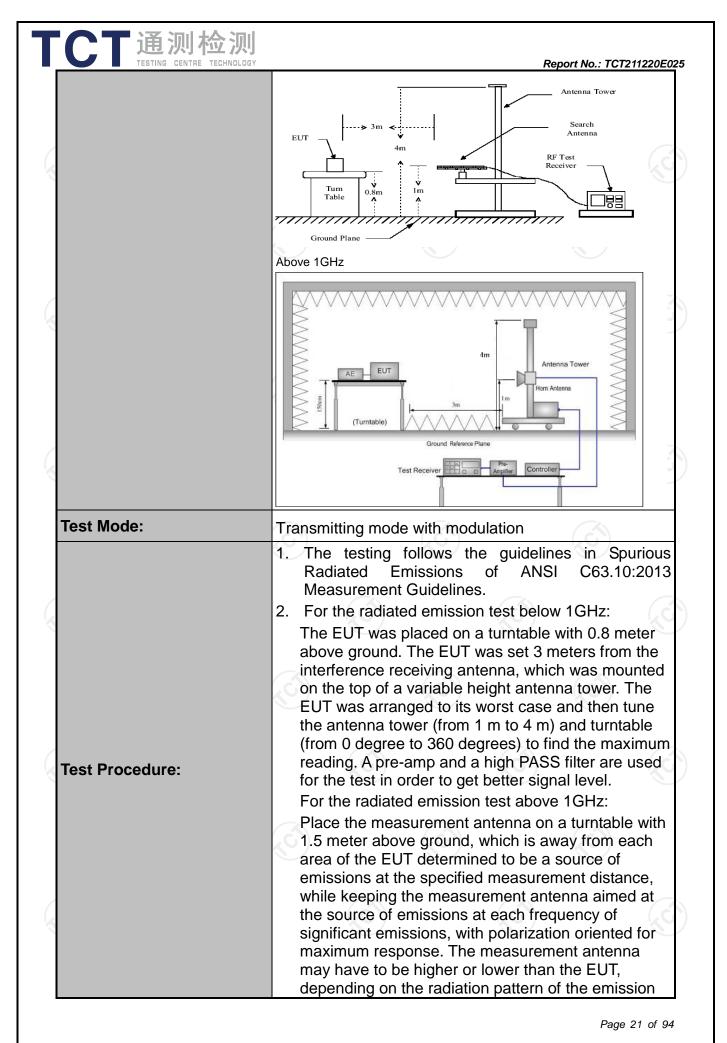
5.10. Conducted Spurious Emission Measurement

5.10.1. Test Specification

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB 558074 D01 v05r02
Limit:	In any 100 kHz bandwidth outside the intentional radiation frequency band, the radio frequency power shall be at least 20 dB below the highest level of the radiated power. In addition, radiated emissions which fall in the restricted bands must also comply with the radiated emission limits.
Test Setup:	Spectrum Analyzer EUT
Test Mode:	Transmitting mode with modulation
Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100 kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band.
Test Result:	PASS

5.10.2. Test Instruments

Name	Manufacturer	Model No.	Serial Number	Calibration Due
Spectrum Analyzer	Agilent	N9020A	MY49100619	Jul. 18, 2022
Combiner Box	Ascentest	AT890-RFB	N/A	Jul. 07, 2022



5.11. Radiated Spurious Emission Measurement

5.11.1. Test Specification

TCT通测检测 TESTING CENTRE TECHNOLOGY

		15.209			
ANSI C63.10	0:2013				
9 kHz to 25 (GHz				í.
3 m	X	9		R)
Horizontal &	Vertical				
Frequency	Detector	RBW	VBW		Remark
9kHz- 150kHz			1kHz		i-peak Value
150kHz- 30MHz	Quasi-peak	k 9kHz	30kHz	Quas	i-peak Value
30MHz-1GHz	Quasi-peak		300KHz	1 11	i-peak Value
Above 1GHz	Peak				eak Value
	Peak	1MHz	10Hz	Ave	rage Value
Frequen)CV		-		asurement
				Dista	nce (meters)
					300
			(NDZ)		<u>30</u> 30
)		3
				(ć.	3
				N.	3
Above 9	60	500			3
Frequency		ovolts/meter)	Distan (meter	се	Detector
Above 1GHz	z		1		Average Peak
Di EUT 0.8m	istance = 3m				
J.	5)	((C)		
	9 kHz to 25 0 3 m Horizontal & Frequency 9kHz-150kHz 150kHz- 30MHz-130Hz 30MHz-1GHz Above 1GHz Frequency 0.009-0. 0.490-1. 1.705-3 30-88 88-210 216-96 Above 9 Frequency Above 1GHz For radiated emi	9 kHz to 25 GHz 3 m Horizontal & Vertical Frequency Detector 9kHz-150kHz Quasi-peak 150kHz- Quasi-peak 30MHz 30MHz 30MHz Quasi-peak 30MHz Quasi-peak 30MHz Quasi-peak 30MHz Quasi-peak Above 1GHz Peak Frequency 0.009-0.490 0.490-1.705 1.705-30 1.705-30 30-88 88-216 1 216-960 Above 960 Frequency Fiel Above 1GHz For radiated emissions below Distance - 3m UT Distance - 3m	9 kHz to 25 GHz 3 m Horizontal & Vertical	9 kHz to 25 GHz 3 m Horizontal & Vertical Frequency Detector RBW VBW 9kHz-150kHz Quasi-peak 200Hz 1kHz 150kHz-Quasi-peak 9kHz 300kHz 30MHz-1GHz Quasi-peak 120KHz 300KHz Above 1GHz Peak 1MHz 30HHz Peak 1MHz 10Hz Frequency Field Strength (microvolts/meter) 0.009-0.490 2400/F(KHz) 0.490-1.705 24000/F(KHz) 1.705-30 30 30-88 100 88-216 150 216-960 200 Above 960 500 Frequency Field Strength (microvolts/meter) Above 1GHz 500 30 30-88 Frequency Field Strength (microvolts/meter) Above 1GHz 500 30 For radiated emissions below 30MHz Distance = 3m For radiated emissions below 30MHz	9 kHz to 25 GHz 3 m Horizontal & Vertical

	CENTRE TECHNOLOGY	receir meas maxin anter restri abov 3. Set EUT 4. Use (1) \$ (2) \$ (2) \$ (3)	= max hold For average correction fa 15.35(c). Du On time =N1	ximum signa tenna eleva missions. Th n for maxim nge of heigh d or referend mum power ntinuously. g spectrum <i>v</i> ide enough ing measure 20 kHz for f VBW≥RBW uto; Detecto for peak e measuren actor metho ty cycle = C	ission so al. The fin tion shal ne measu um emis its of fror ce groun setting analyzer to fully o ed; < 1 GHz /; or function nent: use d per on time/1 ++Nn-	nal II be that v urement sions sha m 1 m to 4 d plane. and enat settings: capture th c, RBW=1 n = peak; duty cycl 00 millise 1*LNn-1+	which II be 4 m ole the e MHz Trace e conds Nn*Ln
			length of ty Average Er Level + 20* Corrected R	pe 1 pulses nission Leve log(Duty cy eading: Ante	, etc. el = Peal cle) enna Fac	k Emissio ctor + Cat	n ole
Test results:			length of ty Average Er Level + 20*	pe 1 pulses nission Leve log(Duty cy eading: Ante	, etc. el = Peal cle) enna Fac	k Emissio ctor + Cat	n ole
Test results:		l	length of ty Average Er Level + 20* Corrected R	pe 1 pulses nission Leve log(Duty cy eading: Ante	, etc. el = Peal cle) enna Fac	k Emissio ctor + Cat	n ole
Test results:		l	length of ty Average Er Level + 20* Corrected R	pe 1 pulses nission Leve log(Duty cy eading: Ante	, etc. el = Peal cle) enna Fac	k Emissio ctor + Cat	n ole
Test results:		l	length of ty Average Er Level + 20* Corrected R	pe 1 pulses nission Leve log(Duty cy eading: Ante	, etc. el = Peal cle) enna Fac	k Emissio ctor + Cat	n ole

5.11.2. Test Instruments

	Radiated En	nission Test Site	e (966)	
Name of Equipment	Manufacturer	Model	Serial Number	Calibration Due
EMI Test Receiver	R&S	ESIB7	100197	Jul. 07, 2022
Spectrum Analyzer	R&S	FSQ40	200061	Jul. 07, 2022
Pre-amplifier	SKET	LNPA_0118G- 45	SK2021012 102	Mar. 11, 2022
Pre-amplifier	SKET	LNPA_1840G- 50	SK2021092 03500	Apr. 08, 2022
Pre-amplifier	HP	8447D	2727A05017	Jul. 07, 2022
Loop antenna	ZHINAN	ZN30900A	12024	Sep. 05, 2022
Broadband Antenna	Schwarzbeck	VULB9163	340	Sep. 04, 2022
Horn Antenna	Schwarzbeck	BBHA 9120D	631	Sep. 04, 2022
Horn Antenna	Schwarzbeck	BBHA 9170	00956	Apr. 10, 2023
Antenna Mast	Keleto	RE-AM	N/A	N/A
Coaxial cable	SKET	RC_DC18G-N	N/A	Apr. 08, 2022
Coaxial cable	SKET	RC-DC18G-N	N/A	Apr. 08, 2022
Coaxial cable	SKET	RC-DC40G-N	N/A	Jul. 07, 2022
EMI Test Software	Shurple Technology	EZ-EMC	N/A	N/A
			\mathcal{I}	

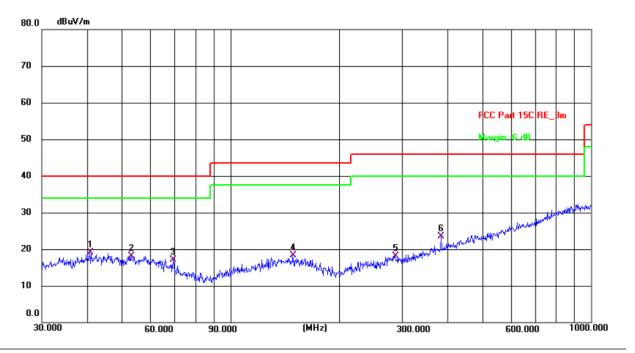
5.11.3. Test Data

TCT通测检测 TCT通测检测

Please refer to following diagram for individual

Site #2 3m Anechoic Chamber Limit: ECC Part 15C RE 3m

Polarization: Horizontal


Temperature: 24.9(C) Humidity: 53 %

Report No.: TCT211220E025

Limit:	FCC Part 150	CRE_3m			Po	wer: DC	3.7 V		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark
1 *	46.1779	5.02	13.86	18.88	40.00	-21.12	QP	Ρ	
2	55.0274	4.31	13.45	17.76	40.00	-22.24	QP	Ρ	
3	116.1321	5.17	11.65	16.82	43.50	-26.68	QP	Ρ	
4	144.3348	5.22	13.28	18.50	43.50	-25.00	QP	Ρ	
5	290.0172	4.10	13.96	18.06	46.00	-27.94	QP	Р	
6	468.8762	4.63	18.73	23.36	46.00	-22.64	QP	Ρ	

Page 24 of 94

Vertical:

Site #	2 3m Anecho	ic Chambe	er	Polariz	zation: Ve	ertical		T	Temperature: 24.9(C)	Humidity: 53 %
Limit:	FCC Part 150	C RE_3m			Po	wer: DC	3.7 ∨			
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	P/F	Remark	
1 *	40.7016	5.02	13.99	19.01	40.00	-20.99	QP	Ρ		
2	53.1313	4.54	13.57	18.11	40.00	-21.89	QP	Ρ		
3	69.3568	5.89	11.24	17.13	40.00	-22.87	QP	Ρ		
4	148.9625	5.08	13.32	18.40	43.50	-25.10	QP	Ρ		
5	285.9778	4.03	14.05	18.08	46.00	-27.92	QP	Р		
6	383.9318	6.88	16.69	23.57	46.00	-22.43	QP	Ρ		

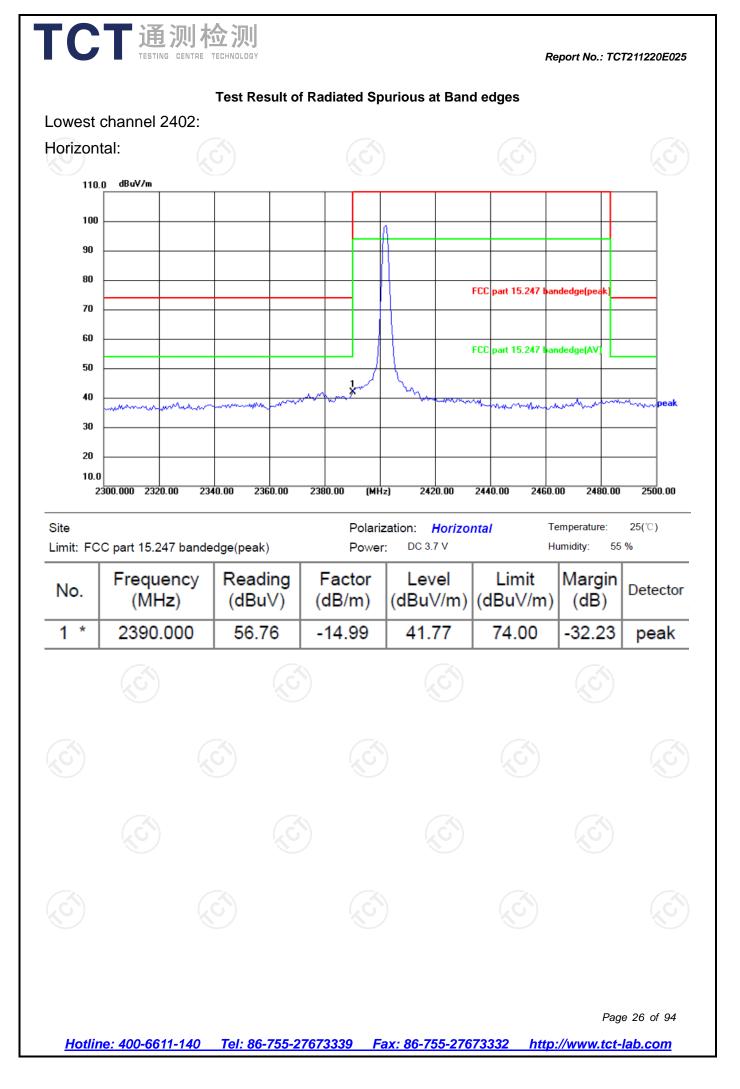
Note: 1. The low frequency, which started from 9KHz~30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

2. Left earbud and Right earbud of EUT have been tested, but the test data only show the worst case in this report, and we found the worst case is Left earbud. Measurements were conducted in all three channels (high, middle, low) and three modulation (GFSK, Pi/4 DQPSK, 8DPSK) and the worst case Mode (Lowest channel and 8DPSK) was submitted only.

3. Freq. = Emission frequency in MHz

Measurement $(dB\mu V/m) = Reading level (dB\mu V) + Corr. Factor (dB)$

Correction Factor= Antenna Factor + Cable loss - Pre-amplifier


Limit $(dB\mu V/m) = Limit$ stated in standard

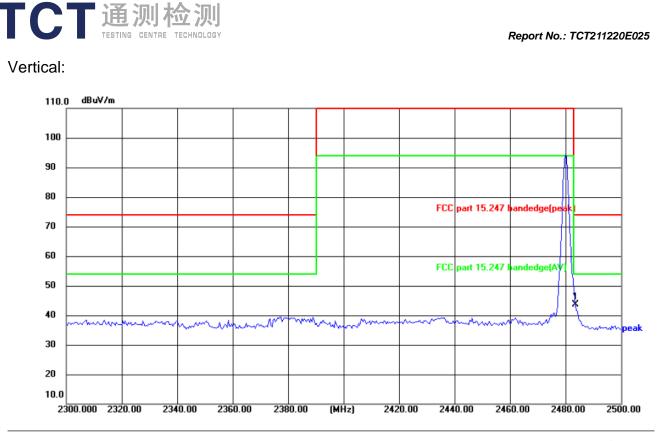
Over $(dB) = Measurement (dB\mu V/m) - Limits (dB\mu V/m)$

* is meaning the worst frequency has been tested in the test frequency range.

Page 25 of 94

Report No.: TCT211220E025

C	T 通 TESTING	(774) 12 CENTRE 1	TECHNOLOGY							Report No.	: TCT	211220E
'ertical	:											
110).0 dBu¥/m								1			
100)											
90							{				╀	
80								FI	CC part 15.247	/ bandedge(pe	ak	
70												
60								FI	CC part 15.247	/ bandedge(AV	łĽ	
50												
40		-Mwaa	man	hum	punto	And	hum	man	mm	ann	m	·····pea
30												
20 10.1	0											
	2300.000 2320.	.00 234	40.00 23	360.00	2380.00) (MH	zj 242	20.00 2	440.00 24	460.00 24	80.00	2500.0
	CC part 15 24	l7 hande	dae(neak	c)		Polariz		Vertical 7 V		Temperatu Humidity:		25(℃) %
	CC part 15.24 Freque (MH:	ency	Read (dBu	ling	Fac (dB	Power	: DC 3.	7 V /el	Limit (dBuV/r	Humidity:	55 gin	
	Freque	ency z)	Read	ling ıV)		Power ctor /m)	: DC 3.	⁷ ∨ /el √/m) (Humidity: Marg m) (dE	55 gin 3)	%
Limit: FC No. 1 *	Freque (MH:	ency z))00	Read (dBu	ling ıV)	(dB	Power ctor /m)	E DC 3.	⁷ ∨ /el √/m) (dBuV/r	Humidity: Marg m) (dE	55 gin 3)	% Detect
No.	Freque (MH:	ency z))00	Read (dBu 52.7	ling ıV)	(dB -14	Power ctor /m) .99	Lev (dBu) 37.	⁷ ∨ /el √/m) (dBuV/r 74.00	Humidity: Marg m) (dE	55 gin 3) 26	[%] Detect pea l
Limit: FC	Freque (MH: 2390.0	ency z) 000	Read (dBu 52.7	ling ı∨) 73	(dB -14	Power ctor /m) .99	DC 3.	7∨ /el √/m) 74	dBuV/r 74.00	Humidity: Marg (dE -36.	55 gin 3) 26	[%] Detect pea l
No.	Freque (MH: 2390.0	ency z) 000	Read (dBu 52.7	ling ı∨) 73	(dB -14	Power (m) .99	DC 3.	7∨ /el √/m) 74	(dBuV/r 74.00	Humidity: Marg (dE -36.	55 (gin 3) 26	[%] Detect


Page 27 of 94

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Report No.: TCT211220E025 Highest channel 2480: Horizontal: 110.0 dBuV/m 100 90 80 FCC part 15.247 | andedge(p 70 60 FCC part 15.247 andedge(AV 50 40 num mont Ann min beak 30 20 10.0 2300.000 2320.00 2340.00 2360.00 2380.00 (MHz) 2420.00 2440.00 2460.00 2480.00 2500.00 Temperature: Site Polarization: Horizontal 25(°℃) Limit: FCC part 15.247 bandedge(peak) DC 3.7 V Humidity: 55 % Power: Frequency Reading Factor Limit Margin Level No. Detector (MHz) (dBuV) (dB/m) (dBuV/m) (dBuV/m) (dB) * 2483.500 63.18 -14.58 48.60 74.00 -25.40 1 peak

Page 28 of 94

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Site Limit: FC	FCC part 15.247 bandedge(peak)Polarization:VerticalPower:DC 3.7 V					Temperature: 25(℃) Humidity: 55 %		
No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector	
1 *	2483.500	58.18	-14.58	43.60	74.00	-30.40	peak	

Note: Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.

Above 1GHz

Modulation	Type: 8D	PSK							
Low chann	el: 2402 N	IHz							
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBuV)	Correction Factor (dB/m)	Peak	n Level AV (dBµV/m)	Peak limit (dBµV/m)	AV limit (dBµV/m)	Margin (dB)
4804	Н	43.07		0.66	43.73		74	54	-10.27
7206	Н	34.42		9.50	43.92		74	54	-10.08
	Н					~~~			
	<u> </u>		() ()) 		· (J`)		(\mathcal{O})	
4804	V	42.36		0.66	43.02		74	54	-10.98
7206	V	34.51		9.50	44.01		74	54	-9.99
	V								

Middle cha	nnel: 2441	MHz))				K C
Frequency (MHz)	Ant. Pol. H/V	Peak reading (dBµV)	AV reading (dBµV)	Correction Factor (dB/m)	Emissic Peak (dBµV/m)	AV	Peak limit (dBµV/m)		Margin (dB)
4882	Н	43.19		0.99	44.18	·	74	54	-9.82
7323	ζ ^O H)	34.74	1.0	9.87	44.61		74	54	-9.39
	Ĥ								
						-	-		
4882	V	42.85		0.99	43.84		74	54	-10.16
7323	V	32.27		9.87	42.14		74	54	-11.86
	V			X	· /		×		

High channel: 2480 MHz

CT通测检测 TESTING CENTRE TECHNOLOGY

i ligit charli		/11.12							
Frequency	Ant Pol	Peak	AV	Correction	Emissio	on Level	Peak limit	AV/ limit	Margin
(MHz)	H/V	reading (dBµV)	reading (dBµV)	Factor (dB/m)	Peak (dBµV/m)			(dBµV/m)	(dB)
4960	Н	44.22		1.33	45.55		74	54	-8.45
7440	Н	34.93		10.22	45.15		74	54	-8.85
	Н								
G)		(.c.)					$(\dot{\mathbf{O}})$. .
4960	V	44.68		1.33	46.01		74	54	-7.99
7440	V	35.45		10.22	45.67		74	54	-8.33
	V								

Note:

1. Emission Level=Peak Reading + Correction Factor; Correction Factor= Antenna Factor + Cable loss - Pre-amplifier

2. Margin (dB) = Emission Level (Peak) (dB μ V/m)-Average limit (dB μ V/m)

3. The emission levels of other frequencies are very lower than the limit and not show in test report.

4. Measurements were conducted from 1 GHz to the 10th harmonic of highest fundamental frequency.

5. Data of measurement shown "---"in the above table mean that the reading of emissions is attenuated more than 20 dB below the limits or the field strength is too small to be measured.

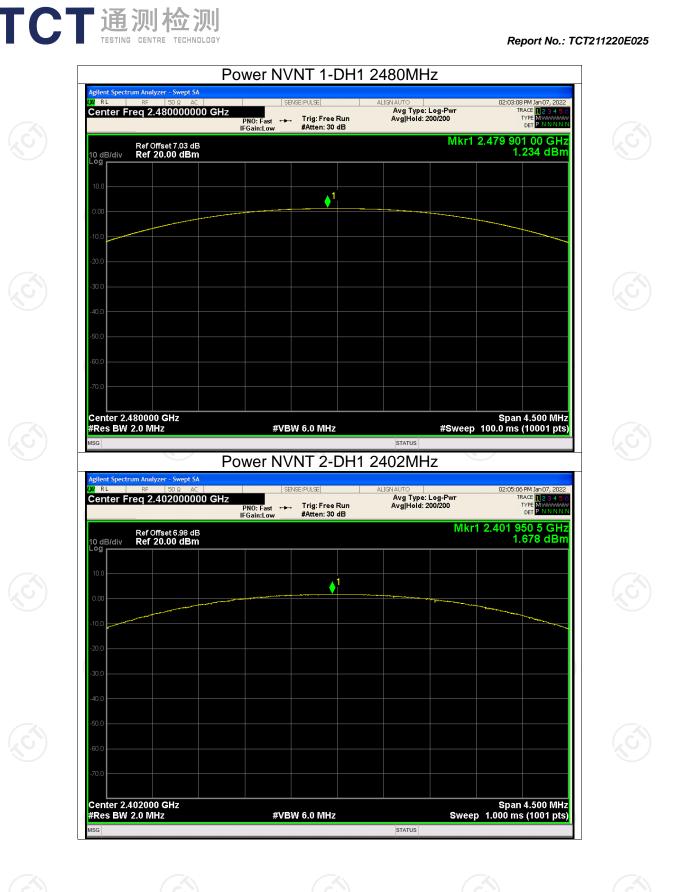
6. Measurements were conducted in all three modulation (GFSK, Pi/4 DQPSK, 8DPSK), and the worst case Mode (8DPSK) was submitted only.

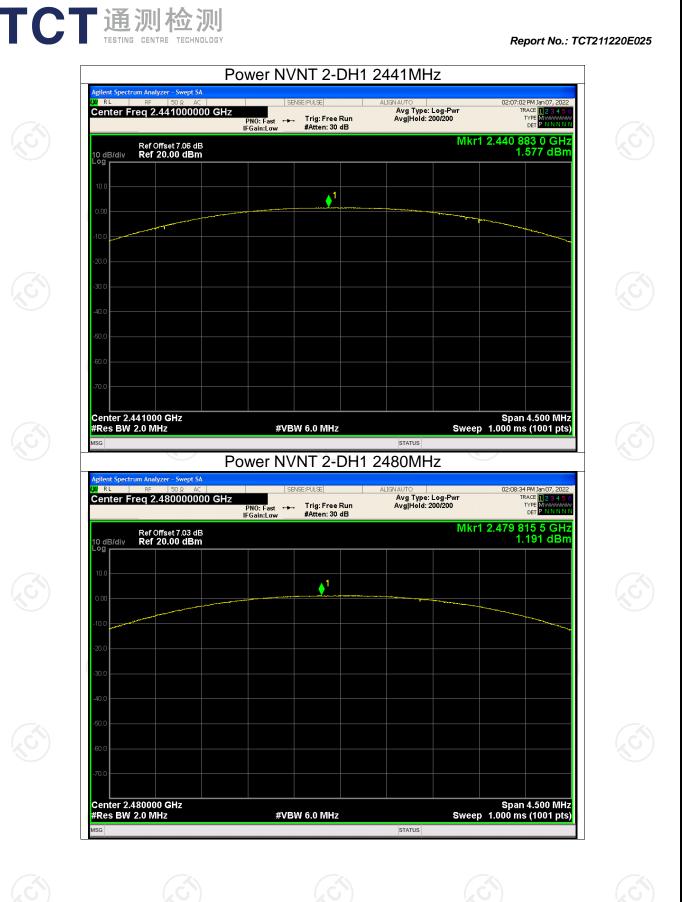
7. All the restriction bands are compliance with the limit of 15.209.


Maximum Conducted Output Power					
Condition	Mode	Frequency (MHz)	Conducted Power (dBm)	Limit (dBm)	Verdict
NVNT	1-DH1	2402	1.693	21	Pass
NVNT	1-DH1	2441	1.556	21	Pass
NVNT	1-DH1	2480	1.234	21	Pass
NVNT	2-DH1	2402	1.678	21	Pass
NVNT	2-DH1	2441	1.577	21	Pass
NVNT 🔇	2-DH1	2480	1.191	21	Pass
NVNT	3-DH1	2402	1.723	21	Pass
NVNT	3-DH1	2441	1.578	21	Pass
NVNT	3-DH1	2480	1.141	21	Pass

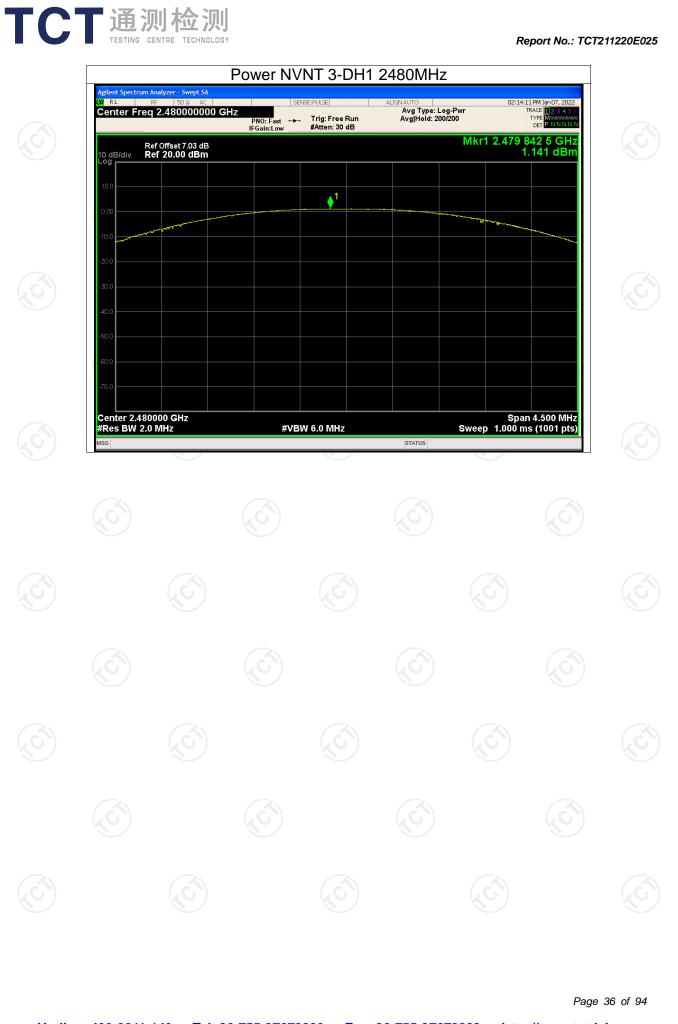
Appendix A: Test Result of Conducted Test

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com



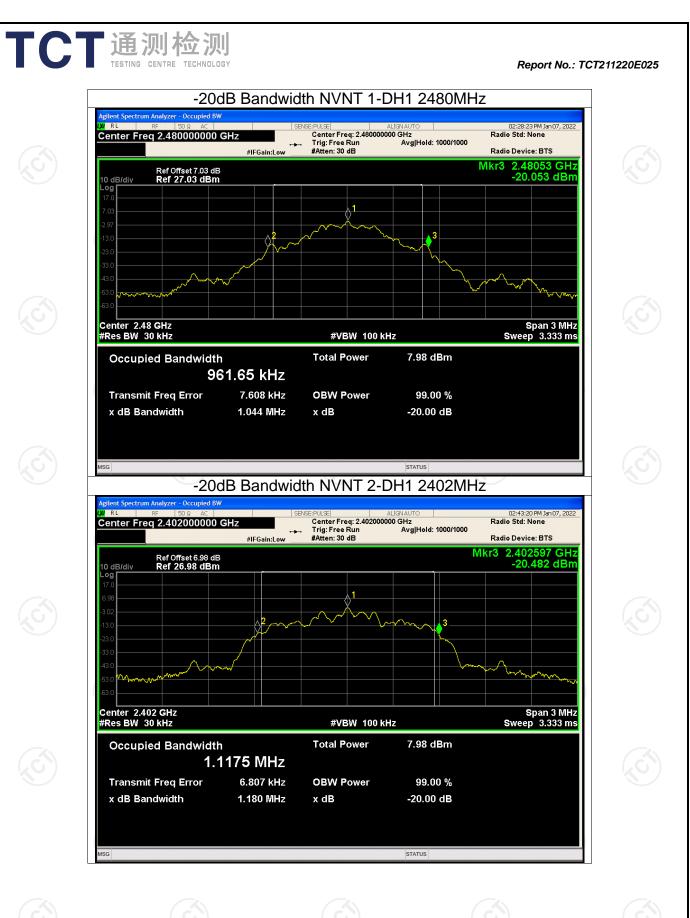

Power NVNT 1-DH1 2441MHz

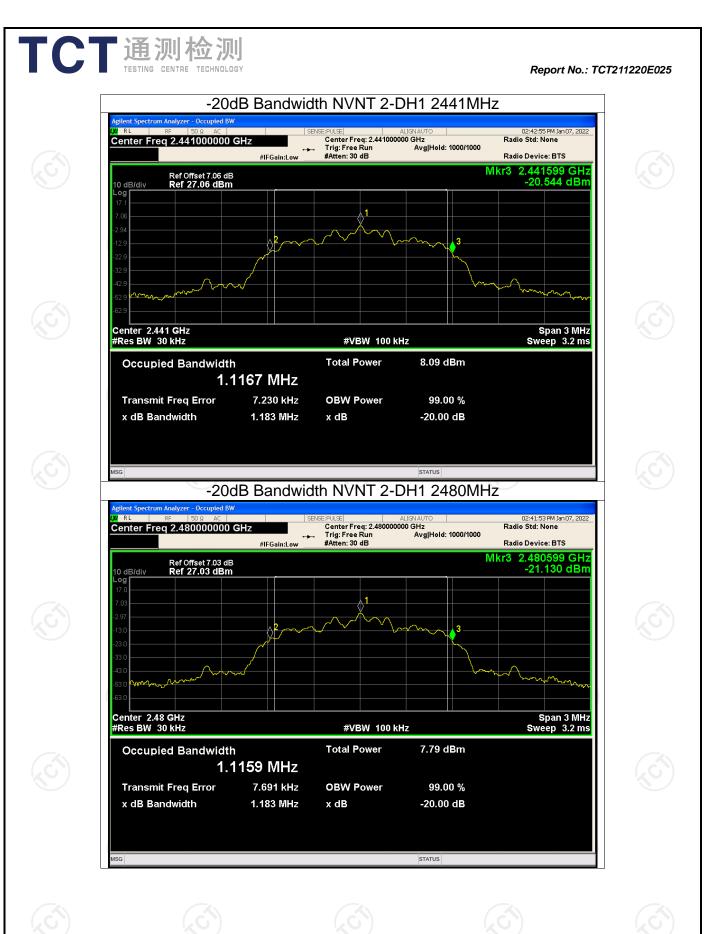

Page 32 of 94

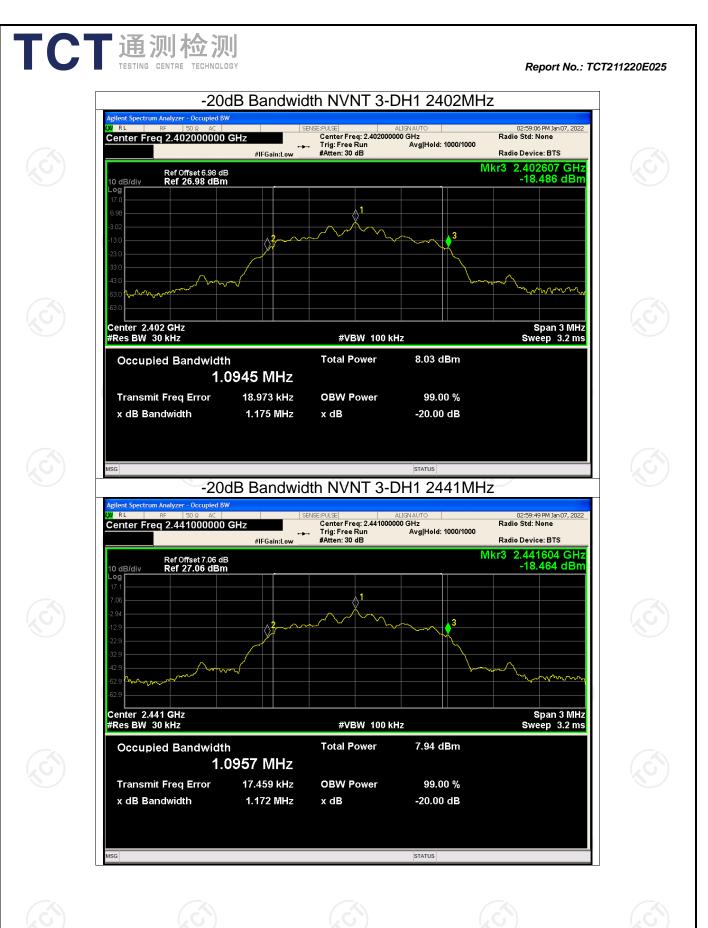

Report No.: TCT211220E025

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

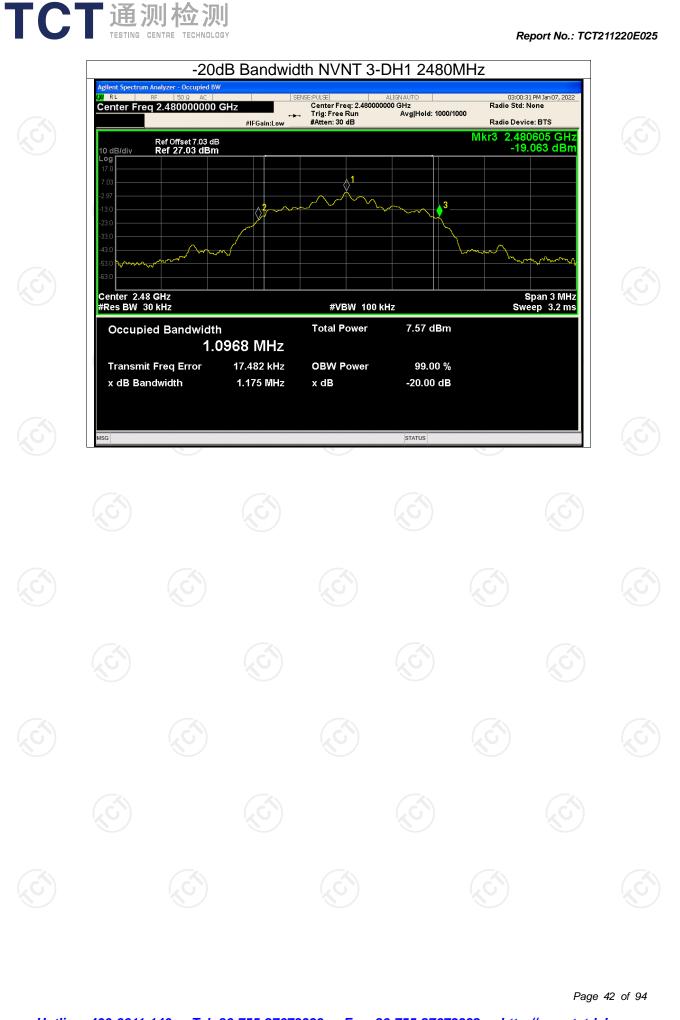
Condition Mode		Frequency (MHz)	-20 dB Bandwidth (MHz)	Verdict	
NVNT	1-DH1	2402	1.045	Pass	
NVNT 🚫	1-DH1	2441	1.043	Pass	
NVNT	1-DH1	2480	1.044	Pass	
NVNT	2-DH1	2402	1.180	Pass	
NVNT	2-DH1	2441	1.183	Pass	
NVNT	2-DH1	2480	1.183	Pass	
NVNT	3-DH1	2402	1.175	Pass	
NVNT	3-DH1	2441	1.172	Pass	
NVNT	3-DH1	2480	1.175	Pass	
X					


TCT通测检测 TESTING CENTRE TECHNOLOGY

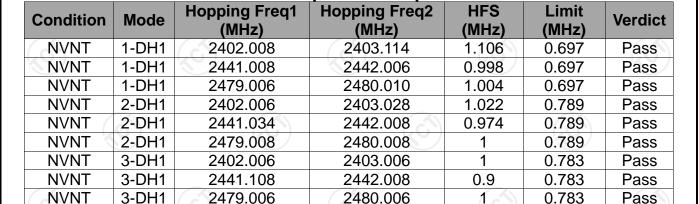

Report No.: TCT211220E025



Page 38 of 94



Page 40 of 94



Page 41 of 94

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Carrier Frequencies Separation

TCT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT211220E025

Page 43 of 94

CFS NVNT 1-DH1 2441MHz

STATUS

ent Spectrum Analyzer - Swept SA U RL 48 PM Jan 07, 2022 Center Freq 2.441500000 GHz Avg Type: Log-Pwr Avg|Hold:>100/100 TYP DE PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.441 008 GHz 1.225 dBm Ref Offset 7.06 dB Ref 20.00 dBm 10 dB/div Log 1 ⊘2 why ~~~ ymy Center 2.441500 GHz #Res BW 100 kHz Span 2.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH FUNCTION FUNCTION VALUE 2.441 008 GHz 2.442 006 GHz 1.225 dBm 1.192 dBm 1 f 1 f Ň 5 67 8 9 10 11 STATUS

m $\sim \sim$ pm/m ᠕᠕᠕ A $\gamma \sim \gamma$ Center 2.402500 GHz #Res BW 100 kHz Span 2.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz FUNCTION WIDTH FUNCTION 2.402 008 GHz 2.403 114 GHz 1.262 dBm 0.503 dBm N 1 F N 1 F 2 3 8 10 11

Test Graphs CFS NVNT 1-DH1 2402MHz

PULSE

PNO: Wide Trig: Free Run IFGain:Low #Atten: 30 dB

FCT通测检测 TESTING CENTRE TECHNOLOGY

(IRL

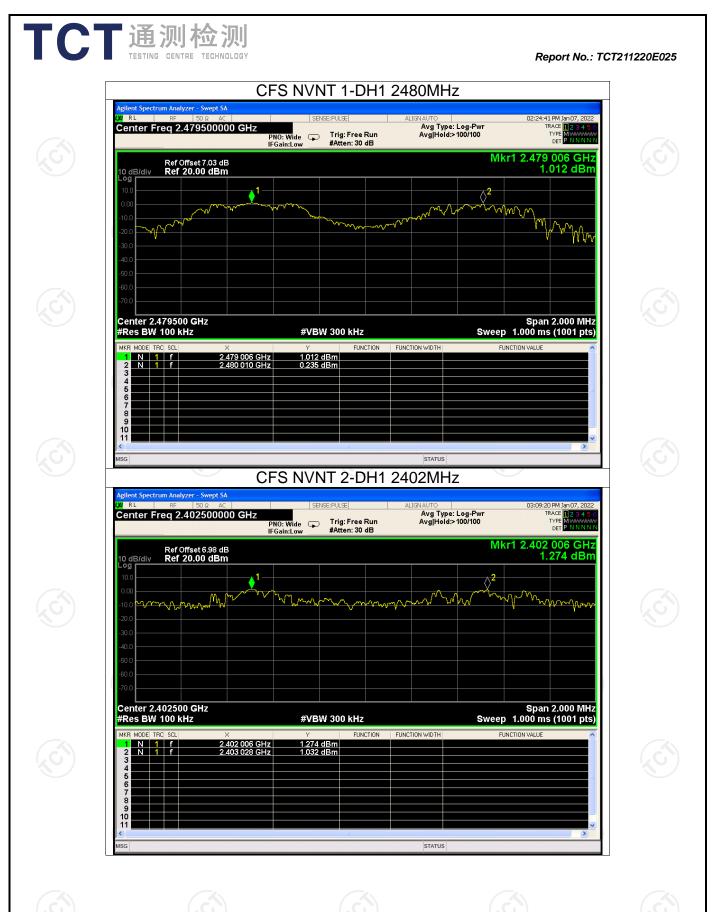
ISC

m Analyzer - Swept SA

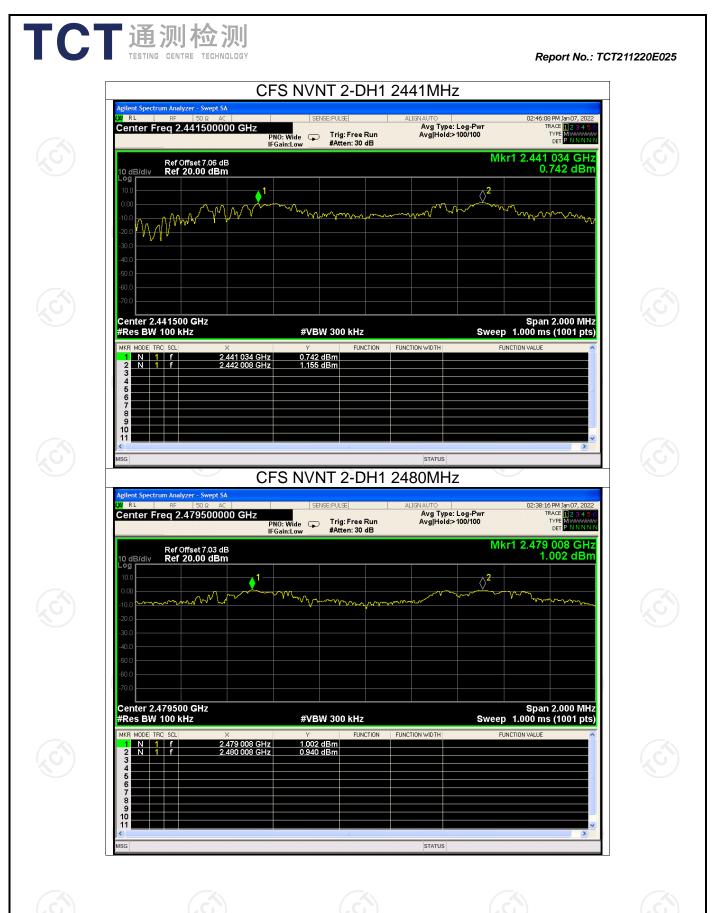
Ref Offset 6.98 dB Ref 20.00 dBm

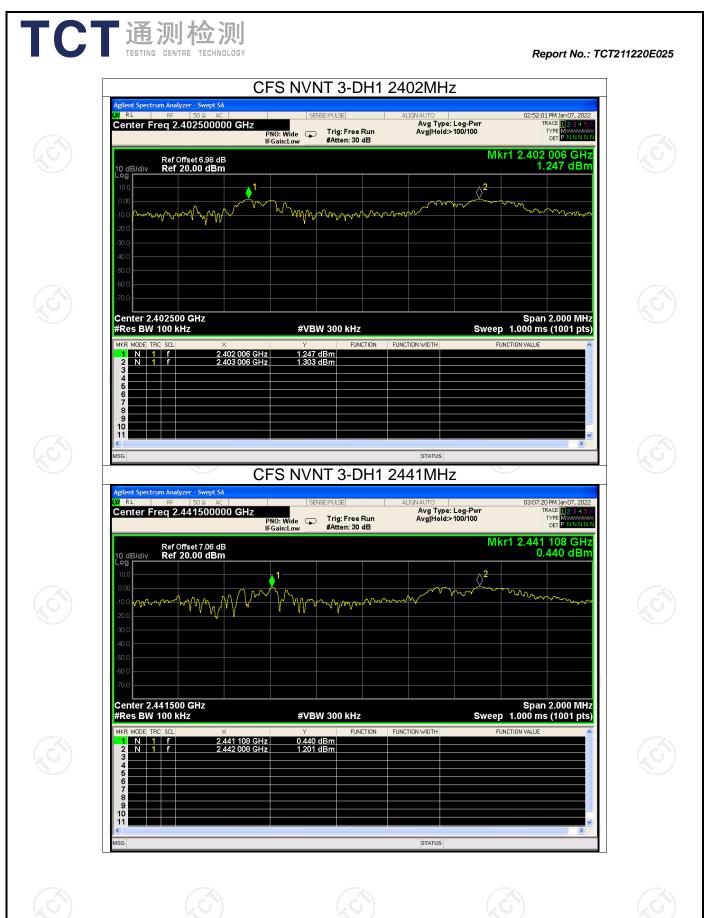
<∎1

Center Freq 2.402500000 GHz


TRACE TYPE DET

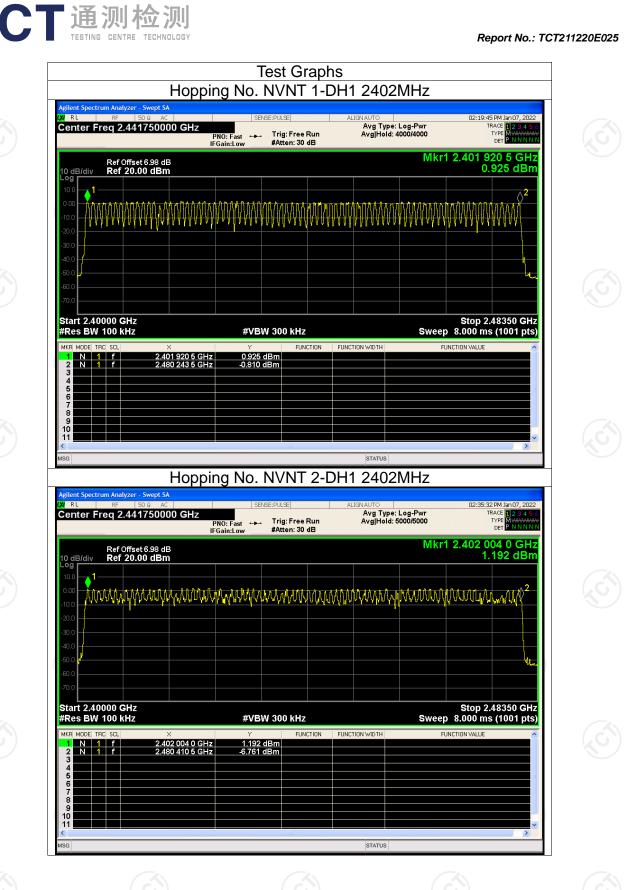
Mkr1 2.402 008 GHz 1.262 dBm


 \Diamond^2


Avg Type: Log-Pwi Avg|Hold>100/100

Report No.: TCT211220E025

Page 45 of 94


Page 47 of 94

SS SS	Verd Pas Pas Pas	Limit 15 15 15	umber	Hopping N 79 79 79 79	1 1	Mode 1-DH 2-DH 3-DH	Condition NVNT NVNT NVNT	

Report No.: TCT211220E025

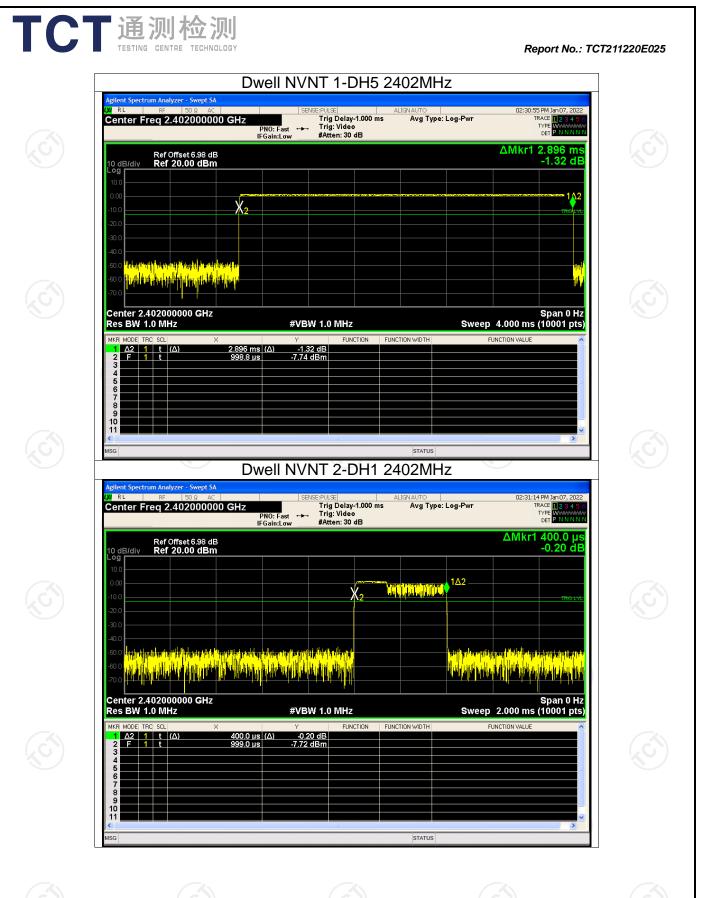
TCT通测检测 TESTING CENTRE TECHNOLOGY

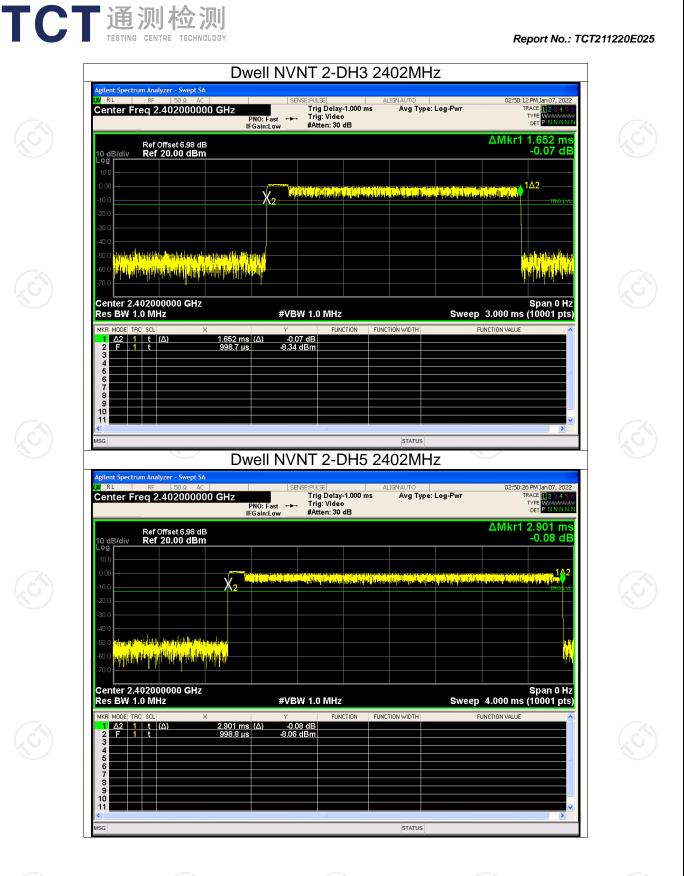
	1	SHz PNO: Fast IFGain:Low	#Atten: 30 dB	ALIGNAUTO Avg Type: Log-Pu Avg Hold: 10000/1	vr TR 0000 T Mkr1 2.402 00 1.3	328 dBm
-20.0 -30.0 -40.0 -50.0		JARAAAÂA ÂAÂAÂA		10100000000000000000000000000000000000	Vida na Mana Addi	
#Res B		Y	W 300 kHz	FUNCTION WIDTH	Stop 2.4 Sweep 8.000 ms Function Value	18350 GHz (1001 pts)
	1 f 2.479 9	1.320 GHz 1.320 93 0 GHz 0.746	s dBm			
MSG				STATUS		

Condition	Mode	Frequency (MHz)	Pulse Time (ms)	Total Dwell Time (ms)	Period Time (ms)	Limit (ms)	Verdict
NVNT	1-DH1	2402	0.391	125.12	31600	400	Pass
NVNT	1-DH3	2402	1.651	264.16	31600	400	Pass
NVNT	1-DH5	2402	2.896	308.907	31600	400	Pass
NVNT	2-DH1	2402	0.4	128	31600	400	Pass
NVNT	2-DH3	2402	1.652	264.32	31600	400	Pass
NVNT	2-DH5	2402	2.901	309.44	31600	400	Pass
NVNT	3-DH1	2402	0.4	128	31600	400	Pass
NVNT	3-DH3	2402	1.651	264.16	31600	400	Pass
NVNT	3-DH5	2402	2.902	309.547	31600	400	Pass

Dwell Time

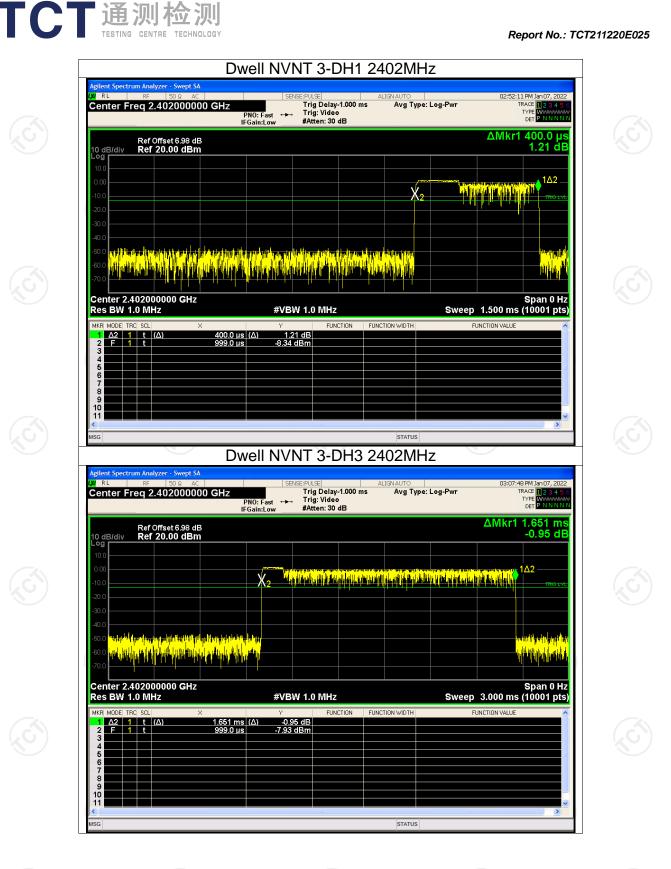
ict

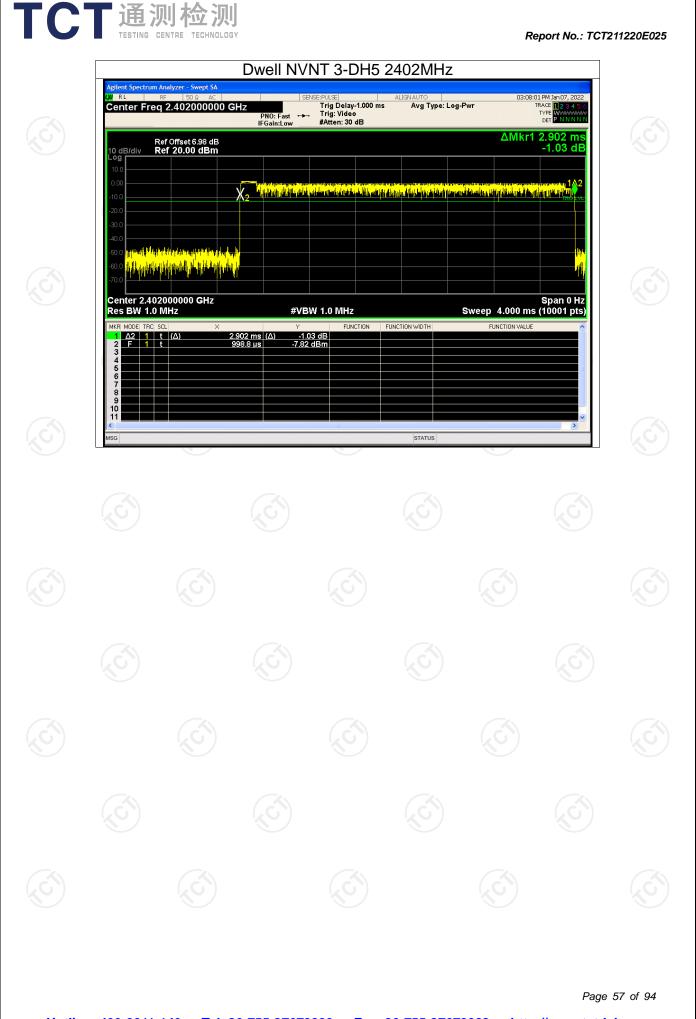

Report No.: TCT211220E025


Dwell NVNT 1-DH1 2402MHz ım Analyzer - Swept SA PNO: Fast: - - - - Trig Delay-1.000 ms Avg Type: Log-Pwr PNO: Fast: - - - - Trig: Video IFGain:Low #Atten: 30 dB (IRL TRACE TYPE DET Center Freq 2.402000000 GHz ΔMkr1 391.0 μs 0.20 dB Ref Offset 6.98 dB Ref 20.00 dBm 1Δ2 **∦**2 enderste de service de la s Constante de la service de l an Cablerin, ada a faith fabrithaith a f Center 2.402000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 2.000 ms (10001 pts) #VBW 1.0 MHz FUNCTION WIDT FUNCTION 1 t (Δ) 1 t 391.0 μs (Δ) 999.2 μs 0.20 dB -7.75 dBm F 8 10 11 STATUS Dwell NVNT 1-DH3 2402MHz ent Spectrum Analyzer - Swept SA U RL 30:39 PM Jan 07, 2022 TRACE 1 2 3 4 5 TYPE WWWWWW DET P N N N N PNO: Fast IFGain:Low ISBAD Avg Type: Log-Pwr Center Freg 2.402000000 GHz ΔMkr1 1.651 ms -1.24 dB Ref Offset 6.98 dB Ref 20.00 dBm 10 dB/div Log χ_2 -betablished to a second state of the s ud dia la facta la sell'heta di può factata a dilla and a section of the Center 2.402000000 GHz Res BW 1.0 MHz Span 0 Hz Sweep 3.000 ms (10001 pts) #VBW 1.0 MHz FUNCTION WIDTH FUNCTION FUNCTION VALUE 1.651 ms (Δ) 999.0 μs -1.24 dB -7.85 dBm t (Δ) 10 11 STATUS

Test Graphs

Report No.: TCT211220E025


Page 53 of 94



Page 55 of 94

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Bana Lago								
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict		
NVNT	1-DH1	2402	No-Hopping	-53.13	-20	Pass		
NVNT	1-DH1	2480	No-Hopping	-52.92	-20	Pass		
NVNT	2-DH1	2402	No-Hopping	-53.42	-20	Pass		
NVNT	2-DH1	2480	No-Hopping	-52.86	-20	Pass		
NVNT	3-DH1	2402	No-Hopping	-52.75	-20	Pass		
NVNT 📉	3-DH1	2480	No-Hopping	-52.54	-20	Pass		

Band Edge

Report No.: TCT211220E025

Page 58 of 94

Test Graphs Band Edge NVNT 1-DH1 2402MHz No-Hopping Ref (IRL E:PULSE Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 TRACE PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB TYPE Mkr1 2.402 008 GHz 1.315 dBm Ref Offset 6.98 dB Ref 20.00 dBm 10 dB/div Loa 1 γ_{γ} m mon h γ www Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge NVNT 1-DH1 2402MHz No-Hopping Emission ilent Spectrum Analyzer - Swept SA 33 PM Jan 07, 2022 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N U RL Center Freq 2.356000000 GHz Avg Type: Log-Pwr Avg|Hold: 1000/1000 PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.402 0 GHz 1.334 dBm Ref Offset 6.98 dB Ref 20.00 dBm 10 dB/div Log \wedge^4 **∂**³ ୍ଭ

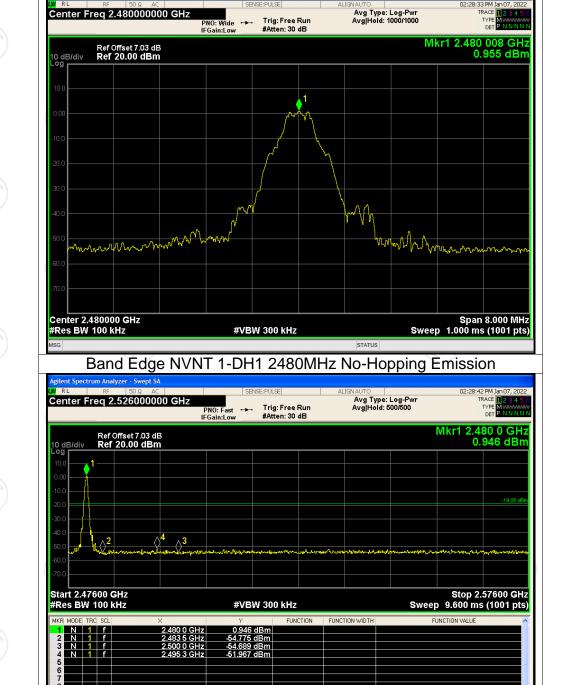
 You
 Start 2.30600 GHz
 Stop 2.40600 GHz

 #Res BW 100 KHz
 #VBW 300 kHz
 Stop 2.40600 GHz

 #Res BW 100 KHz
 #VBW 300 kHz
 Sweep 9.600 ms (1001 pts)

 MKR MODE TRC Scl.
 ×
 Y
 Function
 Function violtH

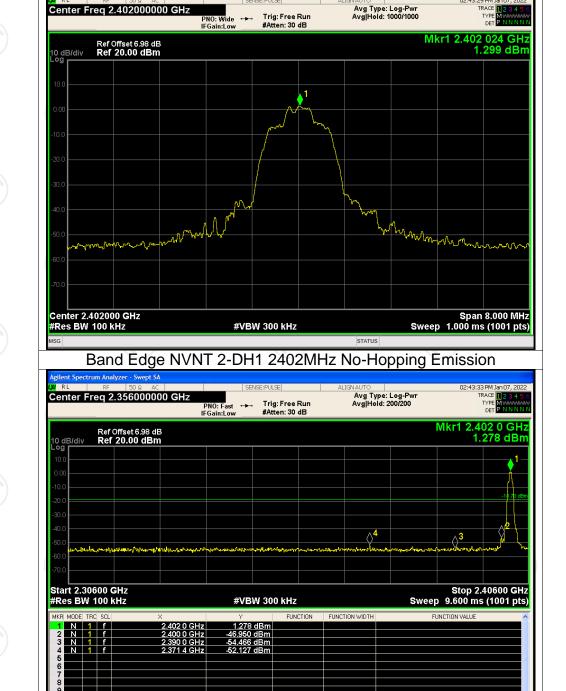
 1
 N
 1
 f
 2.402 0 GHz
 49.221 dBm
 1.334 dBm


 2
 N
 1
 f
 2.366 7 GHz
 51.811 dBm
 1.49.221 dBm
 1.49.221 dBm

 3
 N
 1
 f
 2.366 7 GHz
 51.811 dBm
 1.49.221 dBm

Page 59 of 94

STATUS



Band Edge NVNT 1-DH1 2480MHz No-Hopping Ref

a RL

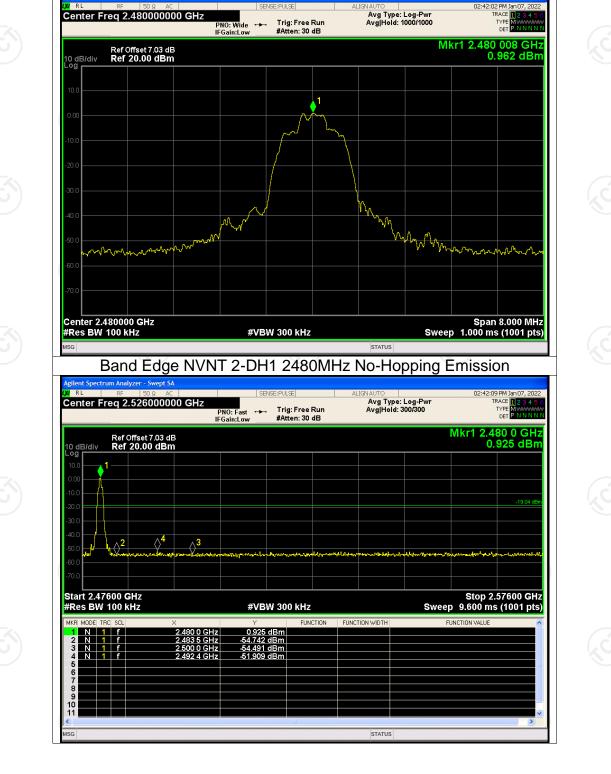
Report No.: TCT211220E025

Page 60 of 94

Band Edge NVNT 2-DH1 2402MHz No-Hopping Ref

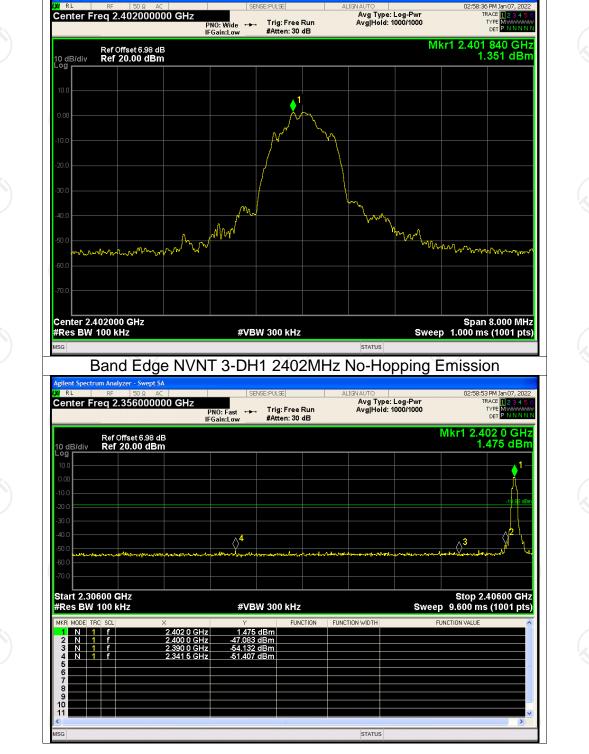
Center Freg 2.402000000 GHz

a RL

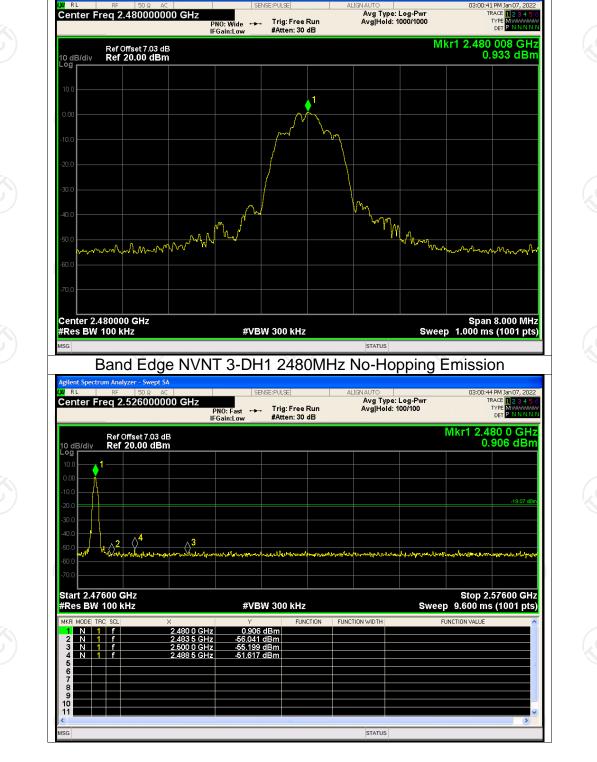

Report No.: TCT211220E025

TRACE

Page 61 of 94


STATUS

Band Edge NVNT 2-DH1 2480MHz No-Hopping Ref


Report No.: TCT211220E025

Page 62 of 94

Band Edge NVNT 3-DH1 2402MHz No-Hopping Ref

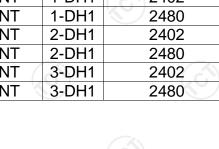
Report No.: TCT211220E025

Band Edge NVNT 3-DH1 2480MHz No-Hopping Ref

a RL

Report No.: TCT211220E025

Page 64 of 94


Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

Condition	wode	(MHz)	Mode	(dBc)	(dBc)	verdict
NVNT	1-DH1	2402	Hopping	-52.24	-20	Pass
NVNT	1-DH1	2480	Hopping	-52.99	-20	Pass
NVNT	2-DH1	2402	Hopping	-53.28	-20	Pass
NVNT	2-DH1	2480	Hopping	-53.26	-20	Pass
NVNT	3-DH1	2402	Hopping	-51.20	-20	Pass
NVNT 🔇	3-DH1	2480	Hopping	-52.59	-20	Pass

Band Edge(Hopping)							
Condition	Mode	Frequency (MHz)	Hopping Mode	Max Value (dBc)	Limit (dBc)	Verdict	
NVNT	1-DH1	2402	Hopping	-52.24	-20	Pass	
NVNT	1-DH1	2480	Hopping	-52.99	-20	Pass	
NVNT	2-DH1	2402	Hopping	-53.28	-20	Pass	
NVNT	2-DH1	2480	Hopping	-53.26	-20	Pass	
NVNT	3-DH1	2402	Hopping	-51.20	-20	Pass	
NVNT 🔇	3-DH1	2480	Hopping	-52.59	-20	Pass	

Report No.: TCT211220E025

STATUS

Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Ref nt Spectrum A (IRL SENSE:PULSE Center Freq 2.402000000 GHz Avg Type: Log-Pwr Avg|Hold: 3000/3000 TRACE PNO: Wide ---- Trig: Free Run IFGain:Low #Atten: 30 dB TYPE Mkr1 2.403 176 GHz 1.269 dBm Ref Offset 6.98 dB Ref 20.00 dBm 10 dB/div Loa 1 m m M mam mm M Center 2.402000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz STATUS Band Edge(Hopping) NVNT 1-DH1 2402MHz Hopping Emission ilent Spectrum Analyzer - Swept SA U RL 21:14 PM Jan 07, 2022 TRACE 1 2 3 4 5 TYPE MWWWW DET P N N N N Center Freq 2.356000000 GHz Avg Type: Log-Pwr Avg|Hold: 4000/4000 PNO: Fast ---- Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.402 0 GHz 1.183 dBm Ref Offset 6.98 dB Ref 20.00 dBm 10 dB/div Log 1 Ψł $\langle \rangle^3$ $\langle \rangle^4$ \Diamond Stop 2.40600 GHz Sweep 9.600 ms (1001 pts) Start 2.30600 GHz #Res BW 100 kHz #VBW 300 kHz FUNCTION WIDTH FUNCTION FUNCTION VALUE -51.986 d -52.463 d -50.975 d <u>GHz</u> GHz dBm dBm N 5 8 9 10 11

Test Graphs

FCT通测检测 TESTING CENTRE TECHNOLOGY

Page 66 of 94

ICT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT211220E025

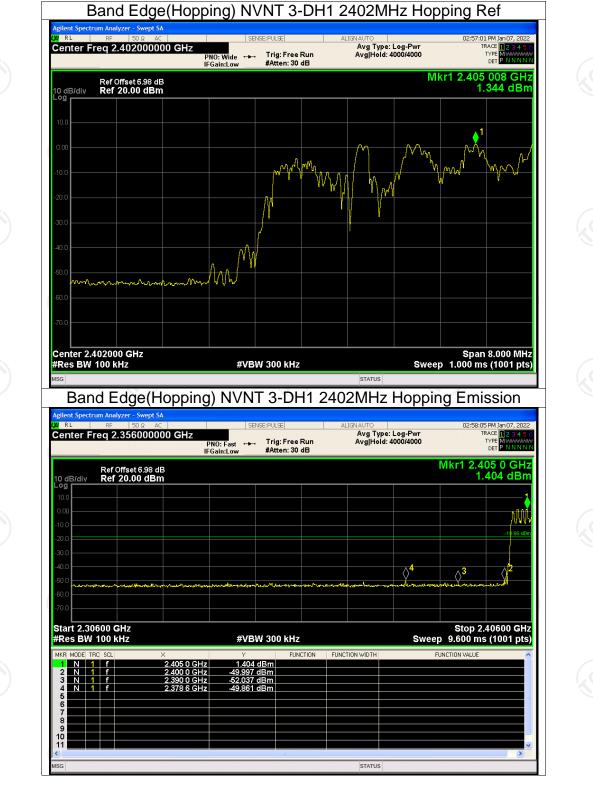
Page 68 of 94

Band Edge(Hopping) NVNT 2-DH1 2480MHz Hopping Ref Center Freg 2.480000000 GHz Avg Type: Log-Pwr Avg|Hold: 5000/5000 PNO: Wide ↔→→ Trig: Free Run IFGain:Low #Atten: 30 dB Mkr1 2.476 008 GHz 1.215 dBm Ref Offset 7.03 dB Ref 20.00 dBm MMM m

(RL

10 dB/div Log

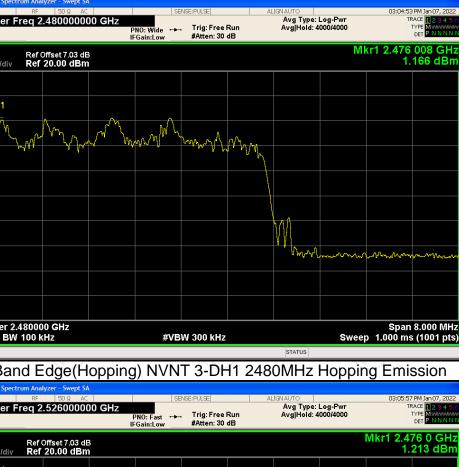
mar


1- manna -h 40-A. C Center 2.480000 GHz #Res BW 100 kHz Span 8.000 MHz Sweep 1.000 ms (1001 pts) #VBW 300 kHz

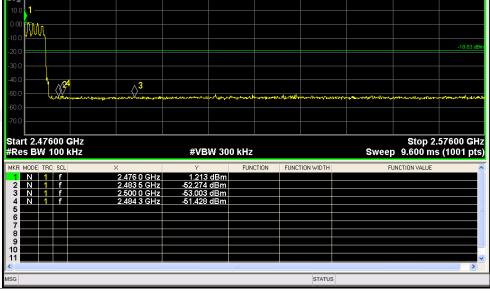
STATUS Band Edge(Hopping) NVNT 2-DH1 2480MHz Hopping Emission

Agilent Spectrum Analyzer - Swept SA W RL RF 50.Ω AC Center Freq 2.526000000 GHz	SENSE:PULSE PNO: Fast ↔ Trig: Free F IFGain:Low #Atten: 30 (
Ref Offset 7.03 dB 10 dB/div Ref 20.00 dBm			Mkr1 2.479 0 GHz 1.014 dBm
10.0 1			
-10.0			-18.79 dBm
-30.0			
-40.0 -50.0	and the fill of the second	- การที่ ฟังส่งหรือสารเป็นการการที่สารการเป็นการการที่สารเป็น	and a second and a second and a second
-60.0			
Start 2.47600 GHz #Res BW 100 kHz	#VBW 300 kHz		Stop 2.57600 GHz Sweep 9.600 ms (1001 pts)
MKR MODE TRC SCL X 1 N 1 f 2.479 0 6 2 N 1 f 2.483 6 6 3 N 1 f 2.500 0 6 4 N 1 f 2.483 9 6 6 7 7 7 7 7 7	iz 1.014 dBm iz -53.861 dBm iz -53.890 dBm	FUNCTION WIDTH	FUNCTION VALUE
8 9 9 10 11 11 12 12 12 12 12 12 12 12 12 12 12 12 1		STATUS	×

Report No.: TCT211220E025


TYPE MWWWWW DET P N N N N

ICT通测检测 TESTING CENTRE TECHNOLOGY


Report No.: TCT211220E025

Page 70 of 94

Band Edge(Hopping) NVNT 3-DH1 2480MHz Hopping Ref a RL Center Freg 2.480000000 GHz 10 dB/div Log Center 2.480000 GHz #Res BW 100 kHz Band Edge(Hopping) NVNT 3-DH1 2480MHz Hopping Emission Center Freq 2.526000000 GHz 10 dB/div Log

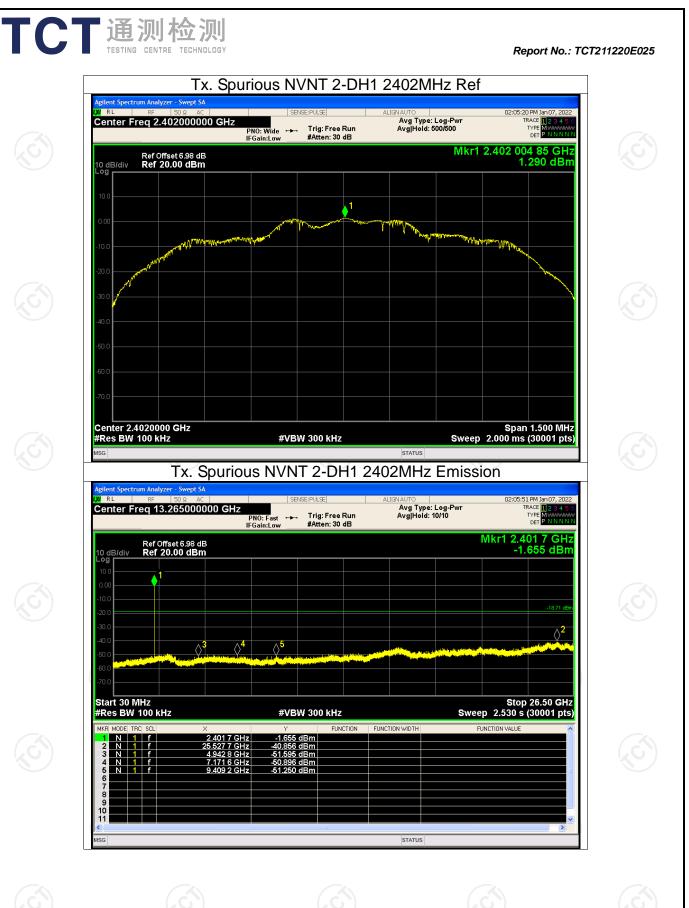
「CT通测检测 TESTING CENTRE TECHNOLOGY

Report No.: TCT211220E025

Page 71 of 94

Conducted RF Spurious Emission

Condition	Mode	Frequency (MHz)	Max Value (dBc)	Limit (dBc)	Verdict			
NVNT	1-DH1	2402	-41.01	-20	Pass			
NVNT	1-DH1	2441	-40.31	-20	Pass			
NVNT	1-DH1	2480	-39.98	-20	Pass			
NVNT	2-DH1	2402	-42.14	-20	Pass			
NVNT	2-DH1	2441	-41.51	-20	Pass			
NVNT	2-DH1	2480	-40.90	-20	Pass			
NVNT 🚫	3-DH1	2402	-41.56	-20	Pass			
NVNT	3-DH1	2441	-41.40	-20	Pass			
NVNT	3-DH1	2480	-41.04	-20	Pass			
	(



Page 73 of 94

Page 75 of 94



Page 80 of 94

Hotline: 400-6611-140 Tel: 86-755-27673339 Fax: 86-755-27673332 http://www.tct-lab.com

