Body TSL parameters at 5200 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 49.0 | 5.30 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.0 ± 6 % | 5.32 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL at 5200 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.53 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 74.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.11 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.9 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5300 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.42 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.8 ± 6 % | 5.45 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | # SAR result with Body TSL at 5300 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.78 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 77.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.16 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.4 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5500 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.6 | 5.65 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.5 ± 6 % | 5.71 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | **** | | # SAR result with Body TSL at 5500 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.92 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 78.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.21 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.9 W/kg ± 19.5 % (k=2) | # **Body TSL parameters at 5600 MHz** The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.3 ± 6 % | 5.84 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | 200 | # SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.15 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 80.8 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.26 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.3 W/kg ± 19.5 % (k=2) | # Body TSL parameters at 5800 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |---|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.2 | 6.00 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.0 ± 6 % | 6.12 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | 9144 | 7,777 | # SAR result with Body TSL at 5800 MHz | SAR averaged over 1 cm ³ (1 g) of Body TSL | Condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.45 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 73.9 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm ³ (10 g) of Body TSL | condition | | |---|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.08 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.6 W/kg ± 19.5 % (k=2) | # Appendix (Additional assessments outside the scope of SCS108) #### Antenna Parameters with Head TSL at 5200 MHz | Impedance, transformed to feed point | 51.3 Ω - 8.5 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 21.5 dB | | #### **Antenna Parameters with Head TSL at 5300 MHz** | Impedance, transformed to feed point | 53.2 Ω - 1.4 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.4 dB | #### **Antenna Parameters with Head TSL at 5500 MHz** | Impedance, transformed to feed point | 50.8 Ω - 1.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 35.0 dB | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 56.3 Ω - 2.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.7 dB | #### Antenna Parameters with Head TSL at 5800 MHz | Impedance, transformed to feed point | $55.7 \Omega + 1.9 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 24.8 dB | ## Antenna Parameters with Body TSL at 5200 MHz | Impedance, transformed to feed point | 52.2 Ω - 6.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.4 dB | #### **Antenna Parameters with Body TSL at 5300 MHz** | Impedance, transformed to feed point | 53.2 Ω - 0.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 29.9 dB | #### **Antenna Parameters with Body TSL at 5500 MHz** | Impedance, transformed to feed point | 51.1 Ω - 0.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 37.8 dB | #### Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 57.5 Ω - 0.7 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.1 dB | | ### Antenna Parameters with Body TSL at 5800 MHz | Impedance, transformed to feed point | $56.9 \Omega + 4.4 j\Omega$ | | |--------------------------------------|-----------------------------|--| | Return Loss | - 22.4 dB | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.205 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | February 05, 2004 | Certificate No: D5GHzV2-1019_Aug14 Page 10 of 16 #### **DASY5 Validation Report for Head TSL** Date: 25.08.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1019 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f=5200 MHz; $\sigma=4.48$ S/m; $\epsilon_r=34.7;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5300 MHz; $\sigma=4.57$ S/m; $\epsilon_r=34.5;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5500 MHz; $\sigma=4.76$ S/m; $\epsilon_r=34.3;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=4.86$ S/m; $\epsilon_r=34.1;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=4.86$ S/m; $\epsilon_r=34.1;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5800 MHz; $\sigma=5.06$ S/m; $\epsilon_r=33.9;$ $\rho=1000$ kg/m 3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.52, 5.52, 5.52); Calibrated: 30.12.2013, ConvF(5.2, 5.2, 5.2); Calibrated: 30.12.2013, ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.86, 4.86, 4.86); Calibrated: 30.12.2013, ConvF(4.91, 4.91, 4.91); Calibrated: 30.12.2013; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4
Sn601; Calibrated: 18.08.2014 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ## Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.25 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 28.8 W/kg SAR(1 g) = 8.04 W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 18.4 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.75 V/m; Power Drift = 0.08 dB Peak SAR (extrapolated) = 31.4 W/kg SAR(1 g) = 8.42 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 19.3 W/kg. ### Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.08 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 32.8 W/kg SAR(1 g) = 8.54 W/kg; SAR(10 g) = 2.45 W/kg Maximum value of SAR (measured) = 20.0 W/kg Certificate No: D5GHzV2-1019_Aug14 Page 11 of 16 # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.30 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 33.1 W/kg SAR(1 g) = 8.47 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 20.1 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 63.27 V/m; Power Drift = 0.05 dB Peak SAR (extrapolated) = 32.9 W/kg SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.3 W/kg Maximum value of SAR (measured) = 19.4 W/kg 0 dB = 19.4 W/kg = 12.88 dBW/kg ## Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 25.08.2014 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1019 Communication System: UID 0 - CW; Frequency: 5200 MHz, Frequency: 5300 MHz, Frequency: 5500 MHz, Frequency: 5600 MHz, Frequency: 5800 MHz Medium parameters used: f=5200 MHz; $\sigma=5.32$ S/m; $\epsilon_r=47;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5300 MHz; $\sigma=5.45$ S/m; $\epsilon_r=46.8;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5500 MHz; $\sigma=5.71$ S/m; $\epsilon_r=46.5;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=5.84$ S/m; $\epsilon_r=46.3;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5600 MHz; $\sigma=5.84$ S/m; $\epsilon_r=46.3;$ $\rho=1000$ kg/m 3 , Medium parameters used: f=5800 MHz; $\sigma=6.12$ S/m; $\epsilon_r=46;$ $\rho=1000$ kg/m 3 Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.01, 5.01, 5.01); Calibrated: 30.12.2013, ConvF(4.76, 4.76, 4.76); Calibrated: 30.12.2013, ConvF(4.52, 4.52, 4.52); Calibrated: 30.12.2013, ConvF(4.3, 4.3, 4.3); Calibrated: 30.12.2013, ConvF(4.47, 4.47, 4.47); Calibrated: 30.12.2013; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 18.08.2014 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5200 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.85 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 28.7 W/kg SAR(1 g) = 7.53 W/kg; SAR(10 g) = 2.11 W/kg Maximum value of SAR (measured) = 17.5 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5300 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.61 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 30.9 W/kg SAR(1 g) = 7.78 W/kg; SAR(10 g) = 2.16 W/kg Maximum value of SAR (measured) = 18.7 W/kg. # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5500 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 60.11 V/m; Power Drift = -0.03 dB Peak SAR (extrapolated) = 32.8 W/kg SAR(1 g) = 7.92 W/kg; SAR(10 g) = 2.21 W/kg Maximum value of SAR (measured) = 19.1 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 59.88 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 34.7 W/kg SAR(1 g) = 8.15 W/kg; SAR(10 g) = 2.26 W/kg Maximum value of SAR (measured) = 19.8 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5800 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 56.48 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 33.2 W/kg SAR(1 g) = 7.45 W/kg; SAR(10 g) = 2.08 W/kg Maximum value of SAR (measured) = 18.6 W/kg 0 dB = 18.6 W/kg = 12.70 dBW/kg # Impedance Measurement Plot for Body TSL #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V.ADT** (Auden) Certificate No: EX3-3590_Mar14 Accreditation No.: SCS 108 # **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3590 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: March 4, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 04-Apr-13 (No. 217-01733) | Apr-14 | | Power sensor E4412A | MY41498087 | 04-Apr-13 (No. 217-01733) | Apr-14 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 04-Apr-13 (No 217-01737) | Apr-14 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-13 (No. 217-01735) | Apr-14 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 04-Apr-13 (No. 217-01738) | Apr-14 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No ES3-3013_Dec13) | Dec-14 | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-660_Dec13) | Dec-14 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | Calibrated by: Signature Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 4, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., $\vartheta = 0$ is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### **Methods Applied and Interpretation of Parameters:** - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters
do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3590_Mar14 Page 2 of 11 # Probe EX3DV4 SN:3590 Manufactured: March 23, 2009 Calibrated: March 4, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3590 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--|----------|----------|----------|-----------| | Norm (μV/(V/m) ²) ^A | 0.50 | 0.47 | 0.50 | ± 10.1 % | | DCP (mV) ^B | 94.6 | 96.4 | 95.9 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc [⊏]
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 146.4 | ±3.5 % | | 5 | | Y | 0.0 | 0.0 | 1.0 | | 168.7 | | | | | Z | 0.0 | 0.0 | 1.0 | | 160.8 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^B Numerical linearization parameter: uncertainty not required. ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). ^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3590 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.89 | 10.89 | 10.89 | 0.25 | 1.15 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.52 | 10.52 | 10.52 | 0.62 | 0.67 | ± 12.0 % | | 900 | 41.5 | 0.97 | 10.53 | 10.53 | 10.53 | 0.61 | 0.63 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 9.12 | 9.12 | 9.12 | 0.80 | 0.50 | ± 12.0 % | | 1640 | 40.3 | 1.29 | 8.96 | 8.96 | 8.96 | 0.76 | 0.55 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.92 | 8.92 | 8.92 | 0.80 | 0.56 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.70 | 8.70 | 8.70 | 0.43 | 0.74 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.61 | 8.61 | 8.61 | 0.39 | 0.79 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 8.30 | 8.30 | 8.30 | 0.35 | 0.82 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.95 | 7.95 | 7.95 | 0.53 | 0.68 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.76 | 7.76 | 7.76 | 0.49 | 0.73 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 7.88 | 7.88 | 7.88 | 0.88 | 0.57 | ± 13.1 % | | 5200 | 36.0 | 4.66 | 5.57 | 5.57 | 5.57 | 0.35 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 5.33 | 5.33 | 5.33 | 0.35 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 5.06 | 5.06 | 5.06 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.94 | 4.94 | 4.94 | 0.35 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.89 | 4.89 | 4.89 | 0.40 | 1.80 | ± 13.1 % | ^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvE uncertainty at calibration frequency and the uncertainty for the indicated frequency hand. Certificate No: EX3-3590_Mar14 Page 5 of 11 of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3590 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 10.39 | 10.39 | 10.39 | 0.43 | 0.81 | ± 12.0 % | | 835 | 55.2 | 0.97 | 10.31 | 10.31 | 10.31 | 0.77 | 0.60 | ± 12.0 % | | 900 | 55.0 | 1.05 | 10.13 | 10.13 | 10.13 | 0.77 | 0.60 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 8.83 | 8.83 | 8.83 | 0.34 | 0.94 | ± 12.0 % | | 1640 | 53.8 | 1.40 | 9.04 | 9.04 | 9.04 | 0.40 | 0.88 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.35 | 8.35 | 8.35 | 0.52 | 0.76 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 8.11 | 8.11 | 8.11 | 0.37 | 0.86 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 8.24 | 8.24 | 8.24 | 0.36 | 0.85 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.96 | 7.96 | 7.96 | 0.59 | 0.65 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.72 | 7.72 | 7.72 | 0.80 | 0.50 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.49 | 7.49 | 7.49 | 0.80 | 0.50 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 7.51 | 7.51 | 7.51 | 0.68 | 0.74 | ± 13.1 % | | 5200 | 49.0 | 5.30 | 5.16 | 5.16 | 5.16 | 0.40 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.92 | 4.92 | 4.92 | 0.40 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 4.64 | 4.64 | 4.64 | 0.40 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 4.62 | 4.62 | 4.62 | 0.35 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.74 | 4.74 | 4.74 | 0.45 | 1.90 | ± 13.1 9 | ^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Gain Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is ^G Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. March 4, 2014 EX3DV4-SN:3590 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: \pm 6.3% (k=2) March 4, 2014 EX3DV4-SN:3590 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) March 4, 2014 EX3DV4-SN:3590 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) # **Conversion Factor Assessment** # **Deviation from Isotropy in Liquid** Error (ϕ , ϑ), f = 900 MHz # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3590 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -142.1 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm | ## **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates
Client **B.V. ADT (Auden)** Certificate No: EX3-3650_Jul14 Accreditation No.: SCS 108 ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3650 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: July 28, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No 217-01915) | Apr-15 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apr-15 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No. ES3-3013_Dec13) | Dec-14 | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-660_Dec13) | Dec-14 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | Calibrated by: Name Claudio Leubler Function Laboratory Technician Approved by: Katja Pokovic **Technical Manager** Issued: July 29, 2014 Signatu This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3650_Jul14 Page 1 of 11 ## **Calibration Laboratory of** Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal modulation dependent linearization parameters Polarization φ σ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### **Calibration is Performed According to the Following Standards:** - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### **Methods Applied and Interpretation of Parameters:** - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3650_Jul14 Page 2 of 11 # Probe EX3DV4 SN:3650 Manufactured: March 18, 2008 Repaired: July 23, 2014 Calibrated: July 28, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3650 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.40 | 0.43 | 0.42 | ± 10.1 % | | DCP (mV) ^B | 96.9 | 98.8 | 98.0 | | #### Modulation Calibration Parameters | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc [⊏]
(k=2) | |-----|---------------------------|---|---------|------------|-----|---------|----------|---------------------------| | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 131.1 | ±3.3 % | | | | Y | 0.0 | 0.0 | 1.0 | | 148.7 | | | | | Z | 0.0 | 0.0 | 1.0 | | 136.9 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. B Numerical linearization parameter: uncertainty not required. ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3650 ## Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 9.93 | 9.93 | 9.93 | 0.51 | 0.78 | ± 12.0 % | | 835 | 41.5 | 0.90 | 9.52 | 9.52 | 9.52 | 0.25 | 1.15 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.33 | 9.33 | 9.33 | 0.28 | 1.10 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.76 | 8.76 | 8.76 | 0.45 | 0.83 | ± 12.0 % | | 1640 | 40.3 | 1.29 | 8.59 | 8.59 | 8.59 | 0.80 | 0.50 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.10 | 8.10 | 8.10 | 0.75 | 0.57 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 7.92 | 7.92 | 7.92 | 0.40 | 0.80 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 7.93 | 7.93 | 7.93 | 0.67 | 0.62 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.57 | 7.57 | 7.57 | 0.34 | 0.85 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.18 | 7.18 | 7.18 | 0.49 | 0.74 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.01 | 7.01 | 7.01 | 0.49 | 0.75 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 7.19 | 7.19 | 7.19 | 0.38 | 1.09 | ± 13.1 % | | 5200 | 36.0 | 4.66 | 5.31 | 5.31 | 5.31 | 0.35 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 5.10 | 5.10 | 5.10 | 0.35 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.85 | 4.85 | 4.85 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.77 | 4.77 | 4.77 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.86 | 4.86 | 4.86 | 0.40 | 1.80 | ± 13.1 % | $^{^{\}rm C}$ Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz. 1 Certificate No: EX3-3650_Jul14 Page 5 of 11 F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining
deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3650 ## Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity
(S/m) ^F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 9.62 | 9.62 | 9.62 | 0.18 | 1.50 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.70 | 9.70 | 9.70 | 0.79 | 0.65 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.32 | 9.32 | 9.32 | 0.28 | 1.22 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 8.21 | 8.21 | 8.21 | 0.37 | 0.91 | ± 12.0 % | | 1640 | 53.8 | 1.40 | 8.19 | 8.19 | 8.19 | 0.59 | 0.75 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.78 | 7.78 | 7.78 | 0.40 | 0.96 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.41 | 7.41 | 7.41 | 0.35 | 1.00 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 7.50 | 7.50 | 7.50 | 0.32 | 0.99 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.21 | 7.21 | 7.21 | 0.61 | 0.71 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 6.81 | 6.81 | 6.81 | 0.68 | 0.50 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 6.69 | 6.69 | 6.69 | 0.80 | 0.57 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 6.77 | 6.77 | 6.77 | 0.32 | 1.27 | ± 13.1 9 | | 5200 | 49.0 | 5.30 | 4.87 | 4.87 | 4.87 | 0.40 | 1.90 | ± 13.1 9 | | 5300 | 48.9 | 5.42 | 4.56 | 4.56 | 4.56 | 0.45 | 1.90 | ± 13.1 ° | | 5500 | 48.6 | 5.65 | 4.27 | 4.27 | 4.27 | 0.45 | 1.90 | ± 13.1 ° | | 5600 | 48.5 | 5.77 | 3.99 | 3.99 | 3.99 | 0.50 | 1.90 | ± 13.1 ° | | 5800 | 48.2 | 6.00 | 4.40 | 4.40 | 4.40 | 0.50 | 1.90 | ± 13.1 ° | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency . Certificate No: EX3-3650_Jul14 validity can be extended to ± 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. July 28, 2014 EX3DV4-SN:3650 # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) July 28, 2014 EX3DV4-SN:3650 # Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) July 28, 2014 # **Conversion Factor Assessment** # Deviation from Isotropy in Liquid Error (φ, θ), f = 900 MHz # DASY/EASY - Parameters of Probe: EX3DV4 - SN:3650 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | | |---|------------|--| | Connector Angle (°) | -23.2 | | | Mechanical Surface Detection Mode | enabled | | | Optical Surface Detection Mode | disabled | | | Probe Overall Length | 337 mm | | | Probe Body Diameter | 10 mm | | | Tip Length | 9 mm | | | Tip Diameter | 2.5 mm | | | Probe Tip to Sensor X Calibration Point | 1 mm | | | Probe Tip to Sensor Y Calibration Point | 1 mm | | | Probe Tip to Sensor Z Calibration Point | 1 mm | | | Recommended Measurement Distance from Surface | 1.4 mm | | #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client B.V.ADT (Auden) Accreditation No.: SCS 108 S C S Certificate No: EX3-3864_Jul14 # **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3864 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: July 25, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | | |----------------------------|-----------------|-----------------------------------|------------------------|--| | Power meter E4419B | GB41293874 | 03-Apr-14 (No. 217-01911) | Apr-15 | | | Power sensor E4412A | MY41498087 | 03-Apr-14 (No. 217-01911) | Apr-15 | | | Reference 3 dB Attenuator | SN: S5054 (3c) | 03-Apr-14 (No. 217-01915) | Apr-15 | | | Reference 20 dB Attenuator | SN: S5277 (20x) | 03-Apr-14 (No. 217-01919) | Apr-15 | | | Reference 30 dB Attenuator | SN: S5129 (30b) | 03-Apr-14 (No. 217-01920) | Apr-15 | | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No. ES3-3013_Dec13) | Dec-14 | | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-660_Dec13) | Dec-14 | | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | | Calibrated by: Name Function Signature Laboratory Technician Signature Signature Approved by: Katja Pokovic Technical Manager Issued: July 26, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: EX3-3864_Jul14 #### Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL NORMx,y,z tissue simulating liquid sensitivity in free space ConvF DCP sensitivity in TSL / NORMx,v,z diode compression point CF A, B, C, D crest factor (1/duty cycle) of the RF signal modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle Certificate No: EX3-3864_Jul14 information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - *NORMx.v.z.* Assessed for E-field polarization ϑ = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx, v.z are only intermediate values, i.e., the uncertainties of NORMx, v,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - $NORM(f)x,y,z = NORMx,y,z * frequency_response$ (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,v,z; DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,v,z; Bx,v,z; Cx,v,z; Dx,v,z; VRx,v,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,v,z * ConvF whereby the uncertainty
corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required., - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). July 25, 2014 # Probe EX3DV4 SN:3864 Manufactured: February 2, 2012 Calibrated: July 25, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3864 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.47 | 0.45 | 0.49 | ± 10.1 % | | DCP (mV) ^B | 98.7 | 96.9 | 98.1 | | #### **Modulation Calibration Parameters** | UID | Communication System Name | | A
dB | B
dB√μV | С | D
dB | VR
mV | Unc [±]
(k=2) | |-----|---------------------------|-----|---------|------------|------|---------|----------|---------------------------| | 0 | CW X | 0.0 | 0.0 | 1.0 | 0.00 | 135.4 | ±2.7 % | | | | | Y | 0.0 | 0.0 | 1.0 | | 149.4 | | | | | Z | 0.0 | 0.0 | 1.0 | | 144.7 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. A The uncertainties of NormX,Y,Z do not affect the E2-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4- SN:3864 July 25, 2014 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3864 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.44 | 10.44 | 10.44 | 0.79 | 0.61 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.03 | 10.03 | 10.03 | 0.79 | 0.58 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.77 | 9.77 | 9.77 | 0.29 | 0.97 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 9.06 | 9.06 | 9.06 | 0.24 | 1.30 | ± 12.0 % | | 1640 | 40.3 | 1.29 | 8.49 | 8.49 | 8.49 | 0.74 | 0.56 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.39 | 8.39 | 8.39 | 0.41 | 0.74 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.10 | 8.10 | 8.10 | 0.65 | 0.61 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.21 | 8.21 | 8.21 | 0.30 | 0.92 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.80 | 7.80 | 7.80 | 0.31 | 0.87 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.39 | 7.39 | 7.39 | 0.29 | 0.96 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.27 | 7.27 | 7.27 | 0.26 | 1.11 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 6.86 | 6.86 | 6.86 | 0.36 | 1.05 | ± 13.1 % | | 5200 | 36.0 | 4.66 | 5.35 | 5.35 | 5.35 | 0.35 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 5.03 | 5.03 | 5.03 | 0.40 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.90 | 4.90 | 4.90 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.78 | 4.78 | 4.78 | 0.40 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.75 | 4.75 | 4.75 | 0.40 | 1.80 | ± 13.1 % | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency . Certificate No: EX3-3864_Jul14 Page 5 of 11 validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4- SN:3864 July 25, 2014 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3864 ### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 10.08 | 10.08 | 10.08 | 0.64 | 0.70 | ± 12.0 % | | 835 | 55.2 | 0.97 | 10.04 | 10.04 | 10.04 | 0.44 | 0.82 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.71 | 9.71 | 9.71 | 0.28 | 1.08 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 8.18 | 8.18 | 8.18 | 0.33 | 0.98 | ± 12.0 % | | 1640 | 53.8 | 1.40 | 8.49 | 8.49 | 8.49 | 0.57 | 0.71 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 8.02 | 8.02 | 8.02 | 0.31 | 0.97 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.72 | 7.72 | 7.72 | 0.49 | 0.75 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 7.80 | 7.80 | 7.80 | 0.46 | 0.75 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.43 | 7.43 | 7.43 | 0.64 | 0.65 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.14 | 7.14 | 7.14 | 0.57 | 0.65 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 7.00 | 7.00 | 7.00 | 0.80 | 0.50 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 6.42 | 6.42 | 6.42 | 0.41 | 1.07 | ± 13.1 % | | 5200 | 49.0 | 5.30 | 4.49 | 4.49 | 4.49 | 0.45 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.16 | 4.16 | 4.16 | 0.50 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 3.92 | 3.92 | 3.92 | 0.50 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.77 | 3.77 | 3.77 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.01 | 4.01 | 4.01 | 0.50 | 1.90 | ± 13.1 9 | ^C Frequency validity above 300 MHz of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity applies to a storage of the second secon , Certificate No: EX3-3864_Jul14 Page 6 of 11 validity can be extended to \pm 110 MHz. F At frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ## Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) f=1800 MHz,R22 Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) ## Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) July 25, 2014 ## **Conversion Factor Assessment** ## **Deviation from Isotropy in Liquid** Error (φ, θ), f = 900 MHz EX3DV4-SN:3864 EX3DV4- SN:3864 July 25, 2014 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3864 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -116.5 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 1.4 mm | | | | Certificate No: EX3-3864_Jul14 Page 11 of 11 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **B.V. ADT (Auden)** Certificate No: EX3-3971_Mar14 Accreditation No.: SCS 108 S C S ## **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:3971 Calibration procedure(s) QA CAL-01.v9, QA CAL-14.v4, QA CAL-23.v5, QA CAL-25.v6 Calibration procedure for dosimetric E-field probes Calibration date: March 31, 2014 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties
with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID | Cal Date (Certificate No.) | Scheduled Calibration | |----------------------------|-----------------|-----------------------------------|------------------------| | Power meter E4419B | GB41293874 | 04-Apr-13 (No. 217-01733) | Apr-14 | | Power sensor E4412A | MY41498087 | 04-Apr-13 (No. 217-01733) | Apr-14 | | Reference 3 dB Attenuator | SN: S5054 (3c) | 04-Apr-13 (No. 217-01737) | Apr-14 | | Reference 20 dB Attenuator | SN: S5277 (20x) | 04-Apr-13 (No. 217-01735) | Apr-14 | | Reference 30 dB Attenuator | SN: S5129 (30b) | 04-Apr-13 (No. 217-01738) | Apr-14 | | Reference Probe ES3DV2 | SN: 3013 | 30-Dec-13 (No ES3-3013_Dec13) | Dec-14 | | DAE4 | SN: 660 | 13-Dec-13 (No. DAE4-660_Dec13) | Dec-14 | | Secondary Standards | ID | Check Date (in house) | Scheduled Check | | RF generator HP 8648C | US3642U01700 | 4-Aug-99 (in house check Apr-13) | In house check: Apr-16 | | Network Analyzer HP 8753E | US37390585 | 18-Oct-01 (in house check Oct-13) | In house check: Oct-14 | Name Function Signature Calibrated by: Jeton Kastrati Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: April 1, 2014 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### **Glossary:** TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty_cycle) of the RF signal A, B, C, D modulation dependent linearization parameters Polarization φ φ rotation around probe axis Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center), i.e., 9 = 0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system #### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 #### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics - Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z: A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f ≤ 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100 MHz - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required). Certificate No: EX3-3971_Mar14 Page 2 of 11 EX3DV4 - SN:3971 March 31, 2014 # Probe EX3DV4 SN:3971 Manufactured: December 30, 2013 Calibrated: March 31, 2014 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3971 #### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |--------------------------|----------|----------|----------|-----------| | Norm $(\mu V/(V/m)^2)^A$ | 0.41 | 0.53 | 0.50 | ± 10.1 % | | DCP (mV) ^B | 99.1 | 98.1 | 98.6 | 46 | #### **Modulation Calibration Parameters** | UID | Communication System Name | | Α | В | С | D | VR | Unç [⊨] | |-----|---------------------------|---|-----|-------|-----|------|-------|------------------| | | | | dB | dB√μV | | dB | mV | (k=2) | | 0 | CW | X | 0.0 | 0.0 | 1.0 | 0.00 | 140.6 | ±3.3 % | | | | Y | 0.0 | 0.0 | 1.0 | | 143.4 | | | | | Z | 0.0 | 0.0 | 1.0 | | 149.6 | | The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. ^A The uncertainties of NormX,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6). Numerical linearization parameter: uncertainty not required. Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. EX3DV4-SN:3971 March 31, 2014 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3971 #### Calibration Parameter Determined in Head Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.30 | 10.30 | 10.30 | 0.37 | 0.95 | ± 12.0 % | | 835 | 41.5 | 0.90 | 10.00 | 10.00 | 10.00 | 0.45 | 0.79 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.66 | 9.66 | 9.66 | 0.23 | 1.21 | ± 12.0 % | | 900 | 41.5 | 0.97 | 9.82 | 9.82 | 9.82 | 0.34 | 0.93 | ± 12.0 % | | 1450 | 40.5 | 1.20 | 8.84 | 8.84 | 8.84 | 0.27 | 1.12 | ± 12.0 % | | 1640 | 40.3 | 1.29 | 8.44 | 8.44 | 8.44 | 0.80 | 0.50 | ± 12.0 % | | 1750 | 40.1 | 1.37 | 8.40 | 8.40 | 8.40 | 0.32 | 0.91 | ± 12.0 % | | 1810 | 40.0 | 1.40 | 8.21 | 8.21 | 8.21 | 0.56 | 0.71 | ± 12.0 % | | 1900 | 40.0 | 1.40 | 8.19 | 8.19 | 8.19 | 0.31 | 0.91 | ± 12.0 % | | 2000 | 40.0 | 1.40 | 8.19 | 8.19 | 8.19 | 0.55 | 0.66 | ± 12.0 % | | 2300 | 39.5 | 1.67 | 7.77 | 7.77 | 7.77 | 0.61 | 0.64 | ± 12.0 % | | 2450 | 39.2 | 1.80 | 7.43 | 7.43 | 7.43 | 0.39 | 0.83 | ± 12.0 % | | 2600 | 39.0 | 1.96 | 7.15 | 7.15 | 7.15 | 0.37 | 0.87 | ± 12.0 % | | 3500 | 37.9 | 2.91 | 6.87 | 6.87 | 6.87 | 0.50 | 0.93 | ± 13.1 % | | 5200 | 36.0 | 4.66 | 5.22 | 5.22 | 5.22 | 0.30 | 1.80 | ± 13.1 % | | 5300 | 35.9 | 4.76 | 4.81 | 4.81 | 4.81 | 0.40 | 1.80 | ± 13.1 % | | 5500 | 35.6 | 4.96 | 4.93 | 4.93 | 4.93 | 0.40 | 1.80 | ± 13.1 % | | 5600 | 35.5 | 5.07 | 4.55 | 4.55 | 4.55 | 0.50 | 1.80 | ± 13.1 % | | 5800 | 35.3 | 5.27 | 4.53 | 4.53 | 4.53 | 0.50 | 1.80 | ± 13.1 % | ^C Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Certificate No: EX3-3971_Mar14 F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. EX3DV4- SN:3971 March 31, 2014 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN:3971 #### Calibration Parameter Determined in Body Tissue Simulating Media | f (MHz) ^C | Relative
Permittivity ^F | Conductivity (S/m) F | ConvF X | ConvF Y | ConvF Z | Alpha ^G | Depth ^G
(mm) | Unct.
(k=2) | |----------------------|---------------------------------------|----------------------|---------|---------|---------|--------------------
----------------------------|----------------| | 750 | 55.5 | 0.96 | 9.91 | 9.91 | 9.91 | 0.49 | 0.81 | ± 12.0 % | | 835 | 55.2 | 0.97 | 9.74 | 9.74 | 9.74 | 0.56 | 0.73 | ± 12.0 % | | 900 | 55.0 | 1.05 | 9.53 | 9.53 | 9.53 | 0.67 | 0.67 | ± 12.0 % | | 1450 | 54.0 | 1.30 | 8.25 | 8.25 | 8.25 | 0.26 | 1.20 | ± 12.0 % | | 1640 | 53.8 | 1.40 | 8.36 | 8.36 | 8.36 | 0.30 | 1.01 | ± 12.0 % | | 1750 | 53.4 | 1.49 | 7.93 | 7.93 | 7.93 | 0.45 | 0.80 | ± 12.0 % | | 1900 | 53.3 | 1.52 | 7.68 | 7.68 | 7.68 | 0.37 | 0.90 | ± 12.0 % | | 2000 | 53.3 | 1.52 | 7.80 | 7.80 | 7.80 | 0.37 | 0.89 | ± 12.0 % | | 2300 | 52.9 | 1.81 | 7.51 | 7.51 | 7.51 | 0.68 | 0.65 | ± 12.0 % | | 2450 | 52.7 | 1.95 | 7.29 | 7.29 | 7.29 | 0.80 | 0.50 | ± 12.0 % | | 2600 | 52.5 | 2.16 | 6.99 | 6.99 | 6.99 | 0.80 | 0.50 | ± 12.0 % | | 3500 | 51.3 | 3.31 | 6.66 | 6.66 | 6.66 | 0.27 | 1.34 | ± 13.1 % | | 5200 | 49.0 | 5.30 | 4.59 | 4.59 | 4.59 | 0.40 | 1.90 | ± 13.1 % | | 5300 | 48.9 | 5.42 | 4.19 | 4.19 | 4.19 | 0.50 | 1.90 | ± 13.1 % | | 5500 | 48.6 | 5.65 | 4.14 | 4.14 | 4.14 | 0.45 | 1.90 | ± 13.1 % | | 5600 | 48.5 | 5.77 | 3.87 | 3.87 | 3.87 | 0.50 | 1.90 | ± 13.1 % | | 5800 | 48.2 | 6.00 | 4.12 | 4.12 | 4.12 | 0.50 | 1.90 | ± 13.1 % | ^c Frequency validity of ± 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to ± 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. F At frequencies below 3 GHz, the validity of tissue parameters (c and c) can be relaxed to ± 10% if liquid compensation formula is applied to F At frequencies below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ± 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ± 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. the ConvF uncertainty for indicated target tissue parameters. Galpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than ± 1% for frequencies below 3 GHz and below ± 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ± 6.3% (k=2) EX3DV4-- SN:3971 March 31, 2014 ## Receiving Pattern (ϕ), $\vartheta = 0^{\circ}$ Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2) EX3DV4-SN:3971 # Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz) Uncertainty of Linearity Assessment: ± 0.6% (k=2) EX3DV4-SN:3971 ## **Conversion Factor Assessment** Deviation from Isotropy in Liquid Error (ϕ , ϑ), f = 900 MHz EX3DV4- SN:3971 ## DASY/EASY - Parameters of Probe: EX3DV4 - SN:3971 March 31, 2014 #### **Other Probe Parameters** | Sensor Arrangement | Triangular | |---|------------| | Connector Angle (°) | -105.3 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disabled | | Probe Overall Length | 337 mm | | Probe Body Diameter | 10 mm | | Tip Length | 9 mm | | Tip Diameter | 2.5 mm | | Probe Tip to Sensor X Calibration Point | 1 mm | | Probe Tip to Sensor Y Calibration Point | 1 mm | | Probe Tip to Sensor Z Calibration Point | 1 mm | | Recommended Measurement Distance from Surface | 2 mm |