

FCC TEST REPORT (Part 15, Subpart C)

Applicant:	Xiaomi Communications Co., Ltd.
Address:	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085

Manufacturer or Supplier:	Xiaomi Communications Co., Ltd.			
Address:	#019, 9th Floor, Building 6, 33 Xi'erqi Middle Road, Haidian District, Beijing, China, 100085			
Product:	Mobile Phone			
Brand Name:	POCO			
Model Name:	25053PC47G			
FCC ID:	2AFZZPC47G			
Date of tests:	Feb. 13, 2025-Mar. 26, 2025			

The tests have been carried out according to the requirements of the following standard:

FCC Part 15, Subpart C, Section 15.247

M ANSI C63.10-2020

CONCLUSION: The submitted sample was found to **COMPLY** with the test requirement

Prepared by Hanwen Xu	Approved by Peibo Sun
Engineer / Mobile Department	Manager / Mobile Department
Lu Hannen	Simple: bo
Date: Mar. 26, 2025	Date: Mar. 26, 2025

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/tems-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of amaterial error or omission caused by our negligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents.

TABLE OF CONTENTS

R	ELEASE (CONTROL RECORD	4
1	SUMM	IARY OF TEST RESULTS	5
	1.1 ME/	ASUREMENT UNCERTAINTY	6
2	GENE	RAL INFORMATION	7
		NERAL DESCRIPTION OF EUT	
		SCRIPTION OF TEST MODES	
	2.2.1		9
	2.2.2	TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL	9
	2.3 GEN	NERAL DESCRIPTION OF APPLIED STANDARDS	
	2.4 DES	SCRIPTION OF SUPPORT UNITS	11
3	TEST	TYPES AND RESULTS	12
	3.1 COI	NDUCTED EMISSION MEASUREMENT	12
	3.1.1	LIMITS OF CONDUCTED EMISSION MEASUREMENT	12
	3.1.2	TEST INSTRUMENTS	13
	3.1.3	TEST PROCEDURES	14
	3.1.4	DEVIATION FROM TEST STANDARD	
	3.1.5	TEST SETUP	15
	3.1.6	EUT OPERATING CONDITIONS	
	3.1.7	TEST RESULTSDIATED EMISSION AND BANDEDGE MEASUREMENT	16
	3.2 RAL 3.2.1	LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT	
	3.2.1	TEST INSTRUMENTS	
	3.2.3	TEST PROCEDURES	
	3.2.4	DEVIATION FROM TEST STANDARD	
	3.2.5	TEST SETUP	
	3.2.6	EUT OPERATING CONDITIONS	22
	3.2.7	TEST RESULTS	
		MBER OF HOPPING FREQUENCY USED	55
	3.3.1	LIMIT OF HOPPING FREQUENCY USED	
	3.3.2	TEST SETUP	
	3.3.3 3.3.4	TEST INSTRUMENTS TEST PROCEDURES	
	3.3.4 3.3.5	DEVIATION FROM TEST STANDARD	
	3.3.6	TEST RESULTS	
		ELL TIME ON EACH CHANNEL	
		LIMIT OF DWELL TIME USED	
	3.4.2	TEST SETUP	
	3.4.3	TEST INSTRUMENTS	58
	3.4.4	TEST PROCEDURES	
	3.4.5	DEVIATION FROM TEST STANDARD	
	3.4.6	TEST RESULTS	
		ANNEL BANDWIDTH	
	3.5.1	LIMITS OF CHANNEL BANDWIDTHTEST SETUP	
	3.5.2 3.5.3	TEST INSTRUMENTS	
	3.5.4	TEST PROCEDURE	
	3.5.5	DEVIATION FROM TEST STANDARD	
	3.5.6	EUT OPERATING CONDITION	
	3.5.7	TEST RESULTS	
		PPING CHANNEL SEPARATION	62
	3.6.1	LIMIT OF HOPPING CHANNEL SEPARATION	
	3.6.2	TEST SETUP	
	3.6.3	TEST INSTRUMENTS	
	3.6.4	TEST PROCEDURES	62
	Huarui 7lav	ers High Technology	(0557)

VE	RITAS		
	3.6.1	DEVIATION FROM TEST STANDARD	
	3.6.2	TEST RESULTS	
3	.7 MAX	XIMUM OUTPUT POWER	
	3.7.1	LIMITS OF MAXIMUM OUTPUT POWER MEASUREMENT	63
	3.7.2	TEST SETUP	63
	3.7.3	TEST INSTRUMENTS	63
	3.7.4	TEST PROCEDURES	63
	3.7.5	DEVIATION FROM TEST STANDARD	64
	3.7.6	EUT OPERATING CONDITION	
	3.7.7	12011(2002)	
	3.7.7.1		
	3.7.7.2	2 AVERAGE OUTPUT POWER (FOR REFERENCE)	64
3	.8 OU	T OF BAND MEASUREMENT	
	3.8.1	LIMITS OF OUT OF BAND MEASUREMENT	
	3.8.2	TEST INSTRUMENTS	65
	3.8.3	TEST PROCEDURE	65
	3.8.4	DEVIATION FROM TEST STANDARD	
	3.8.5	EUT OPERATING CONDITION	
	3.8.6	TEST RESULTS	65
4	PHOT	OGRAPHS OF THE TEST CONFIGURATION	66
5	MODIF 67	FICATIONS RECORDERS FOR ENGINEERING CHANGES TO THE EUT	BY THE LAB
6	APPE	NDIX	68

RELEASE CONTROL RECORD

ISSUE NO.	REASON FOR CHANGE	DATE ISSUED
PSZ-QBJ2501200112RF09	Original release	Mar. 26, 2025

1 SUMMARY OF TEST RESULTS

The EUT has been tested according to the following specifications:

APPLIED STANDARD: FCC Part 15, Subpart C							
STANDARD	TEST TYPE AND LIMIT RESULT						
15.207	AC Power Conducted Emission	Compliance					
(111)	Number of Hopping Frequency Used	Compliance					
15.247(a)(1) (iii)	Dwell Time on Each Channel	Compliance					
15.247(a)(1)	Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System	Compliance					
15.247(b)	Maximum Peak Output Power	Compliance					
15.247(d)& 15.209	Transmitter Radiated Emissions Com						
15.247(d)	Out of band Measurement	Compliance					
15.203	Antenna Requirement	Compliance					

NOTE:

- If the Frequency Hopping System operating in 2400-2483.5MHz band and the output power less than 125mW. The hopping channel carrier frequencies separated by a minimum of 25kHz or twothirds of the 20dB bandwidth of hopping channel whichever is greater.
- 2. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

*Test Lab Information Reference

Lab A:

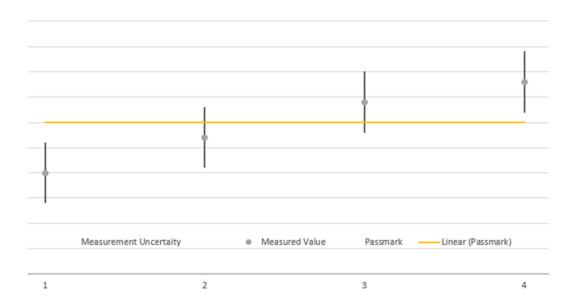
Huarui 7Layers High Technology (Suzhou) Co., Ltd.

Lab Address:

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

Accredited Test Lab Cert 6613.01

The FCC Site Registration No. is 434559; The Designation No. is CN1325.



1.1 MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

MEASUREMENT	UNCERTAINTY
AC Power Conducted emissions	±2.70dB
Radiated emissions (9KHz~30MHz)	±2.68dB
Radiated emissions (30MHz~1GHz)	±4.98dB
Radiated emissions (1GHz ~6GHz)	±4.70dB
Radiated emissions (6GHz ~18GHz)	±4.60dB
Radiated emissions (18GHz ~40GHz)	±4.12dB
Conducted emissions	±4.01dB
Occupied Channel Bandwidth	±43.58KHz
Conducted Output power	±2.06dB
Power Spectral Density	±0.85 dB

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

The verdicts in this test report are given according the above diagram:

Case	Measured Value	Uncertainty Range	Verdict
1	below pass mark	below pass mark	Passed
2	below pass mark	within pass mark	Passed
3	above pass mark	within pass mark	Failed
4	above pass mark	above pass mark	Failed

That means, the laboratory applies, as decision rule (see ISO/IEC 17025:2017), the so-called shared risk principle.

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

Tel: +86 (0557) 368 1008

2 GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

PRODUCT*	Mobile Phone		
BRAND NAME*	POCO		
MODEL NAME*	25053PC47G		
NOMINAL VOLTAGE*	5/3.6-20V dc (adapter or host equipment)		
	3.93Vdc (Li-ion, battery)		
MODULATION	FHSS		
TECHNOLOGY	11.00		
MODULATION TYPE	GFSK, π/4 DQPSK,8DPSK		
OPERATING	2402MHz 2490MHz		
FREQUENCY	2402MHz~2480MHz		
NUMBER OF CHANNEL	79		
MAX. OUTPUT POWER	99.77mW (Max. Measured)		
ANTENNA GAIN*	ANT0	-0.02dBi	
ANTENNA GAIN	ANT1	-2.74dBi	
ANTENNA TYPE*	PIFA		
HW VERSION*	13510O10U		
SW VERSION*	Xiaomi HyperOS 2.0		
I/O PORTS*	Refer to user's manual		
CABLE SUPPLIED*	USB cable1: non-shielded cable, with w/o ferrite core, 1.0 meter USB cable2: non-shielded cable, with w/o ferrite core, 1.0 meter		

NOTE:

- *Since the above data and/or information is provided by the client relevant results or conclusions of this report are only made for these data and/or information, Test Lab is not responsible for the authenticity, integrity and results of the data and information and/or the validity of the conclusion.
- 2. For a more detailed features description, please refer to the manufacturer's specifications or the user's manual.
- 3. For the test results, the EUT had been tested with all conditions. But only the worst case was shown in test report.
- 4. Antenna gain and EUT conducted cable loss are provided by the customer, and the laboratory will record the results based on these items that involve these two parameters.

2.2 DESCRIPTION OF TEST MODES

79 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461		

2.2.1 CONFIGURATION OF SYSTEM UNDER TEST

Please see section 4 photograph of the test configuration for reference.

2.2.2 TEST MODE APPLICABILITY AND TESTED CHANNEL DETAIL

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates, XYZ axis and antenna ports.

The worst case was found when positioned on X axis for radiated emission. Following channel(s) was (were) selected for the final test as listed below:

EUT CONFIGURE		APPLICA	ABLE TO		DESCRIPTION		
MODE	RE<1G	RE≥1G	PLC	APCM	DESCRIPTION		
-	V	V	V	$\sqrt{}$	-		

Where

RE<1G: Radiated Emission below 1GHz **PLC:** Power Line Conducted Emission

RE≥1G: Radiated Emission above 1GHz **APCM:** Antenna Port Conducted Measurement

RADIATED EMISSION TEST (BELOW 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.
- The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE	
-	0 to 78	39	FHSS	GFSK	1DH5	

RADIATED EMISSION TEST (ABOVE 1 GHz):

- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, XYZ axis, antenna ports (if EUT with antenna diversity architecture) and packet type.
- The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE MODE	AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
-	0 to 78	0, 39, 78	FHSS	GFSK	1DH5
-	0 to 78	0, 39, 78	FHSS	π/4 DQPSK	2DH5
-	0 to 78	0, 39, 78	FHSS	8DPSK	3DH5

POWER LINE CONDUCTED EMISSION TEST:

Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture) and packet type.

The following channel(s) was (were) selected for the final test as listed below.

EUT CONFIGURE	AVAILABLE	TESTED	MODULATION	MODULATION TYPE	PACKET
MODE	CHANNEL	CHANNEL	TECHNOLOGY		TYPE
-	0 to 78	78	FHSS	π /4-DQPSK	2DH5

ANTENNA PORT CONDUCTED MEASUREMENT:

- This item includes all test value of each mode, but only includes spectrum plot of worst value of each mode.
- Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, antenna ports (if EUT with antenna diversity architecture), and packet types.
- The following channel(s) was (were) selected for the final test as listed below.

AVAILABLE CHANNEL	TESTED CHANNEL	MODULATION TECHNOLOGY	MODULATION TYPE	PACKET TYPE
0 to 78	0, 39, 78	FHSS	GFSK	DH5
0 to 78	0, 39, 78	FHSS	π/4 DQPSK	2DH5
0 to 78	0, 39, 78	FHSS	8DPSK	3DH5

TEST CONDITION							
APPLICABLE TO	ENVIRONMENTAL CONDITIONS	TEST VOLTAGE (SYSTEM)	TESTED BY				
RE<1G	23deg. C, 70%RH	DC 3.93V By Adapter	Hanwen Xu				
RE≥1G	23deg. C, 70%RH	DC 3.93V By Adapter	Hanwen Xu				
PLC	25deg. C, 52%RH	DC 3.93V By Adapter	Hanwen Xu				
APCM	25deg. C, 60%RH	DC 3.93V By Adapter	Hanwen Xu				

2.3 GENERAL DESCRIPTION OF APPLIED STANDARDS

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C. Section 15.247 ANSI C63.10-2020

NOTE:

- 1. All test items have been performed and recorded as per the above standards.
- 2. The EUT is also considered as a kind of computer peripheral, because the connection to computer is necessary for typical use. It has been verified to comply with the requirements of FCC Part 15, Subpart B, Class B (Certification). The test report has been issued separately.

2.4 DESCRIPTION OF SUPPORT UNITS

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

NO.	PRODUCT	BRAND	MODEL NO.	SERIAL NO.	FCC ID
1	Laptop	Lenovo	ThinkPad E14	HRSW00024	N/A

NO.	SIGNAL CABLE DESCRIPTION OF THE ABOVE SUPPORT UNITS					
1	USB cable1: non-shielded cable, with w/o ferrite core, 1.0 meter					
2	USB cable2: non-shielded cable, with w/o ferrite core, 1.0 meter					

3 TEST TYPES AND RESULTS

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 LIMITS OF CONDUCTED EMISSION MEASUREMENT

FREQUENCY OF EMISSION (MHz)	CONDUCTED LIMIT (dBμV)		
0.15 ~ 0.5	Quasi-peak	Average	
0.5 ~ 5	66 to 56	56 to 46	
5 ~ 30	56	46	
	60	50	

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.
- 3. All emanations from a class A/B digital device or system, including any network of conductors and apparatus connected thereto, shall not exceed the level of field strengths specified above.

3.1.2 TEST INSTRUMENTS

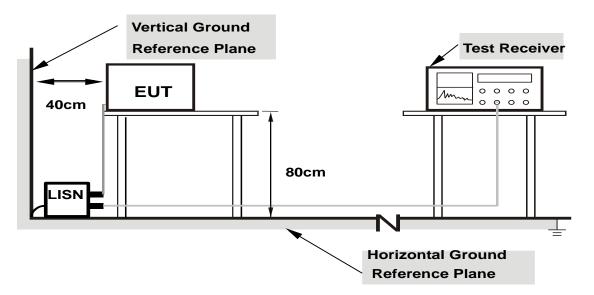
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
EMI Test Receiver	Rohde&Schwarz	ESR3	102749	Feb.24,24	Feb.23,26
ELEKTRA test software	Rohde&Schwarz	ELEKTRA	NA	N/A	N/A
LISN network	Rohde&Schwarz	ENV216	102640	Feb.16,24	Feb.15,26
CABLE	Rohde&Schwarz	W61.01	N/A	Apr.27,24	Apr.26,25
CABLE	Rohde&Schwarz	W601	N/A	Apr.27,24	Apr.26,25

NOTE:

- 1. The test was performed in CE shielded room.
- 2. The calibration interval of the above test instruments is 12 /24 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.

3.1.3 TEST PROCEDURES

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.


NOTE: All modes of operation were investigated and the worst-case emissions are reported.

3.1.4 DEVIATION FROM TEST STANDARD

No deviation.

3.1.5 TEST SETUP

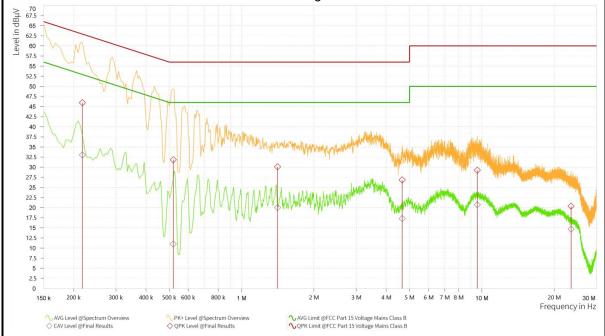
Note: 1.Support units were connected to second LISN.

2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

For the actual test configuration, please refer to the attached file (Test Setup Photo).

3.1.6 EUT OPERATING CONDITIONS

- a. Turned on the power and connected of all equipment.
- b. EUT was operated according to the type used was description in manufacturer's specifications or the User's Manual.

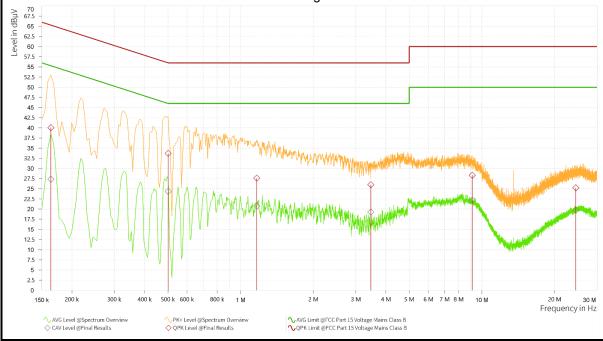

3.1.7 TEST RESULTS

CONDUCTED WORST-CASE DATA						
FREQUENCY RANGE	150KHz ~ 30MHz	DETECTOR FUNCTION & RESOLUTION BANDWIDTH	Quasi-Peak (QP) / Average (AV), 9 kHz			
INPUT POWER	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	26deg. C, 51%RH			
TESTED BY	Hanwen Xu					

Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]
1	0.218	45.94	62.91	16.97	33.02	52.91	19.89	11.97	L1	9.000
1	0.519	31.84	56.00	24.16	10.97	46.00	35.03	11.75	L1	9.000
1	1.410	30.10	56.00	25.90	20.01	46.00	25.99	11.75	L1	9.000
1	4.659	26.86	56.00	29.14	17.30	46.00	28.70	11.79	L1	9.000
1	9.578	29.25	60.00	30.75	20.73	50.00	29.27	11.83	L1	9.000
1	23.528	20.39	60.00	39.61	14.67	50.00	35.33	11.89	L1	9.000

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 6. Emission Level = Correction Factor + Reading Value.



FREQUENCY RANGE		DETECTOR FUNCTION & RESOLUTION BANDWIDTH	Quasi-Peak (QP) / Average (AV), 9 kHz
INPUT POWER	120Vac, 60Hz	ENVIRONMENTAL CONDITIONS	26deg. C, 51%RH
TESTED BY	Hanwen Xu		

Rg	Frequency [MHz]	QPK Level [dBµV]	QPK Limit [dBµV]	QPK Margin [dB]	CAV Level [dBµV]	CAV: AVG Limit [dBµV]	CAV Margin [dB]	Correction [dB]	Line	Meas. BW [kHz]
1	0.164	40.02	65.28	25.26	27.36	55.28	27.92	12.18	N	9.000
1	0.501	33.71	56.00	22.29	24.37	46.00	21.63	12.78	N	9.000
1	1.167	27.62	56.00	28.38	20.72	46.00	25.28	12.73	N	9.000
1	3.467	25.98	56.00	30.02	19.27	46.00	26.73	12.75	N	9.000
1	9.123	28.30	60.00	31.70	22.20	50.00	27.80	12.79	N	9.000
1	24.536	25.24	60.00	34.76	19.74	50.00	30.26	12.87	N	9.000

REMARKS:

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. "-": The Quasi-peak reading value also meets average limit and measurement with the average detector is unnecessary.
- 3. The emission levels of other frequencies were very low against the limit.
- 4. Margin value = Limit value Emission level
- 5. Correction factor = Insertion loss + Cable loss
- 7. Emission Level = Correction Factor + Reading Value.

3.2 RADIATED EMISSION AND BANDEDGE MEASUREMENT

3.2.1 LIMITS OF RADIATED EMISSION AND BANDEDGE MEASUREMENT

Radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a). Other emissions shall be at least 20dB below the highest level of the desired power.

FREQUENCIES (MHz)	FIELD STRENGTH (microvolts/meter)	MEASUREMENT DISTANCE (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- As shown in 15.35(b), for frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

3.2.2 TEST INSTRUMENTS

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Next Cal.
Pre-Amplifier	R&S	SCU18F1	100815	Aug.29,24	Aug.28,26
Pre-Amplifier	R&S	SCU08F1	101028	Sep.15,24	Sep.14,26
Signal Generator	R&S	SMB100A	182185	Feb.15,24	Feb.14,26
3m Semi-anechoic Chamber	TDK	9m*6m*6m	HRSW-SZ-EMC- 02Chamber	Nov.25,22	Nov.24,25
EMI TEST Receiver	R&S	ESW44	101973	Feb.24,24	Feb.23,26
Bilog Antenna	SCHWARZBECK	VULB 9163	1264	Feb.27,24	Feb.26,26
Horn Antenna		3117	227836	Aug.21,24	Aug.20,26
Horn Antenna (18GHz-40GHz)	Steatite Q-par Antennas	QMS 00880	23486	Feb.22,24	Feb.21,26
Horn Antenna	Steatite Q-par Antennas	QMS 00208	23485	Aug.21,24	Aug.20,26
Loop Antenna	SCHWARZ	HFH2-Z2/Z2E	100976	Feb.22,24	Feb.21,26
WIDEBANDRADIO					
COMMUNICATION	R&S	CMW500	169399	Jun.26,24	Jun.25,26
TESTER					
Test Software	ELEKTRA	ELEKTRA4.32	N/A	N/A	N/A
Open Switch and Control Unit	R&S	OSP220	101964	N/A	N/A
DC Source	HYELEC	HY3010B	551016	Aug.30,24	Aug.29,26
Hygrothermograph	DELI	20210528	SZ014	Sep.05,24	Sep.04,26
6DB attenuator	Tonscend Technology Co., Ltd	N/A	23062787	N/A	N/A
PC	LENOVO	E14	HRSW0024	N/A	N/A
TMC-	D O C	HF290-NMNM-	NI/A	N/A	N/A
AMI18843A(CABLE)	R&S	7.00M	N/A	IN/A	IN/A
TMC-	R&S	HF290-NMNM-	N/A	N/A	N/A
AMI18843A(CABLE)	Nas	4.00M	IN/A	IN/A	14/74
CABLE	R&S	W13.02	N/A	Apr.27,24	Apr.26,25
CABLE	R&S	W12.14	N/A	Apr.27,24	Apr.26,25

NOTE:

- 1. The calibration interval of the above test instruments is 12/ 24/ 36 months and the calibrations are traceable to CEPREI/CHINA, GRGT/CHINA and NIM/CHINA.
- 2. The test was performed in 3m Chamber.
- 3. The FCC Site Registration No. is 434559; The Designation No. is CN1325.

Huarui 7layers High Technology (Suzhou) Co., Ltd.

Tower N, Innovation Center, 88 Zuyi Road, High-tech District, Suzhou City, Anhui Province

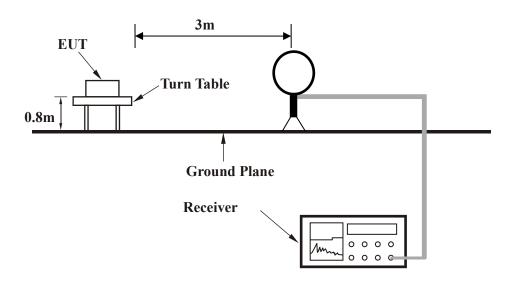
Tel: +86 (0557) 368 1008

3.2.3 TEST PROCEDURES

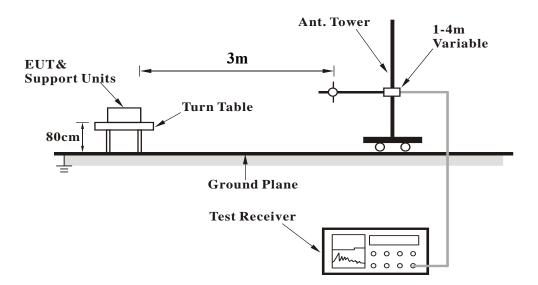
- a. The EUT was placed on the top of a rotating table 0.8 meters (for below 1GHz) /
 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test.
 The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, For battery operated equipment, the equipment tests shall be perform using fresh batteries. The turntable was rotated to maximize the emission level.

NOTE:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3MHz for Peak detection at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is 10Hz for Average detection (AV) at frequency above 1GHz.
- 4. If the dwell time per channel of the hopping signal is less than 100 ms, then the reading obtained with the 10 Hz VBW may be further adjusted by a "duty cycle correction factor", derived from 20log(dwell time/100 ms), in an effort to demonstrate compliance with the 15.209 limit.
- 5. All modes of operation were investigated and the worst-case emissions are reported.

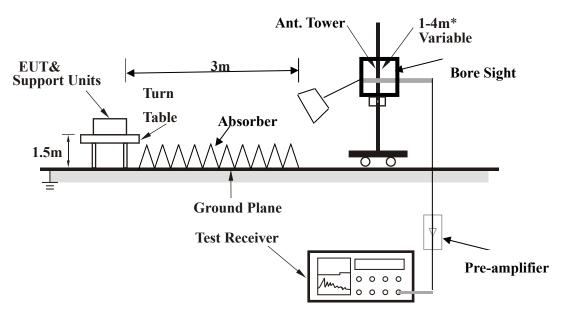

3.2.4 DEVIATION FROM TEST STANDARD

No deviation.



3.2.5 TEST SETUP

<Frequency Range 9KHz~30MHz >



< Frequency Range 30MHz~1GHz >

<Frequency Range above 1GHz>

Note: Above 1G is a directional antenna

Depends on the EUT height and the antenna 3dB beamwidth both, refer to section 7.3 of CISPR 16-2-3.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

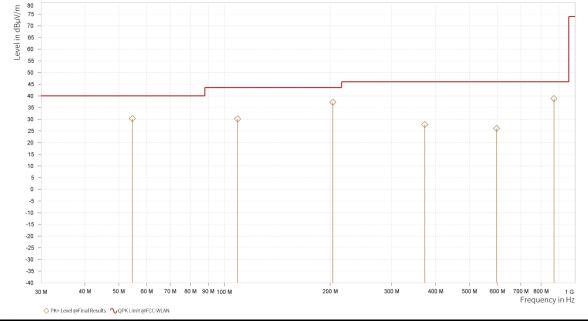
3.2.6 EUT OPERATING CONDITIONS

- a. Set the EUT under full load condition and placed them on a testing table.
- b. Set the transmitter part of EUT under transmission condition continuously at specific channel frequency.
- c. The necessary accessories enable the EUT in full functions.

3.2.7 TEST RESULTS

NOTE: The $9K\sim30MHz$ amplitude of spurious emissions attenuated more than 20 dB below the permissible value is not required in the report.

BELOW 1GHz WORST-CASE DATA

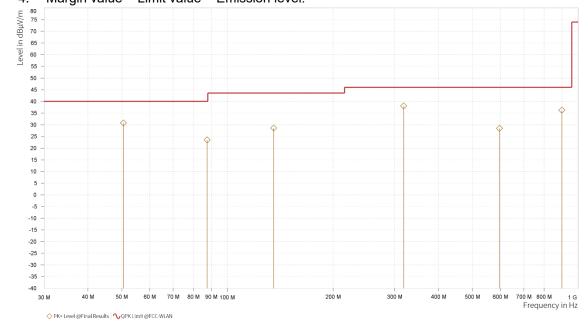

	BT_π	/4-DQPSK	
CHANNEL	Channel 39	DETECTOR FUNCTION	Oursi Dask (OD)
FREQUENCY RANGE		DETECTOR FUNCTION	Quasi-Peak (QP)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+: QPK Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	54.590	30.26	40.00	9.74	-12.55	Н	1.8	2.00
1	109.055	30.11	43.50	13.39	-13.66	Н	231.5	2.00
1	203.873	37.22	43.50	6.28	-13.10	Н	128.6	1.00
1	372.750	27.74	46.00	18.26	-10.46	Н	358.3	1.00
1	597.014	26.06	46.00	19.94	-6.31	Н	355	2.00
1	870.117	38.85	46.00	7.15	-2.12	Н	358.3	1.00

REMARKS:

- Emission Level(dBuV/m) = Read Level(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value Emission level.

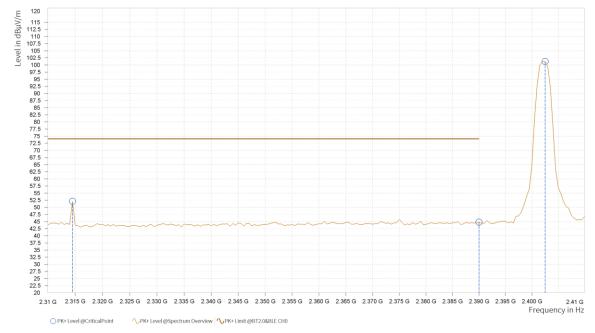

CHANNEL	Channel 39	DETECTOR FUNCTION	Oursi Bask (OD)
FREQUENCY RANGE		DETECTOR FUNCTION	Quasi-Peak (QP)

ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+: QPK Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
1	50.516	30.75	40.00	9.25	-12.06	V	1.7	2.00
1	87.521	23.47	40.00	16.53	-16.20	V	359.1	1.00
1	135.488	28.60	43.50	14.90	-17.12	V	5	1.00
1	318.139	38.04	46.00	7.96	-10.69	V	1	1.00
1	596.917	28.45	46.00	17.55	-6.31	V	128.6	1.00
1	898.441	36.20	46.00	9.80	-1.09	V	358.4	1.00

REMARKS:

- 1. Emission Level(dBuV/m) = Read Level(dBuV) + Correction Factor(dB/m)
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB)
- 3. The other emission levels were very low against the limit.
- 4. Margin value = Limit value Emission level.



ABOVE 1GHz WORST-CASE DATA

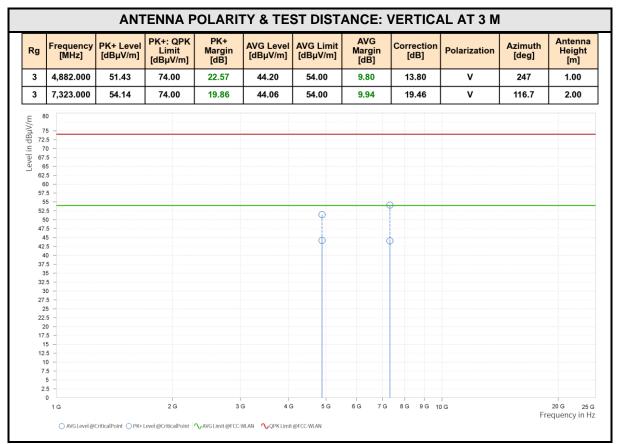
Note: All other emissions that greater than 20dB below the limit were not recorded.

					ВТ	_GF	SK					
C	INAH	NEL	TX C	hannel 0		DE	TECTOR		Pea	ık (PK)		
F	REQU	JENCY RAI	NGE 1GHz	z ~ 25GHz		FU	NCTION		Ave	rage (AV)		
		Al	NTENNA P	OLARITY 8	& TEST	DIS	STANCE: H	ORIZON [*]	TAL	AT 3 M		
	Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Marg [dB]	in	Correction [dB]	Polarizat	ion	Azimuth [deg]	Antenna Height [m]	

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,383.000	30.58	54.00	23.42	6.27	Н	359	2.00
5	2,390.000	30.69	54.00	23.31	6.39	Н	359	2.00
5	2,402.000	89.63			6.59	Н	355.8	1.00
120 1120 1112.5 1112.5 1107.5 100.5 100.5 100.9 97.5 99.5 80 80.77.5 72.5 72.5 52.5 40.5 47.5 35.5 40.5 47.5 52.5 52.5 52.5 52.5 52.5 52.5 52.5 5						φ		

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,369.000	45.84	74.00	28.16	6.04	V	0.9	2.00
5	2,390.000	45.12	74.00	28.88	6.39	V	91.6	1.00
5	2,402.000	100.55			6.59	V	238.6	1.00
120 1112.5 1112.5 1107.5 107.5 108.5 109.7 102.5 100.9 97.5 97.5 98.5 82.5 99.5 82.5 99.5 82.5 99.5 82.5 99.5 99.5 99.5 99.5 99.5 99.5 99.5 9								

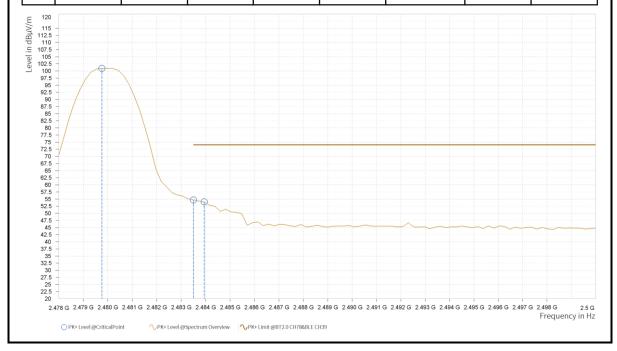
Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dΒμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,384.500	30.69	54.00	23.31	6.29	V	95.2	1.00
5	2,390.000	30.65	54.00	23.35	6.39	V	95.2	1.00
5	2,402.000	83.25			6.59	V	241	1.00
120 112.5 12.5 12.5 12.5 12.5 12.5 12.5 12.						Φ		


REMARKS:

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2402MHz: Fundamental frequency.

IAH	NNEL		TX Ch	annel 39	9	DETEC	TOR		Peak (PK	()			
REC	QUENCY	RANGE	1GHz	~ 25GH	Z	FUNCT	ION		Average	(AV)			
	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M Property PK+ Level PK+: QPK PK+ Margin AVG Level AVG Limit Avg Correction Relativation Azimuth Height Height												
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+: QPK Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBμV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]		
3	4,882.000	49.48	74.00	24.52	41.74	54.00	12.26	13.80	Н	359	1.00		
3	7,323.000	54.47	74.00	19.53	43.77	54.00	10.23	19.46	н	0.9	2.00		
_ 8	10												
5													
듩 7						······							
원 72.													
<u>-</u> 7	0												
P 67.													
9 6 62.													
6													
57.													
	i5 -							3					
52.	.5 -							Ĭ					
5	io -					0							
47.													
	5							ф					
42.						Ф		Ť ·					
	0 -												
37.													
	10							ļ					
32.													
32.	.5 -												
32. 3													
32. 3 27.	.5 —												
32. 3 27. 2 22. 2	.5 – .5 –												
32. 3 27. 2 22. 217.	.5 – .00 – .5 –												
32. 3 27. 2 22. 2 17.	.5												
32. 3 27. 2 22. 2 17. 1	25 —												
32. 3 27. 2 22. 2 17. 1 12.	25												
32. 3 27. 2 22. 17. 1 12.	25												
32. 327. 22. 22. 17. 1 12. 1 7.	25												
32. 327. 22. 22. 17. 1 12. 1 7.	25												

REMARKS:


- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2402MHz: Fundamental frequency.

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,479.760	100.91			7.24	Н	359.1	1.00
6	2,483.500	54.72	74.00	19.28	7.18	Н	0.9	2.00
6	2,483.940	54.01	74.00	19.99	7.17	Н	0.9	2.00

₹g	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,479.980	88.89			7.23	Н	249.4	1.00
6	2,483.500	32.13	54.00	21.87	7.18	Н	359.1	1.00
6	2,483.720	32.10	54.00	21.90	7.17	Н	359.1	1.00
105 5 102.5								

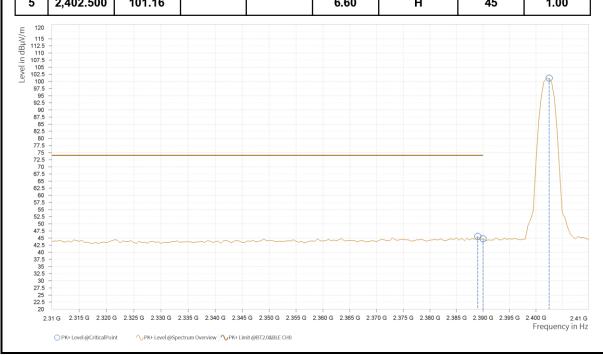
◆PK+ Level @Spectrum Overview

◆PK+ Limit @BT2.0 CH78&BLE CH39

₹g	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,479.760	95.89			7.24	V	242.2	1.00
6	2,483.500	48.48	74.00	25.52	7.18	V	56.9	1.00
6	2,496.920	46.95	74.00	27.05	6.97	V	188.4	1.00
97.5 92.5 90.5 92.5 90.8 82.5 82.5 75.5 75.5 70.6 60.5 55.5 55.5 52.5 40.3 37.5 40.3 37.5 40.3 37.5 40.3 47.5 40.3 47.5 40.3 47.5 40.3 40.3 40.3 40.3 40.3 40.3 40.3 40.3			Q				- A	

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,479.760	81.57			7.24	V	315.2	2.00
6	2,483.500	31.57	54.00	22.43	7.18	V	196.7	1.00
6	2,486.140	31.78	54.00	22.22	7.14	V	264.9	2.00
120 112.5 115.5 110.5 11			Φ	9				

REMARKS:


- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2480MHz: Fundamental frequency.

BT_π/4-DQPSK							
CHANNEL	TX Channel 0	DETECTOR	Peak (PK)				
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)				

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

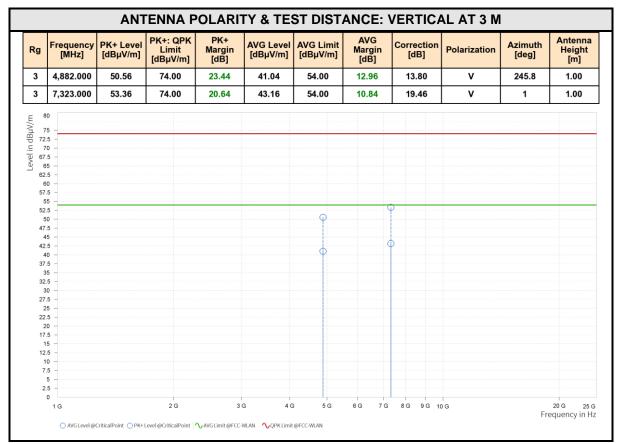
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,389.000	45.56	74.00	28.44	6.37	Н	0.9	2.00
5	2,390.000	44.77	74.00	29.23	6.39	Н	1	1.00
5	2,402.500	101.16			6.60	Н	45	1.00

140										
Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]		
5	2,383.000	30.63	54.00	23.37	6.27	Н	1	2.00		
5	2,390.000	30.74	54.00	23.26	6.39	н	354.9	2.00		
5	2,402.000	85.35			6.59	н	1.8	2.00		
120 115 112.5 110 107.5 105 102.5										
115										
110										
107.5	-									
105	+									
102.5 100										
97.5	_									
95	-									
92.5	-									
90 87.5										
87.5								G		
82.5	_							****		
80	+									
77.5	-									
75 72.5	1									
72.5										
67.5	-									
65										
62.5 60										
57.5										
55										
52.5										
50	-									
47.5	-									
45 42.5										
40	-									
37.5	-									
35	+									
32.5 30	-						0			
27.5							Ĭ.			
25	4									
22.5	-									

2.41 G Frequency in Hz

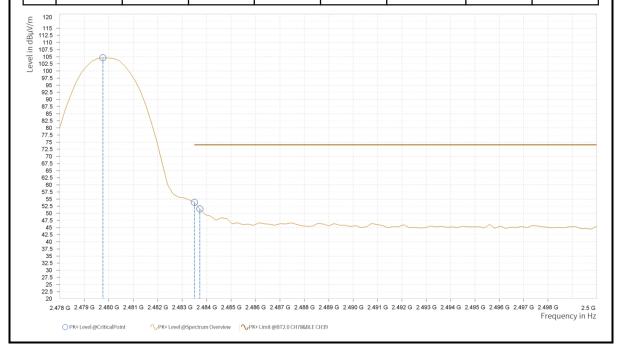
		ANTENNA	POLARITY	& TEST D	DISTANCE:	VERTICAL A	T 3 M	
₹g	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,371.000	45.66	74.00	28.34	6.06	٧	211.1	1.00
5	2,390.000	44.83	74.00	29.17	6.39	V	13.5	2.00
5	2,402.500	101.07			6.60	V	260.1	1.00
100 - 97.5 - 95 - 92.5 - 90 - 87.5 - 85 - 82.5 - 80 - 77.5 - 72.5 -								
70 — 67.5 — 65 — 62.5 — 60 — 57.5 — 55 — 52.5 —								

231 G 2.315 G 2.325 G 2.325 G 2.330 G 2.335 G 2.340 G 2.345 G 2.350 G 2.355 G 2.360 G 2.365 G 2.375 G 2.385 G 2.386 G 2.395 G 2.395 G 2.395 G 2.41 G Frequency in Hz


Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,384.500	30.74	54.00	23.26	6.29	V	267.2	2.00
5	2,390.000	30.74	54.00 23.2	23.26 6.39	V	94.1	1.00	
5	2,402.000	78.68			6.59	V	359	1.00
120 1112.5 1107.5 107.5 100.5 100.5 95.5 92.5 92.5 92.5 92.5 92.5 92.5 92								

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2402MHz: Fundamental frequency.

HAN	INEL		TX Ch	annel 39	9	DETEC			Peak (PK)	
REC	UENCY	RANGE	1GHz	~ 25GH	z	FUNCT	ION		Average (AV)		
		ANTE	NNA PO	LARIT	/ & TEST	DISTAI	NCE: H	ORIZON	TAL AT 3	M	
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+: QPK Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
3	4,882.000	49.49	74.00	24.51	39.07	54.00	14.93	13.80	н	0.9	2.00
3	7,323.000	54.34	74.00	19.66	44.04	54.00	9.96	19.46	н	1	1.00
E/N [†] 89 in Jana 1 62. 66 57. 5 52. 66 57. 4 42. 44. 37. 2 2 22. 2 22. 17. 1 12. 11. 7. 2. 2	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6					Φ		ф ф			
	1 G		2 G		G 40	5 G	6G 7G	8G 9G 1	1		20 G 25


- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2441MHz: Fundamental frequency.

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,479.760	104.64			7.24	Н	356.1	2.00
6	2,483.500	53.83	74.00	20.17	7.18	Н	0.9	2.00
6	2,483.720	51.58	74.00	22.42	7.17	Н	12.8	2.00

√AVG Level @Spectrum Overview

√AVG Limit @BT2.0 CH78&BLE CH39

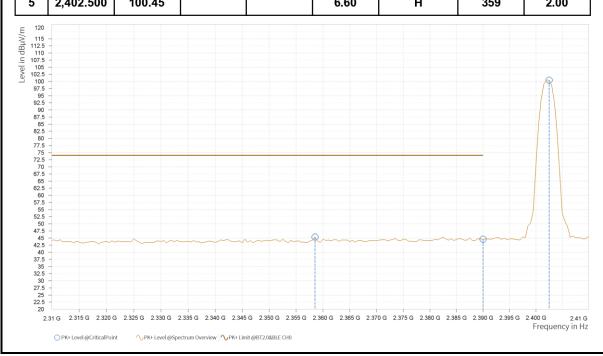
₹g	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,479.980	85.55			7.23	Н	1	1.00
6	2,483.500	31.92	54.00	22.08	7.18	Н	359.1	1.00
6	2,483.720	31.91	54.00	22.09	7.17	Н	359.1	1.00
105 100 100 100 100 100 100 100 100 100								

O AVG Level @CriticalPoint

◆PK+ Level @Spectrum Overview

◆PK+ Limit @BT2.0 CH78&BLE CH39

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,479.760	93.79			7.24	V	261.3	2.00
6	2,483.500	48.15	74.00	25.85	7.18	V	191.9	2.00
6	2,483.720	48.42	74.00	25.58	7.17	V	191.9	2.00
120 1112.5 1107.5 107.5 107.5 102.5			\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\text{\$\exitt{\$\text{\$\exitt{\$\text{\$\}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}					


Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,479.760	79.52			7.24	V	302	1.00
6	2,483.500	31.47	54.00	22.53	7.18	V	197.9	1.00
6	2,489.880	31.81	54.00	22.19	7.08	V	262.4	2.00
1105 1105 1107.5					P			

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2480MHz: Fundamental frequency.

	ВТ	_8DPSK						
CHANNEL	TX Channel 0	DETECTOR	Peak (PK)					
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)					
ANTEN	ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M							

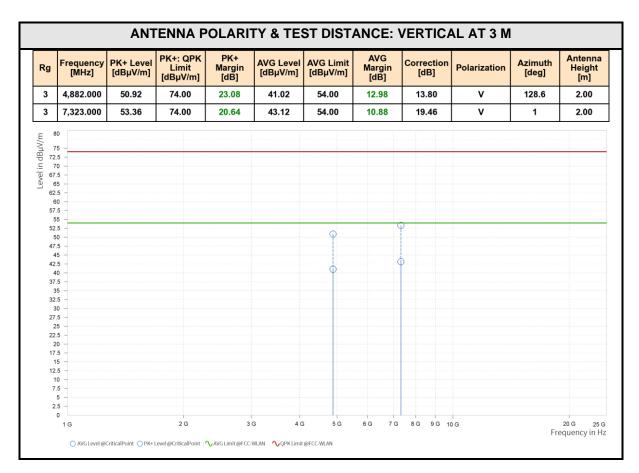
Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,358.500	45.37	74.00	28.63	5.98	Н	66.5	2.00
5	2,390.000	44.57	74.00	29.43	6.39	Н	359	2.00
5	2,402.500	100.45			6.60	Н	359	2.00

Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,382.000	30.62	54.00	23.38	6.25	Н	64	2.00
5	2,390.000	30.71	54.00	23.29	6.39	Н	64	2.00
5	2,402.000	85.11			6.59	Н	64	2.00
120 115 112.5 110 107.5 102.5 100 97.5 92.5 90 87.5 85 82.5 85 87.5 75 77.5 76.5 67.5 62.5								9
60 57.5 55 52.5 50 47.5 42.5 40 37.5 35 32.5 30 27.5 25						P	Ŷ	

e.400 G 2.41 G Frequency in Hz

◆PK+ Level @Spectrum Overview
◆PK+ Limit @BT2.0&BLE CH0

₹g	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,387.000	45.50	74.00	28.50	6.34	V	359	1.00
5	2,390.000	44.74	74.00	29.26	6.39	V	359	1.00
5	2,402.000	93.76			6.59	V	192	1.00
115 112.5 112.5 112.5 112.5 12.5 12.5 12							4	


Rg	Frequency [MHz]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
5	2,376.000	30.80	54.00	23.20 23.50	6.14	V	262.5	2.00 2.00
5	2,390.000	30.50	54.00		6.39	V	314	
5	2,402.500	79.80			6.60	V	233.8	1.00
120 112.5 1107.5 107.5 107.5 100.5 100.5 92.5 92.5 80.8 87.5 80.7 77.5 70.5 77.5 77.5 77.5 77.5 77.5 7						Φ		

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2402MHz: Fundamental frequency.

HANNEL			TX Ch	TX Channel 39 1GHz ~ 25GHz			DETECTOR FUNCTION			Peak (PK) Average (AV)		
REQUENCY RANGE		E 1GHz										
		ANTE	NNA PC	LARIT	/ & TEST	DISTA	NCE: H	ORIZON	TAL AT 3	М		
Rg	Frequer [MHz]	cy PK+ Level [dBμV/m]	PK+: QPK Limit [dBµV/m]	PK+ Margin [dB]	AVG Level [dBµV/m]	AVG Limit [dBµV/m]	AVG Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]	
3	4,882.0	00 50.92	74.00	23.08	41.02	54.00	12.98	13.80	v	128.6	2.00	
3	7,323.0	00 53.36	74.00	20.64	43.12	54.00	10.88	19.46	v	1	2.00	
	,											
E 80	0											
Ž 7	5 -											
Level in dBµV/m												
.⊑ 70) -											
₩ 67.												
62. 61												
57.												
5												
52.	5 -							φ				
50	o -					Ψ		+				
47.												
45								h				
42. 41						Ф						
37.												
3												
32.												
30												
27.												
2												
22.												
17.												
15												
12.												
10) -											
7.												
								·				
2.												
1	1 G		2 G	3	G 40	3 5 G	6G 7G	8G 9G 1	0.6		20 G 25 G	
	1 0		2 0	3	- 40		30 /6	00 00 1	v G	Fr	25 25 0	

- 1. Emission Level = Read Level+ Antenna Factor + Cable Loss- Preamp Factor
- 2. Margin value = Limit value Emission level.
- 3. 2402MHz: Fundamental frequency.

CHANNEL	TX Channel 78	DETECTOR	Peak (PK)
FREQUENCY RANGE	1GHz ~ 25GHz	FUNCTION	Average (AV)

ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M

Rg	Frequency [MHz]	PK+ Level [dBµV/m]	PK+ Limit [dBµV/m]	PK+ Margin [dB]	Correction [dB]	Polarization	Azimuth [deg]	Antenna Height [m]
6	2,479.980	100.97			7.23	Н	359.1	1.00
6	2,483.500	50.05	74.00	23.95	7.18	Н	1	1.00
6	2,483.940	48.43	74.00	25.57	7.17	Н	359.1	1.00

√AVG Level @Spectrum Overview

√AVG Limit @BT2.0 CH78&BLE CH39

- I	Frequency	AVG Level	AVG Limit	AVG	Correction		Azimuth	Antenna
g ˈ	[MHz]	[dBµV/m]	[dBµV/m]	Margin [dB]	[dB]	Polarization	[deg]	Height [m]
,	2,479.980	85.70			7.23	Н	312.8	2.00
,	2,483.500	31.91	54.00	22.09	7.18	Н	359.1	1.00
,	2,483.720	31.88	54.00	22.12	7.17	Н	1	1.00
120								
115 - 12.5 - 110 -								
07.5 - 105 - 02.5 -								
100 - 97.5 -								
95 - 92.5 - 90 -								
87.5 - 85 - 82.5 -	P							
80 – 77.5 –								
75 – 72.5 –								
70 – 67.5 – 65 –								
62.5 - 60 -	/							
57.5 – 55 – 52.5 –		\.						
50 – 47.5 –								
42.5 -								
37.5 - 35 -								
32.5 - 30 - 27.5 -			99					
40 - 37.5 - 35 - 32.5 - 30 -								

O AVG Level @CriticalPoint

2.498 G 2.5 G Frequency in Hz