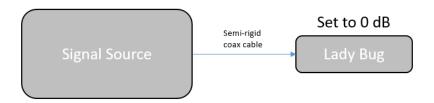
Introduction

Antenna gain measurement and calculation. Final antenna gain is -4.2 dB.

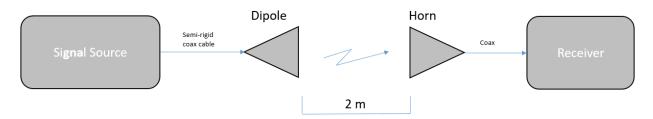
Pump

This paper documents the method used to determine the antenna gain in twiist Pump, assembly DKPI-21073-007, board DKPI-50108-001. The twiist Pump communicates wirelessly using the Bluetooth 4.2 Low Energy protocol (BLE4.2). The pump utilizes a Nordic Semiconductor BLE System on Chip (nRF528410). This SoC offers configurable conducted output power level. During normal communication, the conducted output power of the SoC is set to 0 dBm. The The twiist Automated Insulin Delivery (AID) System uses the 40 BLE channels spaced 2 MHz apart in the 2.4 GHz – 2.4835 GHz ISM band.

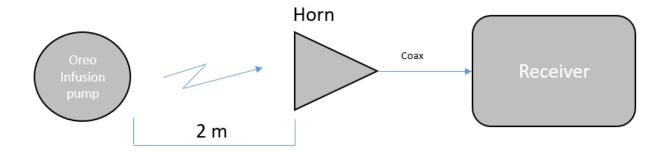

Pump Antenna

The twiist pump uses a slot cut into the metallized pump cover that is slightly longer than $\lambda/2$ for F_0 = 2.45 GHz. The PCB provides spring probes to the antenna which are offset to approximately 250 Ω . There are spring points on the PCB to connect the radio signal to the slot antenna in the cover. The calculated gain of the antenna is ~3 dB higher than the realized gain, due to difference in conductivity and surface roughness of the plating material.

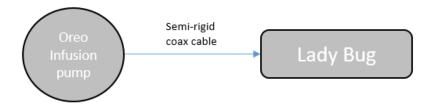
Test Method


Set the baseline power level to 0 dB – P_{SOURCE}

Using a Network Analyzer, semi-rigid cox cable and a Ladybug LB478A power meter, set the output level at the end of the coax cable to 0 dB at 2.45 GHz at 2 m


Measure the known source – P_{MEAS SOURCE}

Measure the maximized 0 dB signal from a tuned dipole using a horn antenna and an EMI receiver


Replace the signal source with the Twiist pump transmitting at full power and channel 39 at $2.48~\mathrm{GHz} - \mathrm{P}_{\mathrm{PUMP}}$

Measure the maximized power level seen at the receiver.

Conducted power level from the Nordic Chip $-P_{CONDUCTED}$

Measure the power conducted power at a point just prior to the SAW filter.

Measurements and Correction Factors

P _{SOURCE}	0 dBm	Source power used to calibrate the dipole measured into a power meter
P _{SOURCE} - i	2.2 dBi	Isotropic equivalent of P _{MEAS_SOURCE}
P _{MEAS_SOURCE}	-50.4 dBm	Radiated power measured at the horn antenna due the source power
		from the dipole
P _{PUMP}	-56.1 dBm	Radiated power measured at the horn antenna due to the pump
		transmitting
P _{CONDUCTED}	-1.74 dBm	Conducted power measured from the pumps circuit before the SAW
		filter using a power meter
L _{CABLE}	1.0 dB	Estimated loss due to the semi-rigid coaxial cable
C _{ISOTROPIC}	2.2 dBi	Correction of +2.2 dB normalizing the dipole measurement to an
		isotropic antenna, dBi

Calculations

Equations:

1. Pump radiated power vs conducted power

$$P_{PUMP} + L_{CABLE} - P_{CONDUCTED} = (-56.1) + (1.0) + (-1.74) = -56.84 dB$$

2. Source power

$$P_{MEAS_SOURCE} - C_{ISOTROPIC} = (-50.4) - (2.2) = -52.6 dBi$$

3. Antenna Gain

Eq.
$$1 - \text{Eq. } 2 = (-56.84) - (-52.6) = -4.2 \text{ dB}$$

Photos

Dipole Verification

Power from 0 dB into Dipole Test Configuration

Pump PCB Conducted Configuration

Pump cover/antenna

