

	FCC Test Report
Report No.:	RFBDYV-WTW-P20070334
FCC ID:	PRDMU87
Test Model:	HSA-A011M
Received Date:	Jul. 17, 2020
Test Date:	Aug. 21, 2020
Issued Date:	Aug. 28, 2020
Applicant:	Acrox Technologies Co., Ltd
Address:	4F., No. 89, Minshan St., Neihu Dist., Taipei City 114, Taiwan, R.O.C.
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories
Lab Address:	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
FCC Registration / Designation Number:	198487 / TW2021

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specification.

Table of Contents

R	elease	e Control Record	. 3
1	C	Certificate of Conformity	. 4
2	S	Summary of Test Results	. 5
	2.1 2.2	Measurement Uncertainty Modification Record	
3	G	General Information	. 6
	3.1 3.2 3.2.1 3.3 3.3.1 3.4	General Description of EUT Description of Test Modes Test Mode Applicability and Tested Channel Detail Description of Support Units Configuration of System under Test General Description of Applied Standards	. 7 . 8 . 9 . 9 . 9
4	Т	est Types and Results	10
	$\begin{array}{c} 4.1.2 \\ 4.1.3 \\ 4.1.4 \\ 4.1.5 \\ 4.1.6 \\ 4.2.1 \\ 4.2.1 \\ 4.2.2 \\ 4.2.3 \\ 4.2.4 \\ 4.2.5 \\ 4.2.6 \end{array}$	Radiated Emission and Bandedge Measurement Limits of Radiated Emission and Bandedge Measurement	10 11 12 12 13 14 15 21 21 21 21 21 22
5		Pictures of Test Arrangements	
A	ppend	lix – Information of the Testing Laboratories	24

Release Control Record

Issue No.	Description	Date Issued
RFBDYV-WTW-P20070334	Original release.	Aug. 28, 2020

1 Certificate of Conformity

Product:	Wireless Mouse
Brand:	hp
Test Model:	HSA-A011M
Sample Status:	Engineering sample
Applicant:	Acrox Technologies Co., Ltd
Test Date:	Aug. 21, 2020
Standards:	47 CFR FCC Part 15, Subpart C (Section 15.249)
	ANSI C63.10: 2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

elva Chen

Celia Chen / Supervisor

Date: Aug. 28, 2020

Date:

Aug. 28, 2020

Approved by :

Rex Lai / Associate Technical Manager

2 Summary of Test Results

47 CFR FCC Part 15, Subpart C (SECTION 15.249)				
FCC Clause	Test Item	Result	Remarks	
15.207	AC Power Conducted Emission	N/A	Power supply is 1.5Vdc from battery	
15.215	Channel Bandwidth Measurement	-		
15.209 15.249 15.249 (d)	Radiated Emission Test Band Edge Measurement Limit: 50dB less than the peak value of fundamental frequency or meet radiated emission limit in section 15.209	Pass	Meet the requirement of limit. Minimum passing margin is -6.70dB at 44.06MHz.	
15.203	Antenna Requirement	Pass	No antenna connector is used.	

Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions	9kHz ~ 40GHz	2.63 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	2.61 dB
Radiated Emissions up to 1 GHz	30MHz ~ 1000MHz	5.43 dB
Radiated Emissions above 1 GHz	Above 1GHz	5.42 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	Wireless Mouse
Brand	hp
Test Model	HSA-A011M
Status of EUT	Engineering sample
Power Supply Rating	1.5Vdc from battery
Modulation Type	GFSK
Operating Frequency	2405MHz ~ 2474MHz
Number of Channel	12
Antenna Type	Printed antenna with -1.2dBi gain
Antenna Connector	N/A
Accessory Device	N/A
Data Cable Supplied	N/A

Note:

1. The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible.

2. The above EUT information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications or user's manual.

3.2 Description of Test Modes

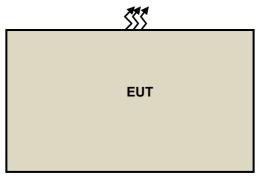
12 channels are provided to this EUT:

CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)	CHANNEL	FREQ. (MHz)
1	2405	4	2426	7	2442	10	2469
2	2407	5	2430	8	2447	11	2471
3	2418	6	2437	9	2458	12	2474

3.2.1 Test Mode Applicability and Tested Channel Detail

T Configure	•		able To		Description			
Mode	RE≥1G	RE<1G	PLC	APCM		escription		
-	\checkmark	\checkmark	Note	\checkmark	-			
re	G: Radiated Er		1GHz &	RE<1G: Radia	ted Emission below 1GHz			
	Power Line Co		ion	APCM: Antenr	a Port Conducted Measu	rement		
				EUT is powere				
diated Em	ission Test	(Above 1G	iHz):					
				the worst-ca	se mode from all pos	sible combinations		
between a	available mo				orts (if EUT with ante			
architectu	,							
Following	channel(s)	was (were)	selected for	r the final tes	t as listed below.			
EUT Con	figure Mode	Ava	ilable Channe	el	Tested Channel	Modulation Type		
Lot configure mode								
	-	- 1 to 12 1, 7, 12 GFSK						
Pre-Scan		onducted to	<u>Hz):</u> determine		se mode from all pos	sible combinations		
Pre-Scan between a architectu Following	has been co available mo re). channel(s)	onducted to odulations, d was (were)	<u>Hz):</u> determine lata rates a selected for	nd antenna p	se mode from all pos ports (if EUT with ante t as listed below.	sible combinations enna diversity		
Pre-Scan between a architectu Following	has been co available mo re).	onducted to odulations, d was (were)	Hz): determine lata rates a selected for ilable Channe	nd antenna p	se mode from all pos ports (if EUT with ante t as listed below. Tested Channel	sible combinations enna diversity Modulation Type		
Pre-Scan between a architectu Following	has been co available mo re). channel(s)	onducted to odulations, d was (were)	<u>Hz):</u> determine lata rates a selected for	nd antenna p	se mode from all pos ports (if EUT with ante t as listed below.	sible combinations enna diversity		
Pre-Scan between a architectu Following EUT Con tenna Por This item mode. Pre-Scan between a architectu	has been co available mo re). channel(s) figure Mode - t Conducte includes all has been co available mo re).	onducted to odulations, d was (were) : Ava d Measurer test value o onducted to odulations, d	Hz): determine lata rates al selected for ilable Channe 1 to 12 <u>ment:</u> f each mod determine lata rates al	nd antenna p r the final tes el e, but only ir the worst-ca nd antenna p	se mode from all pos ports (if EUT with ante t as listed below. Tested Channel 1 cludes spectrum plo se mode from all pos ports (if EUT with ante	sible combinations enna diversity <u>Modulation Type</u> GFSK t of worst value of each sible combinations		
Pre-Scan between a architectu Following EUT Con tenna Por This item mode. Pre-Scan between a architectu Following	has been co available mo re). channel(s) figure Mode - t Conducte includes all has been co available mo re). channel(s)	onducted to odulations, d was (were) : Ava d Measurer test value o onducted to odulations, d was (were) :	Hz): determine lata rates al selected for ilable Channe 1 to 12 <u>ment:</u> f each mod determine lata rates al	nd antenna p r the final tes e, but only ir the worst-ca nd antenna p	se mode from all pos ports (if EUT with ante t as listed below. Tested Channel 1 cludes spectrum plo se mode from all pos	sible combinations enna diversity <u>Modulation Type</u> GFSK t of worst value of each sible combinations enna diversity		
Pre-Scan between a architectu Following EUT Con tenna Por This item mode. Pre-Scan between a architectu Following	has been co available mo re). channel(s) figure Mode - t Conducte includes all has been co available mo re).	onducted to odulations, d was (were) : Ava d Measurer test value o onducted to odulations, d was (were) :	Hz): determine lata rates al selected for ilable Channe 1 to 12 <u>ment:</u> f each mod determine lata rates al selected for	nd antenna p r the final tes e, but only ir the worst-ca nd antenna p	se mode from all pos ports (if EUT with ante t as listed below. Tested Channel 1 cludes spectrum plo se mode from all pos ports (if EUT with ante t as listed below.	sible combinations enna diversity <u>Modulation Type</u> GFSK t of worst value of each sible combinations		

Test Condition:


Applicable To	Environmental Conditions	Input Power	Tested By
RE≥1G	30deg. C, 61%RH	1.5Vdc	lan Chang
RE<1G	30deg. C, 61%RH	1.5Vdc	lan Chang
APCM	25deg. C, 76%RH	1.5Vdc	Pirar Hsieh

3.3 Description of Support Units

The EUT has been tested as an independent unit together without any necessary accessory or support unit.

3.3.1 Configuration of System under Test

(Powered from battery)

3.4 General Description of Applied Standards

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards:

FCC Part 15, Subpart C (15.249)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

The field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following

Fundamental Frequency	Field Strength of Fundamental (millivolts/meter)	Field Strength of Harmonics (microvolts/meter)
902 ~ 928 MHz	50	500
2400 ~ 2483.5 MHz	50	500
5725 ~ 5875 MHz	50	500
24 ~ 24.25 GHz	250	2500

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits as below table, whichever is the lesser attenuation

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

NOTE:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).

3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

DESCRIPTION & MANUFACTURER	MODEL NO.	SERIAL NO.	CALIBRATED DATE	CALIBRATED UNTIL
HP Preamplifier	8447D	2432A03504	Feb. 19, 2020	Feb. 18, 2021
HP Preamplifier	8449B	3008A01201	Feb. 20, 2020	Feb. 19, 2021
MITEQ Preamplifier	AMF-6F-260400-33-8P	892164	Feb. 19, 2020	Feb. 18, 2021
Agilent TEST RECEIVER	N9038A	MY51210129	Mar. 18, 2020	Mar. 17, 2021
Schwarzbeck Antenna	VULB 9168	139	Nov. 7, 2019	Nov. 6, 2020
Schwarzbeck Antenna	VHBA 9123	480	Jun. 3, 2019	Jun. 2, 2021
Schwarzbeck Horn Antenna	BBHA-9170	212	Nov. 24, 2019	Nov. 23, 2020
Schwarzbeck Horn Antenna	BBHA 9120-D1	D130	Nov. 24, 2019	Nov. 23, 2020
ADT. Turn Table	TT100	0306	NA	NA
ADT. Tower	AT100	0306	NA	NA
Software	Radiated_V7.6.15.9.5	NA	NA	NA
SUHNER RF cable With 4dB PAD	SF102	Cable-CH6-01	Jul. 9, 2020	Jul. 8, 2021
SUHNER RF cable With 3/4dB PAD	SF102	Cable-CH8-3.6m	Jul. 9, 2020	Jul. 8, 2021
KEYSIGHT MIMO Powermeasurement Test set	U2021XA	U2021XA-001	Jun. 16, 2020	Jun. 15, 2021
KEYSIGHT Spectrum Analyzer	N9030A	MY54490260	Jul. 22, 2020	Jul. 21, 2021
Loop Antenna EMCI	LPA600	270	Aug. 23, 2019	Aug. 22, 2021
EMCO Horn Antenna	3115	00028257	Nov. 24, 2019	Nov. 23, 2020
Highpass filter Wainwright Instruments	WHK 3.1/18G-10SS	SN 8	NA	NA
ROHDE & SCHWARZ Spectrum Analyzer	FSV40	101042	Sep. 23, 2019	Sep. 22, 2020
Anritsu Power Sensor	MA2411B	0738404	Apr. 13, 2020	Apr. 12, 2021
Anritsu Power Meter	ML2495A	0842014	Apr. 13, 2020	Apr. 12, 2021

NOTE: 1. The calibration interval of the above test instruments is 12/24 months. And the calibrations are traceable to NML/ROC and NIST/USA.

- 2. The horn antenna and HP preamplifier (model: 8449B) are used only for the measurement of emission frequency above 1GHz if tested.
- 3. The test was performed in Chamber No. 6.

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

NOTE:

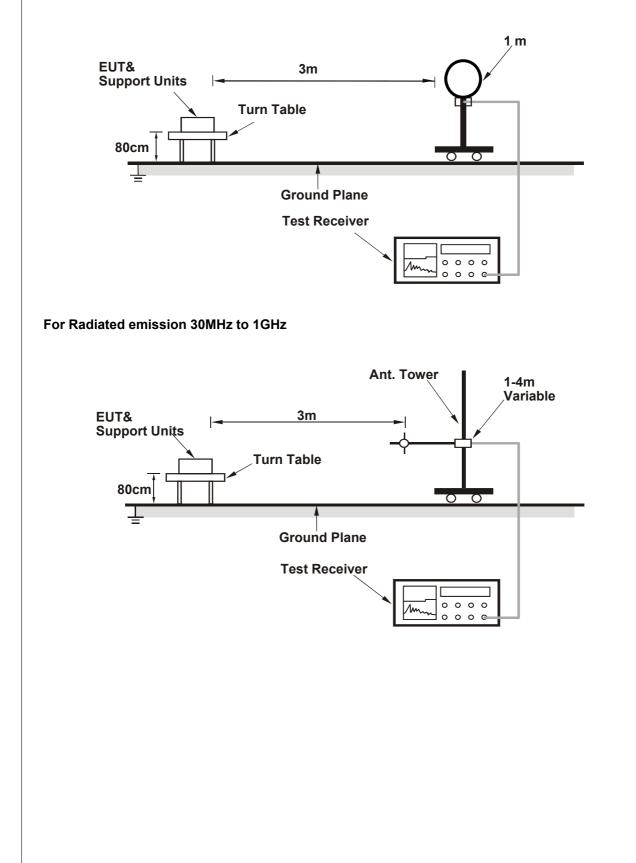
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

For Radiated emission above 30MHz

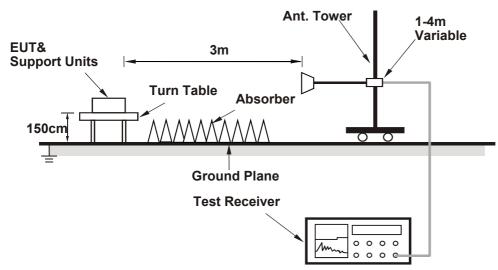
- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasipeak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz.
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz.
- 4. All modes of operation were investigated and the worst-case emissions are reported.


4.1.4 Deviation from Test Standard

No deviation.


4.1.5 Test Setup

For Radiated emission below 30MHz

For Radiated emission above 1GHz

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

ABOVE 1GHz DATA

Channel	TX Channel 1	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 25GHz	Detector Function	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m												
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)					
1	2390.00	52.64 PK	74.00	-21.36	2.28 H	237	51.32	1.32					
2	2390.00	31.68 AV	54.00	-22.32	2.28 H	237	30.36	1.32					
3	2400.00	42.70 PK	74.00	-31.30	2.28 H	237	41.33	1.37					
4	2400.00	13.20 AV	54.00	-40.80	2.28 H	237	11.83	1.37					
5	*2405.00	89.41 PK	114.00	-24.59	2.28 H	237	88.03	1.38					
6	*2405.00	59.91 AV	94.00	-34.09	2.28 H	237	58.53	1.38					
7	4810.00	54.45 PK	74.00	-19.55	1.67 H	120	45.26	9.19					
8	4810.00	24.95 AV	54.00	-29.05	1.67 H	120	15.76	9.19					

	Antenna Polarity & Test Distance : Vertical at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	2390.00	49.01 PK	74.00	-24.99	3.86 V	146	47.69	1.32				
2	2390.00	31.65 AV	54.00	-22.35	3.86 V	146	30.33	1.32				
3	2400.00	40.24 PK	74.00	-33.76	3.86 V	146	38.87	1.37				
4	2400.00	10.74 AV	54.00	-43.26	3.86 V	146	9.37	1.37				
5	*2405.00	86.95 PK	114.00	-27.05	3.86 V	146	85.57	1.38				
6	*2405.00	57.45 AV	94.00	-36.55	3.86 V	146	56.07	1.38				
7	4810.00	55.39 PK	74.00	-18.61	3.33 V	193	46.20	9.19				
8	4810.00	25.89 AV	54.00	-28.11	3.33 V	193	16.70	9.19				

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit.
- 5. " * ": Fundamental frequency.
- 6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

20 log(Duty cycle) = 20 log(0.27 ms / 8.04 ms) = -29.5 dB

Please see page 18 for plotted duty.

Channel	TX Channel 7	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 25GHz	Detector Function	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m												
No	Frequency (MHz)	Emission Level (dBuV/m)	Level (dBuV/m) (dB)			Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)					
1	*2442.00	88.34 PK	114.00	-25.66	2.48 H	221	86.86	1.48					
2	*2442.00	58.84 AV	94.00	-35.16	2.48 H	221	57.36	1.48					
3	4884.00	54.61 PK	74.00	-19.39	1.71 H	126	45.36	9.25					
4	4884.00	25.11 AV	54.00	-28.89	1.71 H	126	15.86	9.25					

	Antenna Polarity & Test Distance : Vertical at 3 m												
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)					
1	*2442.00	85.07 PK	114.00	-28.93	3.84 V	152	83.59	1.48					
2	*2442.00	55.57 AV	94.00	-38.43	3.84 V	152	54.09	1.48					
3	4884.00	55.43 PK	74.00	-18.57	3.29 V	195	46.18	9.25					
4	4884.00	25.93 AV	54.00	-28.07	3.29 V	195	16.68	9.25					

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

5. " * ": Fundamental frequency.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

 $20 \log(\text{Duty cycle}) = 20 \log(0.27 \text{ ms} / 8.04 \text{ ms}) = -29.5 \text{ dB}$

Please see page 18 for plotted duty.

Channel	TX Channel 12	Detector Function	Peak (PK)
Frequency Range	1GHz ~ 25GHz	Detector Function	Average (AV)

	Antenna Polarity & Test Distance : Horizontal at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	*2474.00	87.54 PK	114.00	-26.46	2.73 H	230	85.89	1.65				
2	*2474.00	58.04 AV	94.00	-35.96	2.73 H	230	56.39	1.65				
3	2483.50	51.79 PK	74.00	-22.21	2.73 H	230	50.08	1.71				
4	2483.50	34.28 AV	54.00	-19.72	2.73 H	230	32.57	1.71				
5	4948.00	54.67 PK	74.00	-19.33	1.80 H	130	45.44	9.23				
6	4948.00	25.17 AV	54.00	-28.83	1.80 H	130	15.94	9.23				

	Antenna Polarity & Test Distance : Vertical at 3 m												
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)					
1	*2474.00	84.09 PK	114.00	-29.91	3.84 V	154	82.44	1.65					
2	*2474.00	54.59 AV	94.00	-39.41	3.84 V	154	52.94	1.65					
3	2483.50	49.15 PK	74.00	-24.85	3.84 V	154	47.44	1.71					
4	2483.50	31.97 AV	54.00	-22.03	3.84 V	154	30.26	1.71					
5	4948.00	55.42 PK	74.00	-18.58	3.29 V	189	46.19	9.23					

-28.08

Remarks:

6

4948.00

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3.29 V

3. Margin value = Emission Level – Limit value

25.92 AV

4. The other emission levels were very low against the limit.

54.00

5. " * ": Fundamental frequency.

6. The average value of fundamental and harmonic frequency is: Average = Peak value + 20 log(Duty cycle) Where the duty factor is calculated from following formula:

 $20 \log(\text{Duty cycle}) = 20 \log(0.27 \text{ ms} / 8.04 \text{ ms}) = -29.5 \text{ dB}$ Please see page 18 for plotted duty. 16.69

9.23

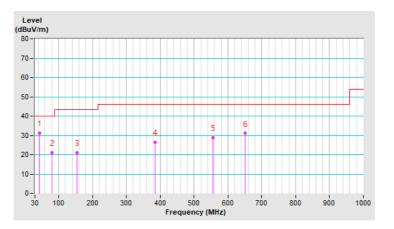
189

Duty Cycle

	A 8.04000				sense	A	/g Type: Lo			ug 19, 2020 2 3 4 5 6 ///////////////////////////////////	Marker
			PNO: Fast IFGain:Hig		Atten: 0 dB			ΔM	DET P	PNNNN 10 ms	Select Marker 3
) dB/div og	Ref 86.99	dBµV					п		0.,	35 dB	
7.0				- f			r				Norm
7.0											
7.0	í										
7.0					1Δ2		3∆4				Delt
7.0 whatte tr 7.0	man nitoropi I halas	transfel and	palie-nepreside	with X	and the second of the second s	neuper ^{al} tradulation	www.t.t		webstang between the basis	han Utras	
.99											Fixed
.01											TIXCU
	126000000									in 0 Hz	
ES BW (-	6dB) 3.00 N		#V	BW 8.	0 MHz Y	FUNCTION			00 ms (10		0
	t (Δ)	X	270.0 µs 12.54 ms		-0.07 dE		FUNCTIO		FUNCTION	ALUE	
2 F 3 Δ4 1 4 F 1			8.040 ms 12.54 ms	(Δ)	0.35 dBµv 0.35 dE 25.38 dBuv	3					D ana antia a
5			12.04 1113		0.00 000						Properties
7				8			10. 10.				
9											Mor
1											1 of
G								STATUS			

BELOW 1GHz WORST-CASE DATA

Channel	TX Channel 1	Detector Function	Oussi Bask (OD)	
Frequency Range	9kHz ~ 1GHz	Detector Function	Quasi-Peak (QP)	


	Antenna Polarity & Test Distance : Horizontal at 3 m							
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	42.90	31.26 QP	40.00	-8.74	2.84 H	205	38.48	-7.22
2	80.00	21.09 QP	40.00	-18.91	1.91 H	205	32.46	-11.37
3	153.24	21.02 QP	43.50	-22.48	1.62 H	3	27.41	-6.39
4	385.02	26.37 QP	46.00	-19.63	1.42 H	352	28.66	-2.29
5	556.37	28.92 QP	46.00	-17.08	1.88 H	32	27.98	0.94
6	650.51	31.10 QP	46.00	-14.90	1.21 H	355	27.96	3.14

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

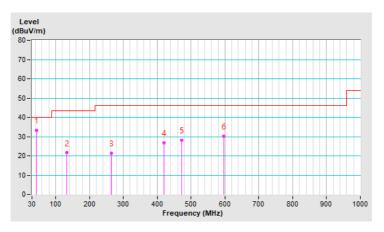
2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

- 3. Margin value = Emission Level Limit value
- 4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.
- 5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

Channel	TX Channel 1		Quasi-Peak (QP)	
Frequency Range	9kHz ~ 1GHz	Detector Function		

Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	44.06	33.30 QP	40.00	-6.70	1.03 V	203	40.58	-7.28
2	132.77	21.57 QP	43.50	-21.93	1.12 V	242	29.19	-7.62
3	265.61	21.45 QP	46.00	-24.55	1.45 V	203	27.08	-5.63
4	420.09	26.84 QP	46.00	-19.16	1.62 V	162	28.47	-1.63
5	473.05	28.09 QP	46.00	-17.91	1.38 V	237	28.42	-0.33
6	596.33	30.18 QP	46.00	-15.82	1.28 V	5	27.89	2.29

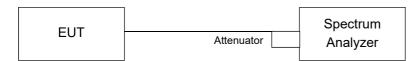
Remarks:


1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit of frequency range 30MHz~1000MHz.


5. The emission levels were very low against the limit of frequency range 9kHz~30MHz: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report.

4.2 Channel Bandwidth

4.2.1 Test Setup

4.2.2 Test Instruments

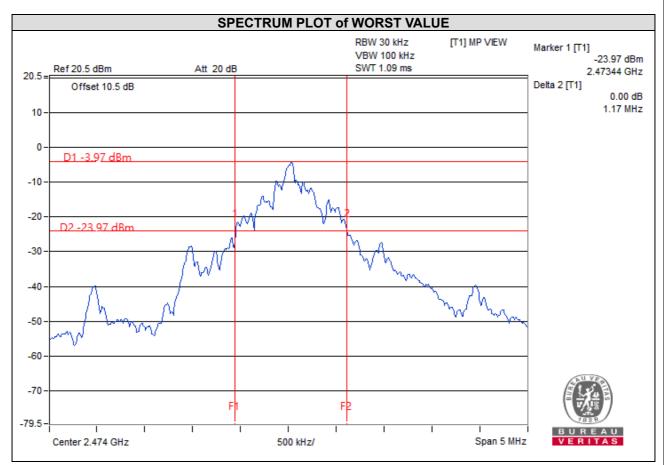
Refer to section 4.1.2 to get information of above instrument.

4.2.3 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.2.4 Deviation from Test Standard

No deviation.


4.2.5 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.2.6 Test Results

CHANNEL	FREQUENCY (MHz)	20dB BANDWIDTH (MHz)		
1	2405	1.12		
7	2442	1.11		
12	2474	1.17		

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab

Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com

The address and road map of all our labs can be found in our web site also.

--- END ---