Report Number: F690501/RF-RTL008066-1 Page: 1 of 70 ## **TEST REPORT** of FCC Part 15 Subpart C §15.247 / RSS-210 Issue 8, RSS-Gen Issue 3 FCC ID / IC Certification: S9E99133 / 5817A-99133 Equipment Under Test: Smart Receiver Accessory : 99133 Model Name **Applicant** : Trimble Navigation Limited Manufacturer : Trimble Navigation Limited : 2014.09.23 ~ 2014.09.26 Date of Test(s) Date of Issue : 2014.11.12 In the configuration tested, the EUT complied with the standards specified above. Tested By: Date: 2014.11.12 Approved By: Date: 2014.11.12 Report Number: F690501/RF-RTL008066-1 Page: 2 of 70 ## **INDEX** | Table of Contents | Page | |--|------| | 1. General Information | 3 | | 2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission | 7 | | 3. 20 dB Bandwidth and 99 % BW | 31 | | 4. Maximum Peak Output Power | 43 | | 5. Hopping Channel Separation | 45 | | 6. Number of Hopping Frequency | 48 | | 7. Time of Occupancy(Dwell Time) | 52 | | 8. Transmitter AC Power Line Conducted Emission | 65 | | 9 Antenna Requirement | 70 | Report Number: F690501/RF-RTL008066-1 Page: 3 of 70 ## 1. General Information ## 1.1. Testing Laboratory SGS Korea Co., Ltd. (Gunpo Laboratory) - Wireless Div. 2FL, 10-2, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 435-837 All SGS services are rendered in accordance with the applicable SGS conditions of service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions.aspx. Telephone : +82 31 688 0901 FAX : +82 31 688 0921 ## 1.2. Details of Applicant Applicant : Trimble Navigation Limited Address : 345 SW Avery Ave. Corvallis, OR 97333, USA Contact Person : Craig Bacho Phone No. : +1 541 750 9248 ## 1.3. Description of EUT | Kind of Product | Smart Receiver Accessory | |----------------------|--------------------------| | Model Name | 99133 | | Power Supply | DC 3.7 V | | Frequency Range | 2 402 Mbz ~ 2 480 Mbz | | Modulation Technique | GFSK, π/4DQPSK, 8DPSK | | Number of Channels | 79 | | Antenna Type | Chip antenna | | Antenna Gain | 1.7 dB i | ## 1.4. Declaration by the manufacturer - Adaptive Frequency Hopping is supported and use at least 20 channels Report Number: F690501/RF-RTL008066-1 Page: 4 of 70 #### 1.5. Information about the FHSS characteristics: ## 1.5.1. Pseudorandom Frequency Hopping Sequence The channel is represented by a pseudo-random hopping sequence hopping through the 79 RF channels. The hopping sequence is unique for the piconet and is determined by the Bluetooth device address of the master; the phase in the hopping sequence is determined by the Bluetooth clock of the master. The channel is divided into time slots where each slot corresponds to an RF hop frequency. Consecutive hops correspond to different RF hop frequencies. The nominal hop rate is 1 600 hops/s. ## 1.5.2. Equal Hopping Frequency Use The channels of this system will be used equally over the long-term distribution of the hopsets. ## 1.5.3. Example of a 79 hopping sequence in data mode: 02, 05, 31, 24, 20, 10, 43, 36, 30, 23, 40, 06, 21, 50, 44, 09, 71, 78, 01, 13, 73, 07, 70, 72, 35, 62, 42, 11, 41, 08, 16, 29, 60, 15, 34, 61, 58, 04, 67, 12, 22, 53, 57, 18, 27, 76, 39, 32, 17, 77, 52, 33, 56, 46, 37, 47, 64, 49, 45, 38, 69, 14, 51, 26, 79, 19, 28, 65, 75, 54, 48, 03, 25, 66, 05, 16, 68, 74, 59, 63, 55 ## 1.5.4. System Receiver Input Bandwidth Each channel bandwidth is 1 Mb. The system receivers have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shift frequencies in synchronization with the transmitted signals. ## 1.5.5. Equipment Description 15.247(a)(1) that the rx input bandwidths shift frequencies in synchronization with the transmitted signals. 15.247(g): In accordance with the Bluetooth Industry Standard, the system is designed to comply with all of the regulations in Section 15.247 when the transmitter is presented with a continuous data (or information) system. 15.247(h): In accordance with the Bluetooth Industry Standard, the system does not coordinate it channels selection/ hopping sequence with other frequency hopping systems for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters. Report Number: F690501/RF-RTL008066-1 Page: 5 of 70 ## 1.6. Test Equipment List | Equipment | Manufacturer | Model | S/N | Cal Date | Cal
Interval | Cal Due. | |---------------------|-------------------------------|--------------------------------------|----------------|---------------|-----------------|---------------| | Signal Generator | Agilent | E8257D | MY51501169 | Jul. 17, 2014 | Annual | Jul. 17, 2015 | | Spectrum Analyzer | Agilent | N9030A | MY53120526 | Jul. 17, 2014 | Annual | Jul. 17, 2015 | | Spectrum Analyzer | R&S | FSV30 | 101004 | Jun. 25, 2014 | Annual | Jun. 25, 2015 | | High Pass Filter | Wainwright | WHK3.0/18G-6SS | 4 | Jul. 02, 2014 | Annual | Jul. 02, 2015 | | High Pass Filter | Wainwright | WHK7.5/26.5G-6SS | 15 | Jul. 02, 2014 | Annual | Jul. 02, 2015 | | Low Pass Filter | Mini circuits | NLP-1200+ | V 8979400903-2 | Mar. 21, 2014 | Annual | Mar. 21, 2015 | | Power Sensor | R&S | NRP-Z81 | 100669 | Mar. 19, 2014 | Annual | Mar. 19, 2015 | | Bluetooth Tester | TESCOM | TC-3000C | 3000C000142 | Dec. 12, 2013 | Annual | Dec. 12, 2014 | | Directional Coupler | KRYTAR | 152613 | 122661 | Mar. 18, 2014 | Annual | Mar. 18, 2015 | | DC Power Supply | Agilent | U8002A | MY49030063 | Dec. 12, 2013 | Annual | Dec. 12, 2014 | | Preamplifier | H.P. | 8447F | 2944A03909 | Aug. 27, 2014 | Annual | Aug. 27, 2015 | | Preamplifier | R&S | SCU 18 | 10117 | Jan. 14, 2014 | Annual | Jan. 14, 2015 | | Preamplifier | MITEQ Inc. | JS44-18004000-35-8P | 1546891 | Apr. 28, 2014 | Annual | Apr. 28, 2015 | | Bilog Antenna | SCHWARZBECK
MESSELEKTRONIK | VULB9163 | 396 | Jun. 07, 2014 | Biennial | Jun. 07, 2016 | | Loop Antenna | SCHWARZBECK
MESSELEKTRONIK | FMZB 1519 | 1519-039 | Jul. 09, 2013 | Biennial | Jul. 09, 2015 | | Horn Antenna | R&S | HF906 | 100326 | Dec. 10, 2013 | Biennial | Dec. 10, 2015 | | Horn Antenna | SCHWARZBECK
MESSELEKTRONIK | BBHA9170 | BBHA9170431 | May 15, 2014 | Biennial | May 15, 2016 | | Antenna Master | INN-CO | MM4000 | N/A | N/A | N/A | N.C.R. | | Turn Table | INN-CO | DS 1200 S | N/A | N/A | N/A | N.C.R. | | Test Receiver | R&S | ESU26 | 100109 | Mar. 04, 2014 | Annual | Mar. 04, 2015 | | Anechoic Chamber | SY Corporation | L × W × H
(9.6 m × 6.4 m × 6.6 m) | N/A | N/A | N/A | N.C.R. | | EMI Test Receiver | R&S | ESCI 7 | 100911 | Jan. 24, 2014 | Annual | Jan. 24, 2015 | | Two-Line V-Network | R&S | ENV216 | 100190 | Jan. 02, 2014 | Annual | Jan. 02, 2015 | | Anechoic Chamber | SY Corporation | L × W × H
(6.5 m × 3.5 m × 3.5 m) | N/A | N.C.R. | N/A | N.C.R. | Report Number: F690501/RF-RTL008066-1 70 Page: 6 of ## 1.7. Summary of Test Results The EUT has been tested according to the following specifications: | | APPLIED STANDAR | D:FCC Part15 subpart C, RSS-210, RSS-Ger | 1 | |----------------------------------|-----------------------------------|--|----------| | Section in FCC 15 | Section in
RSS-210,
RSS-Gen | Test Item | Result | | 15.205(a)
15.209
15.247(d) | RSS-210 A8.5 | Transmitter Radiated Spurious Emissions
Conducted Spurious Emission | Complied | | 15.247(a)(1) | RSS-210 A8.1(a)
RSS-Gen 4.6.1 | 20 dB Bandwidth and 99 % BW | Complied | | 15.247(b)(1) | RSS-210 A8.4(2) | Maximum Peak Output Power | Complied | | 15.247(a)(1) | RSS-210 A8.1(b) | Frequency Separation | Complied | | 15.247(a)(1)(iii) | RSS-210 A8.1(d) | Number of Hopping Frequency | Complied | | 15.247(a)(1)(iii) | RSS-210 A8.1(d) | Time of Occupancy
(Dwell Time) | Complied | | 15.207 | RSS-Gen 7.2.4 | Transmitter AC Power Line Conducted Emission | Complied | ## 1.8. Sample calculation Where relevant, the following sample calculation is provided: #### 1.8.1. Conducted test Offset value (dB) = Directional Coupler(dB) + Cable loss (dB) #### 1.8.2. Radiation test Field strength level ($dB\mu V/m$) = Measured level ($dB\mu V$) + Antenna factor (dB) + Cable loss (dB) – amplifier gain (dB) ## 1.9. Test report revision | Revision | Report number | Date of Issue | Description | |----------|------------------------|---------------|---| | 0 | F690501/RF-RTL008066 | 2014.09.29 | Initial | | 1 | F690501/RF-RTL008066-1 | 2014.11.12 | Add the procedure of radiated emission test | Report Number: F690501/RF-RTL008066-1 Page: 7 of 70 # 2. Transmitter Radiated Spurious Emissions and Conducted Spurious Emission ## 2.1. Test Setup ## 2.1.1. Transmitter Radiated Spurious Emissions The diagram below shows the test setup that is utilized to make the measurements for emission from 9 klb to 30 Mb Emissions. The diagram below shows the test setup that is utilized to make the measurements for emission from 30 $\,\text{Mz}$ to 1 $\,\text{GHz}$ Emissions. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 435-040 http://www.sgsgroup.kr Report Number: F690501/RF-RTL008066-1 Page: 8 of 70 The diagram below shows the test setup that is utilized to make the measurements for emission .The spurious emissions were investigated form 1 \mbox{GHz} to the 10th harmonic of the highest fundamental frequency or 40 \mbox{GHz} , whichever is lower. Report Number: F690501/RF-RTL008066-1 Page: 9 of 70 ## 2.1.2. Conducted Spurious Emissions #### 2.2. Limit According to §15.247(d), in any 100 klb bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 klb bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in section §15.209(a) is not required. In addition, radiated emission which in the restricted band, as define in section §15.205(a), must also comply the radiated emission limits specified in section §15.205(c)) According to § 15.209(a), Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table : | Frequency
(雕) | Field Strength
(microvolts/meter) | Measurement Distance
(meter) | |------------------|--------------------------------------|---------------------------------| | 0.009 - 0.490 | 2400/F(kHz) | 300 | | 0.490 – 1.705 | 24000/F(kHz) | 30 | | 1.705 – 30.0 | 30 | 30 | | 30 – 88 | 100** | 3 | | 88 – 216 | 150** | 3 | | 216 – 960 | 200** | 3 | | Above 960 | 500 | 3 | ^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 Mb, 76-88 Mb, 174-216 Mb or 470-806 Mb. However, operation within these frequency bands is permitted under other sections of this Part, e.g., §§15.231 and 15.241 Report Number: F690501/RF-RTL008066-1 Page: 10 of 70 #### 2.3. Test Procedures Radiated emissions from the EUT were measured according to the dictates of DA 00-705, ANSI C63.4-2003 ## 2.3.1. Test Procedures for Radiated Spurious Emissions - 1. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter anechoic chamber test site. The table was rotated 360 degrees to determine the position of the highest radiation. - 2. During performing radiated emission below 1 %, the EUT was set 3 meters away from the interference receiving antenna, which was mounted on the top of a variable-height antenna tower. During performing radiated emission above 1 %, the EUT was set 3 meter away from the interference-receiving antenna. - 3. The antenna is a broadband antenna, and its height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - 4. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the table was turned from 0 degrees to 360 degrees to find the maximum reading. - 5. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. - 6. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. ## NOTE; All data rates and modes were investigated for radiated spurious emissions. Only the radiated emissions of the configuration that produced the worst case emissions are reported in this section. - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120 \(\text{klz} \) for Peak detection (PK) and Quasi-peak detection (QP) at frequency below 1 \(\text{Glz} \). - 2. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 1 Mb for Peak detection and frequency above 1 GHz. - 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 Mb and the video bandwidth is $1/T_{on}$ Hz $(T_{on}$ = On-time of the Pulsed emission) for Average detection (AV) at frequency above 1 Gb. - VBW = 400 Hz \geq 1/T_{on} Hz, pulse width in seconds (T_{on} = 2.89 ms). Refer to the DH5, 3DH5 of Time of Occupancy (Dwell Time) test item. - 4. When Average result is different from peak result over 20 dB (over-averaging), According to 15.35 (c), as a "duty cycle correction factor", pulse averaging with 20 log(duty cycle) has to be used. - 5. To get a maximum emission level from the EUT, the EUT is manipulated through three orthogonal planes. Report Number: F690501/RF-RTL008066-1 Page: 11 of 70 ## 2.3.2. Test Procedures for Conducted Spurious Emissions ## 2.3.2.1. Band-edge Compliance of RF Conducted Emissions The transmitter output was connected to the spectrum analyzer. Span = wide enough to capture the peak level of the emission operating on the channel closest to the bandedge, as well as any modulation products which fall outside of the authorized band of operation. RBW ≥ 100 klb VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold #### 2.3.2.2. Spurious RF Conducted Emissions The transmitter output was connected to the spectrum analyzer. RBW = 100 kllz VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold RTT5041-20(2014.01.20)(2) Report Number: F690501/RF-RTL008066-1 70 Page: 12 of ## 2.4. Test Results Ambient temperature : **(23** ± **1)** ℃ Relative humidity % R.H. : 47 ## 2.4.1. Spurious Radiated Emission (Worst case configuration_GFSK mode, 1 Mbps, Low channel) The frequency spectrum from 24 Mb to 1 000 Mb was investigated. Emission levels are not reported much lower than the limits by over 30 dB. All reading values are peak values. | Radi | Radiated Emissions | | | Correctio | n Factors | Total | FCC Li | imit | |------------------|--------------------|----------------|------|---------------------|------------------|--------------------|----------------------------|----------------| | Frequency
(贴) | Reading
(dBμV) | Detect
Mode | Pol. | AF
(dB/m) | AMP + CL
(dB) | Actual
(dΒμV/m) | Limit
(dB <i>µ</i> V/m) | Margin
(dB) | | 33.44 | 35.39 | Peak | V | 13.09 | -26.88 | 21.60 | 40.00 | 18.40 | | 34.41 | 37.02 | Peak | V | 13.24 | -26.86 | 23.40 | 40.00 | 16.60 | | 35.58 | 39.21 | Peak | V | 13.43 | -26.84 | 25.80 | 40.00 | 14.20 | | 36.99 | 37.39 | Peak | Н | 15.44 | -26.83 | 26.00 | 40.00 | 14.00 | ## Remark: - 1. All spurious emissions at channels are almost the same below 1 GHz, so that low channel was chosen at representative in final test. - 2. Actual = Reading + AF + AMP + CL - 3. The worst case test configuration was found with the EUT in the Y axis. Report Number: F690501/RF-RTL008066-1 Page: 13 of 70 ## 2.4.2. Spurious Radiated Emission The frequency spectrum above 1 000 Mb was investigated. Operating Mode: GFSK(1 Mbps) A. Low Channel (2 402 Mb) | Radi | Radiated Emissions | | | Correctio | n Factors | Total | FCC Li | mit | |------------------|--------------------|----------------|------|--------------|------------|-----------------|-------------------|----------------| | Frequency
(脈) | Reading
(dBμV) | Detect
Mode | Pol. | AF
(dB/m) | CL
(dB) | Actual (dBµN/m) | Limit
(dΒμΝ/m) | Margin
(dB) | | *2 310.00 | 22.85 | Peak | Н | 27.77 | 6.48 | 57.10 | 74.00 | 16.90 | | *2 310.00 | 12.69 | Average | Н | 27.77 | 6.48 | 46.94 | 54.00 | 7.06 | | *2 329.68 | 25.17 | Peak | Н | 27.99 | 6.36 | 59.52 | 74.00 | 14.48 | | *2 329.68 | 12.43 | Average | Н | 27.99 | 6.36 | 46.78 | 54.00 | 7.22 | | *2 390.00 | 23.00 | Peak | Н | 28.08 | 6.47 | 57.55 | 74.00 | 16.45 | | *2 390.00 | 12.83 | Average | Н | 28.08 | 6.47 | 47.38 | 54.00 | 6.62 | | Radi | Radiated Emissions | | | Correctio | n Factors | Total | FCC Li | mit | |-------------------|--------------------|----------------|------|--------------|----------------|-----------------|-------------------|----------------| | Frequency
(Mb) | Reading
(dBμV) | Detect
Mode | Pol. | AF
(dB/m) | AMP+CL
(dB) | Actual (dΒμV/m) | Limit
(dΒμV/m) | Margin
(dB) | | *4 804.98 | 39.35 | Peak | Н | 32.62 | -33.67 | 38.30 | 74.00 | 35.70 | | *4 804.98 | 27.25 | Average | Н | 32.62 | -33.67 | 26.20 | 54.00 | 27.80 | | Above
4 900.00 | Not
detected | - | - | - | - | - | - | - | Report Number: F690501/RF-RTL008066-1 Page: 14 of 70 ## B. Middle Channel (2 441 眦) | Radia | Radiated Emissions | | Ant | Correctio | n Factors | Total | FCC L | mit | |-------------------|--------------------|----------------|------|------------------------------|----------------|---------------------|-------------------|----------------| | Frequency
(Mb) | Reading
(dBμV) | Detect
Mode | Pol. | AF
(dB/ m) | AMP+CL
(dB) | Actual
(dΒμ̄V/m) | Limit
(dΒμV/m) | Margin
(dB) | | *4 882.56 | 40.82 | Peak | Н | 33.02 | -33.46 | 40.38 | 74.00 | 33.62 | | *4 882.56 | 28.20 | Average | Н | 33.02 | -33.46 | 27.76 | 54.00 | 26.24 | | Above
4 900.00 | Not
detected | - | - | - | - | - | - | - | ## C. High Channel (2 480 账) | Radi | Radiated Emissions | | | Correctio | n Factors | Total | FCC Li | mit | |-------------------|--------------------|----------------|------|--------------|------------|-----------------|-------------------|----------------| | Frequency
(Mb) | Reading
(dBμV) | Detect
Mode | Pol. | AF
(dB/m) | CL
(dB) | Actual (dBµN/m) | Limit
(dBµV/m) | Margin
(dB) | | *2 483.50 | 23.24 | Peak | Н | 28.17 | 6.65 | 58.06 | 74.00 | 15.94 | | *2 483.50 | 13.29 | Average | Н | 28.17 | 6.65 | 48.11 | 54.00 | 5.89 | | *2 498.07 | 26.15 | Peak | Н | 28.30 | 6.85 | 61.30 | 74.00 | 12.70 | | *2 498.07 | 13.45 | Average | Н | 28.30 | 6.85 | 48.60 | 54.00 | 5.40 | | *2 500.00 | 23.56 | Peak | Н | 28.31 | 6.88 | 58.75 | 74.00 | 15.25 | | *2 500.00 | 13.39 | Average | Н | 28.31 | 6.88 | 48.58 | 54.00 | 5.42 | | Radiated Emissions | | | Ant | Correctio | n Factors | Total | FCC Li | imit | |--------------------|-------------------|----------------|------|--------------|-------------|-----------------|-------------------|----------------| | Frequency
(Mb) | Reading
(dBμV) | Detect
Mode | Pol. | AF
(dB/m) | AMP+CL (dB) | Actual (dBµN/m) | Limit
(dBµV/m) | Margin
(dB) | | *4 961.05 | 40.57 | Peak | Н | 33.17 | -33.36 | 40.38 | 74.00 | 33.62 | | *4 961.05 | 27.96 | Average | Н | 33.17 | -33.36 | 27.77 | 54.00 | 26.23 | | Above
5 000.00 | Not
detected | - | - | - | - | - | - | - | Report Number: F690501/RF-RTL008066-1 Page: 15 of 70 ## Operating Mode: 8DPSK(3 Mbps) A. Low Channel (2 402 Mb) | Radiated Emissions | | | Ant | t Correction Factors | | Total | FCC Limit | | |--------------------|-------------------|----------------|------|----------------------|------------|--------------------|--------------------|----------------| | Frequency
(Mb) | Reading
(dBμV) | Detect
Mode | Pol. | AF
(dB/m) | CL
(dB) | Actual
(dBµV/m) | Limit
(dΒμ̄V/m) | Margin
(dB) | | *2 310.00 | 23.03 | Peak | Н | 27.77 | 6.48 | 57.28 | 74.00 | 16.72 | | *2 310.00 | 12.68 | Average | Н | 27.77 | 6.48 | 46.93 | 54.00 | 7.07 | | *2 339.60 | 25.33 | Peak | Ι | 28.05 | 6.45 | 59.83 | 74.00 | 14.17 | | *2 339.60 | 12.58 | Average | Η | 28.05 | 6.45 | 47.08 | 54.00 | 6.92 | | *2 390.00 | 23.36 | Peak | Н | 28.08 | 6.47 | 57.91 | 74.00 | 16.09 | | *2 390.00 | 12.86 | Average | Н | 28.08 | 6.47 | 47.41 | 54.00 | 6.59 | | Radiated Emissions | | | Ant | Correction Factors | | Total | FCC Limit | | |--------------------|-------------------|----------------|------|--------------------|----------------|-----------------|-------------------|----------------| | Frequency
(Mb) | Reading
(dBμV) | Detect
Mode | Pol. | AF
(dB/m) | AMP+CL
(dB) | Actual (dBµN/m) | Limit
(dΒμV/m) | Margin
(dB) | | *4 804.22 | 39.04 | Peak | Н | 32.62 | -33.67 | 37.99 | 74.00 | 36.01 | | *4 804.22 | 27.02 | Average | Н | 32.62 | -33.67 | 25.97 | 54.00 | 28.03 | | Above
4 900.00 | Not
detected | - | - | - | - | - | - | - | ## B. Middle Channel (2 441 Mb) | Radiated Emissions | | | Ant | Correction Factors | | Total | FCC Limit | | |--------------------|-------------------|----------------|------|------------------------------|----------------|--------------------|-------------------|----------------| | Frequency
(脈) | Reading
(dBμV) | Detect
Mode | Pol. | AF
(dB/ m) | AMP+CL
(dB) | Actual
(dΒμV/m) | Limit
(dΒμV/m) | Margin
(dB) | | *4 883.01 | 40.80 | Peak | Н | 33.02 | -33.46 | 40.36 | 74.00 | 33.64 | | *4 883.01 | 28.07 | Average | Н | 33.02 | -33.46 | 27.63 | 54.00 | 26.37 | | Above
4 900.00 | Not
detected | - | - | - | - | - | - | - | Report Number: F690501/RF-RTL008066-1 70 Page: 16 of ## C. High Channel (2 480 Mb) | Radiated Emissions | | | Ant | Correction Factors | | Total | FCC Limit | | |--------------------|-------------------|----------------|------|--------------------|------------|-----------------|-------------------|----------------| | Frequency
(Mb) | Reading
(dBμV) | Detect
Mode | Pol. | AF
(dB/m) | CL
(dB) | Actual (dBµN/m) | Limit
(dBµV/m) | Margin
(dB) | | *2 483.50 | 25.93 | Peak | Н | 28.17 | 6.65 | 60.75 | 74.00 | 13.25 | | *2 483.50 | 13.43 | Average | Н | 28.17 | 6.65 | 48.25 | 54.00 | 5.75 | | *2 493.17 | 24.59 | Peak | Н | 28.26 | 6.78 | 59.63 | 74.00 | 14.37 | | *2 493.17 | 13.54 | Average | Н | 28.26 | 6.78 | 48.58 | 54.00 | 5.42 | | *2 500.00 | 23.16 | Peak | Н | 28.31 | 6.88 | 58.35 | 74.00 | 15.65 | | *2 500.00 | 13.24 | Average | Н | 28.31 | 6.88 | 48.43 | 54.00 | 5.57 | | Radiated Emissions | | | Ant | Correction Factors | | Total | FCC Limit | | |--------------------|-------------------|----------------|------|--------------------|----------------|-----------------|-------------------|----------------| | Frequency
(脏) | Reading
(dBμV) | Detect
Mode | Pol. | AF
(dB/m) | AMP+CL
(dB) | Actual (dBµN/m) | Limit
(dΒμV/m) | Margin
(dB) | | *4 960.31 | 40.49 | Peak | Н | 33.16 | -33.34 | 40.31 | 74.00 | 33.69 | | *4 960.31 | 28.08 | Average | Н | 33.16 | -33.34 | 27.90 | 54.00 | 26.10 | | Above 5 000.00 | Not
detected | - | - | - | - | - | - | - | #### Remarks: - 1. "*" means the restricted band. - 3. Radiated emissions measured in frequency above 1 000 Mb were made with an instrument using peak/average detector mode. - 4. Average test would be performed if the peak result were greater than the average limit. 5. Actual = Reading + AF + AMP + CL - 6. The worst case test configuration was found with the EUT in the X axis. Report Number: F690501/RF-RTL008066-1 Page: 17 of 70 ## 2.4.3. Spurious RF Conducted Emissions: Plot of Spurious RF Conducted Emission Operating Mode: GFSK(1 Mbps) Low Channel Report Number: F690501/RF-RTL008066-1 Page: 18 of 70 Report Number: F690501/RF-RTL008066-1 Page: 19 of 70 #### Middle Channel Report Number: F690501/RF-RTL008066-1 Page: 20 of 70 Report Number: F690501/RF-RTL008066-1 Page: 21 of 70 #### **High Channel** Report Number: F690501/RF-RTL008066-1 Page: 22 of 70 Report Number: F690501/RF-RTL008066-1 Page: 23 of 70 ## Band edge Compliance with Hopping Enabled Low channel #### High channel Report Number: F690501/RF-RTL008066-1 Page: 24 of 70 ## Operating Mode: 8DPSK(3 Mbps) Low Channel Report Number: F690501/RF-RTL008066-1 Page: 25 of 70 Report Number: F690501/RF-RTL008066-1 Page: 26 of 70 #### Middle Channel Report Number: F690501/RF-RTL008066-1 Page: 27 of 70 Report Number: F690501/RF-RTL008066-1 Page: 28 of 70 #### **High Channel** Report Number: F690501/RF-RTL008066-1 Page: 29 of 70 Report Number: F690501/RF-RTL008066-1 Page: 30 of 70 ## Band edge Compliance with Hopping Enabled Low channel ## High channel #### Remark; All offset values from 30 Mb to 26.5 GHz were compensated to spectrum analyzer as TDF function. Report Number: F690501/RF-RTL008066-1 Page: 31 of 70 ## 3. 20 dB Bandwidth Measurement and 99 % BW ## 3.1. Test Setup #### 3.2. Limit Limit: Not Applicable ## 3.3. Test Procedure #### 3.3.1. 20 dB Bandwidth All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section. The test follows DA 00-705 The 20 dB band width was measured with a spectrum analyzer connected to RF antenna connector (conducted measurement) while EUT was operating in transmit mode at the appropriate center frequency. Use the following spectrum analyzer setting : Span = approximately 2 to 3 times the 20 dB bandwidth, centered on a hopping channel. RBW = greater than 1 % of the 20 dB bandwidth VBW = RBW Sweep = auto Detector = peak Trace = max hold The marker-to-peak function to set the mark to the peak of the emission. Use the marker-delta function to measure 20 dB down one side of the emission. Reset the function, and move the marker to the other side of the emission, until it is (as close as possible to) even with the reference marker level. The marker-delta reading at this point is 20 dB bandwidth of the emission. #### 3.3.2. 99 % Bandwidth Set the spectrum analyzer as SPAN = 2 or 3 times necessary bandwidth, RBW = approximately 1 % of the SPAN, VBW is set to 3 times RBW, Detector = sampling, Trace mode = max hold. Measure lowest and highest frequencies are placed in a running sum until 0.5~% and 99.5~% of the total is reached. Record the SPAN between the lowest and the highest frequencies for the 99 % occupied bandwidth. Repeat until all the test channels are investigated. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 435-040 http://www.sgsgroup.kr Report Number: F690501/RF-RTL008066-1 Page: 32 of 70 ## 3.4. Test Results | Operation
Mode | Data Rate | Channel | Channel Frequency
(쌘) | 20 dB
Bandwidth(脈) | 99 %
Bandwidth(∰) | |-------------------|-----------|---------|--------------------------|-----------------------|----------------------| | | 1 Mbps | Low | 2 402 | 0.955 | 0.860 | | GFSK | | Middle | 2 441 | 0.955 | 0.860 | | | | High | 2 480 | 0.955 | 0.834 | | | 2 Mbps | Low | 2 402 | 1.342 | 1.194 | | π/4DQPSK | | Middle | 2 441 | 1.350 | 1.216 | | | | High | 2 480 | 1.333 | 1.216 | | | 3 Mbps | Low | 2 402 | 1.298 | 1.203 | | 8DPSK | | Middle | 2 441 | 1.333 | 1.203 | | | | High | 2 480 | 1.329 | 1.207 | Report Number: F690501/RF-RTL008066-1 Page: 33 of 70 #### 20 dB Bandwidth ## **Operating Mode: GFSK** Low Channel #### Middle Channel Report Number: F690501/RF-RTL008066-1 Page: 34 of 70 #### **High Channel** ## Operating Mode: π/4DQPSK Low Channel Report Number: F690501/RF-RTL008066-1 Page: 35 of 70 #### Middle Channel ## High Channel Report Number: F690501/RF-RTL008066-1 Page: 36 of 70 ## **Operating Mode: 8DPSK** Low Channel ## Middle Channel Report Number: F690501/RF-RTL008066-1 Page: 37 of 70 #### **High Channel** Report Number: F690501/RF-RTL008066-1 Page: 38 of 70 #### 99 % Bandwidth **Operating Mode: GFSK** Low Channel #### Middle Channel The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL008066-1 Page: 39 of 70 #### **High Channel** ## Operating Mode: π/4DQPSK Low Channel Report Number: F690501/RF-RTL008066-1 Page: 40 of 70 #### Middle Channel ## High Channel The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL008066-1 Page: 41 of 70 ## **Operating Mode: 8DPSK** Low Channel #### Middle Channel The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL008066-1 Page: 42 of 70 ## High Channel Report Number: F690501/RF-RTL008066-1 Page: 43 of 70 # 4. Maximum Peak Output Power Measurement ## 4.1. Test Setup #### 4.2. Limit The maximum peak output power of the intentional radiator shall not exceed the following: - 1. §15.247(a)(1), Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. - 2. §15.247(b)(1), For frequency hopping systems operating in the 2 400 2 483.5 Mb employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5 725 5 805 Mb band: 1 Watt. #### 4.3. Test Procedure All data rates and modes were investigated for this test. The test follows DA 00-705. Using the power sensor instead of a spectrum analyzer. - 1. Place the EUT on the table and set it in the transmitting mode. - 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the Power sensor. - 3. Test program: (S/W name: R&S Power Viewer, Version: 3.2.0) - 4. Measure peak power each channel. Report Number: F690501/RF-RTL008066-1 Page: 44 of 70 ## 4.4. Test Results Ambient temperature : **(23** ± **1)** ℃ Relative humidity % R.H. : 47 | Operation
Mode | Data
Rate | Channel | Channel
Frequency
(쌘) | Directional
coupler + Cable
offset
(dB) | Peak Power
Result
(dB m) | Peak Power
Limit
(dB m) | |-------------------|--------------|---------|-----------------------------|--|--------------------------------|-------------------------------| | | | Low | 2 402 | 15.60 | 5.05 | 30.00 | | GFSK | 1 Mbps | Middle | 2 441 | 15.59 | 3.80 | 30.00 | | | | High | 2 480 | 15.63 | 3.23 | 30.00 | | | | Low | 2 402 | 15.60 | 5.31 | 20.97 | | π/4DQPSK | 2 Mbps | Middle | 2 441 | 15.59 | 4.15 | 20.97 | | | | High | 2 480 | 15.63 | 3.50 | 20.97 | | 8DPSK | | Low | 2 402 | 15.60 | 5.93 | 20.97 | | | 3 Mbps | Middle | 2 441 | 15.59 | 4.79 | 20.97 | | | | High | 2 480 | 15.63 | 4.20 | 20.97 | Remark: In the case of AFH, the limit for peak power is 0.125 W Report Number: F690501/RF-RTL008066-1 Page: 45 of 70 # 5. Hopping Channel Separation ## 5.1. Test Setup #### 5.2. Limit §15.247(a)(1) Frequency hopping system operating in 2 400 – 2 483.5 Mb. Band may have hopping channel carrier frequencies that are separated by 25 kb or two-third of 20 dB bandwidth of the hopping channel, whichever is is greater, provided the systems operate with an output power no greater than 125 mW. #### 5.3. Test Procedure All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section. The test follows DA 00-705. The device is operating in hopping mode between 79 channels and also supporting Adaptive Frequency Hopping with hopping between 20 channels. As compared with each operating mode, 79 channels are chosen as a representative for test. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels. RBW \geq 1 % of the span. VBW ≥ RBW Sweep = auto Detector = peak Trace = max hold. Allow the trace to stabilize. Use the marker-delta function to determine the between the peaks of the adjacent channels. Report Number: F690501/RF-RTL008066-1 Page: 46 of 70 ## 5.4. Test Results Ambient temperature : (23 \pm 1) $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H. | Operation
Mode | Channel Adjacent Hopping (Middle) Channel Separation (ﷺ) | | Two-third of 20 dB
Bandwidth
(ट्रिट) | Minimum
Bandwidth
(灺) | |-------------------|--|-------|--|-----------------------------| | GFSK | 2 441 Mb | 1 000 | 637 | 25 | | 8DPSK | 2 441 Mb | 1 000 | 889 | 25 | ### Note; Measurement is made with EUT operating in hopping mode between 79 channels providing a worst case scenario as compared to AFH mode hopping between 20 channels. Report Number: F690501/RF-RTL008066-1 Page: 47 of 70 ## **Operating Mode: GFSK** Report Number: F690501/RF-RTL008066-1 Page: 48 of 70 ## 6. Number of Hopping Frequency ## 6.1. Test Setup #### 6.2. Limit §15.247(a)(1)(iii), Frequency hopping systems in the 2 400–2 483.5 Mb band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used. #### 6.3. Test Procedure All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section. The test follows DA 00-705. The device supports Adaptive Frequency Hopping and will use a minimum of 20 channels of the 79 available channels. The EUT must have its hopping function enabled. Use the following spectrum analyzer settings: - 1. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna the port to the Spectrum analyzer - 3. Set spectrum analyzer Start = 2 400 $\,\text{Mb}$, Stop = 2 441.5 $\,\text{Mb}$, Sweep=sweep and Start = 2 441.5 $\,\text{Mb}$, Stop = - 2 483.5 Mb, Sweep = sweep. Detector = peak. - 4. Set the spectrum analyzer as RBW, VBW = 500 $\,\mathrm{kHz}$. - 5. Max hold, allow the trace to stabilize and count how many channel in the band. Report Number: F690501/RF-RTL008066-1 Page: 49 of 70 ## 6.4. Test Results Ambient temperature : (23 \pm 1) $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H. | Operation Mode | Number of Hopping Frequency | Limit | | |----------------|-----------------------------|-------|--| | GFSK | 79 | ≥ 15 | | | 8DPSK | 79 | ≥ 15 | | #### Remark: Measurement is made with EUT operating in hopping mode between 79 channels providing a worse case scenario as compared to AFH mode hopping between 20 channels. Report Number: F690501/RF-RTL008066-1 Page: 50 of 70 ## **Operating Mode: GFSK** Report Number: F690501/RF-RTL008066-1 Page: 51 of 70 Report Number: F690501/RF-RTL008066-1 Page: 52 of 70 # 7. Time of Occupancy (Dwell Time) ## 7.1. Test Set up #### **7.2. Limit** §15.247(a)(1)(iii) For frequency hopping system operating in the 2 400 - 2 483.5 Mb band, the average time of occupancy on any frequency shall not be greater than 0.4 second within a 31.6 second period. A period time = 0.4(s) * 79 = 31.6(s) #### *Adaptive Frequency Hopping A period time = 0.4(s) * 20 = 8 (s) #### 7.3. Test Procedure All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section. The test follows DA 00-705. - 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator. - 2. Position the EUT as shown in test setup without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. - 3. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration. - 4. The Bluetooth has 3 type of payload, DH1, DH3, DH5 and 3-DH1, 3-DH3, 3-DH5. The hopping rate is insisted of 1 600 per second. The EUT must have its hopping function enabled. Use the following spectrum analyzer setting: Span = zero span, centered on a hopping channel RBW = 1 Mz VBW = RBW Sweep = as necessary to capture the entire dwell time per hopping channel Detector = peak Trace = max hold Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation repeat this test for each variation. The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. SGS Korea Co., Ltd. (Gunpo Laboratory) 4, LS-ro 182beon-gil, Gunpo-si, Gyeonggi-do, Korea, 435-040 http://www.sgsgroup.kr Report Number: F690501/RF-RTL008066-1 Page: 53 of 70 ## 7.4. Test Results Ambient temperature : (23 ± 1) $^{\circ}$ C Relative humidity : 47 $^{\circ}$ R.H. 7.4.1. Packet Type: DH1, 3-DH1 | Operation
Mode | Frequency | Dwell Time
(ms) | Time of occupancy on
the Tx Channel in
31.6 sec (ms) | Limit for time of occupancy on the Tx Channel in 31.6 sec (ms) | |-------------------|-----------|--------------------|--|--| | GFSK | 2 441 Mbz | 0.38 | 121.60 | 400 | | 8DPSK | 2 441 Mb | 0.38 | 121.60 | 400 | Note: Time of occupancy on the TX channel in 31.6 sec In case of GFSK and 8DPSK, 0.38 × $\{(1600 \div 2) / 79\}$ × 31.6 = 121.60 ms Report Number: F690501/RF-RTL008066-1 Page: 54 of 70 ## Operating Mode: GFSK Report Number: F690501/RF-RTL008066-1 Page: 55 of 70 ## 7.4.2. Packet Type: DH3, 3-DH3 | Operation
Mode | Frequency | Dwell Time
(ms) | Time of occupancy on
the Tx Channel in
31.6 sec (ms) | Limit for time of occupancy on the Tx Channel in 31.6 sec (ms) | |-------------------|-----------|--------------------|--|--| | GFSK | 2 441 Mb | 1.64 | 262.40 | 400 | | 8DPSK | 2 441 Mb | 1.63 | 260.80 | 400 | #### Note: Time of occupancy on the TX channel in 31.6 sec In case of GFSK, $1.64 \times \{(1600 \div 4) / 79\} \times 31.6 = 262.40 \text{ ms}$ In case of 8DPSK, $1.63 \times \{(1600 \div 4) / 79\} \times 31.6 = 260.80 \text{ ms}$ Report Number: F690501/RF-RTL008066-1 Page: 56 of 70 ## **Operating Mode: GFSK** Report Number: F690501/RF-RTL008066-1 Page: 57 of 70 ## 7.4.3. Packet Type: DH5, 3-DH5 | Operation
Mode | Frequency | Dwell Time
(ms) | Time of occupancy on
the Tx Channel in
31.6 sec (IIS) | Limit for time of occupancy on the Tx Channel in 31.6 sec (ms) | |-------------------|-----------|--------------------|---|--| | GFSK | 2 441 Mb | 2.89 | 308.27 | 400 | | 8DPSK | 2 441 Mb | 2.89 | 308.27 | 400 | Note: Time of occupancy on the TX channel in 31.6 sec In case of GFSK and 8DPSK, 2.89 × $\{(1600 \div 6) / 79\}$ × 31.6 = 308.27 ms Report Number: F690501/RF-RTL008066-1 Page: 58 of 70 ## Operating Mode: GFSK Report Number: F690501/RF-RTL008066-1 Page: 59 of 70 ## 7.4.4. Packet Type: DH1, 3-DH1 (Adaptive Frequency Hopping) | Operation
Mode | Frequency | Dwell Time
(ms) | Time of occupancy on
the Tx Channel in
8 sec (ms) | Limit for time of occupancy on the Tx Channel in 8 sec (ms) | |-------------------|-----------|--------------------|---|---| | GFSK | 2 441 Mb | 0.38 | 60.80 | 400 | | 8DPSK | 2 441 Mb | 0.38 | 60.80 | 400 | Note: Time of occupancy on the TX channel in 8 sec In case of GFSK and 8DPSK, 0.38 × {(800 \div 2) / 20} × 8 = 60.80 $\,$ ms Report Number: F690501/RF-RTL008066-1 Page: 60 of 70 ## **Operating Mode: GFSK** ## **Operating Mode: 8DPSK** The results shown in this test report refer only to the sample(s) tested unless otherwise stated. This test report cannot be reproduced, except in full, without prior written permission of the Company. Report Number: F690501/RF-RTL008066-1 Page: 61 of 70 ## 7.4.5. Packet Type: DH3, 3-DH3 (Adaptive Frequency Hopping) | Operation
Mode | Frequency | Dwell Time
(ms) | Time of occupancy on
the Tx Channel in
8 sec (ms) | Limit for time of occupancy on the Tx Channel in 8 sec (ms) | |-------------------|-----------|--------------------|---|---| | GFSK | 2 441 Mb | 1.64 | 131.20 | 400 | | 8DPSK | 2 441 Mb | 1.64 | 131.20 | 400 | Note: Time of occupancy on the TX channel in 8 sec In case of GFSK and 8DPSK, 1.64 × $\{(800 \div 4) / 20\}$ × 8 = 131.20 ms Report Number: F690501/RF-RTL008066-1 Page: 62 of 70 ## **Operating Mode: GFSK** Report Number: F690501/RF-RTL008066-1 Page: 63 of 70 ## 7.4.6. Packet Type: DH5, 3-DH5 (Adaptive Frequency Hopping) | Operation
Mode | Frequency | Dwell Time
(ms) | Time of occupancy on
the Tx Channel in
8 sec (ms) | Limit for time of occupancy on the Tx Channel in 8 sec (ms) | |-------------------|-----------|--------------------|---|---| | GFSK | 2 441 Mb | 2.89 | 154.13 | 400 | | 8DPSK | 2 441 Mb | 2.89 | 154.13 | 400 | Note: Time of occupancy on the TX channel in 8 sec In case of GFSK and 8DPSK, 2.89 × $\{(800 \div 6) / 20\}$ × 8 = 154.13 ms Report Number: F690501/RF-RTL008066-1 Page: 64 of 70 ## **Operating Mode: GFSK** Report Number: F690501/RF-RTL008066-1 Page: 65 of 70 ## 8. Transmitter AC Power Line Conducted Emission ## 8.1. Test Setup #### 8.2. **Limit** According to §15.207(a) for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies, within the band 150 \(\mathbb{k}\mathbb{L}\) to 30 \(\mathbb{k}\mathbb{L}\), shall not exceed the limits in the following table, as measured using a 50 uH/50 ohm line impedance stabilization network(LISN). Compliance with the provision of this paragraph shall on the measurement of the radio frequency voltage between each power line and ground at the power terminal. The lower applies at the boundary between the frequency ranges. | Everyones of Emission (IIII-) | Conducted limit (dB μV) | | | | | |-------------------------------|-------------------------|----------|--|--|--| | Frequency of Emission (쌘) | Quasi-peak | Average | | | | | 0.15 – 0.50 | 66 - 56* | 56 - 46* | | | | | 0.50 - 5.00 | 56 | 46 | | | | | 5.00 – 30.0 | 60 | 50 | | | | ^{*} Decreases with the logarithm of the frequency. Report Number: F690501/RF-RTL008066-1 Page: 66 of 70 #### 8.3. Test Procedures AC power line conducted emissions from the EUT were measured according to the dictates of ANSI C63.4:2003 All data rates and modes were investigated for this test. The full data for the worst case data rate are reported in this section. - 1. The test procedure is performed in a 6.5 m × 3.5 m × 3.5 m (L × W × H) shielded room. The EUT along with its peripherals were placed on a 1.0 m (W) × 1.5 m (L) and 0.8 m in height wooden table and the EUT was adjusted to maintain a 0.4 meter space from a vertical reference plane. - 2. The EUT was connected to power mains through a line impedance stabilization network (LISN) which provides 50 ohm coupling impedance for measuring instrument and the chassis ground was bounded to the horizontal ground plane of shielded room. - 3. All peripherals were connected to the second LISN and the chassis ground also bounded to the horizontal ground plane of shielded room. - 4. The excess power cable between the EUT and the LISN was bundled. The power cables of peripherals were unbundled. All connecting cables of EUT and peripherals were moved to find the maximum emission. Report Number: F690501/RF-RTL008066-1 Page: 67 of 70 ## 8.4. Test Results (Worst case configuration_GFSK mode, 1 Mbps, Low channel) The following table shows the highest levels of conducted emissions on both phase of Hot and Neutral line. Ambient temperature : (23 ± 1) °C Relative humidity : 47 % R.H. Frequency range : 0.15 M-- 30 M-- Measured Bandwidth : 9 kHz | FREQ. | LEVEL | | | LEVEL(dBμV) | | dBμV) | MARGIN(dB) | | |-------|--------|---------|------|-------------|---------|--------|------------|--| | (MHz) | Q-Peak | Average | LINE | Q-Peak | Average | Q-Peak | Average | | | 0.18 | 21.00 | 10.40 | Н | 64.49 | 54.49 | 43.49 | 44.09 | | | 0.22 | 19.70 | 10.00 | Н | 62.82 | 52.82 | 43.12 | 42.82 | | | 0.57 | 37.30 | 26.90 | Н | 56.00 | 46.00 | 18.70 | 19.10 | | | 1.54 | 25.90 | 16.20 | Н | 56.00 | 46.00 | 30.10 | 29.80 | | | 1.87 | 19.20 | 11.00 | Н | 56.00 | 46.00 | 36.80 | 35.00 | | | 7.95 | 28.80 | 18.40 | Н | 60.00 | 50.00 | 31.20 | 31.60 | | | 0.20 | 32.70 | 18.30 | N | 63.61 | 53.61 | 30.91 | 35.31 | | | 0.57 | 33.00 | 25.00 | N | 56.00 | 46.00 | 23.00 | 21.00 | | | 0.73 | 20.90 | 13.70 | N | 56.00 | 46.00 | 35.10 | 32.30 | | | 1.57 | 20.40 | 13.50 | N | 56.00 | 46.00 | 35.60 | 32.50 | | | 2.61 | 20.00 | 12.70 | N | 56.00 | 46.00 | 36.00 | 33.30 | | | 10.34 | 24.50 | 17.00 | N | 60.00 | 50.00 | 35.50 | 33.00 | | #### Note; - 1. Line (H): Hot, Line (N): Neutral. - 2. All modes of operation were investigated and the worst-case emissions are reported using GFSK 1Mbps. - 3. The limit for Class B device(s) from 150 kHz to 30 MHz are specified in Section of the Title 47 CFR. - 4. Traces shown in plot mad using a peak detector and average detector. - 5. Deviations to the Specifications: None. Report Number: F690501/RF-RTL008066-1 Page: 68 of 70 ## **Plot of Conducted Power line** Test mode: (Hot) Report Number: F690501/RF-RTL008066-1 Page: 69 of 70 Test mode: (Neutral) Report Number: F690501/RF-RTL008066-1 Page: 70 of 70 # 9. Antenna Requirement ## 9.1. Standard Applicable For intentional device, according to FCC 47 CFR Section §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. And according to FCC 47 CFR Section §15.247 (b) if transmitting antennas of directional gain greater than 6 dB i are used, the power shall be reduced by the amount in dB that the gain of the antenna exceeds 6 dB i. #### 9.2. Antenna Connected Construction Antenna used in this product is Chip antenna with gain of 1.7 $\,\mathrm{dB}\,i$.