

683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080 Tel: +82-31-321-2664 Fax: +82-31-321-1664 http://www.digitalemc.com

CERTIFICATE OF COMPLIANCE FCC Part 22 Certification

Dates of Tests: Jan. 27 ~ Feb. 05, 2005 Test Report S/N:DR50110502B Test Site: DIGITAL EMC CO., LTD.

FCC ID.

NPQFTD8800

APPLICANT

Telian Corporation

Classification : Licensed Non-Broadcast Station Transmitter (TNB)

FCC Rule Part(s) : §22(H), §15, §2

EUT Type : AMPS/TDMA WLL Phone Model(s): : FTD-8800 / CRX-1000

Serial number : Identical prototype

Tx Frequency Range : 824.04 ~ 848.97 MHz (AMPS / TDMA)

Max. RF Output Power : 0.390 W ERP AMPS (25.91dBm) - With the Adaptor

2.999 W ERP TDMA (34.77dBm) - With the Adaptor

Max. SAR Measurement : 0.391W/kg AMPS Body SAR - With the Adaptor

0.798W/kg TDMA Body SAR - With the Adaptor

Emission Designators: : 40K0F8W, 40K0F1D, 30K0DXW

Date of Issue : February 5, 2005

I attest to the accuracy of data. All measurements reported herein were performed by me or were made under my supervision and are correct to the best of my knowledge and belief. I assume full responsibility for the completeness of these measurements and vouch for the qualifications of all persons taking them.

NVLAP LAB CODE 200559-0

TABLE OF CONTENTS

ATTACHMENT A: COVER LET	ΓTER(S)
ATTACHMENT B: ATTESTATI	ON STATEMENT(S)
ATTACHMENT C: TEST REPO	ORT
1.1 SCOPE	3
2.1 INTRODUCTION	4
3.1 INSERTS	5
4.1 DESCRIPTION OF TESTS	6~9
5.1 EFFECTIVE RADIATED P	POWER 10~11
6.1 RADIATED SPURIOUS EN	MISSION 12~17
7.1 FREQUENCY STABILITY	18~19
8.1 MODULATION DEVIATION	ON LIMITING 20~21
9.1 AUDIO FREQUENCY RES	PONSE 22~23
10.1 EMISSION TEST DATA	24~25
11.1 PLOT(S) OF EMISSIONS	26
12.1 TEST EQUIPMENT	27~28
13.1 SAMPLE CALCULATION	NS 29
14.1 CONCLUSION	30
ATTACHMENT D: TEST PLOT	'S
ATTACHMENT E: FCC ID LAI	BEL & LOCATION
ATTACHMENT F: TEST SETU	P PHOTOGRAPHS
ATTACHMENT G: EXTERNAL	PHOTOGRAPHS
ATTACHMENT H: INTERNAL	PHOTOGRAPHS
ATTACHMENT I: BLOCK DIA	AGRAM(S)
ATTACHMENT J: SCHEMATI	C DIAGRAM(S)
ATTACHMENT K: OPERATIO	NAL / CIRCUIT DESCRIPTION
ATTACHMENT L: PARTS LIST	T/TUNE UP PROCEDURE
ATTACHMENT M: USER'S MA	NUAL
ATTACHMENT N: SAR MEASI	UREMENTS REPORT
ATTACHMENT O: SAR TEST F	PLOTS
ATTACHMENT P: SAR TEST S	SETUP PHOTOGRAPHS
ATTACHMENT Q: DIPOLE VA	LIDATION (S)
ATTACHMENT R: PROBE CAI	LIBRATION

MEASUREMENT REPORT

1.1 Scope

Measurement and determination of electromagnetic emissions (EME) of radio frequency devices including intentional and/or unintentional radiators for compliance with the technical rules and regulations of the Federal Communications Commission.

§2.1033 General Information

Applicant: Telian Corporation

Address: 4th Fl, Nam Jeun B/D 53-3 Haan-Dong, Kwang Myung-Si, Kyung Gi-Do, KOREA

Attention: Kay Choi

Telian Corporation

• FCC ID: NPQFTD8800

• Quantity: Quantity production is planned

• Emission Designators: 40K0F8W, 40K0F1D, 30K0DXW

• Freq. Range: 824.04 ~ 848.97 MHz (AMPS)

824.04 ~ 848.97 MHz (TDMA)

• Max. Power Rating: 0.390 W ERP AMPS (25.91dBm) - With the Adaptor

2.999 W ERP TDMA (34.77dBm) - With the Adaptor

• FCC Classification(s): Licensed Non-Broadcast Station Transmitter (TNB)

• Equipment (EUT) Type: AMPS/TDMA WLL Phone

• Modulation(s): AMPS/TDMA

• Frequency Tolerance: $\pm 0.00025 \% (2.5ppm)$

• FCC Rule Part(s): \$22(H), \$15, \$2

Dates of Tests: January 27 ~ February 4, 2005

Place of Tests: DIGITAL EMC
 Test Report S/N: DR50110502B

2.1. General information's

This report contains the result of tests performed by:

DIGITAL EMC CO., LTD.

Address: 683-3, Yubang-Dong, Yongin-Si, Kyunggi-Do, Korea. 449-080

http://www.digitalemc.com E-mail : demc@unitel.co.kr

Tel: +82-31-321-2664 Fax: +82-31-321-1664

Quality control in the testing laboratory is implemented as per ISO/IEC 17025 which is the "General requirements for the competents of calibration and testing laboratory".

This laboratory is accredited by NVLAP for NVLAP Lab. Code: 200559-0.

Test operator: engineer

February 5, 2005 Won -Jong LEE

Data Name Signature

Report Reviewed By: Technical Director

February 5, 2005 Harvey Sung

Data Name Signature

Ordering party:

Company name : TELIAN CORPORATION

Address : 4th Fl, Nam Jeun B/D 53-3 Haan-Dong, Kwang Myung-Si

Zipcode : 423-606

City/town : Kyung Gi-Do

Country : KOREA

Date of order : January 25, 2004

3.1 INSERTS

Function of Active Devices (Confidential)

The Function of active devices are shown in Attachment K.

Block & Schematic Diagrams (Confidential)

The block diagrams are shown in Attachment I, and the schematic diagrams are shown in Attachment J.

Operating Instructions

The instruction manual is shown in Attachment M.

Parts List & Tune-Up Procedure (Confidential)

The parts list & tune-up procedure is shown in Attachment L.

Description of Freq. Stabilization Circuit (Confidential)

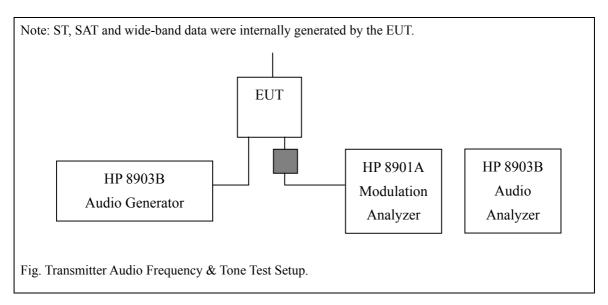
The description of frequency stabilization circuit is shown in Attachment K.

<u>Description for Suppression of Spurious Radiation, for Limiting</u> <u>Modulation, and Harmonic Suppression Circuits (Confidential)</u>

The description of suppression stabilization circuits is shown in Attachment K.

4.1 DESCRIPTION OF TESTS

4.2 Transmitter Audio Frequency Response


The frequency response of the audio modulating circuit over the frequency range 100-5000Hz is measured. The audio signal generator is connected to the audio input circuit/microphone of the EUT. The audio signal input is adjusted to obtain 50% modulation at 1^{kHz} and this point is taken as the 0dB reference. With the input held constant and below the limit at all frequency, the audio signal generator is varied from 100 to 50^{kHz} .

4.3 Audio Low Pass Filter Frequency Response

The response in dB relative to 1^{kHz} is measured using the HP8901 a Modulation Analyzer. For the frequency response of the audio low-pass filter, the audio input is connected at the input to the modulation limiter and the modulated stage. The audio output is connected at the output of the modulated stage. The corresponding plots are shown herein.

4.4 Modulation Limiting

The audio signal generator is connected to the audio put circuit/microphone of the EUT. The modulation response is measured for each of the three modulating frequencies(300Hz, 1000Hz and 3000Hz), and the input voltage is varied form 30% modulation (± 3.6 kHz deviation) to at least 20dB higher than the saturation point. Measurements of modulation and the plots are attached herein . Measurements were performed for ST, SAT and wide-band data modulations. The corresponding results are shown herein.

4.1 DESCRIPTION OF TESTS (CONTINUED)

4.5 Occupied Bandwidth Emission Limits

- (a) On any frequency outside a licensee's frequency block, the power of any emission shall be attenuated below the transmitter power (P) by at least $43 + 10 \log(P) dB$.
- (b) When measuring the emission limits, the nominal carrier frequency shall be adjusted as close to the licensee's frequency block edges, both upper and lower, as the design permits.
- (c) The measurement of emission power can be expressed in peak or average values, provided they are expressed in the same parameters as the transmitter power.

4.6 Occupied Bandwidth

The 99% power bandwidth was measured with a calibrated spectrum analyzer.

4.7 Spurious and Harmonic Emissions at Antenna Terminal

The level of the carrier and the various conducted spurious and harmonic frequencies is measured by means of a calibrated spectrum analyzer. The spectrum is scanned from the lowest frequency generated in the equipment up to 10 GHz.

At the input terminals of the spectrum analyzer, an isolator(RF circulator with on port terminated with 50ohms) and an 870 MHz to 890 MHz bandpass filter is connected between the test transceiver(for conducted tests)or the receive antenna(for radiated tests) and the analyzer. The rejection of the bandpass filter to signals in the 825-845 MHz range is adequate to limit the transmit energy from the test transceiver which appears to a level which will allow the analyzer to measure signals less than-90dBm. Calibration of the test receiver is performed in the 870-890 MHz range to insure accuracy to allow variation in the bandpass filter insertion loss to be calibrated.

4.8 Frequencies

At the input terminals of the spectrum analyzer, an isolator (RF pad) and a high-pass filter are connected between the test transceiver (for conducted tests) or the receive antenna (for radiated tests) and the analyzer. The high-pass filter (signals below 1.6 GHz) is to limit the fundamental frequency from interfering with the measurement of low-level spurious and harmonic emissions and to ensure that the preamplifier is not saturated.

4.9 Radiation Spurious and Harmonic Emissions

Radiation and harmonic emissions are measured outdoors at our 3-meter test range. The equipment under test is placed on a wooden turntable 3-meters from the receive antenna.

The receive antenna height and turntable rotations were adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator with the level of the signal generator being adjusted to obtain the same receive spectrum analyzer reading. This level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

4.1 DESCRIPTION OF TESTS (CONTINUED)

4.10 Frequency Stability/Temperature Variation.

The frequency stability of the transmitter is measured by:

- a) **Temperature**: The temperature is varied from -30°C to + 60°C using an environmental chamber.
- b) **Primary Supply Voltage**: The primary supply voltage is varied from 85% to 115% of the voltage Normally at the input to the device or at the power supply terminals if cables are not normally supplied.

Specification –The minimum frequency stability shall be +/- 0.00025% at any time during normal operation.

Specification — The frequency stability shall be sufficient to ensure that the fundamental emission stays within the authorized frequency block. The frequency stability of the transmitter shall be maintained within $\pm 0.00025(\pm 2.5 \text{ppm})$ of the center frequency.

Time Period and Procedure:

- 1. The carrier frequency of the transmitter and the individual oscillators is measured at room temperature (25°C to 27°C to provide a reference)
- 2. The equipment is subjected to an overnight "soak" at -30°C without any power applied.
- 3. After the overnight "soak" at 30°C(usually 14-16 hours), the equipment is turned on in a "standby" condition for one minute before applying power to the transmitter. Measurement of the carrier frequency to the transmitter and the individual oscillators is made within a three minute interval after applying power to the transmitter.
- 4. Frequency measurements is made at 10°C interval up to room temperature. At least a period of one and one half hour is provided to allow stabilization of the equipment at each temperature level.
- 5. Again the transmitter carrier frequency and the individual oscillators is measured at room temperature to begin measurement of the upper temperature levels.
- 6. Frequency were made at 10intervals starting at 30°C up to +50°C allowing at least two hours at each temperature for stabilization. In all measurements the frequency is measured within three minutes after applying power to the transmitter.
- 7. The artificial load is mounted external to the temperature chamber.

NOTE: The Batteries are only back up for emergency case of power failure, We do not test.

4.1 DESCRIPTION OF TESTS (CONTINUED)

4.11 Radiated Emission

Final test was performed according to ANSI C63.4-2001 at the open field test site. There are no deviations from the standard.

The EUT was placed in a 0.8m high table along with the peripherals. The turn table was separated from the antenna distance 3meters. Cables were placed in a position to produce maximum emissions as determined by experimentation, and operation mode was selected for maximum.

The frequencies and amplitudes of maximum emission were measured at varying azimuths, antenna heights and antenna polarities. Reported are maximized emission levels.

These tests were performed at 120kHz of 6dB bandwidth.

4.12 Conducted Emission

The power line conducted interference measurements were performed according to ANSI C63.4-2001 in a shielded enclosure with peripherals placed on a table, 0.8m high over a metal floor. It was located more than required distance away from the shielded enclosure wall. There are no deviations from the standard.

The EUT was plugged into the LISN and the frequency range of interest scanned.

Reported are maximized emission levels.

These tests were performed at 9kHz of 6dB bandwidth.

5.2 Effective Radiated Power Output

A. POWER: High (Analog Mode)

Freq. Tuned (MHz)	REF. LEVEL	POL (H/V)	ERP (W)	ERP (dBm)	Supplied Power
	(dBm)				
824.04	-11.88	V	0.390	25.91	Adaptor
836.52	-11.03	V	0.364	25.61	Adaptor
848.97	-11.04	V	0.362	25.59	Adaptor

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-A-2001, Aug. 15, 2001:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

(CONTINUED)

5.3 Effective Radiated Power Output

A. POWER: High (TDMA Mode)

Freq. Tuned (MHz)	REF. LEVEL (dBm)	POL (H/V)	ERP (W)	ERP (dBm)	Supplied Power
824.04	-2.26	V	2.999	34.77	Adaptor
836.52	-2.52	V	2.884	34.60	Adaptor
848.97	-3.76	V	2.291	33.60	Adaptor

NOTES:

Effective Radiated Power Output Measurements by Substitution Method according to ANSI/TIA/EIA-603-A-2001, Aug. 15, 2001:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. The conducted power at the terminals of the dipole is measured. The ERP is recorded.

6.2 AMPS Radiated Measurements

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 824.04 MHz

CHANNEL: 0991(Low)

MEASURED OUTPUT POWER : __25.91 __dBm = ____ 0.390 W

MODULATION SIGNAL : FM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 38.91$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1648.08	-63.4	6.3	-57.1	V	83.01
2472.12	-55.8	9.1	-46.7	V	72.61
3296.16	-69.2	9	-60.2	V	86.11
-	-	-	-	-	-
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-A-2001, Aug. 15, 2001:

The EUT was placed on a wooden turn-table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

(CONTINUED)

6.3 AMPS Radiated Measurements

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 836.52 MHz

CHANNEL: 0384(Mid)

MEASURED OUTPUT POWER : 25.91 dBm = 0.390 W

MODULATION SIGNAL : FM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 38.91$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1673.04	-63.2	6.3	-56.9	V	82.81
2509.56	-60.3	9.1	-51.2	V	77.11
3346.08	-67.7	9	-58.7	V	84.61
-	-	-	-	-	-
-	-	-	-	-	_

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-A-2001, Aug. 15, 2001:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

(CONTINUED)

6.4 AMPS Radiated Measurements

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 848.97 MHz

CHANNEL: 0799(High)

MEASURED OUTPUT POWER : $\underline{25.91}$ dBm = $\underline{0.390}$ W

MODULATION SIGNAL : FM (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 38.91$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1697.94	-61.6	6.3	-55.3	V	81.21
2546.91	-65.2	9.1	-56.1	V	82.01
3395.88	-68.7	9	-59.7	V	85.61
-	-	-	-	-	-
-	-	-	-	-	-

NOTE

<u>Radiated Spurious Emission Measurements by Substitution Method</u> according to ANSI/TIA/EIA-603-A-2001, Aug. 15, 2001:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

(CONTINUED)

6.5 TDMA Radiated Measurements

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 824.04 MHz

CHANNEL: 0991(Low)

MEASURED OUTPUT POWER : 34.77 dBm = 2.999 W

MODULATION SIGNAL : TDMA (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 47.77$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1648.08	-54.2	6.3	-47.9	V	82.67
2472.12	-41.2	9.1	-32.1	V	66.87
3296.16	-59.7	9	-50.7	V	85.47
-	-	-	-	-	-
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-A-2001, Aug. 15, 2001:

The EUT was placed on a wooden turn-table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

(CONTINUED)

6.6 TDMA Radiated Measurements

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY: 836.52 MHz

CHANNEL: 0384(Mid)

MEASURED OUTPUT POWER : 34.77 dBm = 2.999 W

MODULATION SIGNAL : TDMA (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 47.77$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1673.04	-55	6.3	-48.7	V	83.47
2509.56	-49.6	9.1	-40.5	V	75.27
3346.08	-61.2	9	-52.2	V	86.97
-	-	-	-	-	-
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-A-2001, Aug. 15, 2001:

The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

(CONTINUED)

6.7 TDMA Radiated Measurements

Field Strength of SPURIOUS Radiation

OPERATING FREQUENCY : 848.97 MHz

CHANNEL: 0799(High)

MEASURED OUTPUT POWER : 34.77 dBm = 2.999 W

MODULATION SIGNAL : TDMA (Internal)

DISTANCE: 3 meters

LIMIT : $43 + 10 \log_{10} (W) = 47.77$ dBc

Freq.	LEVEL@	SUBSTITUTE	CORRECT	POL	
(MHz)	ANTENNA	ANTENNA	GENERATOR	(H/V)	
	TERMINALS	GAIN	LEVEL		(dBc)
	(dBm)	(dBd)	(dBm)		
1697.94	-55.8	6.3	-49.5	V	84.27
2546.91	-61.7	9.1	-52.6	V	87.37
3395.88	-60.4	9	-51.4	V	86.17
4244.85	-53.3	9.5	-43.8	V	78.57
-	-	-	-	-	-
-	-	-	-	-	-

NOTE

Radiated Spurious Emission Measurements by Substitution Method according to ANSI/TIA/EIA-603-A-2001, Aug. 15, 2001:

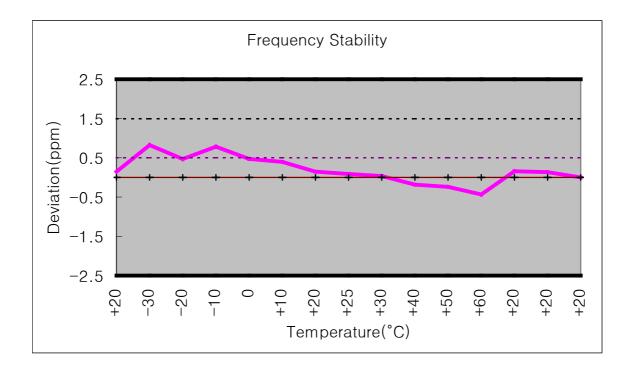
The EUT was placed on a wooden turn table 3-meters from the receive antenna. The receive antenna height and turntable rotation was adjusted for the highest reading on the receive spectrum analyzer. A half-wave dipole was substituted in place of the EUT. This dipole antenna was driven by a signal generator and the level of the signal generator was adjusted to obtain the same receive spectrum analyzer reading. This spurious level is recorded. For readings above 1GHz, the above procedure is repeated using horn antennas and the difference between the gain of the horn and an isotropic or dipole antenna are taken into consideration.

7.2 Frequency Stability (AMPS)

OPERATING FREQUENCY : 836,520,000 Hz

CHANNEL: 0384(Mid)

REFERENCE VOLTAGE : 120 VAC


DEVIATION LIMIT ± 0.00025 % or 2.5 ppm

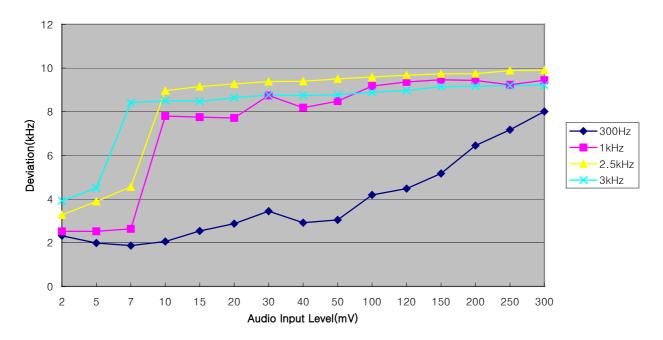
:

VOLTAGE	POWER	TEMP	FREQ	Deviation
(%)	(VAC)	(dB)	(Hz)	(%)
100%	120	+20(Ref)	835,520,104	0.000015
100%		-30	835,520,670	-0.000082
100%		-20	835,520,374	-0.000047
100%		-10	835,520,636	-0.000078
100%		0	835,520,376	-0.000047
100%		+10	835,520,312	-0.000039
100%		+20	835,520,104	-0.000015
100%		+25	835,520,055	-0.000009
100%		+30	835,520,011	-0.000003
100%		+40	835,519,829	0.000018
100%		+50	835,519,781	0.000024
100%		+60	835,519,620	0.000043
85%	102	+20	835,520,113	-0.000016
115%	138	+20	835,520,094	-0.000013
BATT.ENDPOINT	-	-	-	-

(CONTINUED)

7.3 Frequency Stability (AMPS)

8.2 MODULATION DEVIATION LIMITING


OPERATING FREQUENCY:	836.52	MHz
CHANNEL:	0384	
DEVIATION LIMIT:	13.2	KHz

Input Level	FM Deviation in kHz at Indicated Modulating Frequency					
(mV)	300Hz	1KHz	2.5KHz	3KHz		
2	2.321	2.523	3.272	3.920		
5	1.987	2.521	3.893	4.510		
7	1.869	2.635	4.560	8.410		
10	2.055	7.800	8.960	8.500		
15	2.541	7.750	9.150	8.470		
20	2.875	7.710	9.270	8.640		
30	3.445	8.740	9.380	8.760		
40	2.916	8.180	9.390	8.740		
50	3.044	8.480	9.500	8.770		
100	4.190	9.170	9.590	8.890		
120	4.480	9.360	9.670	8.970		
150	5.170	9.460	9.730	9.150		
200	6.450	9.430	9.740	9.170		
250	7.170	9.230	9.880	9.190		
300	8.010	9.440	9.900	9.210		

(CONTINUED)

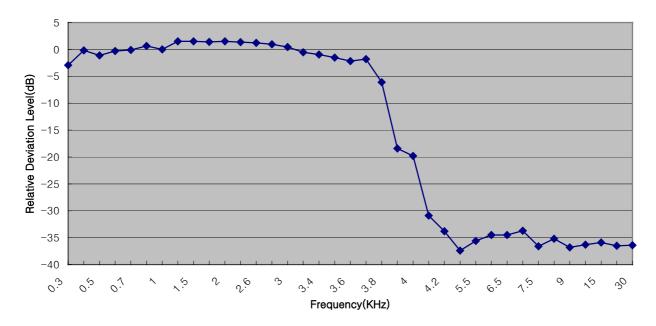
8.3 MODULATION DEVIATION LIMITING

Deviation Limiting

9.2 AUDIO FREQUENCY RESPONSE

OPERATING FREQUENCY: 836.52 MHz

CHANNEL: 0384


Reference level: 0dB @ 1kHz

Audio Frequency Response						
Freq., kHz Level, dB		Freq., kHz Level, dB		Freq., kHz	Level, dB	
0.3	-2.93	3.3	-0.54	7.5	-36.6	
0.4	-0.172	3.4	-0.95	8	-35.2	
0.5	-1.11	3.5	-1.51	9	-36.8	
0.6	-0.29	3.6	-2.17	10	-36.3	
0.7	-0.1	3.7	-1.8	15	-35.9	
0.8	0.64	3.8	-6.1	20	-36.5	
1	0	3.9	-18.41	30	-36.4	
1.2	1.51	4	-19.8			
1.5	1.5	4.1	-30.9			
1.7	1.4	4.2	-33.8			
2	1.51	4.8	-37.4			
2.3	1.36	5.5	-35.6			
2.6	1.22	6	-34.5			
2.8	0.95	6.5	-34.5			
3	0.45	7	-33.7			

(CONTINUED)

9.3 AUDIO FREQUENCY RESPONSE

Audio Frequency Response

10.1 EMISSION TEST DATA

10.2 Radiated Emission

Distance: 3m

Frequency [Mtz]	ANT Pol.	QP Reading [dB \(\mu \)]	T.F [dB]	Results [dBµV/m]	Limits [dBµV/m]	Margin [dB]
56.65	V	53.5	-21.9	31.6	40	8.4
233.70	Н	48	-12.1	35.9	46	10.1
291.90	Н	48	-11.9	36.1	46	9.9
524.72	Н	41.9	-5.9	36	46	10.0
-	-	-	-	-	-	-

NOTE

- 1. No other emissions were detected at a level greater than 10dB below limit.
- 2. Measurements above 1GHz is performed using a minimum resolution bandwidth of 1MHz. The EUT was tested up to the 10GHz and no significant emission was found.

10.1 EMISSION TEST DATA (CONTINUED)

10.3 Conducted Emission

(SEE ATTACHMENT D)

11.1 PLOT(S) OF EMISSIONS

(SEE ATTACHMENT D)

12.1 TEST EQUIPMENT

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	S/N
01	Spectrum Analyzer	Agilent	E4404B	19/11/05	US41061134
02	Spectrum Analyzer	H.P	8563E	25/09/05	3551A04634
03	Power Meter	H.P	EPM-442A	15/07/05	GB37170413
04	Power Sensor	H.P	8481A	15/07/05	3318A96332
05	Frequency Counter	H.P	5342A	07/10/05	2119A04450
06	Multfunction Synthesizer	H.P	8904A	07/10/05	3633A08404
07	Signal Generator	H.P	8673D	28/03/05	2844A00753
08	Signal Generator	H.P	E4421A	15/07/05	US37230529
09	Signal Generator	H.P	8657A	05/06/05	3430U02049
10	Audio Analyzer	H.P	8903B	21/07/05	3011A0944B
11	Modulation Analyzer	H.P	8901B	15/07/05	3028A03029
12	Sensor Module	H.P	11722A	21/04/05	3111A04665
13	Oscilloscope	LeCroy	9314A	10/10/05	93144390
14	CDMA Mobile Station Test Set	H.P	8924C	07/10/05	US35360688
15	Power Splitter	WEINSCHEL	1593	07/10/05	332
16	BAND Reject Filter	Microwave circuits INC.	NO308372	07/10/05	3125-01DC0312
17	BAND Reject Filter	Wainwright	WRCG1750	07/10/05	SN2
18	AC Power supply	DAEKWANG	5KVA	03/04/05	N/A
19	DC Power Supply	H.P	6622A	24/03/05	465487
20	Attenuator (30dB)	H.P	8498A	07/10/05	50101
21	Attenuator (10dB)	WEINSCHEL	23-10-34	07/10/05	BP4387
22	HORN ANT	EMCO	3115	10/01/05	6419
23	HORN ANT	EMCO	3115	04/04/05	21097
24	HORN ANT	A.H.Systems	SAS-574	09/11/06	154
25	HORN ANT	A.H.Systems	SAS-574	09/11/06	155
26	Dipole Antenna	Schwarzbeck	VHA9103	04/10/06	2116

12.1 TEST EQUIPMENT (CONTINUED)

	Туре	Manufacturer	Model	Cal.Due.Date (dd/mm/yy)	S/N
27	Dipole Antenna	Schwarzbeck	VHA9103	04/10/06	2117
28	Dipole Antenna	Schwarzbeck	UHA9105	04/10/06	2261
29	Dipole Antenna	Schwarzbeck	UHA9105	04/10/06	2262
30	RFI/FIELD Iintensity Meter	Kyorits	KNM-504D	07/07/05	SN-161-4
31	Frequency Converter	Kyorits	KCV-604C	07/07/05	4-230-3
32	TEMP & HUMIDITY Chamber	JISCO	J-RHC2	14/09/05	021031
33	Log Periodic Antenna	Schwarzbeck	UHALP9108A1	29/10/05	1098
34	Biconical Antenna	Schwarzbeck	VHA9103	29/10/05	VHA91031946
35	Digital Multimeter	H.P	34401A	07/04/05	3146A13475
36	Attenuator (10dB)	WEINSCHEL	23-10-34	07/10/05	BP4386
37	High-Pass Filter	ANRITSU	MP526	12/05/05	M27756
38	Attenuator (3dB)	Agilent	8491B	15/09/05	58177
39	Wireless communication test set	Agilent	8960	07/07/05	GB41321167
40	RFI/FIELD Intensity Meter	Kyorits	KNW-2402	16/08/05	4N-170-3
41	LISN	Kyorits	KNW-407	16/08/05	8-317-8
42	LISN	Kyorits	KNW-242	23/05/05	8-654-15
43	Spectrum Analyzer	H.P	8591E	N/A	3649A05889
44	Software	ToYo EMI	EP5/CE	N/A	Ver 2.0.801
45	CVCF	NF Electronic	4400	07/10/05	344536 4420064

13.1 SAMPLE CALCULATIONS

Emission Designator

A. Voice and SAT signals:

Voice (M=2.5 kHz, D=12 kHz)

SAT (M=6 kHz, D=2 kHz)

Bn = 2(6+12+2) = 40 kHz

Emission Designator = 40K0F8W

B. Wideband data:

Data (M = 10 kHz, D = 8 kHz)

SAT (M = 6 kHz, D = 2 kHz)

Bn = 2(10+8+2) = 40kHz

Emission Designator = 40K0F1D

C. TDMA

Emission Designator = 30K0DXW

14.1 CONCLUSION

The data collected shows that the **Telian Corporation** Portable Cellular Phone (**FCC ID: NPQFTD8800**) complies with all the requirements of Parts 2, 15 and 22 of the FCC rules.