

Page 1 of 54 Report No.: EED32L00127302

TEST REPORT

Product WIFI+BT Module

Trade mark GSD

Model/Type reference : WCT3TM2311

Serial Number N/A

Report Number EED32L00127302

FCC ID : 2AC23-WCT3T Date of Issue : Aug. 16, 2019

Test Standards : 47 CFR Part 15Subpart C

Test result : PASS

Prepared for:

Hui Zhou Gaoshengda Technology Co., LTD NO.75 Zhongkai Development Area Huizhou, Guangdong, China

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Tested By:

Jay Zheng

Compiled by:

Reviewed by:

Date:

Nove Xm

Jay Zheng

Ware Xin

Aug. 16, 2019

Kevin Yang

Check No.: 3096342577

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com

Page 2 of 54

2 Version

Version No.	Date	Description
00	2019-08-16	Original
,		
	(S) (

Report No.: EED32L00127302 Page 3 of 54

3 Test Summary

o root oanning	3107		
Test Item	Test Requirement	Test method	Result
Antenna Requirement	47 CFR Part 15Subpart C Section 15.203/15.247 (c)	ANSI C63.10-2013	PASS
AC Power Line Conducted Emission	47 CFR Part 15Subpart C Section 15.207	ANSI C63.10-2013	PASS
Conducted Peak Output Power	47 CFR Part 15Subpart C Section 15.247 (b)(3)	ANSI C63.10-2013	PASS
6dB Occupied Bandwidth	47 CFR Part 15Subpart C Section 15.247 (a)(2)	ANSI C63.10-2013	PASS
Power Spectral Density	47 CFR Part 15Subpart C Section 15.247 (e)	ANSI C63.10-2013	PASS
Band-edge for RF Conducted Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
RF Conducted Spurious Emissions	47 CFR Part 15Subpart C Section 15.247(d)	ANSI C63.10-2013	PASS
Radiated Spurious Emissions	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15Subpart C Section 15.205/15.209	ANSI C63.10-2013	PASS

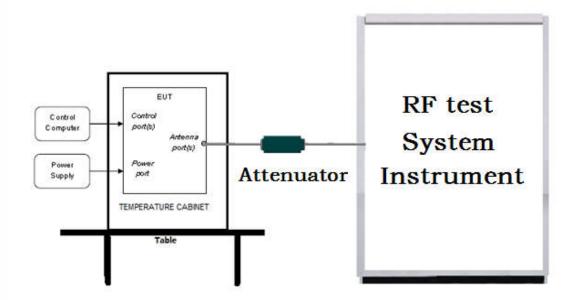
Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013. The tested sample(s) and the sample information are provided by the client.

Page 4 of 54 Report No.: EED32L00127302

4 Content

1 COVER	PAGE					1
2 VERSIO	N	••••••				2
TEST SU	JMMARY	•••••				3
4 CONTEN	IT				•••••	4
5 TEST RE	QUIREMENT					5
5.1 Tes	「SETUP					5
	For Conducted test	•				
	For Radiated Emissi					
	For Conducted Emis					
	CONDITION					
	AL INFORMATION					
	NT INFORMATION ERAL DESCRIPTION OF					
	DUCT SPECIFICATION OF					
	CRIPTION OF SUPPORT					
	LOCATION					
	ATION FROM STANDAR					
	ORMALITIES FROM STA					
	ER INFORMATION REQ					
	SUREMENT UNCERTAI					
7 EQUIPM	ENT LIST	••••••	•••••	•••••	•••••	10
	ECHNICAL REQUIR					
EUT	Duty Cycle					15
Appe	ndix A): 6dB Occupie	ed Bandwidth				16
	ndix B): Conducted F					
	ndix C): Band-edge f					
	ndix D): RF Conduct					
	ndix E): Power Spec ndix F): Antenna Red					
	ndix G): AC Power L					
	ndix H): Restricted b					
	ndix I) Radiated Spu					
PHOTOGE	RAPHS OF TEST SE	TUP				52
PHOTOGE	RAPHS OF EUT COM	NSTRUCTIONAL DE	ETAILS			54
)	(C.)	6	7 J	(0)		(0)



Report No.: EED32L00127302 Page 5 of 54

5 Test Requirement

5.1 Test setup

5.1.1 For Conducted test setup

5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

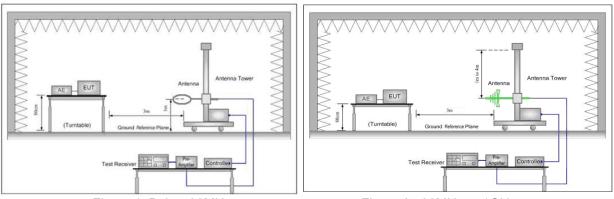


Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz

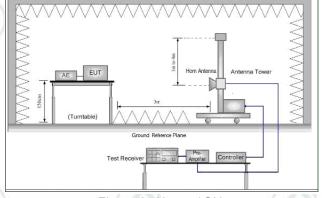
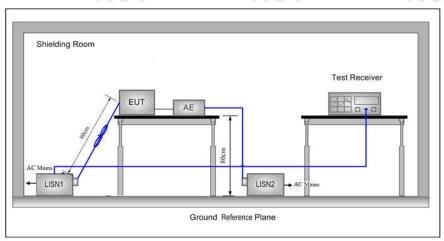
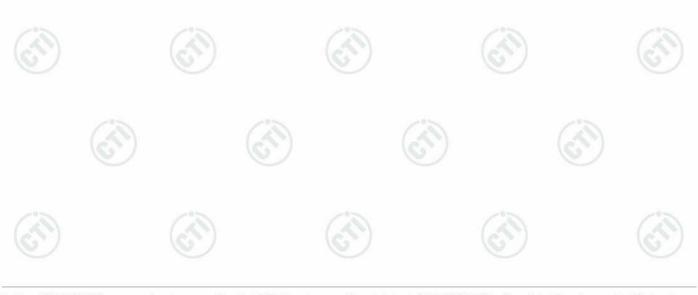



Figure 3. Above 1GHz

5.1.3 For Conducted Emissions test setup Conducted Emissions setup


5.2 Test Environment

Operating Environment:	0		(0)
Temperature:	24.0 °C		
Humidity:	58 % RH	nii.2	
Atmospheric Pressure:	1010mbar		

5.3 Test Condition

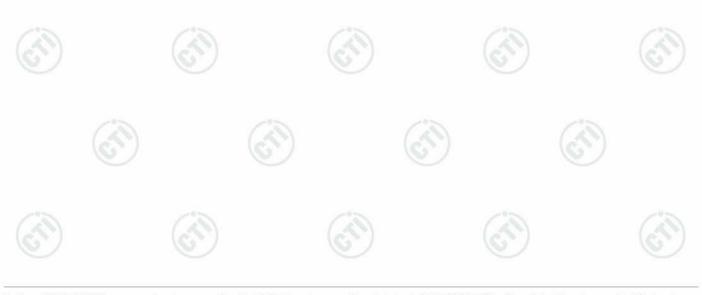
Test channel:

Test Mode	Tx/Rx	RF Channel			
1 est Mode	TA/NX	Low(L)	Middle(M)	High(H)	
OFOK	0.40004110.400.0411	Channel 1	Channel 20	Channel 40	
GFSK	2402MHz ~2480 MHz	2402MHz	2440MHz	2480MHz	
Transmitting mode:	Keep the EUT in transmitting mod rate.	e with all kind of m	odulation and a	all kind of data	

Report No.: EED32L00127302 Page 7 of 54

6 General Information

6.1 Client Information


Applicant:	Hui Zhou Gaoshengda Technology Co., LTD
Address of Applicant:	NO.75 Zhongkai Development Area Huizhou, Guangdong, China
Manufacturer:	Hui Zhou Gaoshengda Technology Co., LTD
Address of Manufacturer:	NO.75 Zhongkai Development Area Huizhou, Guangdong, China
Factory:	Hui Zhou Gaoshengda Technology Co., LTD
Address of Factory:	NO.75 Zhongkai Development Area Huizhou, Guangdong, China

6.2 General Description of EUT

Product Name:	WIFI+BT Module		(3)	
Model No.(EUT):	WCT3TM2311			
Trade mark:	GSD			
EUT Supports Radios application:	BT 4.2 Dual mode, 2402-2480MHz			15
Power Supply:	DC 5V	(83)		(86)
Sample Received Date:	May. 23, 2019			
Sample tested Date:	May. 23, 2019 to Aug. 15, 2019			

6.3 Product Specification subjective to this standard

Operation Frequency:	2402MHz~2480MHz	(0.)		(0,)	
Bluetooth Version:	BT 4.2				
Modulation Technique:	GFSK				
Number of Channel:	40		(3)		100
Test Power Grade:	7		(6,		(0,)
Test Software of EUT:	MT7662 & V1.0.3.14				
Antenna Type and Gain:	Type:PIFA Antenna				
Z*5	Gain:4.2 dBi				
Test Voltage:	DC 5V	(5.5)		(653)	

Report No.: EED32L00127302 Page 8 of 54

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

6.4 Description of Support Units

The EUT has been tested independently

6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

6.6 Deviation from Standards

None.

6.7 Abnormalities from Standard Conditions

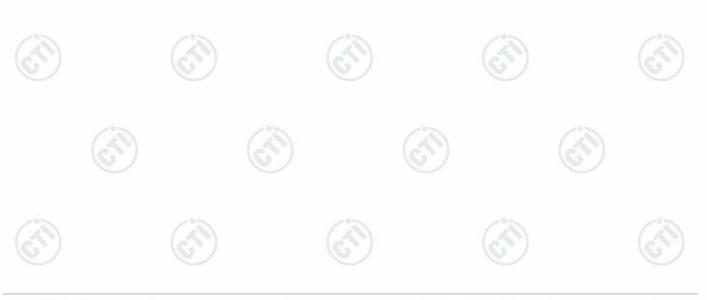
None.

6.8 Other Information Requested by the Customer

None.

6.9 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DC newer conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-18GHz)
3	Dadiated Spurious emission test	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-12.75GHz)
1	Conduction emission	3.5dB (9kHz to 150kHz)
4	Conduction emission	3.1dB (150kHz to 30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%



Report No. : EED32L00127302 Page 10 of 54

7 Equipment List

		RF test	system		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Signal Generator	Keysight	E8257D	MY53401106	03-01-2019	02-28-2020
Spectrum Analyzer	Keysight	N9010A	MY54510339	03-01-2019	02-28-2020
Signal Generator	Keysight	N5182B	MY53051549	03-01-2019	02-28-2020
High-pass filter	Sinoscite	FL3CX03WG1 8NM12-0398- 002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F-63029-4		01-09-2019	01-08-2020
DC Power	Keysight	E3642A	MY54426035	03-01-2019	02-28-2020
PC-1	Lenovo	R4960d		03-01-2019	02-28-2020
BT&WI-FI Automatic control	R&S	OSP120	101374	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-2	15860006	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-1	15860004	03-01-2019	02-28-2020
RF control unit	JS Tonscend	JS0806-4	158060007	03-01-2019	02-28-2020
BT&WI-FI Automatic test software	JS Tonscend	JS1120-2		03-01-2019	02-28-2020
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	10-12-2018	10-11-2019

Page 11 of 54

	SIVI S	Semi/full-anecho	Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
3M Chamber & Accessory Equipment	TDK	SAC-3		05-24-2019	05-22-2020
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-401	12-21-2018	12-20-2019
TRILOG Broadband Antenna	Schwarzbeck	VULB9163	9163-618	07-26-2019	07-24-2020
Microwave Preamplifier	Agilent	8449B	3008A024 25	08-21-2018	08-20-2019
Microwave Preamplifier	Tonscend	EMC051845 SE	980380	01-16-2019	01-15-2020
Horn Antenna	Schwarzbeck	BBHA 9120D	9120D- 1869	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057410	06-05-2018	06-03-2021
Double ridge horn antenna	A.H.SYSTEMS	SAS-574	374	06-05-2018	06-04-2021
Pre-amplifier	A.H.SYSTEMS	PAP-1840-60	6041.604 1	07-26-2019	07-24-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B- 076	04-25-2018	04-24-2021
Spectrum Analyzer	R&S	FSP40	100416	04-28-2019	04-26-2020
Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020
Receiver	R&S	ESCI7	100938- 003	11-23-2018	11-22-2019
Multi device Controller	maturo	NCD/070/107 11112		01-09-2019	01-08-2020
Signal Generator	Agilent	E4438C	MY45095 744	03-01-2019	02-28-2020
Signal Generator	Keysight	E8257D	MY53401 106	03-01-2019	02-28-2020
Temperature/ Humidity Indicator	Shanghai qixiang	HM10	1804298	10-12-2018	10-11-2019
Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020
Cable line	Fulai(7M)	SF106	5219/6A	01-09-2019	01-08-2020
Cable line	Fulai(6M)	SF106	5220/6A	01-09-2019	01-08-2020
Cable line	Fulai(3M)	SF106	5216/6A	01-09-2019	01-08-2020
Cable line Communication test set	Fulai(3M) R&S	SF106 CMW500	5217/6A 104466	01-09-2019 01-18-2019	01-08-2020 01-17-2020
High-pass filter	Sinoscite	FL3CX03WG 18NM12- 0398-002		01-09-2019	01-08-2020
High-pass filter	MICRO- TRONICS	SPA-F- 63029-4		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 9CL12-0395- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX01CA0 8CL12-0393- 001		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 4CL12-0396- 002		01-09-2019	01-08-2020
band rejection filter	Sinoscite	FL5CX02CA0 3CL12-0394- 001		01-09-2019	01-08-2020

Page 12 of 54

Z**	3M full-a	nechoic Cham	her	205	
			Serial	Cal. date	Cal. Due date
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)
RSE Automatic test software	JS Tonscend	JS36-RSE	10166	06-19-2019	06-17-2020
Receiver	Keysight	N9038A	MY5729013 6	03-27-2019	03-25-2020
Spectrum Analyzer	Keysight	N9020B	MY5711111 2	03-27-2019	03-25-2020
Spectrum Analyzer	Keysight	N9030B	MY5714087 1	03-27-2019	03-25-2020
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-075	04-25-2018	04-23-2021
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04-25-2018	04-23-2021
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-25-2018	04-23-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-25-2018	04-23-2021
Horn Antenna	Schwarzbeck	BBHA 9170	9170-829	04-25-2018	04-23-2021
TIOTI / WILCHING		CLSA			
Communication Antenna	Schwarzbeck	0110L	1014	02-14-2019	02-13-2020
Biconical antenna	Schwarzbeck	VUBA 9117	9117-381	04-25-2018	04-23-2021
Horn Antenna	ETS- LINDGREN	3117	00057407	07-10-2018	07-08-2021
Preamplifier	EMCI	EMC18405 5SE	980596	05-22-2019	05-20-2020
Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020
Preamplifier	EMCI	EMC00133 0	980563	05-08-2019	05-06-2020
Preamplifier	Agilent	8449B	3008A0242 5	08-21-2018	08-20-2019
Temperature/ Humidity Indicator	biaozhi	GM1360	EE1186631	05-01-2019	04-30-2020
Signal Generator	KEYSIGHT	E8257D	MY5340110 6	03-01-2019	02-28-2020
Fully Anechoic Chamber	TDK	FAC-3	(2	01-17-2018	01-15-2021
Filter bank	JS Tonscend	JS0806-F	188060094	04-10-2018	04-08-2021
Cable line	Times	SFT205- NMSM- 2.50M	394812- 0001	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM- 2.50M	394812- 0002	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM- 2.50M	394812- 0003	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM- 2.50M	393495- 0001	01-09-2019	01-08-2020
Cable line	Times	EMC104- NMNM- 1000	SN160710	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM- 3.00M	394813-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMNM- 1.50M	381964-0001	01-09-2019	01-08-2020
Cable line	Times	SFT205- NMSM- 7.00M	394815-0001	01-09-2019	01-08-2020
Cable line	Times	HF160- KMKM- 3.00M	393493-0001	01-09-2019	01-08-2020

Equipment

Manufacturer

Cal. Due date

(mm-dd-yyyy)

- 1					(IIIII-da-yyyy)	(IIIII-aa-yyyy)	
	Receiver	R&S	ESCI	100435	05-20-2019	05-18-2020	
	Temperature/ Humidity Indicator	Defu	TH128	/	06-14-2019	06-12-2020	
	Communication test set	Agilent	E5515C	GB47050 534	03-01-2019	02-28-2020	
	Communication test set	R&S	CMW500	102898	01-18-2019	01-17-2020	
10	LISN	R&S	ENV216	100098	05-08-2019	05-06-2020	
	LISN	schwarzbeck	NNLK8121	8121-529	05-08-2019	05-06-2020	
	Voltage Probe	R&S	ESH2-Z3 0299.7810.5 6	100042	06-13-2017	06-11-2020	
	Current Probe	R&S	EZ-17 816.2063.03	100106	05-20-2019	05-18-2020	6,
	ISN	TESEQ	ISN T800	30297	01-16-2019	01-15-2020	
	Barometer	changchun	DYM3	1188	06-20-2019	06-18-2020	

Conducted disturbance Test

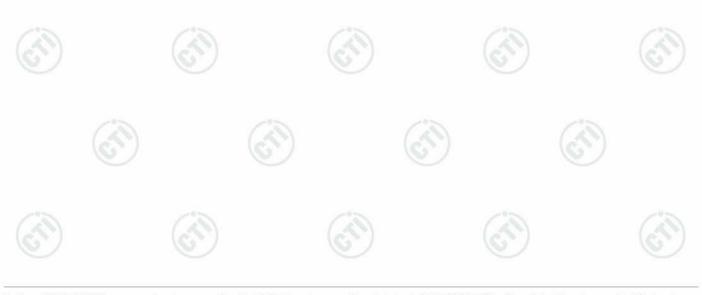
Model No.

Serial

Number

Cal. date

(mm-dd-yyyy)

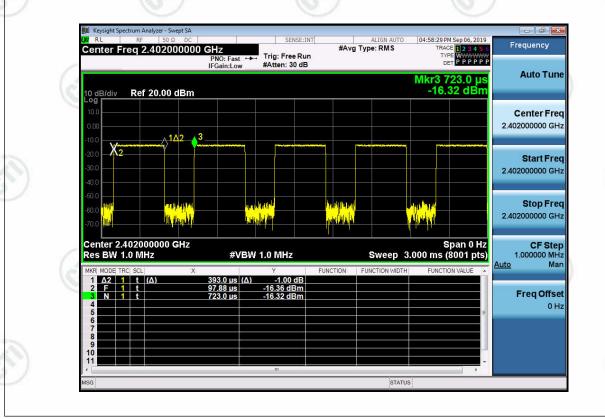

Report No.: EED32L00127302 Page 14 of 54

8 Radio Technical Requirements Specification

Reference documents for testing:

No.	Identity	Document Title
1	FCC Part15C	Subpart C-Intentional Radiators
2	ANSI C63.10-2013	American National Standard for Testing Unlicesed Wireless Devices
est Re	esults List:	

Test method	Test item	Verdict	Note
ANSI C63.10	6dB Occupied Bandwidth	PASS	Appendix A)
ANSI C63.10	Conducted Peak Output Power	PASS	Appendix B)
ANSI C63.10	Band-edge for RF Conducted Emissions	PASS	Appendix C)
ANSI C63.10	RF Conducted Spurious Emissions	PASS	Appendix D)
ANSI C63.10	Power Spectral Density	PASS	Appendix E)
ANSI C63.10	Antenna Requirement	PASS	Appendix F)
ANSI C63.10	AC Power Line Conducted Emission	PASS	Appendix G)
ANSI C63.10	Restricted bands around fundamental frequency (Radiated Emission)	PASS	Appendix H)
ANSI C63.10	Radiated Spurious Emissions	PASS	Appendix I)
	ANSI C63.10 ANSI C63.10	ANSI C63.10 Conducted Peak Output Power ANSI C63.10 Band-edge for RF Conducted Emissions ANSI C63.10 RF Conducted Spurious Emissions ANSI C63.10 Power Spectral Density ANSI C63.10 Antenna Requirement ANSI C63.10 AC Power Line Conducted Emission Restricted bands around fundamental frequency (Radiated Emission)	ANSI C63.10 Conducted Peak Output Power ANSI C63.10 Band-edge for RF Conducted Emissions ANSI C63.10 RF Conducted Spurious Emissions ANSI C63.10 Power Spectral Density ANSI C63.10 ANSI C63.10 Antenna Requirement ANSI C63.10 AC Power Line Conducted Emission ANSI C63.10 Restricted bands around fundamental frequency (Radiated Emission) PASS



Report No. : EED32L00127302 Page 15 of 54

EUT Duty Cycle

Duty Cycle					
Configuration	TX ON(ms)	TX ALL(ms)	Duty Cycle(%)		
BLE	0.393	0.625	62.88%		

Report No. : EED32L00127302 Page 16 of 54

Appendix A): 6dB Occupied Bandwidth

Test Limit

According to §15.247(a)(2) and RSS-247 section 5.2(a)

6 dB Bandwidth :

(a)		
Limit	Shall be at least 500kHz	(6)

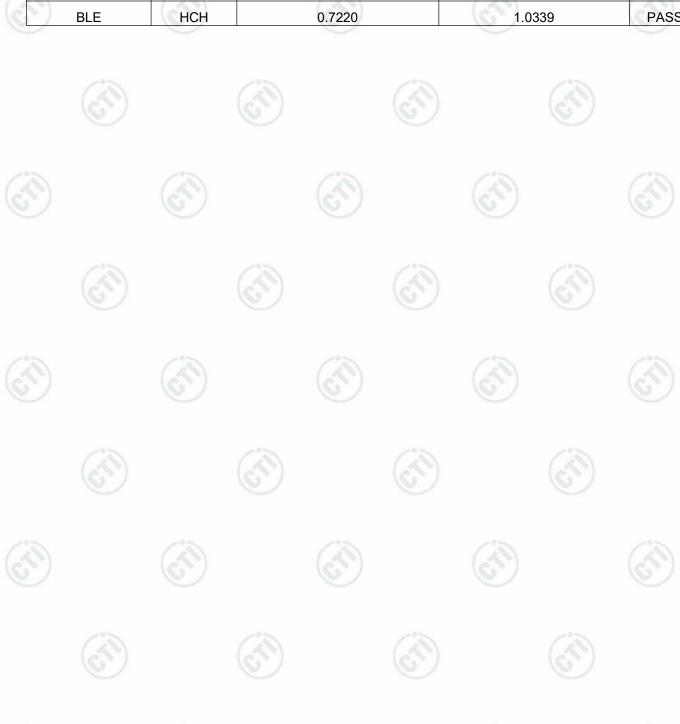
Occupied Bandwidth(99%): For reporting purposes only.

Test Procedure

Test method Refer as KDB 558074 D01 v04, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth and 99% Bandwidth.
- 4. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

Test Setup



Test Result

Mode	Channel	6dB Bandwidth [MHz]	99% OBW[MHz]	Verdict
BLE	LCH	0.7223	1.0332	PASS
BLE	мсн	0.7256	1.0347	PASS
BLE	нсн	0.7220	1.0339	PASS

Test Graphs

6DB Bandwidth

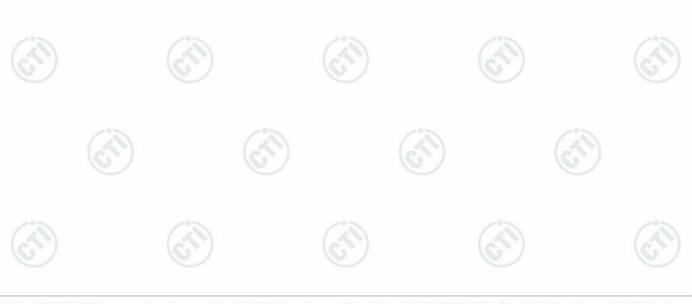
Report No.: EED32L00127302 Page 20 of 54

Appendix B): Conducted Peak Output Power

Test Limit

According to §15.247(b) and RSS-247 section 5.4(d)

Peak output power:


For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.

	 127071 172707	1 200
		IBm
Limit	☐ Antenna with DG greater than 6	i dBi
Limit	[Limit = $30 - (DG - 6)$]	
	Point-to-point operation	

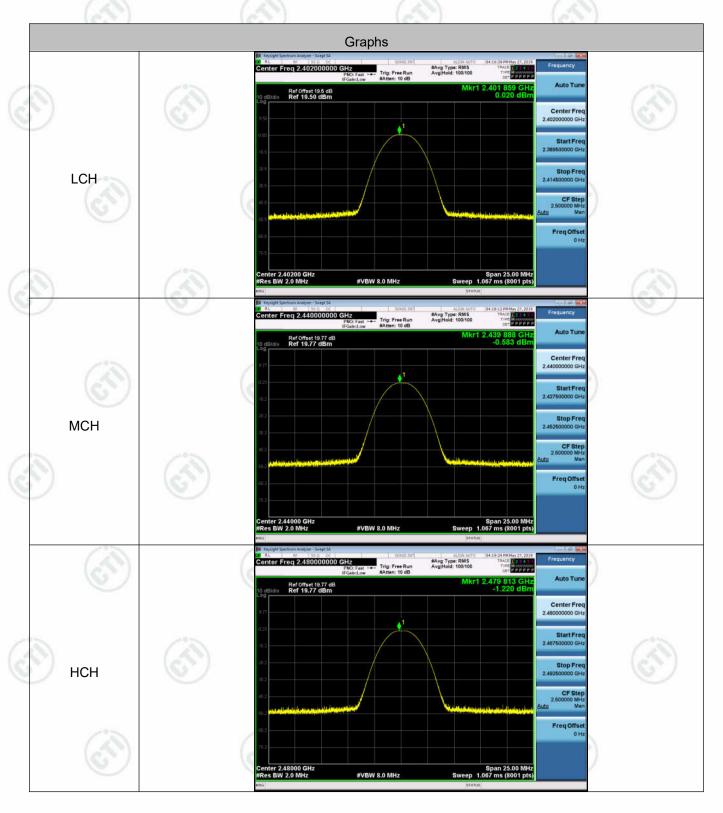
Test Procedure

Test method Refer as KDB 558074 D01 v04, section 9.1.2.

- 1. The EUT RF output connected to the power meter by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. The path loss was compensated to the results for each measurement.
- 4. Measure and record the result of Peak output power and Average output power. in the test report.

Test Result

Mode	Channel	Conduct Peak Power[dBi	m] Verdict
BLE	LCH	0.02	PASS
BLE	MCH	-0.583	PASS
BLE	HCH	-1.22	PASS



Report No. : EED32L00127302 Page 22 of 54

Test Graphs

Report No. : EED32L00127302 Page 23 of 54

Appendix C): Band-edge for RF Conducted Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

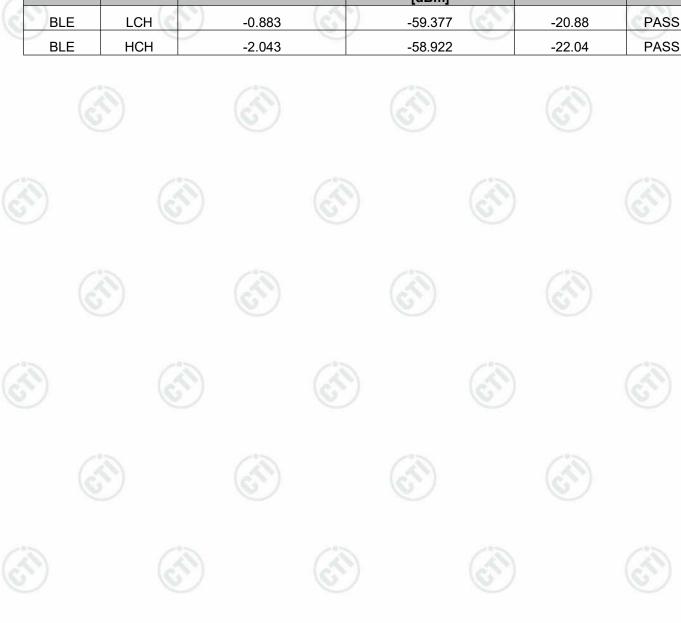
Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

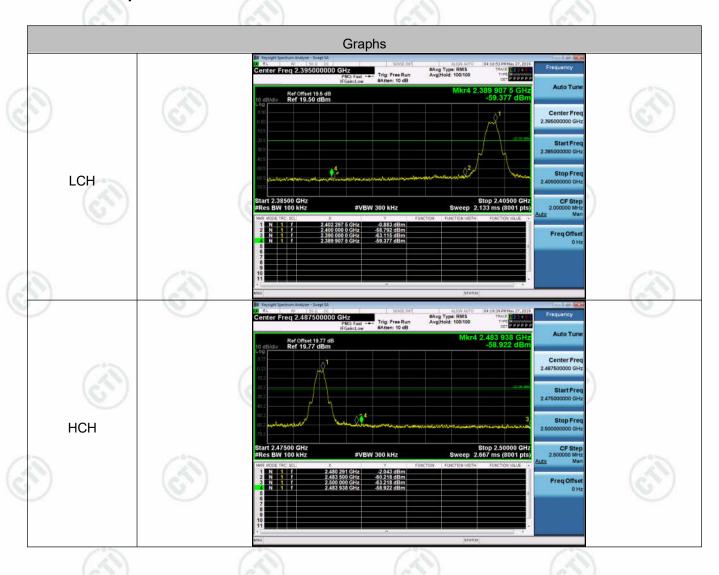
- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup



Result Table

per f	Mode	Channel	Carrier Power[dBm]	Max.Spurious Level [dBm]	Limit [dBm]	Verdict
í	BLE	LCH	-0.883	-59.377	-20.88	PASS



Report No. : EED32L00127302 Page 25 of 54

Test Graphs

Report No. : EED32L00127302 Page 26 of 54

Appendix D): RF Conducted Spurious Emissions

Test Limit

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

Test Procedure

Test method Refer as KDB 558074 D01 v04, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

Test Setup

Result Table

Mode	Channel	Pref [dBm]	Puw[dBm]	Verdict
BLE	LCH	-1.156	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	MCH	-1.796	<limit< td=""><td>PASS</td></limit<>	PASS
BLE	НСН	-2.301	<limit< td=""><td>PASS</td></limit<>	PASS

Report No. : EED32L00127302 Page 28 of 54

Test Graphs

Page 30 of 54

Report No. : EED32L00127302 Page 31 of 54

Appendix E): Power Spectral Density

Test Limit

According to §15.247(e) and RSS-247 section 5.2(b)

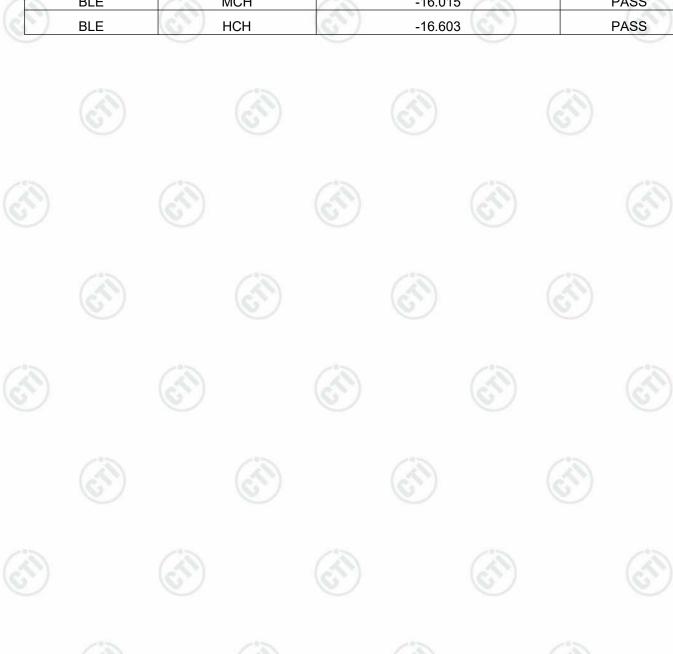
For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

Limit	 ✓ Antenna not exceed 6 dBi: 8dBm ✓ Antenna with DG greater than 6 dBi [Limit = 8 - (DG - 6)] ✓ Point-to-point operation: 	
-------	---	--

Test Procedure

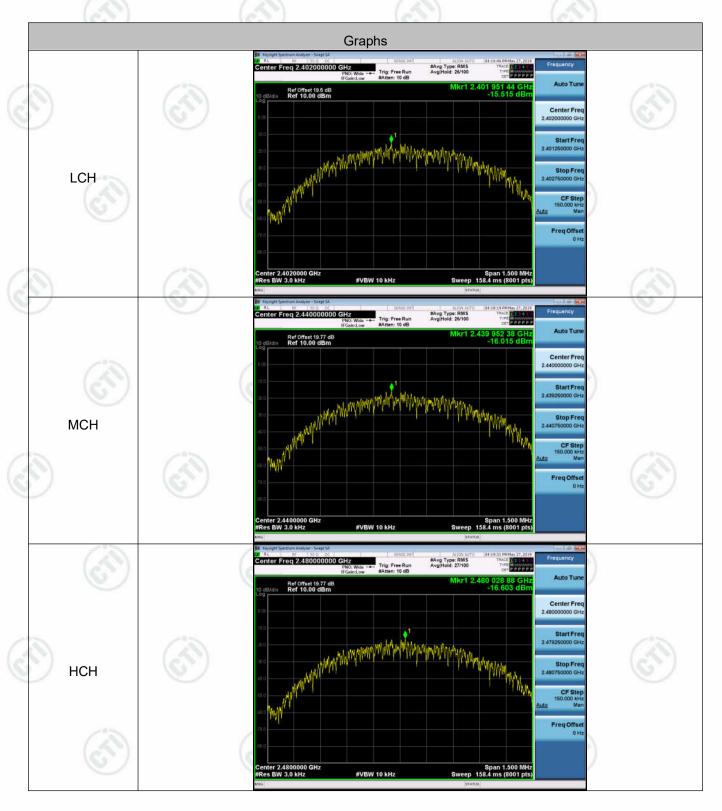
Test method Refer as KDB 558074 D01 v04, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 30kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- Mark the maximum level.
 Measure and record the result of power spectral density. in the test report.



Result Table

Mode	Channel	PSD [dBm]	Verdict
BLE	LCH	-15.515	PASS
BLE	MCH	-16.015	PASS
BLE	HCH	-16.603	PASS



Report No. : EED32L00127302 Page 33 of 54

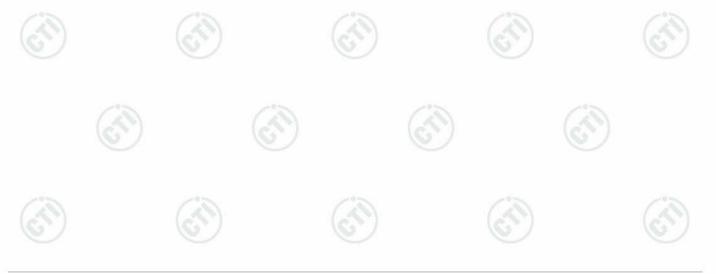
Test Graphs

Report No. : EED32L00127302 Page 34 of 54

Appendix F): Antenna Requirement

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


15.247(b) (4) requirement:

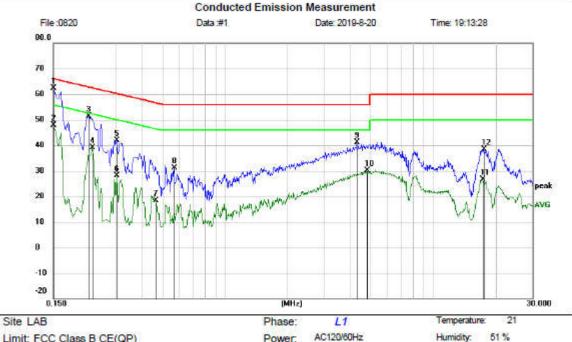
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

The antenna is integrated on the main PCB and no consideration of replacement. The best case gain of the antenna is 4.2 dBi.

Report No. : EED32L00127302 Page 35 of 54

Appendix G): AC Power Line Conducted Emission

Test Procedure:	Test frequency range :150KHz	-30MHz		
	1)The mains terminal disturbar 2) The EUT was connected to Stabilization Network) which	AC power source throu	ugh a LISN 1 (Lin	e Impedance
	power cables of all other u which was bonded to the g for the unit being measure multiple power cables to a	round reference plane i d. A multiple socket oເ	in the same way a utlet strip was use	as the LISN ed to connec
	exceeded. 3)The tabletop EUT was place reference plane. And for flother horizontal ground reference	or-standing arrangeme		-
	4) The test was performed wire EUT shall be 0.4 m from the reference plane was bonder	th a vertical ground refe e vertical ground refere d to the horizontal grou	ence plane. The ve und reference plan	ertical groun ne. The LISI
	1 was placed 0.8 m from to ground reference plane for plane. This distance was be All other units of the EUT at LISN 2.	or LISNs mounted on etween the closest poir	top of the grounts of the LISN 1 a	nd reference and the EUT
	5) In order to find the maximur of the interface cables reconducted measurement.			
	conducted measurement.			
_imit:	conducted measurement.			
Limit:	Frequency range (MHz)	Limit (dE		
imit:	Frequency range (MHz)	Quasi-peak	Average	
imit:	Frequency range (MHz) 0.15-0.5	Quasi-peak 66 to 56*	Average 56 to 46*	(crit)
imit:	Frequency range (MHz) 0.15-0.5 0.5-5	Quasi-peak 66 to 56* 56	Average 56 to 46*	(cří)
Limit:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly MHz to 0.50 MHz.	Quasi-peak 66 to 56* 56 60 with the logarithm of the	Average 56 to 46* 46 50 ne frequency in th	e range 0.1
Limit:	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly	Quasi-peak 66 to 56* 56 60 with the logarithm of the	Average 56 to 46* 46 50 ne frequency in th	e range 0.1
leasurement Data	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly MHz to 0.50 MHz. NOTE: The lower limit is applie	Quasi-peak 66 to 56* 56 60 with the logarithm of the cable at the transition from	Average 56 to 46* 46 50 ne frequency in the	e range 0.1
leasurement Data n initial pre-scan w luasi-Peak and Ave	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly MHz to 0.50 MHz.	Quasi-peak 66 to 56* 56 60 with the logarithm of the cable at the transition from the cable with peak detectors.	Average 56 to 46* 46 50 ne frequency in the requency	
	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly MHz to 0.50 MHz. NOTE: The lower limit is applicate as performed on the live and neutral	Quasi-peak 66 to 56* 56 60 with the logarithm of the cable at the transition from the cable with peak detectors.	Average 56 to 46* 46 50 ne frequency in the requency	
leasurement Data In initial pre-scan w Quasi-Peak and Ave	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly MHz to 0.50 MHz. NOTE: The lower limit is applicate as performed on the live and neutral	Quasi-peak 66 to 56* 56 60 with the logarithm of the cable at the transition from the cable with peak detectors.	Average 56 to 46* 46 50 ne frequency in the requency	
leasurement Data n initial pre-scan w uasi-Peak and Ave	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly MHz to 0.50 MHz. NOTE: The lower limit is applicate as performed on the live and neutral	Quasi-peak 66 to 56* 56 60 with the logarithm of the cable at the transition from the cable with peak detectors.	Average 56 to 46* 46 50 ne frequency in the requency	
leasurement Data In initial pre-scan w Quasi-Peak and Ave	Frequency range (MHz) 0.15-0.5 0.5-5 5-30 * The limit decreases linearly MHz to 0.50 MHz. NOTE: The lower limit is applicate as performed on the live and neutral	Quasi-peak 66 to 56* 56 60 with the logarithm of the cable at the transition from the cable with peak detectors.	Average 56 to 46* 46 50 ne frequency in the requency	



Report No.: EED32L00127302 Page 36 of 54

Product WIFI+BT Module Model/Type reference WCT3TM2311

Temperature : 21°C **Humidity** 51%

Live line:

Limit: FCC Class B CE(QP)

EUT:

M/N: Mode: ON Note:

No. Mk	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1 *	0.1500	52.48	9.97	62.45	66.00	-3.55	peak	
2	0.1500	37.92	9.97	47.89	56.00	-8.11	AVG	
3	0.2220	41.36	10.04	51.40	62.74	-11.34	peak	
4	0.2310	29.21	10.04	39.25	52.41	-13.16	AVG	
5	0.3030	31.87	10.10	41.97	60.16	-18.19	peak	
6	0.3030	18.14	10.10	28.24	50.16	-21.92	AVG	
7	0.4650	8.29	10.00	18.29	46.60	-28.31	AVG	
8	0.5685	21.04	10.08	31.12	56.00	-24.88	peak	
9	4.2945	31.20	9.83	41.03	56.00	-14.97	peak	
10	4.8210	20.34	9.83	30.17	46.00	-15.83	AVG	
11	17.2455	16.61	9,96	26.57	50.00	-23.43	AVG	
12	17.5605	28.43	9.95	38.38	60.00	-21.62	peak	

Power:

*:Maximum data x:Over limit Reference Only !:over margin

Engineer Signature: File:0820\Data:#1 Page: 1

Page 37 of 54

Neutral line:

Limit: FCC Class B CE(QP)

EUT: M/N: Mode: ON Note:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment		Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	*	0.1500	51.88	9.97	61.85	66.00	-4.15	peak	
2		0.1635	37.28	9.99	47.27	55.28	-8.01	AVG	
3		0.2175	25.86	10.03	35.89	52.91	-17.02	AVG	
4		0.2220	41.12	10.04	51.16	62.74	-11.58	peak	
5		0.2895	32.16	10.09	42.25	60.54	-18.29	peak	
6		0.2895	17.05	10.09	27.14	50.54	-23.40	AVG	
7		5.2215	30.33	9.83	40.16	60.00	-19.84	peak	
8		5.7525	20.05	9.84	29.89	50.00	-20.11	AVG	
9		7.9980	28.36	9.89	38,25	60.00	-21.75	peak	
10		8.1555	17.28	9.89	27.17	50.00	-22.83	AVG	
11		17.3220	18.05	9.96	28.01	50.00	-21.99	AVG	
12		17.4435	28.31	9.96	38.27	60.00	-21.73	peak	

Power.

*:Maximum data	x:Over limit	!:over margin	Reference Only
----------------	--------------	---------------	----------------

File:0820\Data:#2

Page: 1

Engineer Signature:

Notes:

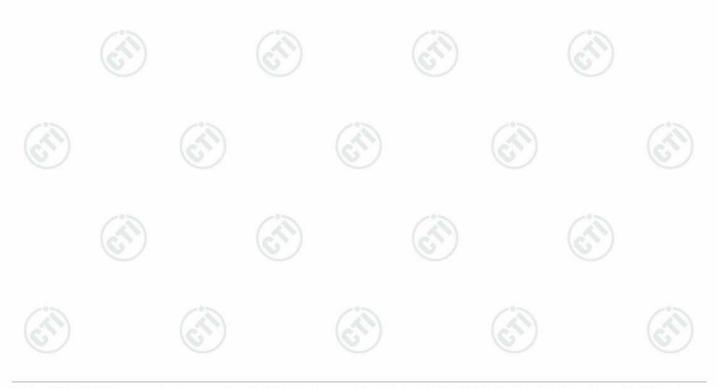
- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Report No. : EED32L00127302 Page 38 of 54

Appendix H): Restricted bands around fundamental frequency (Radiated)

(Madiated)						
Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peal	<
	Ab 4011-	Peak	1MHz	3MHz	Peak	-
	Above 1GHz	Peak	1MHz	10Hz	Average	
Test Procedure:	Below 1GHz test proced Test method Refer as KDB a. The EUT was placed of at a 3 meter semi-ane determine the position b. The EUT was set 3 me was mounted on the total control of the antenna height is determine the maximum polarizations of the antenna was tuned the antenna was tuned.	ure as below: 3 558074 D01 v0 on the top of a ro choic camber. The of the highest ra eters away from op of a variable-h varied from one am value of the ficterna are set to	04, Section tating table ne table was adiation. the interfer neight anter meter to for eld strength make the newas arrand meter to	12.1 e 0.8 meter as rotated 3 ence-recei nna tower. our meters n. Both hor neasurement iged to its via	rs above the 360 degrees iving antenna above the grizontal and vent. worst case a and the rotat	to a, whice round to vertica nd the able
	was turned from 0 deg e. The test-receiver syste Bandwidth with Maxim f. Place a marker at the	em was set to Penum Hold Mode.	eak Detect	Function a	nd Specified	
	was turned from 0 deg e. The test-receiver syste Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h. Test the EUT in the li i. The radiation measure	em was set to Penum Hold Mode. end of the restriction pliance. Also mustrum analyzer plotchannel ure as below: ve is the test site of the change form the change form the channel owest channel, the company of the channel o	eak Detect cted band of easure any ot. Repeat to e, change from table 0.8 te is 1.5 me the Highest rmed in X,	Function a closest to the composition of each potential for each potential for each potential for each potential for each poten	nd Specified the transmit is in the restriction ower and mo Anechoic Ch .5 meter(Ab	icted dulation namber ove
	was turned from 0 deg e. The test-receiver syste Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h. Test the EUT in the le	em was set to Penum Hold Mode. end of the restriction pliance. Also mitrum analyzer plotchannel wre as below: ve is the test site of the change form and table owest channel, the ments are performed found the X axis.	eak Detect cted band of easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis positioni	Function a closest to the commissions for each portion for each portion fo	the transmit is in the restriction and modern and moder	icted dulation namber ove
imit:	e. The test-receiver syste Bandwidth with Maxim f. Place a marker at the frequency to show corbands. Save the spect for lowest and highest Above 1GHz test proced g. Different between about of fully Anechoic Chara 18GHz the distance is h. Test the EUT in the li. The radiation measure Transmitting mode, ar	em was set to Penum Hold Mode. end of the restriction pliance. Also mitrum analyzer plotchannel wre as below: ve is the test site of the change form and table owest channel, the ments are performed found the X axis.	eak Detect cted band of easure any ot. Repeat to e, change from table 0.8 e is 1.5 me the Highest rmed in X, kis positioni uencies me	Function a closest to the composition of each po- com Semi- meter to 1 ter). t channel Y, Z axis poing which in easured was	nd Specified the transmit is in the restri tower and mo Anechoic Ch .5 meter(Ab cositioning fo t is worse ca	icted dulation namber ove
imit:	was turned from 0 deg e. The test-receiver syste Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h. Test the EUT in the li i. The radiation measure Transmitting mode, ar j. Repeat above procede	em was set to Penum Hold Mode. end of the restriction mpliance. Also metrum analyzer plotchannel wre as below: we is the test site of the change form the change form the channel owest channel, the ments are performed found the X axures until all frequents.	eak Detect cted band of easure any ot. Repeat f e, change fin table 0.8 e is 1.5 me the Highest rmed in X, kis positioni uencies me	Function a closest to the closest tensor to the closest tensor to the closest tensor ten	nd Specified the transmit is in the restriction wer and mo Anechoic Ch .5 meter(Ab cositioning for t is worse cause complete.	icted dulation namber ove
imit:	was turned from 0 deg e. The test-receiver syste Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h. Test the EUT in the li i. The radiation measure Transmitting mode, ar j. Repeat above procedu	em was set to Penum Hold Mode. end of the restriction in the restricti	eak Detect cted band of easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me /m @3m)	Function a closest to the community of t	ne transmit is in the restriction Anechoic Ch .5 meter(Ab cositioning for it is worse cases complete.	icted dulation namber ove
imit:	was turned from 0 deg e. The test-receiver syste Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h. Test the EUT in the li i. The radiation measure Transmitting mode, ar j. Repeat above procedu Frequency 30MHz-88MHz	em was set to Penum Hold Mode. end of the restrict of the rest	eak Detect cted band of easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highest rmed in X, kis positioni uencies me /m @3m) 0	Function a closest to the community of t	and Specified the transmit is in the restriction Anechoic Ch .5 meter(Ab cositioning for t is worse ca as complete. mark eak Value	icted dulation namber ove
imit:	was turned from 0 deg e. The test-receiver syste Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h. Test the EUT in the li i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz	em was set to Penum Hold Mode. end of the restrict in pliance. Also mustrum analyzer plot channel ure as below: ve is the test site in the change form the same of the set of the same of	eak Detect cted band of easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis positioni uencies me /m @3m) 0	Function a closest to the closest consistence of the closest constant of the closest close	and Specified the transmit is in the restriction Sheet and mo Anechoic Ch Sheet (Ab cositioning for t is worse ca as complete. mark eak Value eak Value	icted dulation namber ove
Limit:	was turned from 0 deg e. The test-receiver syste Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h. Test the EUT in the li i. The radiation measure Transmitting mode, ar j. Repeat above proced Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz 960MHz-1GHz	em was set to Penum Hold Mode. end of the restrict impliance. Also mustrum analyzer plot channel ure as below: ve is the test site inber change form 1 meter and table owest channel, it is ements are performed found the X axioures until all frequency Limit (dBµV/40.6) 43.5	eak Detect cted band of easure any ot. Repeat f e, change fi n table 0.8 le is 1.5 me the Highest rmed in X, kis positioni uencies me /m @3m) 0	Function a closest to the composition of the compos	and Specified the transmit is in the restriction Sheet and more Anechoic Ch The sheet and more Anechoic Ch The sheet and more T	icted dulation namber ove
Limit:	was turned from 0 deg e. The test-receiver syste Bandwidth with Maxim f. Place a marker at the frequency to show cor bands. Save the spect for lowest and highest Above 1GHz test proced g. Different between abo to fully Anechoic Char 18GHz the distance is h. Test the EUT in the li i. The radiation measure Transmitting mode, ar j. Repeat above procedu Frequency 30MHz-88MHz 88MHz-216MHz 216MHz-960MHz	em was set to Penum Hold Mode. end of the restrice in pliance. Also mustrum analyzer plot channel ure as below: ve is the test site in the change form to a meter and table owest channel, it is ements are performed found the X as ures until all frequency. Limit (dBµV/40.6) 43.5 46.6	eak Detect cted band of easure any ot. Repeat f e, change fi n table 0.8 e is 1.5 me the Highest rmed in X, kis position uencies me /m @3m) 0 0 0	Function a closest to the closest term of the close	and Specified the transmit is in the restriction and modern and mark the mark	icted dulation namber ove

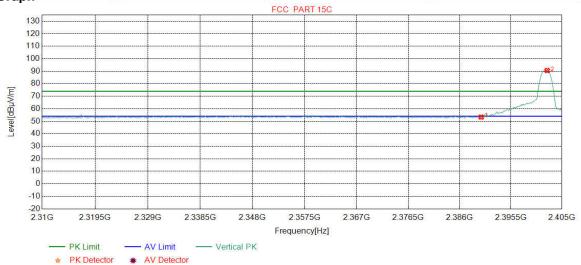
Report No. : EED32L00127302 Page 39 of 54

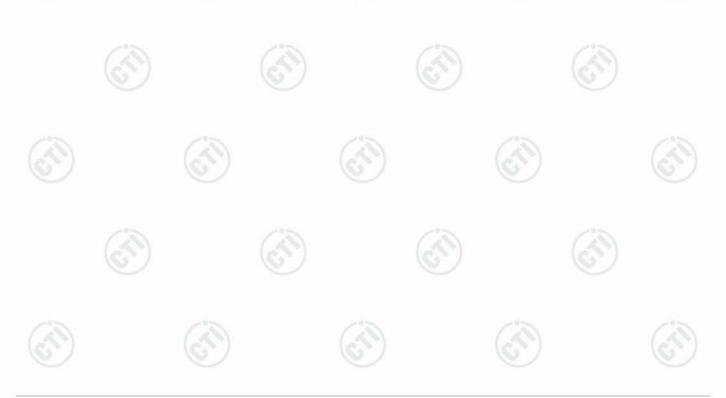

Test plot as follows:

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity
1	2390.0000	32.25	13.37	-42.44	50.71	53.89	74.00	20.11	Horizontal
2	2402.2653	32.26	13.31	-42.43	85.97	89.11	74.00	-15.11	Horizontal

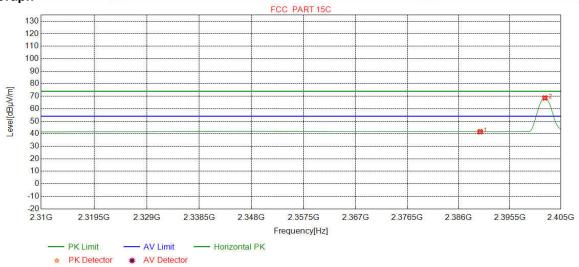


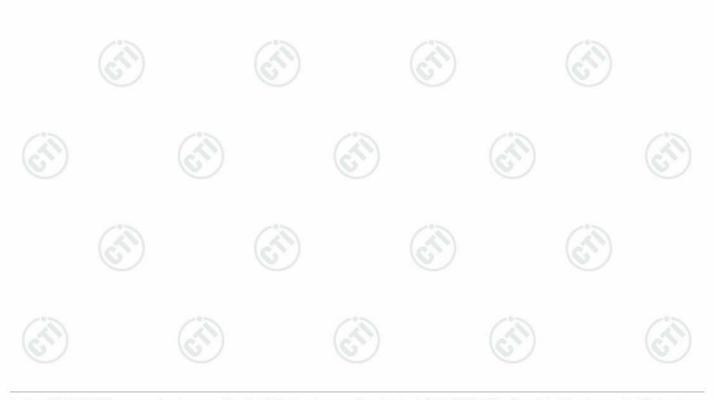

Page 4	10 of	54
--------	-------	----

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	PK		

Test Graph

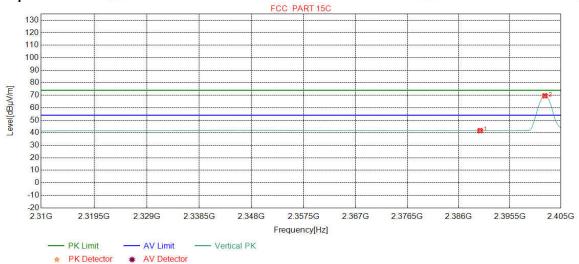
NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity
1	2390.0000	32.25	13.37	-42.44	50.14	53.32	74.00	20.68	Vertical
2	2402.2653	32.26	13.31	-42.43	87.41	90.55	74.00	-16.55	Vertical

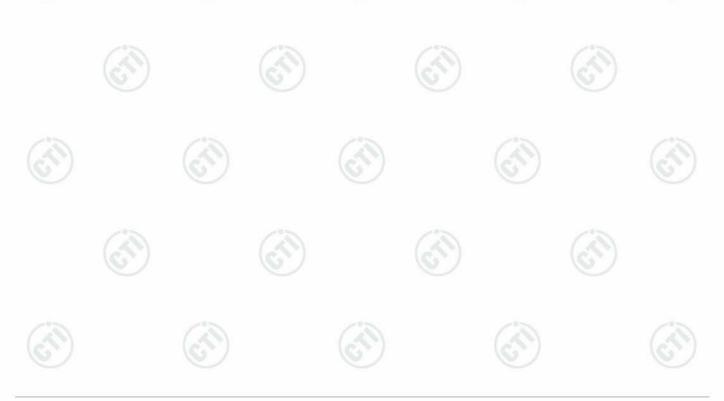



Page 41	of 54
---------	-------

Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

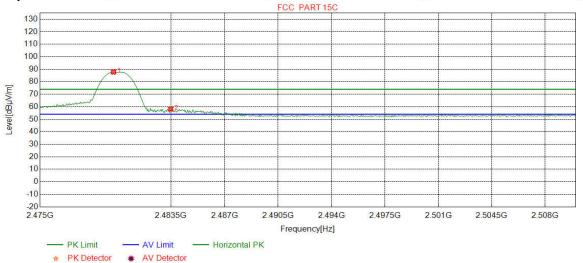
Test Graph

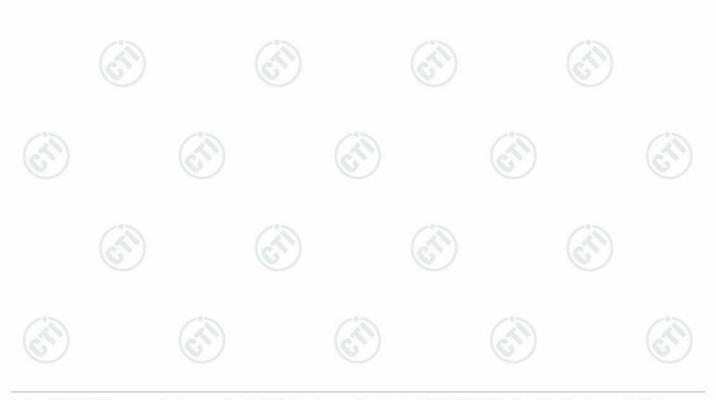

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity
1	2390.0000	32.25	13.37	-42.44	38.45	41.63	54.00	12.37	Horizontal
2	2402.0275	32.26	13.31	-42.43	65.49	68.63	54.00	-14.63	Horizontal



Mode:	BLE GFSK Transmitting	Channel:	2402
Remark:	AV		

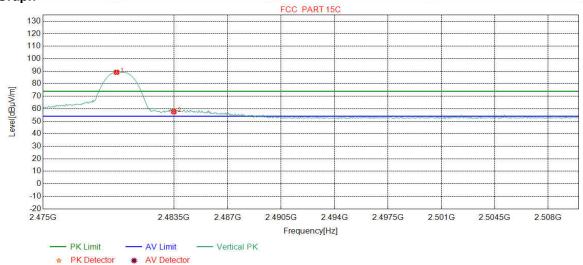
Test Graph

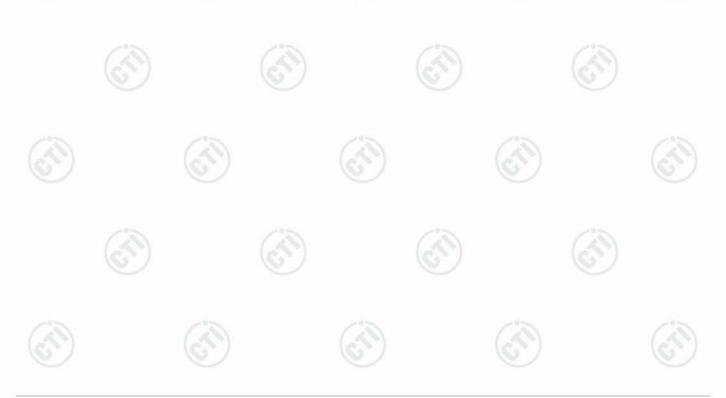

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity
1	2390.0000	32.25	13.37	-42.44	38.52	41.70	54.00	12.30	Vertical
2	2402.0275	32.26	13.31	-42.43	66.43	69.57	54.00	-15.57	Vertical



Mode:	BLE GFSK Transmitting	Channel:	2480	
Remark:	PK			

Test Graph

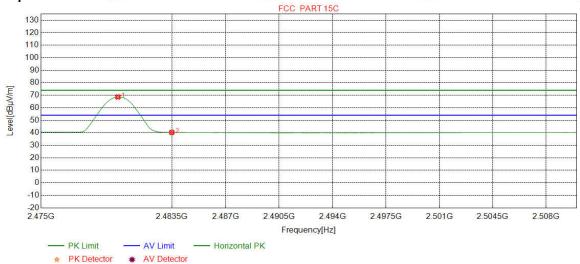

NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity
1	2479.7747	32.37	13.39	-42.39	84.33	87.70	74.00	-13.70	Horizontal
2	2483.5000	32.38	13.38	-42.40	54.92	58.28	74.00	15.72	Horizontal

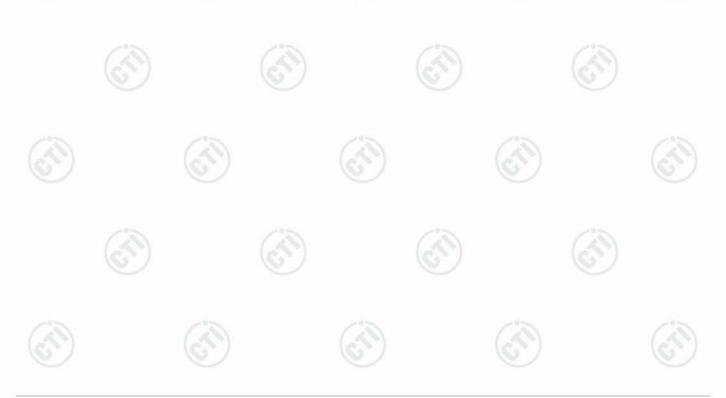


Mode:	BLE GFSK Transmitting	Channel:	2480	
Remark:	PK			

Test Graph

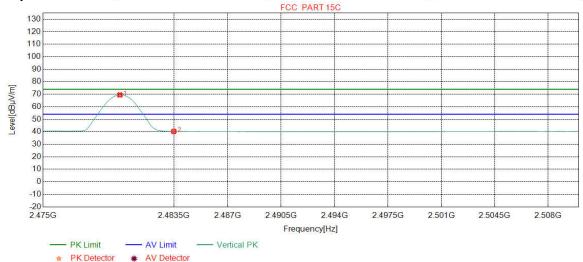
N	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity
1	2479.7747	32.37	13.39	-42.39	85.76	89.13	74.00	-15.13	Vertical
2	2483.5000	32.38	13.38	-42.40	54.35	57.71	74.00	16.29	Vertical




Page	45	of	54
------	----	----	----

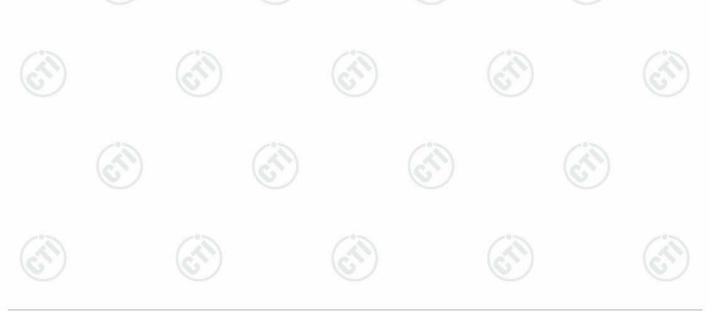
Mode:	BLE GFSK Transmitting	Channel:	2480	
Remark:	AV			

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity
1	2479.9937	32.37	13.39	-42.39	65.24	68.61	54.00	-14.61	Horizontal
2	2483.5000	32.38	13.38	-42.40	36.89	40.25	54.00	13.75	Horizontal

Mode:	BLE GFSK Transmitting	Channel:	2480
Remark:	AV		

Test Graph


NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Polarity
1	2479.9937	32.37	13.39	-42.39	66.07	69.44	54.00	-15.44	Vertical
2	2483.5000	32.38	13.38	-42.40	36.93	40.29	54.00	13.71	Vertical

Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

Report No. : EED32L00127302 Page 47 of 54

Appendix I) Radiated Spurious Emissions

Receiver Setup:	Frequency	Detector	RBW	VBW	Remark	
	0.009MHz-0.090MHz	Peak	10kHz	30kHz	Peak	
	0.009MHz-0.090MHz	Average	10kHz	30kHz	Average	
\	0.090MHz-0.110MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	100
)	0.110MHz-0.490MHz	Peak	10kHz	30kHz	Peak	
	0.110MHz-0.490MHz	Average	10kHz	30kHz	Average	
	0.490MHz -30MHz	Quasi-peak	10kHz	30kHz	Quasi-peak	
	30MHz-1GHz	Quasi-peak	120kHz	300kHz	Quasi-peak	
(61)	Above 4CUT	Peak	1MHz	3MHz	Peak	
	Above 1GHz	Peak	1MHz	10Hz	Average	

Test Procedure:

Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01 v04, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter(Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.

Repeat above procedures until all frequencies measured was complete.

	ı	m	١ľ	t٠
ᆫ	ı	11	ш	ι.

Frequency	Field strength (microvolt/meter)	Limit (dBµV/m)	Remark	Measurement distance (m)
0.009MHz-0.490MHz	2400/F(kHz)	-	(49)	300
0.490MHz-1.705MHz	24000/F(kHz)	-	(0.)	30
1.705MHz-30MHz	30	-	-	30
30MHz-88MHz	100	40.0	Quasi-peak	3
88MHz-216MHz	150	43.5	Quasi-peak	3
216MHz-960MHz	200	46.0	Quasi-peak	3
960MHz-1GHz	500	54.0	Quasi-peak	3
Above 1GHz	500	54.0	Average	3

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.

Report No. : EED32L00127302 Page 48 of 54

Radiated Spurious Emissions test Data:

Product: WIFI+BT Module Model/Type reference: WCT3TM2311

Temperature : 24° Humidity : 54%

Radiated Emission below 1GHz

Mo	ode:	GFSK T	ransmitt	ing		Channel:		2402		
NC	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	245.5556	12.08	1.86	-31.89	60.15	42.20	46.00	3.80	Pass	Η
2	260.1070	12.40	1.92	-31.87	59.11	41.56	46.00	4.44	Pass	Н
3	354.8855	14.41	2.25	-31.86	47.01	31.81	46.00	14.19	Pass	Н
4	480.0280	16.68	2.61	-31.90	45.41	32.80	46.00	13.20	Pass	Н
5	649.0189	19.39	3.10	-32.07	41.65	32.07	46.00	13.93	Pass	Н
6	719.2539	20.01	3.22	-32.08	48.30	39.45	46.00	6.55	Pass	Н
7	208.9829	11.13	1.71	-31.94	49.16	30.06	43.50	13.44	Pass	V
8	246.9137	12.12	1.87	-31.90	56.92	39.01	46.00	6.99	Pass	V
9	261.2711	12.43	1.93	-31.88	55.12	37.60	46.00	8.40	Pass	V
10	373.8994	14.83	2.30	-31.88	41.99	27.24	46.00	18.76	Pass	V
11	480.0280	16.68	2.61	-31.90	39.89	27.28	46.00	18.72	Pass	V
12	720.7091	20.03	3.23	-32.08	46.48	37.66	46.00	8.34	Pass	V

Mode) :	GFSK T	ransmitt	ing		Channel:		2440		
NO	Freq. [MHz]			Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity		
1	132.4422	7.58	1.34	-32.01	55.11	32.02	43.50	11.48	Pass	Н
2	246.6227	12.11	1.87	-31.90	59.81	41.89	46.00	4.11	Pass	Н
3	260.1070	12.40	1.92	-31.87	59.12	41.57	46.00	4.43	Pass	Н
4	366.6237	14.67	2.28	-31.86	45.82	30.91	46.00	15.09	Pass	Н
5	479.2519	16.67	2.61	-31.90	45.67	33.05	46.00	12.95	Pass	Н
6	720.3210	20.02	3.22	-32.07	48.70	39.87	46.00	6.13	Pass	Н
7	247.6898	12.14	1.87	-31.90	56.86	38.97	46.00	7.03	Pass	V
8	260.1070	12.40	1.92	-31.87	55.12	37.57	46.00	8.43	Pass	V
9	399.8980	15.40	2.38	-31.76	42.21	28.23	46.00	17.77	Pass	V
10	480.0280	16.68	2.61	-31.90	39.93	27.32	46.00	18.68	Pass	V
11	721.8732	20.04	3.23	-32.07	46.53	37.73	46.00	8.27	Pass	V
12	895.9086	22.05	3.59	-31.59	40.97	35.02	46.00	10.98	Pass	V

Page 49 of 54

Mode) :	GFSK T	ransmitt	ing		Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity
1	133.6064	7.52	1.35	-32.01	55.02	31.88	43.50	11.62	Pass	Н
2	247.3987	12.13	1.87	-31.90	59.98	42.08	46.00	3.92	Pass	Н
3	260.8831	12.42	1.92	-31.87	58.94	41.41	46.00	4.59	Pass	Н
4	354.9825	14.41	2.25	-31.86	47.07	31.87	46.00	14.13	Pass	Н
5	479.2519	16.67	2.61	-31.90	45.46	32.84	46.00	13.16	Pass	Н
6	720.3210	20.02	3.22	-32.07	48.43	39.60	46.00	6.40	Pass	Н
7	199.8640	10.89	1.67	-31.94	50.78	31.40	43.50	12.10	Pass	V
8	246.9137	12.12	1.87	-31.90	56.79	38.88	46.00	7.12	Pass	V
9	260.8831	12.42	1.92	-31.87	55.10	37.57	46.00	8.43	Pass	V
10	375.0635	14.85	2.31	-31.88	40.93	26.21	46.00	19.79	Pass	V
11	478.5729	16.66	2.61	-31.90	40.14	27.51	46.00	18.49	Pass	V
12	720.0300	20.02	3.22	-32.07	46.89	38.06	46.00	7.94	Pass	V

Report No. : EED32L00127302 Page 50 of 54

Transmitter Emission above 1GHz

Mode	e:	GFSK T	ransmitt	ing			Channel:		2402		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1897.2897	31.02	3.42	-42.66	50.97	42.75	74.00	31.25	Pass	Н	PK
2	3007.0005	33.20	4.92	-42.12	50.80	46.80	74.00	27.20	Pass	Н	PK
3	5910.1940	35.66	5.11	-41.01	46.79	46.55	74.00	27.45	Pass	Н	PK
4	7206.2804	36.31	5.81	-41.02	47.50	48.60	74.00	25.40	Pass	Н	PK
5	9607.4405	37.64	6.63	-40.76	49.78	53.29	74.00	20.71	Pass	Н	PK
6	11746.5831	39.10	7.47	-41.30	47.20	52.47	74.00	21.53	Pass	Н	PK
7	9608.0202	37.64	6.63	-40.76	44.27	47.78	54.00	6.22	Pass	Н	AV
8	2069.7070	31.80	3.57	-42.58	53.40	46.19	74.00	27.81	Pass	V	PK
9	3359.0239	33.34	4.53	-41.90	50.71	46.68	74.00	27.32	Pass	V	PK
10	4795.1197	34.50	4.55	-40.67	46.68	45.06	74.00	28.94	Pass	V	PK
11	5379.1586	34.88	4.83	-40.60	47.32	46.43	74.00	27.57	Pass	V	PK
12	7224.2816	36.32	5.80	-41.00	46.94	48.06	74.00	25.94	Pass	V	PK
13	9608.4406	37.64	6.63	-40.76	51.88	55.39	74.00	18.61	Pass	V	PK
14	9608.0489	37.64	6.63	-40.76	43.96	47.47	54.00	6.53	Pass	V	AV

Mode) :	GFSK T	ransmitt	ing			Channel:		2440		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1598.2598	29.05	3.07	-42.90	53.51	42.73	74.00	31.27	Pass	Н	PK
2	3017.0011	33.21	4.90	-42.12	51.18	47.17	74.00	26.83	Pass	Н	PK
3	5691.1794	35.31	5.01	-40.81	46.98	46.49	74.00	27.51	Pass	Н	PK
4	6271.2181	35.85	5.40	-41.14	46.50	46.61	74.00	27.39	Pass	Н	PK
5	7635.3090	36.55	6.14	-40.84	47.20	49.05	74.00	24.95	Pass	Н	PK
6	9760.4507	37.70	6.73	-40.62	49.07	52.88	74.00	21.12	Pass	Н	PK
7	9760.0210	37.70	6.73	-40.62	42.93	46.74	54.00	7.26	Pass	Н	AV
8	2185.5186	31.96	3.65	-42.53	54.31	47.39	74.00	26.61	Pass	V	PK
9	2938.1938	33.10	4.40	-42.16	51.43	46.77	74.00	27.23	Pass	V	PK
10	4343.0895	34.28	4.49	-40.86	46.47	44.38	74.00	29.62	Pass	V	PK
11	5470.1647	34.97	5.02	-40.63	46.92	46.28	74.00	27.72	Pass	V	PK
12	7641.3094	36.54	6.14	-40.83	46.90	48.75	74.00	25.25	Pass	V	PK
13	9760.4507	37.70	6.73	-40.62	49.06	52.87	74.00	21.13	Pass	>	PK
14	9759.9763	37.70	6.73	-40.62	41.76	45.57	54.00	8.43	Pass	V	AV



Page 51 of 54

Mode	j.	GESK T	ransmitt	ina			Channel:		2480		
NO	Freq. [MHz]	Ant Factor [dB]	Cable loss [dB]	Pream gain [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1959.2959	31.43	3.43	-42.63	51.08	43.31	74.00	30.69	Pass	Н	PK
2	3066.0044	33.23	4.79	-42.08	50.03	45.97	74.00	28.03	Pass	Н	PK
3	4245.0830	34.14	4.51	-40.84	47.84	45.65	74.00	28.35	Pass	Н	PK
4	6072.2048	35.81	5.23	-41.10	46.84	46.78	74.00	27.22	Pass	Н	PK
5	7636.3091	36.55	6.14	-40.84	46.76	48.61	74.00	25.39	Pass	Н	PK
6	9544.4363	37.62	6.76	-40.82	46.68	50.24	74.00	23.76	Pass	Н	PK
7	1595.4595	29.03	3.07	-42.89	55.43	44.64	74.00	29.36	Pass	V	PK
8	1977.6978	31.55	3.45	-42.62	56.25	48.63	74.00	25.37	Pass	V	PK
9	3199.0133	33.28	4.65	-42.00	50.58	46.51	74.00	27.49	Pass	V	PK
10	5534.1689	35.05	5.16	-40.67	46.77	46.31	74.00	27.69	Pass	V	PK
11	7644.3096	36.54	6.14	-40.83	47.42	49.27	74.00	24.73	Pass	V	PK
12	10128.4752	37.98	6.87	-40.60	46.83	51.08	74.00	22.92	Pass	V	PK

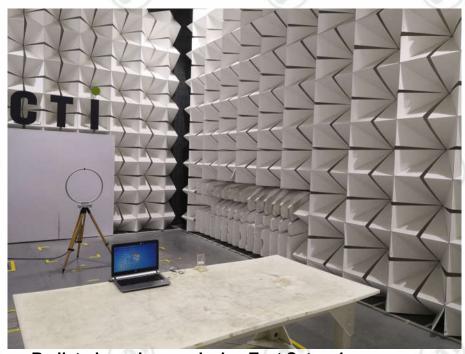
Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor – Antenna Factor – Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.



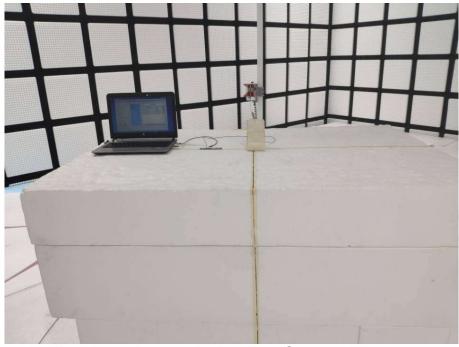
Report No. : EED32L00127302 Page 52 of 54

PHOTOGRAPHS OF TEST SETUP

Test model No.: WCT3TM2311

Radiated spurious emission Test Setup-1(Below 30MHz)

Radiated spurious emission Test Setup-2 (Below 1GHz)



Report No. : EED32L00127302 Page 53 of 54

Radiated spurious emission Test Setup-3 (Above 1GHz)

Conducted Emissions Test Setup

Page 54 of 54 Report No.: EED32L00127302

PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No. EED32L00127301 for EUT external and internal photos.

*** End of Report ***

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CTI, this report can't be reproduced

Hotline: 400-6788-333 www.cti-cert.com E-mail: info@cti-cert.com