FCC PART 22 TYPE APPROVAL EMI MEASUREMENT AND TEST REPORT

For

ZTE Corporation

ZTE Plaza, Hi-tech Park, Nanshan District, Shenzhen, Guangdong, China

FCC ID: Q78-ZXCBTS802T

April 29, 2005

This Report Concerns: **Equipment Type:** Original Report CDMA Micro Base Transceiver Station Saw **Test Engineer:** Sam Lin **Report No.:** RSZ05032301 **Test Date:** March 28-April 1, 2005 **Reviewed By:** Chris Zeng Bay Area Compliance Lab Corp. (ShenZhen) **Prepared By:** 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone, ShenZhen, Guangdong 518038, P.R.China Tel: +86-755-33320018 Fax: +86-755-33320008

Note: The test report is specially limited to the above company and this particular sample only. It may not be duplicated without prior written consent of Bay Area Compliance Lab Corp. (ShenZhen). This report **must not** be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the US Government.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	5
RELATED SUBMITTAL(S)/GRANT(S)	5
TEST METHODOLOGY	
TEST FACILITY	
External I/O Cable	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	6
EQUIPMENT MODIFICATIONS	
CONFIGURATION OF TEST SETUP	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	8
§15.107 (a)- CONDUCTED EMISSION	9
MEASUREMENT UNCERTAINTY	9
EUT Setup	
TEST RECEIVER SETUP	
TEST EQUIPMENT LIST AND DETAILS	
Test Procedure	
TEST DATA	
§2.1046, §22.913(a) - EFFECTIVE RADIATED POWER	19
STANDARD APPLICABLE	
TEST EQUIPMENT LIST AND DETAILS	19
TEST PROCEDURE	19
§2.1047- MODULATION CHARACTERISTIC	22
STANDARD APPLICABLE	22
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST DATA	22
§15.109(a)- RADIATED EMISSION	
MEASUREMENT UNCERTAINTY	
EUT Setup	-
TEST RECEIVER SETUP	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE	
TEST DATA	
§2.1053- SPURIOUS RADIATED EMISSIONS	
APPLICABLE STANDARD	
TEST EQUIPMENT LIST AND DETAILS	
TEST PROCEDURE TEST DATA	
§2.1051, §22.917(a)- SPURIOUS EMISSIONS AT ANTENNA TERMINALS	
APPLICABLE STANDARD	
TEST PROCEEDING	
TEST PROCEDURE TEST DATA	
§2.1049, §22.917, §22.905 -OCCUPIED BANDWIDTH	
STANDARD APPLICABLE	
TEST EQUIPMENT LIST AND DETAILS	44

GENERAL INFORMATION

Product Description for Equipment Under Test (EUT)

The ZTE Corporation's product, model number: ZXCBTS M802T; ZXCBTS R802T; or the "EUT" as referred to in this report is a CDMA Micro Base Transceiver Station. The EUT is measured approximately 63.0 cm L x 40.0cmW x 28.5cmH, rated input voltage: AC 120V/60Hz.

The following charts describe the modules what ZXCBTS M802T and ZXCBTS R802T have used.

	ZXCBTS M802T							
NO.		MODULE NAME						
1		MPA80	MPA802					
2		MLNA80	00					
	DEG.		RFCM					
		RFS MTRX (800M)	FS800					
3	KFS		RX800					
			TX800					
			IQ_BORAD					
4		RFE (RF Filter)	MDUP800					
4		Kre (Kr fillei)	MDIV800					
5	MPD (Power supply)							
6	TFS	GPSTM						
7	BDS	BDM80	0					

ZXCBTS R802T						
NO.		MODULE NAM	E			
1		MPA80	2			
2		MLNA80	00			
	RFS		RFCM			
		DEG	DEC		FS800	
3		MTRX (800M)	RX800			
					TX800	
			IQ_BORAD			
4		RFE (RF Filter)	MDUP800			
4		Kre (Kr fillei)	MDIV800			
5	MPD (Power supply)					
6	TFS N/A					
7		Remote Fiber Module	(RFM)			

Note:

RFS: Provides an air interface, completes the modulation transmitting and demodulation receiving of

signals and implements related detection, monitor, configuration and control functions.

MPD: Power supply.

TFS: Provides time and frequency signals necessary for the BDS and RFS.

BDS: Completes the baseband modulation/demodulation of CDMA signals and also provides functions such as resources management, signaling processing and operation & maintenance. In addition, the

provides an Abis interface with the base station controller.

RFM: Remote Fiber Module, used to transmit CDMA baseband signals and system signaling.

* The test data gathered are from production sample, serial number which were provided by the manufacturer:

ZXCBTS M802T:0510043050100033;

ZXCBTS R802T: 0510043050100043;

Objective

This Type approval report is prepared on behalf of ZTE Corporation in accordance with Part 2, Subpart J and Part 22 Subpart H of the Federal Communication Commissions rules.

The objective is to determine compliance with FCC rules for output power, modulation characteristic, occupied bandwidth, spurious emission at antenna terminal, field strength of spurious radiation, frequency stability, and conducted and radiated margin.

Related Submittal(s)/Grant(s)

No related submittal(s).

Test Methodology

All tests and measurements indicated in this document were performed in accordance with the Code of federal Regulations Title 47 Part 2,Sub-part J as well as the following parts:

Part 22 Subpart H - Public Mobile Services

Applicable Standards: TIA EIA 137-A, TIA EIA 97-D, TIA/EIA 603-B, Land Mobile FM or PM Communications Equipment Measurement and Performance Standards.

Test Facility

The Test site used by Bay Area Compliance Lab Corp. (ShenZhen) to collect radiated and conducted emission measurement data is located in the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone, ShenZhen, Guangdong 518038, P.R.China.

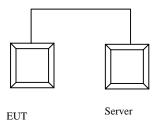
Test site at Bay Area Compliance Lab Corp. (ShenZhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on November 04, 2004. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.4-2003.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

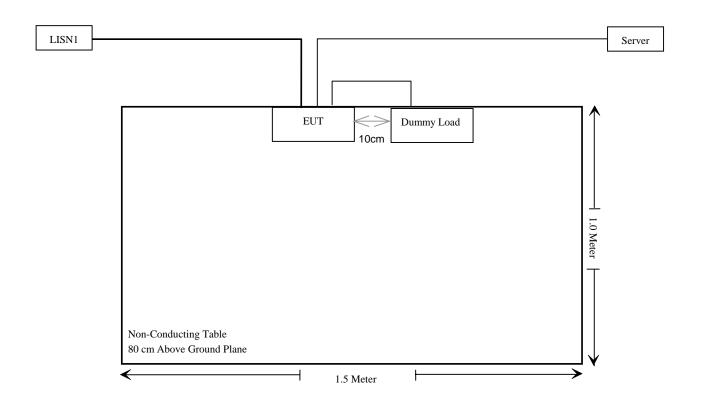
External I/O Cable

Cable Description	Length (M)	From/Port	То
Unshielded Undetachable AC Power Cable	3.0	EUT	AC Power

SYSTEM TEST CONFIGURATION


Description of Test Configuration

The system was configured for testing in a typical fashion (as normally used by a typical user).


Equipment Modifications

BACL has not done any modification on the EUT.

Configuration of Test Setup

Block Diagram of Test Setup

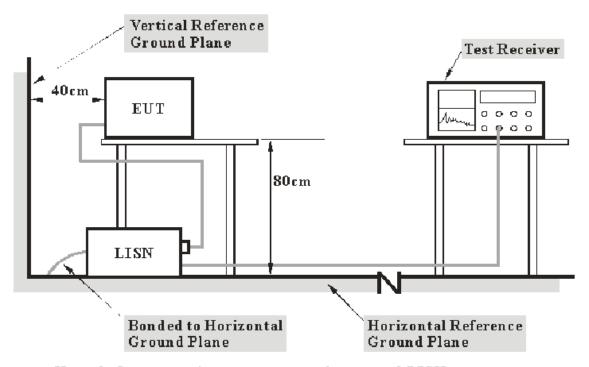
SUMMARY OF TEST RESULTS

ZXCBTS M802T

FCC RULES	DESCRIPTION OF TEST	RESULT
§15.107 (a)	Conduction Emission	Compliant
§2.1046, §22.913(a)	Effective radiated power	Compliant
§ 2.1091	RF Exposure	Compliant
§2.1047	Modulation characteristic	Compliant
§15.109(a)	Radiation Emission	Compliant
§2.1053	Spurious Radiated Emissions	Compliant
§2.1051, §22.917	Spurious Emissions AT Antenna Terminals	Compliant
\$22.1049 \$22.917 \$22.905	Occupied Bandwidth	Compliant
§22.917	Band Edge	Compliant
§ 2.1055 (a) § 2.1055 (d) § 22.355	Frequency stability vs. temperature Frequency stability vs. voltage	Compliant

ZXCBTS R802T

FCC RULES	DESCRIPTIONOFTEST	RESULT	
§15.107 (a)	Conduction Emission	Compliant	
§15.109(a)	Radiation Emission	Compliant	


§15.107 (a)- CONDUCTED EMISSION

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, and LISN.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of any conducted emissions measurement at BACL is ± 2.4 dB.

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The setup of EUT is according with per TIA/EIA 603-B measurement procedure. The specification used was with the FCC Part 15.107 Limit.

The external I/O cables were draped along the test table and formed a bundle 30 to 40 cm long in the middle.

The spacing between the peripherals was 10 cm.

The EUT was connected to a 120 VAC/60 Hz power source.

Test Receiver Setup

The test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the test receiver was set with the following configurations:

Frequency Range	IFBW
150 kHz – 30 MHz	9 kHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESCS30	100068	2004-9-24	2005-9-23
R&S	LISN	ESH2-Z5	100027	2004-9-24	2005-9-23
SCHWARZBE CK	LISN	NNLK8129	8129-151	2004-9-24	2005-9-23
R&S	ISN	ENY22	100046	2004-9-24	2005-9-23
R&S	ISN	ENY41	100057	2004-9-24	2005-9-23
R&S	Pulse Limiter	ESH3-Z2	100063	2004-9-24	2005-9-23
HP	Current Probe	HP11967A	555	2004-10-22	2007-10-19
R&S	Software	ES-K1	N/A	N/A	N/A
R&S	Cable	CE Cable	N/A	2004-9-24	2005-9-23

^{*} Com-Power's LISN were used as the supporting equipment.

Test Procedure

During the conducted emission test, the EUT power cord was connected the LISN.

Maximizing procedure was performed on the six (6) highest were emissions of the EUT.

All data was recorded in the Quasi-peak and average detection mode.

Test Data

Environmental Conditions

Temperature:	18 °C
Relative Humidity:	53 %
ATM Pressure:	1015 mbar

The testing was performed by Sam Lin on 2005-3-28

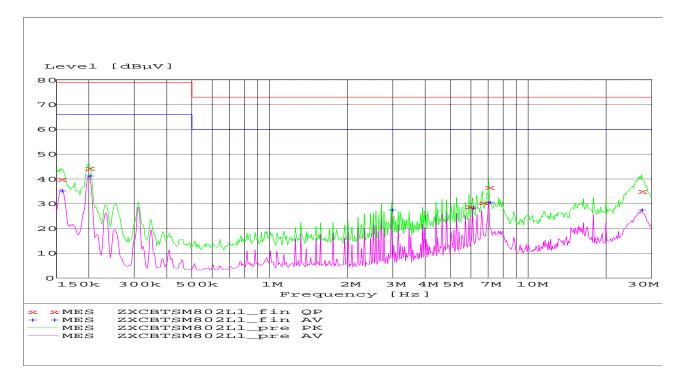
Test result: Pass

Plot(s) of Test Data is presented hereinafter as reference.

^{*} Statement of Tractability: BACL attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

EUT: ZXCBTS M802T

Manufacturer: ZTE Operating Condition: Running


Test Site: ZTE

Operator:

Test Specification: FCC PART 15 Class A

Comment: Line

Start of Test: 2005-3-28 / 14:02:42

MEASUREMENT RESULT: "ZXCBTSM802L1_fin QP"

2005-3-28 14:05

Frequency Level Transd Limit Margin Line PE MHz $dB\mu V$ dB dBµV 9.9 79 0.156097 40.00 39.1 L1 **GND** 0.199834 44.40 9.9 79 34.6 L1 **GND** 5.907402 28.80 10.0 73 44.2 L1 **GND** 6.657398 30.50 10.0 73 42.5 L1 **GND** 7.039280 36.60 10.0 73 36.4 L1 **GND** 10.2 27.496617 35.10 73 37.9 L1 GND

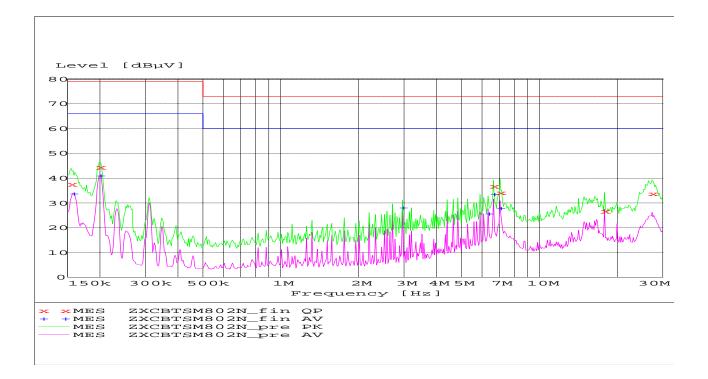
$MEASUREMENT\ RESULT:\ "ZXCBTSM802T\ L1_fin\ AV"$

4:05					
Level	Transo	d Lim	it Margin	Line	PE
dΒμV	dB	dBμV	/ dB		
·		•			
35.20	9.9	66	30.8 L1	GND	
41.40	9.9	66	24.6 L1	GND	
27.70	10.0	60	32.3 L1	GND	
28.40	10.0	60	31.6 L1	GND	
30.60	10.0	60	29.4 L1	GND	
27.60	10.2	60	32.4 L1	GND)
	Level dBµV 35.20 41.40 27.70 28.40 30.60	Level Transo dB V dB 35.20 9.9 41.40 9.9 27.70 10.0 28.40 10.0 30.60 10.0	Level Transd Lim dBμV dB dBμV 35.20 9.9 66 41.40 9.9 66 27.70 10.0 60 28.40 10.0 60 30.60 10.0 60	Level Transd Limit Margin dBμV dB dBμV dB 35.20 9.9 66 30.8 L1 41.40 9.9 66 24.6 L1 27.70 10.0 60 32.3 L1 28.40 10.0 60 31.6 L1 30.60 10.0 60 29.4 L1	Level Transd Limit Margin Line dBμV dB dBμV dB 35.20 9.9 66 30.8 L1 GND 41.40 9.9 66 24.6 L1 GND 27.70 10.0 60 32.3 L1 GND 28.40 10.0 60 31.6 L1 GND 30.60 10.0 60 29.4 L1 GND

Conducted Emission

EUT: ZXCBTS M802T

Manufacturer: ZTE Operating Condition: Running


Test Site: ZTE

Operator:

Test Specification: FCC PART 15 Class A

Comment: Neutral

Start of Test: 2005-3-28 / 14:09:37

MEASUREMENT RESULT: "ZXCBTSM802T N_fin QP"

2005-3-28 14:12

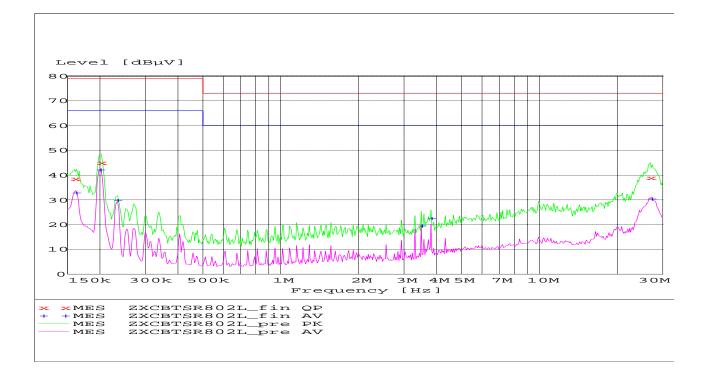
Frequency Level Transd Limit Margin Line PE $dB\mu V$ $dB \ dB \mu V$ MHz dB 0.154858 37.60 9.9 79 41.4 N **GND** 79 0.199834 44.40 9.9 34.6 N **GND** 6.657398 36.70 10.0 73 36.3 N **GND** 7.039280 34.10 10.0 73 38.9 N **GND**

17.881771 26.60 10.1 73 46.4 N GND 27.278390 33.80 10.2 73 39.2 N GND

2005-3-28 14	1:12					
Frequency					Line P	Έ
MHz	dΒμV	dB	dΒμ	V dB		
0.157246	22.80	0.0	66	22.2 N	CND	
0.157346	33.80	9.9	66	32.2 N	GND	
0.199834	41.00	9.9	66	25.0 N	GND	
2.953454	28.00	10.0	60	32.0 N	GND	
6.346603	25.60	10.0	60	34.4 N	GND	
6.657398	33.60	10.0	60	26.4 N	GND	
7.039280	27.80	10.0	60	32.2 N	GND	

EUT: ZXCBTS R802T

Manufacturer: ZTE Operating Condition: Running


Test Site: ZTE

Operator:

Test Specification: FCC PART 15 Class A

Comment: Line

Start of Test: 2005-3-28 / 15:31:55

MEASUREMENT RESULT: "ZXCBTSR802T L_fin QP"

2005-3-28 15:34

Frequency Level Transd Limit Margin Line PE MHz $dB\mu V$ dB $dB\mu V$ dB

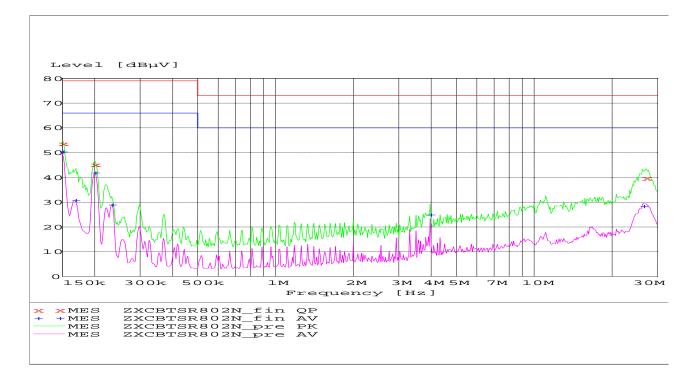
0.159873 38.60 9.9 79 40.4 L1 **GND** 0.201433 44.90 9.9 79 34.1 L1 GND 26.847117 38.90 10.2 73 34.1 L1 GND 79 67.0 L1 GND 0.270512 12.00 9.9 65.7 L1 GND 0.409371 13.3 9.9 79 3.811250 19.2 10.0 73 53.8 L1 GND

$MEASUREMENT\ RESULT:\ ''ZXCBTSR802T\ L_fin\ AV''$

2005-3-28 1:	5:34						
Frequency	Level	Transo	d Lim	nit M	argin	Line	PE
MHz	dΒμV	dB	dΒμV	V c	ΙΒ		
0.161152	33.00	9.9	66	33.0	L1	GND	
0.199834	42.10	9.9	66	23.9	L1	GND	
0.232499	29.90	9.9	66	36.1	L1	GND	
3.491415	19.60	9.9	60	40.4	L1	GND	
3.811249	22.50	10.0	60	37.5	L1	GND	
27.061894	30.50	10.2	60	29.5	5 L1	GNI)

EUT: ZXCBTS R802T

Manufacturer: ZTE Operating Condition: Running


Test Site: ZTE

Operator:

Test Specification: FCC PART 15 Class A

Comment: Neutral

Start of Test: 2005-3-28 / 15:41:35

MEASUREMENT RESULT: "ZXCBTSR802T N_fin QP"

2005-3-28 15:44

3.966162

24.7

Frequency Level Transd Limit Margin Line PE MHz dBμV dB dBµV 9.9 79 0.150000 53.70 25.3 N **GND** 0.199834 45.10 9.9 79 33.9 N **GND** 27.061894 39.70 10.2 73 33.3 N **GND** 27.0 79 0.221643 9.9 52.0 N **GND** 0.297643 19.1 9.9 79 59.9 N **GND**

73

48.3 N

10.0

GND

$MEASUREMENT\ RESULT:\ ''ZXCBTSR802T\ N_fin\ AV''$

2005-3-28 1 Frequency MHz		Transo dB			gin Line	PE
0.150000 0.167702 0.199834 0.232499 3.966157 26.422664	50.40 30.80 42.00 29.00 25.00 28.50	9.9 9.9 9.9 9.9 10.0 10.2	00	15.7 N 35.2 N 24.0 N 37.0 N 35.0 N 31.5 I	GND GND GND GND	

§2.1046, §22.913(a) - EFFECTIVE RADIATED POWER

Standard Applicable

According to FCC §2.1046 and §22.913 (a), the ERP of transmitters and cellular repeaters must not exceed 500 Watts.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	PSA Spectrum Analyzer	E4445A	MY44300451	2004-11-5	2005-11-4

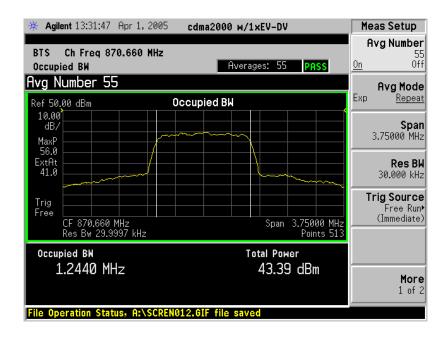
^{*} Statement of Tractability: BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

Test Procedure

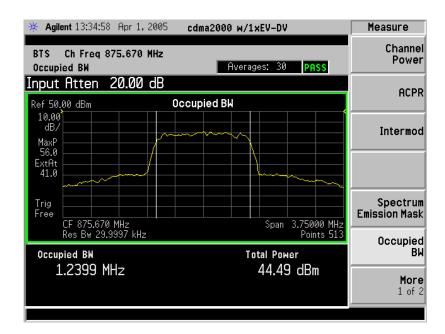
The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Environmental Conditions

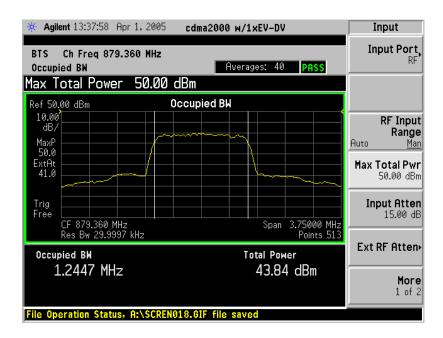
Temperature:	18 °C
Relative Humidity:	53 %
ATM Pressure:	1015 mbar


The testing was performed by Sam Lin on 2005-4-1

Model: ZXCBTS M802T


The result has been complied with the §2.1046, §22.913(a), see the following plot:

Channel	Frequency (MHz)	Output Power in dBm	Output Power in W	Limit in W
Low	870.66	43.39	21.83	500
Middle	875.67	44.49	28.12	500
High	879.36	43.84	24.21	500


Channel 22

Channel 189

Channel 312

§2.1047- MODULATION CHARACTERISTIC

Standard Applicable

Requirement: §2.1047.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	PSA Spectrum Analyzer	E4445A	MY44300451	2004-11-5	2005-11-4

^{*} Statement of Traceability: BACL attests that all calibrations have been performed per the NVLAP requirements, traceable to NIST.

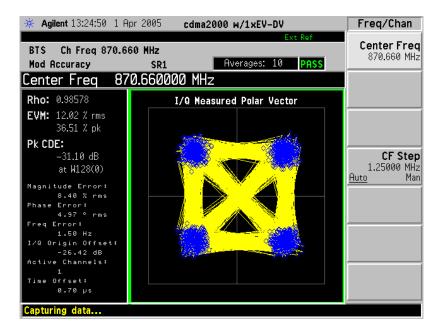
Test Procedure

CDMA digital mode is used by EUT.

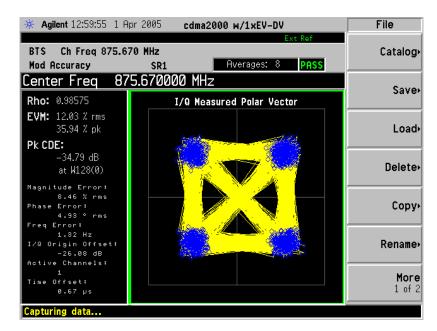
Test Data

Environmental Conditions

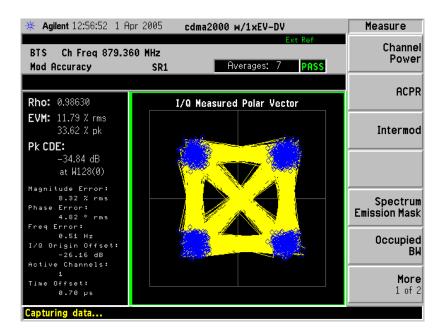
t	
Temperature:	18 °C
Relative Humidity:	53 %
ATM Pressure:	1015 mbar


The testing was performed by Sam Lin on 2005-4-11

Model: ZXCBTS M802T

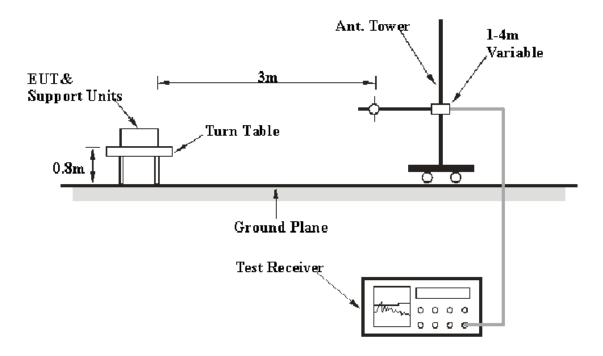

The result has been complied with the §2.1047, see the following plot:

Channel	Frequency (MHz)	Rho
Channel 22	870.66	0.98578
Channel 189	875.67	0.98575
Channel 312	879.36	0.98630


Channel 22

Channel 189

Channel 312


§15.109(a)- RADIATED EMISSION

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on NIS 81, The Treatment of Uncertainty in EMC Measurements, the best estimate of the uncertainty of a radiation emissions measurement at BACL is ± 4.0 dB.

EUT Setup

The radiated emission tests were performed in the 3-meter Chamber, using the setup accordance with the TIA/EIA 603-B. The specification used was the FCC 15.109 limits.

Test Receiver Setup

The system was investigated from 30 MHz to 1 GHz.

During the radiated emission test, the Test Receiver was set with the following configurations:

Frequency Range	RBW	Video B/W
30 - 1000 MHz	100 KHz	100 KHz

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
R&S	EMI Test Receiver	ESI26	100058	2004-9-24	2005-9-23
R&S	Ultra Broadband Antenna	HL562	100022	2003-3-7	2006-34
R&S	Double-Ridged Waveguide Horn Antenna	HF906	100032	2004-10-10	2007-10-7
Albatross	Anechoic Chamber	3m Site	N/A	2002-6-8	2005-6-5
R&S	Cable Set	RE Cable	N/A	2004-9-24	2005-9-23
R&S	Software	ES-K1	N/A	N/A	N/A

^{*} Statement of Traceability: BACL attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All data was recorded in the PK detection mode.

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. =Meter Reading + Antenna Loss+ Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. –Limit

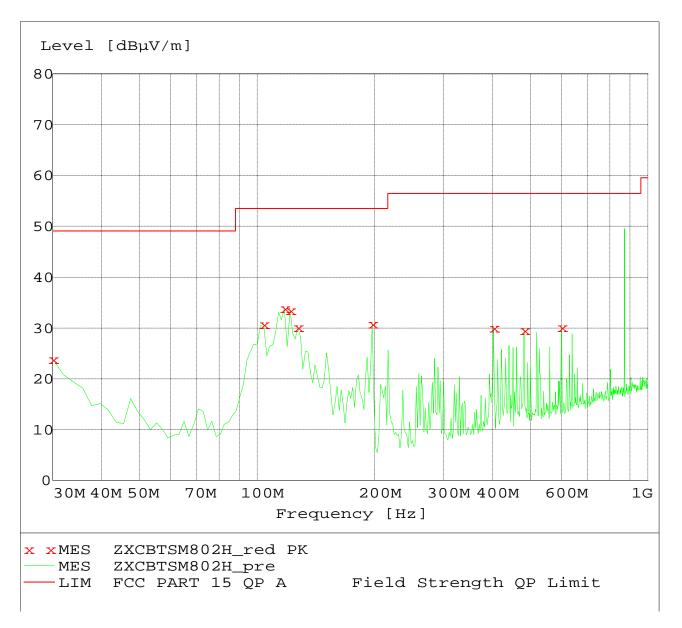
Test Data

Environmental Conditions

Temperature:	18 °C
Relative Humidity:	53 %
ATM Pressure:	1015 mbar

The testing were performed by Sam Lin on 2005-4-11, and the data were only for unintentional radiator and be subjected to verification

EUT: ZXCBTS M802T


Manufacturer: ZTE
Operating Condition: Running
Test Site: Anechoic Chamber

Operator:

Test Specification: FCC PART15 Class A

Comment: Horizontal

Start of Test: 2005-3-29 / 10:50:57

403.226453

482.925852

MEASUREMENT RESULT: "ZXCBTSM802T H_red PK"

30.02 100.0

29.57 200.0

2005-3-29 10:57 Frequency Level Height Azimuth Polarisation Transd Limit Margin MHz $dB\mu V/m$ cm deg dB dBµV/m 23.88 100.0 270.00 HORIZONTAL 30.000000 -16.9 49.1 25.2 103.867735 30.75 300.0 180.00 HORIZONTAL -26.2 53.5 22.8 -25.6 53.5 33.84 200.0 117.474950 0.00 HORIZONTAL 19.7 33.53 100.0 0.00 HORIZONTAL -25.6 53.5 121.362725 20.0 30.20 300.0 180.00 HORIZONTAL -26.1 53.5 127.194389 23.3 197.174349 30.86 100.0 180.00 HORIZONTAL -27.2 53.5 22.7

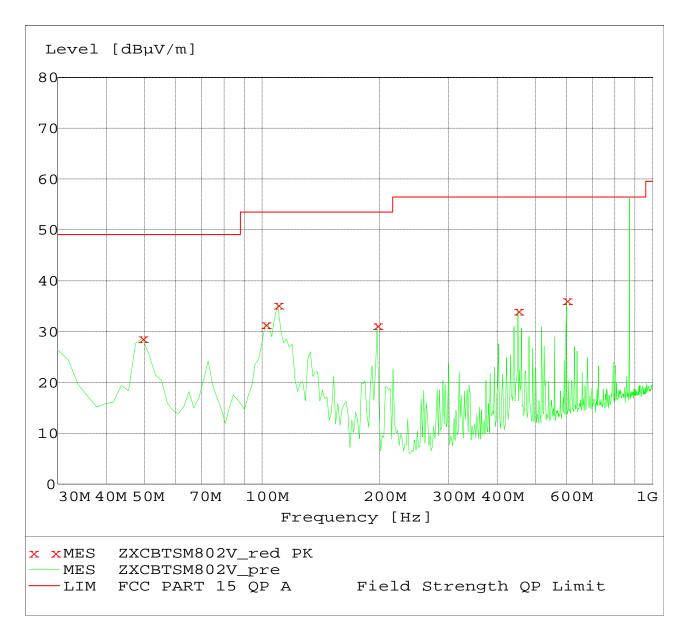
0.00 HORIZONTAL

601.503006 30.09 100.0 180.00 HORIZONTAL -15.1 56.4 26.3

0.00 HORIZONTAL -19.5 56.4 26.4

-17.5 56.4 26.9

EUT: ZXCBTS M802T


Manufacturer: ZTE
Operating Condition: Running
Test Site: Anechoic Chamber

Operator:

Test Specification: FCC PART15 Class A

Comment: Vertical

Start of Test: 2005-3-29 / 10:34:23

MEASUREMENT RESULT: "ZXCBTSM802T V_red PK"

2005-3-29 10:44

2003-3-27 10.77						
Frequency Level	Height	Azimuth	Polarisation	Transd	Limit	Margin
MHz dBµV/m						\mathcal{C}
WIIIZ dbµ V/III	CIII	ucg	uD	αυμ ν/ιιι	uD	
49.438878 28.72	100.0	270.00 V	/ERTICAL	-27.9	49.1	20.4
109.699399 35.29	100.0	90.00 \	/ERTICAL	-26.0	53.5	18.2
			VERTICAL	-27.2		
			_			
197.174349 31.25	100.0	90.00 V	/ERTICAL	-27.2	53.5	22.3
451.823647 34.16	100.0	270.00	VERTICAL	-18 3	56.4	22.3
601.503006 36.15	100.0	90.00 \	/ERTICAL	-15.1	56.4	20.3

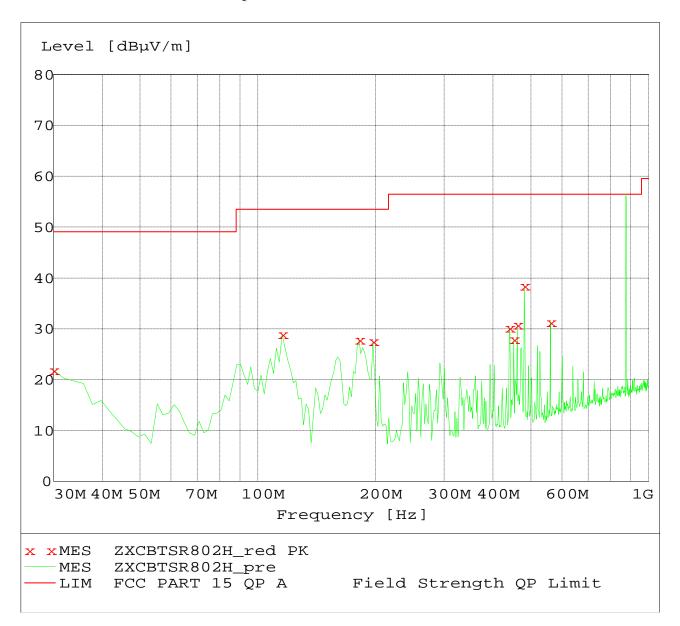
EUT: **ZXCBTS R802T**

Manufacturer: **ZTE** Operating Condition: Running Test Site: Anechoic Chamber

Operator:

Test Specification: FCC PART15 Class A

Comment: Hor


Start of Test: 2005-3-29 / 15:33:46

SCAN TABLE: "FCC PART15 Class A Field"

FCC PART15 Class A Field Strength Short Description: Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

30.0 MHz 1.0 GHz 100.0 kHz QuasiPeak 20.0 ms 120 kHz HL562-22dBuV/m

MEASUREMENT RESULT: "ZXCBTSR802T H_red PK"

2005-3-29 15:42

0:42						
Level	Height	Azimuth	Polarisation Ti	ansd Li	imit M	argin
BμV/m	cm	deg	dB dB	μV/m	dB	-
21.87	100.0	90.00 1	HORIZONTAL	-16.9	49.1	27.2
28.97	200.0	180.00	HORIZONTAL	-25.7	53.5	24.6
27.84	100.0	180.00	HORIZONTAL	-26.5	53.5	25.7
27.56	100.0	270.00	HORIZONTAL	-27.2	53.5	26.0
30.28	200.0	90.00	HORIZONTAL	-18.6	56.4	26.2
27.99	200.0	90.00	HORIZONTAL	-18.3	56.4	28.4
30.80	200.0	90.00	HORIZONTAL	-18.0	56.4	25.6
38.49	200.0	270.00	HORIZONTAL	-17.5	56.4	18.0
31.28	200.0	90.00	HORIZONTAL	-15.8	56.4	25.2
	Level BµV/m 21.87 28.97 27.84 27.56 30.28 27.99 30.80 38.49	Level Height IBμV/m cm 21.87 100.0 28.97 200.0 27.84 100.0 27.56 100.0 30.28 200.0 27.99 200.0 30.80 200.0 38.49 200.0	Level Height Azimuth deg 21.87 100.0 90.00 I 28.97 200.0 180.00 27.84 100.0 180.00 27.56 100.0 270.00 30.28 200.0 90.00 27.99 200.0 90.00 30.80 200.0 90.00 38.49 200.0 270.00	Level Height Azimuth Polarisation Tr BμV/m cm deg dB dB 21.87 100.0 90.00 HORIZONTAL 28.97 200.0 180.00 HORIZONTAL 27.84 100.0 180.00 HORIZONTAL 27.56 100.0 270.00 HORIZONTAL 30.28 200.0 90.00 HORIZONTAL 27.99 200.0 90.00 HORIZONTAL 30.80 200.0 90.00 HORIZONTAL 38.49 200.0 270.00 HORIZONTAL	Level Height Azimuth Polarisation Transd Li IBμV/m cm deg dB dBμV/m 21.87 100.0 90.00 HORIZONTAL -16.9 28.97 200.0 180.00 HORIZONTAL -25.7 27.84 100.0 180.00 HORIZONTAL -26.5 27.56 100.0 270.00 HORIZONTAL -27.2 30.28 200.0 90.00 HORIZONTAL -18.6 27.99 200.0 90.00 HORIZONTAL -18.3 30.80 200.0 90.00 HORIZONTAL -18.0 38.49 200.0 270.00 HORIZONTAL -17.5	Level Height Azimuth Polarisation Transd Limit M BμV/m cm deg dB dBμV/m dB dBμV/m dB dBμV/m dB dBμV/m dB deg dB dBμV/m dB deg dB dBμV/m dB deg dB dBμV/m dB deg deg dB dBμV/m dB deg deg deg deg dB dBμV/m dB deg

ZTE Corporation

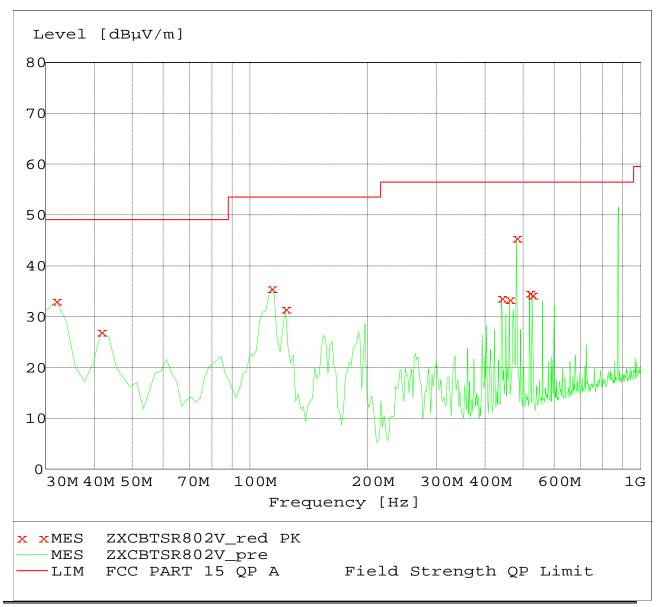
EUT: ZXCBTSR802T

Manufacturer: ZTE
Operating Condition: Running
Test Site: Anechoic Chamber

Operator:

Test Specification: FCC PART15 Class A

Comment: Ver


Start of Test: 2005-3-29 / 15:17:40

SCAN TABLE: "FCC PART15 Class A Field"

Short Description: FCC PART15 Class A Field Strength
Start Stop Step Detector Meas. IF Transducer

Frequency Frequency Width Time Bandw.

30.0 MHz 1.0 GHz 100.0 kHz QuasiPeak 20.0 ms 120 kHz HL562-22dBuV/m

MEASUREMENT RESULT: "ZXCBTSR802T V_red PK"

argin
_
9
.1
3.0
1.9
2.7
.1
0.9
1.7
2.2

§2.1053- SPURIOUS RADIATED EMISSIONS

Applicable Standard

Requirements: CFR 47, §2.1053

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date	
R&S	EMI Test Receiver	ESI26	100058	2004-9-24	2005-9-23	
R&S	Ultra Broadband	HL562	100022	2003-3-7	2006-3-4	
R&S	Double-Ridged Waveguide Horn Antenna	HF906	100032	2004-10-10	2007-10-7	
Albatross	Anechoic Chamber	3m Site	N/A	2002-6-8	2005-6-5	
R&S	Cable Set	RE Cable	N/A	2004-9-24	2005-9-23	
R&S	Software	ES-K1	N/A	N/A	N/A	
R&S	Double-Ridged Waveguide Horn Antenna	HF906	100013	2004-1-31	2007-1-28	
SCHWARZBECK	VHF-UHF Broad band Antenna	VUBA 9117	SB3174	2003-3-31	2006-3-28	
R&S	Signal Generator	SMR20	100098	2004-9-24	2005-9-23	

^{*} Statement of Traceability: BACL attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

The transmitter was placed on a wooden turntable, and it was transmitting into a non-radiating load, which was also placed on the turntable.

The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and polarization as well as EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. The test was performed by placing the EUT on 3-orthogonal axis.

The frequency range up to teeth harmonic of the fundamental frequency was investigated.

Remove the EUT and replace it with substitution antenna. A signal generator was connected to the substitution antenna by a non-radiating cable. The absolute levels of the spurious emissions were measured by the substitution.

Spurious emissions in dB =10 1g (TXpwr in Watts/0.001)-the absolute level

Spurious attenuation limit in dB = $43+10 \text{ Log}_{10}$ (power out in Watts)

Test Data

Environmental Conditions

Temperature:	18 °C
Relative Humidity:	53 %
ATM Pressure:	1015 mbar

The testing was performed by Sam Lin on 2005-4-11

Model: ZXCBTS M802T

Indica	ated	Table	Tes Antes		Substituted		Antenna	Cable	Absolute	Limit	Margin	
Frequency	Ampl.	Angle	Height	Polar	Frequency	Level	Polar	Gain	Loss	Level		
MHz	dBuV/m	Degree	Meter	H/V	MHz	dBm	H/V	Correction	dB	dBm	dBm	dB
					CHANNI	EL 22 F	=870.6	6MHZ				
1096.19	41.02	90	1.0	Н	1096.19	-57.0	Н	7.40	2.7	-52.30	-13	-39.3
1072.14	42.91	0	1.5	V	1072.14	-59.3	V	7.40	2.7	-54.60	-13	-41.6
2635.27	38.66	270	1.0	V	2635.27	-63.0	V	10.10	4.4	-57.30	-13	-44.3
1741.32	36.25	270	1.0	Н	1741.32	-63.5	Н	8.70	3.6	-58.40	-13	-45.4
2611.98	38.38	270	1.0	Н	2611.98	-67.0	Н	10.10	4.4	-61.30	-13	-48.3
1192.38	41.49	0	1.5	V	1192.38	-66.0	V	7.40	2.9	-61.50	-13	-48.5
1741.32	37.63	180	1.0	V	1741.32	-68.0	V	8.70	3.6	-62.90	-13	-49.9
870.66	91.38	0	1.0	Н	870.66	34.6	Н	-1.24	2.5	30.86		
870.66	101.02	0	1.2	V	870.66	46.0	V	-1.24	2.5	42.26		
					Channel	189 f=	875.6	57MHz				
1192.38	37.9	270	1.0	Н	1192.38	-58.0	Н	7.4	2.9	-53.5	-13	-40.5
1084.16	37.25	270	1.0	Н	1084.16	-62.4	Н	7.4	2.7	-57.7	-13	-44.7
1036.07	37.81	270	1.0	Н	1036.07	-62.5	Н	7.4	2.7	-57.8	-13	-44.8
1168.33	39.35	270	1.5	V	1168.33	-62.5	V	7.4	2.7	-57.8	-13	-44.8
1751.34	35.53	270	1.0	Н	1751.34	-64.0	Н	8.7	3.6	-58.9	-13	-45.9
2623.32	38.13	270	1.0	V	2623.32	-65.0	V	10.1	4.4	-59.3	-13	-46.3
2623.32	37.41	270	1.0	Н	2623.32	-68.0	Н	10.1	4.4	-62.3	-13	-49.3
1216.43	37.25	0	1.5	V	1216.43	-67.0	V	7.4	2.9	-62.5	-13	-49.5
1757.51	35.35	0	1.5	V	1757.51	-70.3	V	8.7	3.6	-65.2	-13	-52.2
875.67	101.13	0	1.2	V	875.67	46.8	V	-1.24	2.5	43.06		
875.67	89.29	0	1.0	Н	875.67	32.7	Н	-1.24	2.5	28.96		
Channel 312 f=879.36MHz												
1758.72	40.29	180	1.5	Н	1758.72	-58.4	Н	8.7	3.6	-53.3	-13	-40.3
1024.05	43.06	90	1.0	V	1024.05	-58.0	V	7.4	2.7	-53.3	-13	-40.3
1120.24	37.66	0	1.5	Н	1120.24	-58.5	Н	7.4	2.9	-54.0	-13	-41
1096.19	38.38	180	1.5	Н	1096.19	-60.8	Н	7.4	2.7	-56.1	-13	-43.1
1060.12	37.47	180	1.5	Н	1060.12	-61.0	Н	7.4	2.7	-56.3	-13	-43.3
2638.08	38.68	0	1.5	V	2638.08	-63.0	V	10.1	4.4	-57.3	-13	-44.3
1168.34	38.79	270	1.0	V	1168.34	-64.6	V	7.4	2.9	-60.1	-13	-47.1
1096.19	37.3	270	1.5	V	1096.19	-67.1	V	7.4	2.7	-62.4	-13	-49.4
2635.27	38.52	90	1.0	Н	2635.27	-68.2	Н	10.1	4.4	-62.5	-13	-49.5
1758.72	35.37	270	1.5	V	1758.72	-70.3	V	8.7	3.6	-65.2	-13	-52.2
879.36	103.81	0	1.2	V	879.36	48.2	V	-1.54	2.5	44.16		
879.36	91.09	0	1.0	Н	879.36	34.3	Н	-1.54	2.5	30.26		

§2.1051, §22.917(a)- SPURIOUS EMISSIONS AT ANTENNA TERMINALS

Applicable Standard

Requirements: CFR 47§ 2.1051. §22.917(a)

The spectrum was to be investigated to the tenth harmonics of the highest fundamental frequency as specified in §2.1057

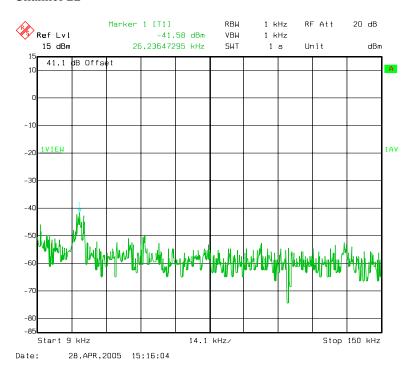
Test Equipment List and Details

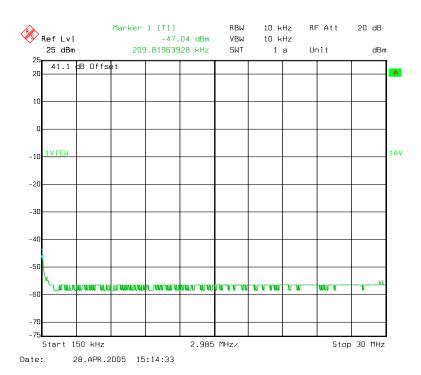
Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2004-11-10	2005-11-9

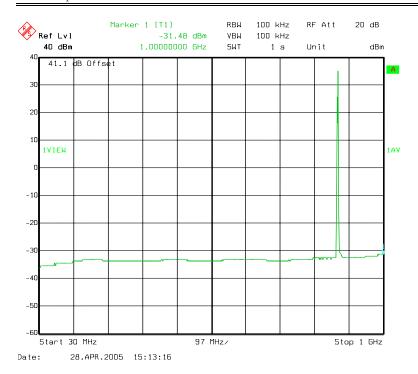
^{*} Statement of Traceability: BACL attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

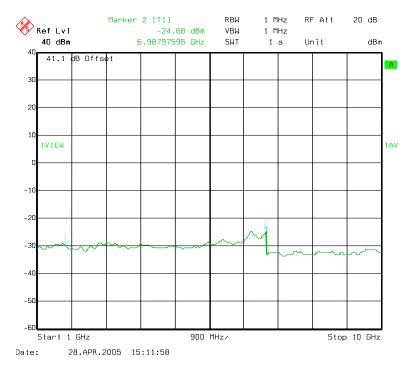
Test Procedure

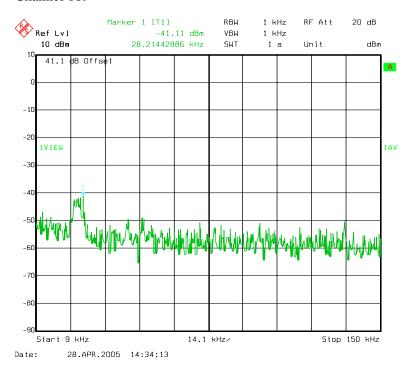
The RF output of the transceiver was connected to a spectrum analyzer through appropriate attenuation. The resolution bandwidth of the spectrum analyzer was set at 100 kHz. Sufficient scans were taken to show any out of band emissions up to 10th harmonic.

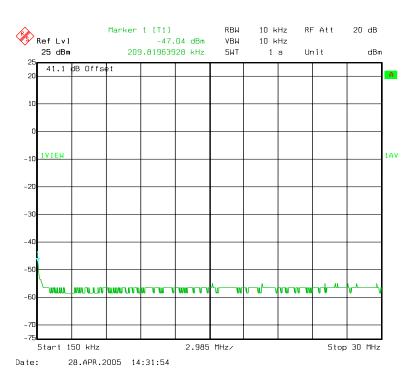

Test Data

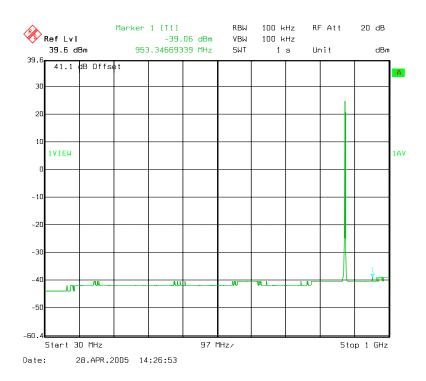

Environmental Conditions

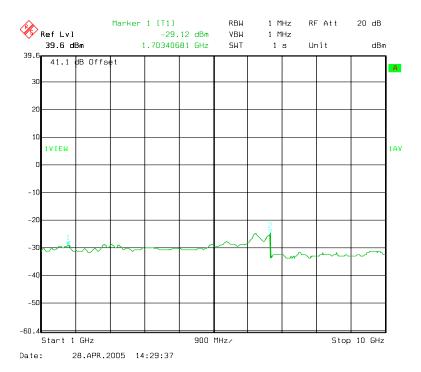

Temperature:	18 °C
Relative Humidity:	53 %
ATM Pressure:	1015 mbar

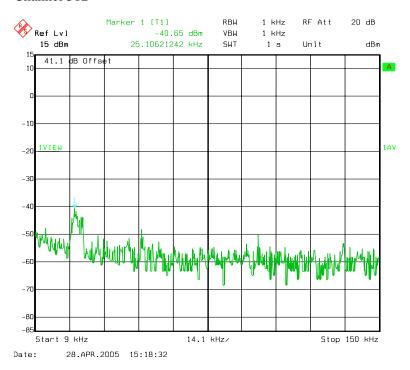

The testing was performed by Sam Lin on 2005-4-1

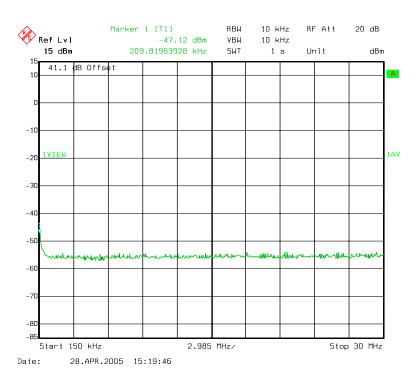

Model: ZXCBTS M802T

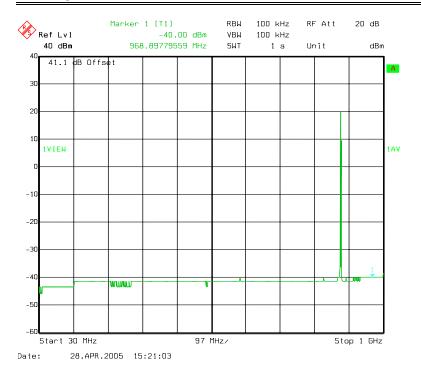












§2.1049, §22.917, §22.905 -OCCUPIED BANDWIDTH

Standard Applicable

Requirements: CFR 47, Section 2.1049, Section 22.901 and Section 22.917.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	PSA Spectrum Analyzer	E4445A	MY44300451	2004-11-5	2005-11-4

^{*} Statement of Traceability: BACL attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

The RF out of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

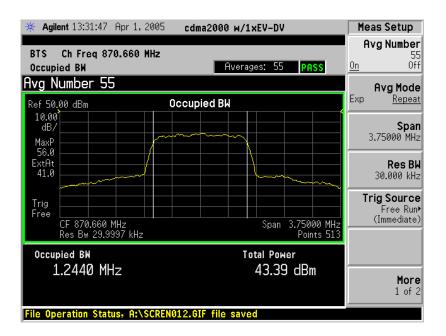
The resolution bandwidth of the spectrum analyzer was set at 30 kHz and the 26 dB and 99% Power bandwidth was recorded.

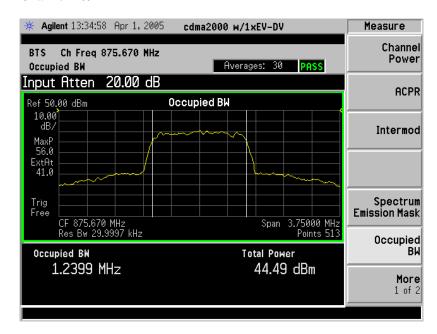
Test Data

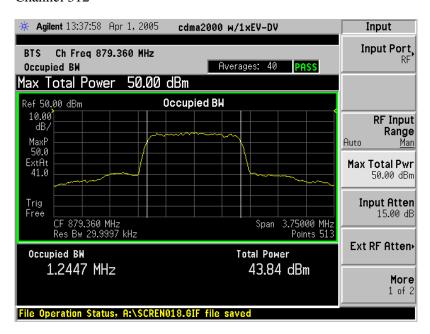
Environmental Conditions

Temperature:	25 ° C
Relative Humidity:	50%
ATM Pressure:	1032mbar

The testing was performed by Sam Lin on 2005-4-12


Test Result: Pass


Model: ZXCBTS M802T


The result has been complied with the §2.1049, §22.917, and §22.905, see the following plot:

Channel	Channel frequency (MHz)	99% Power Bandwidth (MHz)
Channel 22	870.66	1.2484
Channel 189	875.67	1.2471
Channel 312	879.36	1.2507

Channel 22

§22.917- BAND EDGES

Standard Applicable

According to \$22.917, the power of any emission outside of the authorized operating frequency ranges must be attenuated below the transmitting power (p) by a factor of at least $43 + 10 \log (p) dB$.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Spectrum Analyzer	FSEM30	849720/019	2004-11-10	2005-11-9

^{*} Statement of Traceability: BACL Corp. attests that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

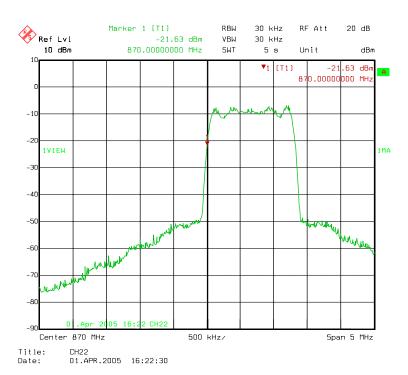
Test Procedure

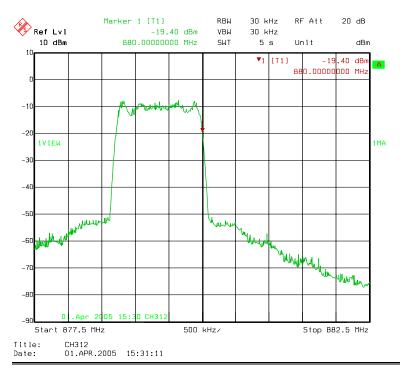
The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

The center of the spectrum analyzer was set to block edge frequency, RBW set to 30 kHz.

Environmental Conditions

Temperature:	24 °C
Relative Humidity:	59%
ATM Pressure:	1178mbar


The testing was performed by Sam Lin on 2005-4-1


Test Result: Pass

Model: ZXCBTS M802T

The result has been complied with the \$22.917, see the following plot:

Frequency MHz	Emission dBm	Limit dBm
870.00	-21.63	-13.00
880.00	-19.40	-13.00

§2.1055 (a), §2.1055 (d), §22.355 - FREQUENCY STABILITY

Applicable Standard

Requirements: FCC § 2.1055 (a), § 2.1055 (d) & following:

According to §22.355, the carrier frequency of each transmitter in the Public Mobile Services must be maintained within the tolerances given in Table C-1 of this section.

Table C-1_Frequency Tolerance for Transmitters in the Public Mobile Services

Mobile Base, fixed [SU][le][/ Mobile Frequency range (MHz) (ppm) SU]3 watts [le]3 w (ppm) (ppm)			
20.0	20.0	50.0	
2.5	5.0	5.0	
1.5 5.0	2.5 n/a	2.5 n/a	
1.5 10.0	n/a n/a	n/a n/a	
	fixed [S (p) (ppm) 20.0 5.0 2.5 1.5 5.0 1.5	fixed [SU][le][/ (ppm) SU (ppm) (ppn) 20.0 20.0 5.0 5.0 2.5 5.0 1.5 2.5 5.0 n/a 1.5 n/a	fixed [SU][le][/ Mobile (ppm) SU]3 watts (ppm) (ppm) 20.0 20.0 50.0 50.0 50.0 2.5 5.0 5.0 5.0 1.5 2.5 2.5 5.0 n/a n/a 1.5 n/a n/a

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Agilent	PSA Spectrum Analyzer	E4445A	MY44300451	2004-11-5	2005-11-4
GZ-ESPEC	Temperature Chamber	EL-10AGP	0105105	2004-6-1	2005-5-31

^{*} **Statement of Traceability: BACL Corp.** certifies that all calibrations have been performed in accordance to NVLAP requirements, traceable to the NIST.

Test Procedure

Frequency Stability vs. Temperature: The equipment under test was connected to an external AC power supply and the RF output was connected to a f Spectrum Analyzer via feed-through attenuators. The EUT was placed inside the temperature chamber. The AC leads and RF output cable exited the chamber through an opening made for the purpose.

After the temperature stabilized for approximately 20 minutes, the frequency output was recorded from the counter.

Frequency Stability vs. Voltage: An external variable AC power supply Source. The voltage was set to 115% of the nominal value and was then decreased until the transmitter light no longer illuminated; i.e., the end point. The output frequency was recorded for each voltage.

Test Data

Environmental Conditions

Temperature:	20° C
Relative Humidity:	49%
ATM Pressure:	1011 mbar

The testing was performed by Sam Lin on 2004-4-1.

Model: ZXCBTS M802T

Frequency Stability Versus Temperature

	Frequency Stability vs. Temperature					
Temperature \mathbb{C}	Power Supplied Vac	Frequency Measure Error Hz	Error ppm	Limit 1.5ppm		
	CH22 f=870.66MHz					
-30	120	7.27	0.00835	1.5		
-20	120	7.78	0.00894	1.5		
-10	120	7.32	0.00841	1.5		
0	120	7.21	0.00828	1.5		
10	120	8.17	0.00938	1.5		
20	120	8.12	0.00933	1.5		
30	120	5.13	0.00589	1.5		
40	120	6.24	0.00717	1.5		
55	120	6.43	0.00739	1.5		
	СН	1189 f=875.67MHz				
-30	120	7.47	0.00853	1.5		
-20	120	7.28	0.00831	1.5		
-10	120	7.58	0.00866	1.5		
0	120	7.42	0.00847	1.5		
10	120	7.65	0.00874	1.5		
20	120	7.52	0.00859	1.5		
30	120	4.59	0.00524	1.5		
40	120	6.30	0.00719	1.5		
55	120	7.00	0.00799	1.5		

Continues

CH312 f=879.36MHz						
-30	120	7.74	0.0088	1.5		
-20	120	7.24	0.00823	1.5		
-10	120	7.84	0.00892	1.5		
0	120	7.67	0.00872	1.5		
10	120	7.84	0.00892	1.5		
20	120	7.49	0.00852	1.5		
30	120	4.89	0.00556	1.5		
40	120	6.60	0.00751	1.5		
55	120	7.51	0.00854	1.5		

Frequency Stability Versus Voltage

Frequency Stability vs. Voltage						
Voltage	Temperature	Frequency Measure Error	Error	Limit		
Vac	C	Hz	ppm	1.5ppm		
CH22 f=870.66MHz						
85	20	2.10	0.00241	1.5		
120	20	2.20	0.00253	1.5		
138	20	1.15	0.00132	1.5		
CH189 f=875.67MHz						
85	20	1.65	0.00188	1.5		
120	20	2.14	0.00244	1.5		
138	20	2.02	0.00231	1.5		
CH312 f=879.36MHz						
85	20	1.78	0.00202	1.5		
120	20	1.89	0.00215	1.5		
138	20	2.05	0.00233	1.5		