

TEST REPORT

Applicant Name: Inrico Technologies Co., Ltd

Address: 3/F, Building No.118, High Tech Industrial Park, 72 Guowei

Road, Luohu District, Shenzhen, China

Report Number: SZGMA210719-29778E-RF-00AA1

FCC ID: 2AIV6-2-TM-9

Test Standard (s) FCC PART 15.247

Sample Description

Product Type: PoC mobile radio

Model No.: TM-9
Trade Mark: Inrico

Date Received: 2021/07/19

Date of Test: 2021/08/05~2021/10/22

Report Date: 2021/12/16

Test Result: Pass*

Prepared and Checked By:

Approved By:

Fan Yang

Candy Li

EMC Engineer

EMC Engineer

Note: This report may contain data that are not covered by the A2LA accreditation and are marked with an asterisk "⋆ ".

Shenzhen Accurate Technology Co., Ltd. is not responsible for the authenticity of any test data provided by the applicant. Data included from the applicant that may affect test results are marked with an asterisk '*'. Customer model name, addresses, names, trademarks etc. are not considered data.

This report cannot be reproduced except in full, without prior written approval of the Company. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested. This report is valid only with a valid digital signature. The digital signature may be available only under the Adobe software above version 7.0.

Shenzhen Accurate Technology Co., Ltd.

1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China
Tel: +86 755-26503290 Fax: +86 755-26503396 Web: www.atc-lab.com

Version 11: 2021-11-09 Page 1 of 51 FCC-BT

^{*} In the configuration tested, the EUT complied with the standards above.

TABLE OF CONTENTS

GENERAL INFORMATION	4
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	4
Objective	4
TEST METHODOLOGY	
MEASUREMENT UNCERTAINTY	
TEST FACILITY	
SYSTEM TEST CONFIGURATION	6
DESCRIPTION OF TEST CONFIGURATION	
EUT Exercise Software	
SPECIAL ACCESSORIES	
EQUIPMENT MODIFICATIONS	
EXTERNAL I/O CABLE	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	
TEST EQUIPMENT LIST	9
FCC §15.247 (I) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)	11
APPLICABLE STANDARD	
Result	
FCC §15.203 – ANTENNA REQUIREMENT	13
APPLICABLE STANDARD	13
ANTENNA CONNECTOR CONSTRUCTION	13
FCC §15.205, §15.209 & §15.247(D) – RADIATED EMISSIONS	14
APPLICABLE STANDARD	
EUT SETUP	
EMI TEST RECEIVER & SPECTRUM ANALYZER SETUP	
Test Procedure	15
FACTOR & MARGIN CALCULATION	
TEST DATA	
FCC §15.247(A) (1)-CHANNEL SEPARATION TEST	
APPLICABLE STANDARD	20
TEST PROCEDURE	
TEST DATA	20
FCC §15.247(A) (1) – 20 DB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC §15.247(A) (1) (III)-QUANTITY OF HOPPING CHANNEL TEST	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	30

FCC §15.247(A) (1) (III) - TIME OF OCCUPANCY (DWELL TIME)	33
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	33
FCC §15.247(B) (1) - PEAK OUTPUT POWER MEASUREMENT	39
APPLICABLE STANDARD	39
Test Procedure	39
TEST DATA	39
FCC §15.247(D) - BAND EDGES TESTING	45
APPLICABLE STANDARD	45
TEST PROCEDURE	45
TEST DATA	45

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

Frequency Range	Bluetooth: 2402-2480MHz
Maximum conducted peak output power	Bluetooth: 5.97dBm
Modulation Technique	Bluetooth: GFSK, π/4-DQPSK, 8DPSK
Antenna Specification*	1.5dBi(It is provided by the applicant)
Voltage Range	DC 12V or DC 24V From Car Battery
Sample number	SZGMA210719-29778E-RFA1-S1 (RE) SZGMA210719-29778E-RFA1-S2 (RF Conducted Test) (Assigned by ATC)
Sample/EUT Status	Good condition

Report No.: SZGMA210719-29778E-RF-00AA1

Objective

This test report is in accordance with Part 2-Subpart J, Part 15-Subparts A and C of the Federal Communication Commission rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, section 15.203, 15.205, 15.209 and 15.247 rules.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All emissions measurement was performed at Shenzhen Accurate Technology Co., Ltd. The radiated testing was performed at an antenna-to-EUT distance of 3 meters. Each test item follows test standards and with no deviation.

Measurement Uncertainty

Parameter		Uncertainty
Occupied Channel Bandwidth		5%
RF output po	wer, conducted	0.73dB
Unwanted Emi	ssion, conducted	1.6dB
AC Power Lines Conducted Emissions		2.72dB
	30MHz - 1GHz	4.28dB
Emissions, Radiated	1GHz - 18GHz	4.98dB
Radiated	18GHz - 26.5GHz	5.06dB
Temperature		1℃
Humidity		6%
Supply voltages		0.4%

Note: The extended uncertainty given in this report is obtained by combining the standard uncertainty times the coverage factor K with the 95% confidence interval. Otherwise required by the applicant or Product Regulations, Decision Rule in this report did not consider the uncertainty.

Version 11: 2021-11-09 Page 4 of 51 FCC-BT

Test Facility

The test site used by Shenzhen Accurate Technology Co., Ltd. to collect test data is located on the 1/F., Building A, Changyuan New Material Port, Science & Industry Park, Nanshan District, Shenzhen, Guangdong, P.R. China.

Report No.: SZGMA210719-29778E-RF-00AA1

The test site has been approved by the FCC under the KDB 974614 D01 and is listed in the FCC Public Access Link (PAL) database, FCC Registration No.: 708358, the FCC Designation No.: CN1189. Accredited by American Association for Laboratory Accreditation (A2LA) The Certificate Number is 429 7.01.

Listed by Innovation, Science and Economic Development Canada (ISEDC), the Registration Number is 5077A.

SYSTEM TEST CONFIGURATION

Description of Test Configuration

The system was configured for testing in an engineering mode.

EUT Exercise Software

EUT is tested in engineering mode and the power level is maximum level is default *. The software and power level was provided by the manufacturer.

Report No.: SZGMA210719-29778E-RF-00AA1

Special Accessories

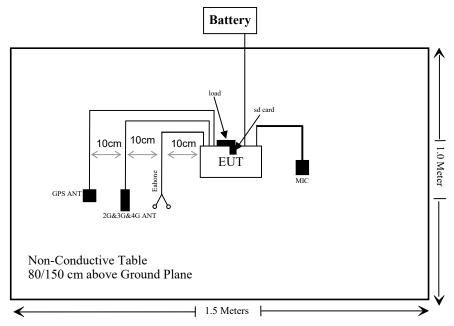
No special accessory.

Equipment Modifications

No modification was made to the EUT tested.

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
CHUANXI	Battery	6-QW-120	45H885718
Unknown	load	Unknown	Unknown
Unknown	Earphone	Unknown	Unknown
Kingston	sd card	SDG3	Unknown


External I/O Cable

Cable Description	Length (m)	From Port	То
Un-shielding Detachable DC Cable	2.7	Battery	EUT
Un-shielding Detachable MIC Cable	0.6	EUT	MIC
Un-shielding Detachable Earphone Cable	1.0	EUT	Earphone
Un-shielding Detachable ANT Cable	1.2	EUT	2G&3G&4G ANT
Un-shielding Detachable ANT Cable	2.5	EUT	GPS ANT

Version 11: 2021-11-09 Page 6 of 51 FCC-BT

Block Diagram of Test Setup

For Spurious Emissions

SUMMARY OF TEST RESULTS

FCC Rules	Description of Test	Result
§15.247 (i), §1.1307 (b) (1)& §2.1091	MAXIMUM PERMISSIBLE EXPOSURE (MPE)	Compliant
§15.203	Antenna Requirement	Compliant
§15.207(a)	AC Line Conducted Emissions	Not Applicable
§15.205, §15.209 & §15.247(d)	Radiated Emissions	Compliant
§15.247(a)(1)	20 dB Emission Bandwidth	Compliant
§15.247(a)(1)	Channel Separation Test	Compliant
§15.247(a)(1)(iii)	Time of Occupancy (Dwell Time)	Compliant
§15.247(a)(1)(iii)	Quantity of hopping channel Test	Compliant
§15.247(b)(1)	Peak Output Power Measurement	Compliant
§15.247(d)	Band edges	Compliant

Not Applicable: The device is powered by Car battery.

TEST EQUIPMENT LIST

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date		
Radiated Emissions Test							
Rohde& Schwarz	Test Receiver	ESR	101817	2020/12/24	2021/12/23		
Rohde&Schwarz	Spectrum Analyzer	FSV40	101495	2020/12/24	2021/12/23		
SONOMA INSTRUMENT	Amplifier	310 N	186131	2020/12/25	2021/12/24		
A.H. Systems, inc.	Preamplifier	PAM-0118P	531	2020/11/09	2021/11/08		
Quinstar	Amplifier	QLW- 18405536-J0	15964001002	2020/11/28	2021/11/27		
Anritsu Corp	50 Coaxial Switch	MP59B	6100237248	2020/12/25	2021/12/24		
Schwarzbeck	Bilog Antenna	VULB9163	9163-323	2020/01/05	2023/01/04		
Schwarzbeck	Horn Antenna	BBHA9120D	9120D-1067	2020/01/05	2023/01/04		
Schwarzbeck	HORN ANTENNA	BBHA9170	9170-359	2020/01/05	2023/01/04		
Unknown	RF Coaxial Cable	N-5m	No.3	2020/12/25	2021/12/24		
Unknown	RF Coaxial Cable	N-1m	No.5	2020/12/25	2021/12/24		
Unknown	RF Coaxial Cable	N-10m	No.7	2020/11/09	2021/11/08		
Unknown	RF Coaxial Cable	N-2m	No.8	2020/11/09	2021/11/08		
Wainwright	High Pass Filter	WHKX3.6/18G- 10SS	5	2020/12/25	2021/12/24		

Radiated Emission Test Software: EZ_EMC V 1.1.4.2 for below 1GHz

Radiated Emission Test Software: e3 19821b (V9) for above 1GHz

Report No.: SZGMA210719-29778E-RF-00AA1

^{*} Statement of Traceability: Shenzhen Accurate Technology Co., Ltd. attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

FCC §15.247 (i) & §2.1091- MAXIMUM PERMISSIBLE EXPOSURE (MPE)

Applicable Standard

According to subpart 15.247 (i) and subpart 2.1091 systems operating under the provisions of this section shall be operated in a manner that ensures the public is not exposed to RF energy level in excess of the communication guidelines.

Limits for General Population/Uncontrolled Exposure

Report No.: SZGMA210719-29778E-RF-00AA1

Limits for General Population/Uncontrolled Exposure					
Frequency Range (MHz)	Electric Field Strength (V/m)	Magnetic Field Strength (A/m)	Power Density (mW/cm ²)	Averaging Time (Minutes)	
0.3-1.34	614	1.63	*(100)	30	
1.34-30	824/f	2.19/f	$*(180/f^2)$	30	
30-300	27.5	0.073	0.2	30	
300-1500	/	/	f/1500	30	
1500-100,000	/	/	1.0	30	

f = frequency in MHz

* = Plane-wave equivalent power density

Result

Calculated Formulary:

Predication of MPE limit at a given distance

$$S = \frac{PG}{4\pi R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = power input to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

For simultaneously transmit system, the calculated power density should comply with:

$$\sum_{i} \frac{S_{i}}{S_{Limit,i}} \le 1$$

Version 11: 2021-11-09 Page 11 of 51 FCC-BT

Mode	Frequency	Antenna Gain		Tune up conducted power		Evaluation Distance	Power Density	MPE Limit
	(MHz)	(dBi)	(numeric)	(dBm)	(mW)	(cm)	(mW/cm^2)	(mW/cm ²)
BDR/EDR	2402-2480	1.5	1.41	6.0	3.98	20	0.001	1.0
BLE	2402-2480	1.5	1.41	6.0	3.98	20	0.001	1.0
2.4G Wi-Fi	2412-2472	1.5	1.41	11.5	14.13	20	0.004	1.0
GPRS/EDGE 850	824-849	0.5	1.12	32.1	1621.81	20	0.362	0.55
GPRS/EDGE 1900	1850-1910	0.5	1.12	29.5	891.25	20	0.199	1.0
WCDNA B2	1850-1910	0.5	1.12	23	199.53	20	0.045	1.0
WCDNA B5	824-849	0.5	1.12	22.5	177.83	20	0.040	0.55
LTE B2	1850-1910	0.5	1.12	23	199.53	20	0.045	1.0
LTE B4	1710-1755	0.5	1.12	22.5	177.83	20	0.040	1.0
LTE B5	824-849	0.5	1.12	23	199.53	20	0.045	0.55
LTE B7	2500-2570	0.5	1.12	23	199.53	20	0.045	1.0
LTE B12	699-716	0.5	1.12	23	199.53	20	0.045	0.47
LTE B17	704-716	0.5	1.12	23	199.53	20	0.045	0.47
LTE B38	2570-2620	0.5	1.12	23	199.53	20	0.045	1.0
LTE B66	1710-1780	0.5	1.12	22.5	177.83	20	0.040	1.0

Report No.: SZGMA210719-29778E-RF-00AA1

Note: 1. The tune up conducted power was declared by the applicant.

2. The BT or Wi-Fi can transmit at the same time with the WWAN.

Simultaneous transmitting consideration (worst case):

The ratio=MPE $_{\rm 2.4G~Wi\text{-}Fi}/limit+MPE_{\rm GPRS/EDGE850}/limit=0.004/1+0.362/0.55=0.662 \le 1.0,$ so simultaneous exposure is compliant.

To maintain compliance with the FCC's RF exposure guidelines, place the equipment at least 20cm from nearby persons.

Result: Compliant

FCC §15.203 – ANTENNA REQUIREMENT

Applicable Standard

According to FCC § 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

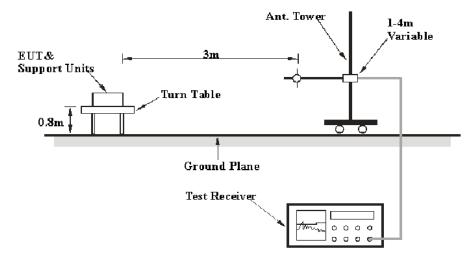
Report No.: SZGMA210719-29778E-RF-00AA1

Antenna Connector Construction

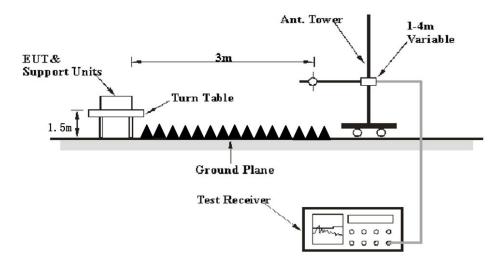
The EUT has one internal antenna arrangement which was permanently attached and the antenna gain is 1.5 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.

Report No.: SZGMA210719-29778E-RF-00AA1


FCC §15.205, §15.209 & §15.247(d) – RADIATED EMISSIONS

Applicable Standard


FCC §15.205; §15.209; §15.247(d)

EUT Setup

Below 1 GHz:

Above 1GHz:

The radiated emission tests were performed in the 3 meters, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209 and FCC 15.247 limits.

EMI Test Receiver & Spectrum Analyzer Setup

The EMI test receiver & Spectrum Analyzer Setup were set with the following configurations:

Frequency Range	RBW	Video B/W	IF B/W	Measurement
30 MHz – 1000 MHz	100 kHz	300 kHz	120 kHz	QP
Above 1 GHz	1 MHz	3 MHz	/	PK
Above I GHZ	1 MHz	10 Hz	/	Average

Report No.: SZGMA210719-29778E-RF-00AA1

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

All final data was recorded in Quasi-peak detection mode for frequency range of 30 MHz -1 GHz and peak and Average detection modes for frequencies above 1 GHz.

Factor & Margin Calculation

The Factor is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain. The basic equation is as follows:

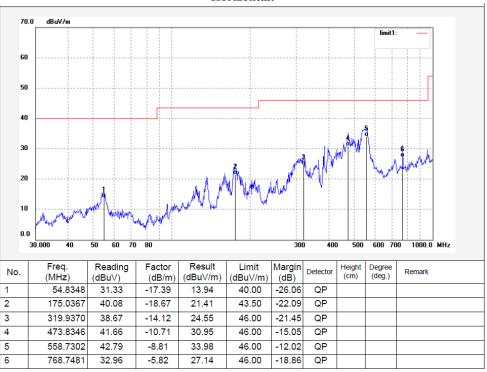
Factor = Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

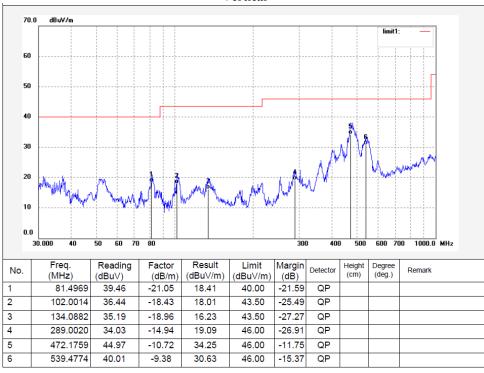
Margin = Result / Corrected Amplitude - Limit Result / Corrected Amplitude = Reading + Factor

Test Data

Environmental Conditions


Temperature:	23~25 ℃
Relative Humidity:	48~64 %
ATM Pressure:	101.0~103.0 kPa

The testing was performed by Joe on 2021-10-22 for below 1GHz and Chao Mo on 2021-10-16 for above 1GHz.


Test mode: Transmitting (Pre-scan in the X,Y and Z axes of orientation, the worst case X-axis of orientation was recorded)

30MHz-1GHz: (worst case GFSK Mode, Middle channel)

Horizontal:

Vertical

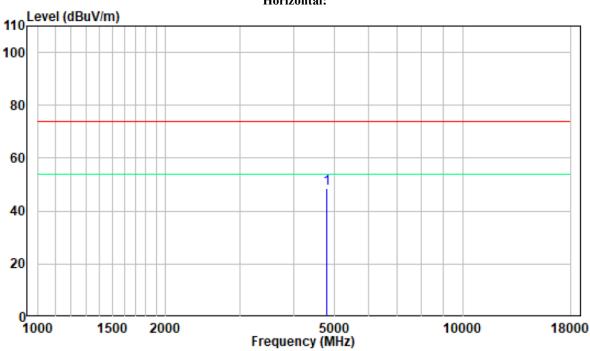
_	Receiver			Rx Antenna		Corrected	Corrected		
Frequency (MHz)	Reading (dBµV)	PK/Ave.	Turntable Degree	Height (m)	Polar (H/V)	Factor (dB/m)	Amplitude (dBμV/m)	Limit (dBµV/m)	Margin (dB)
			Low Ch	annel (2	2402 MI	Hz)			
2310	52.87	PK	183	2.1	Н	-7.24	45.63	74	-28.37
2310	52.78	PK	336	1.3	V	-7.24	45.54	74	-28.46
2390	54.09	PK	349	1.7	Н	-7.22	46.87	74	-27.13
2390	54.78	PK	267	1.0	V	-7.22	47.56	74	-26.44
4804	51.94	PK	252	2.1	Н	-3.51	48.43	74	-25.57
4804	52.00	PK	28	2.0	V	-3.51	48.49	74	-25.51
			Middle C	hannel ((2441 N	Mz)			
4882	50.40	PK	110	2.1	Н	-3.37	47.03	74	-26.97
4882	51.60	PK	178	1.1	V	-3.37	48.23	74	-25.77
			High Ch	nannel (2	2480 M	Hz)			
2483.5	53.42	PK	336	1.6	Н	-7.2	46.22	74	-27.78
2483.5	54.26	PK	348	1.8	V	-7.2	47.06	74	-26.94
2500	52.19	PK	93	1.7	Н	-7.18	45.01	74	-28.99
2500	52.54	PK	135	1.2	V	-7.18	45.36	74	-28.64
4960	50.58	PK	76	1.4	Н	-3.01	47.57	74	-26.43
4960	51.04	PK	316	1.0	V	-3.01	48.03	74	-25.97

Report No.: SZGMA210719-29778E-RF-00AA1

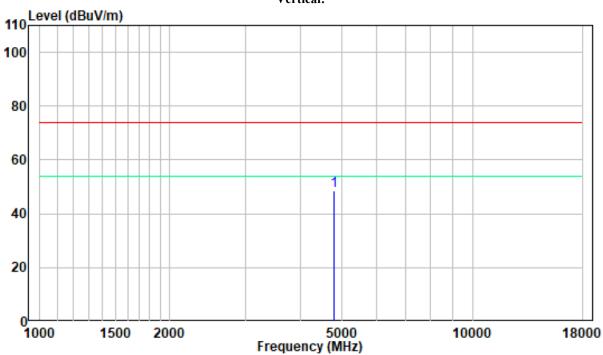
Note:

 $Corrected\ Factor = Antenna\ factor\ (RX) + Cable\ Loss - Amplifier\ Factor$

Corrected Pateon Amelitade = Corrected Factor + Reading
Margin = Corrected. Amplitude - Limit
The other spurious emission which is in the noise floor level was not recorded.


The test result of peak was less than the limit of average, so just peak value were recorded.

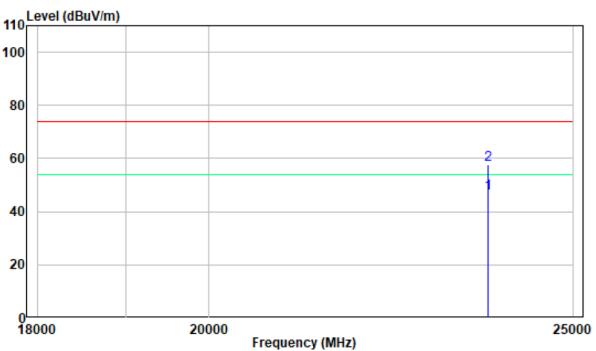
1-18GHz


Pre-scan Plots:

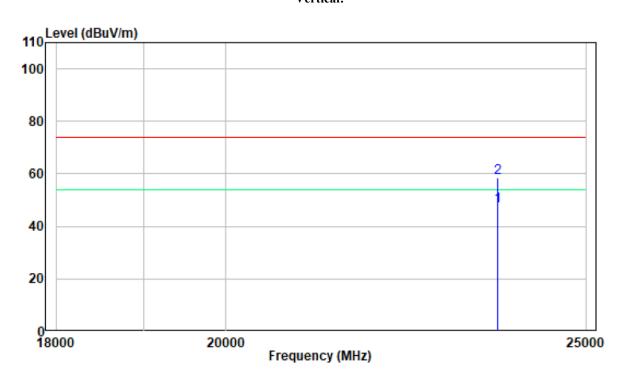
Low Channel

Horizontal:

Vertical:



18-25GHz


Pre-scan Plots:

Low Channel

Horizontal:

Vertical:

FCC §15.247(a) (1)-CHANNEL SEPARATION TEST

Applicable Standard

Frequency hopping systems shall have hoping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Report No.: SZGMA210719-29778E-RF-00AA1

Test Procedure

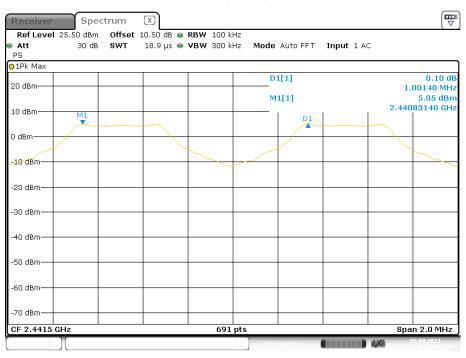
- 1. Set the EUT in transmitting mode, maxhold the channel.
- 2. Set the adjacent channel of the EUT and maxhold another trace.
- 3. Measure the channel separation.

Test Data

Environmental Conditions

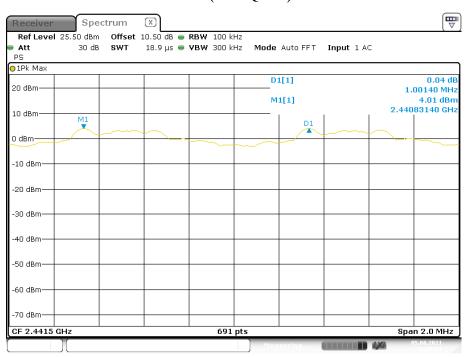
Temperature:	25 ℃	
Relative Humidity:	56 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Paul liu on 2021-08-05.

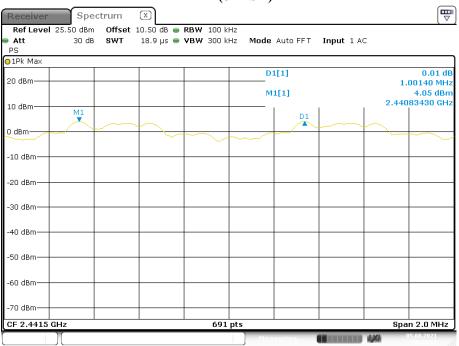

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to following table and plots.

Test Mode	Channel Separation (MHz)	20 dBc BW (MHz)	Two-thirds of the 20 dB bandwidth (MHz)	Channel Separation Limit	Result			
	BDR(GFSK)							
Hopping	1.001	0.935	0.623	> two-thirds of the 20 dB bandwidth	Compliance			
	EDR(π/4-DQPSK)							
Hopping	1.001	1.271	0.847	> two-thirds of the 20 dB bandwidth	Compliance			
EDR(8DPSK)								
Hopping	1.001	1.245	0.830	> two-thirds of the 20 dB bandwidth	Compliance			


Report No.: SZGMA210719-29778E-RF-00AA1

BDR(GFSK)


Date: 5.AUG.2021 16:27:29

EDR $(\pi/4$ -DQPSK)

Date: 5.AUG.2021 16:30:31

EDR (8DPSK)

Date: 5.AUG.2021 16:31:52

FCC $\S15.247(a)$ (1) – 20 dB EMISSION BANDWIDTH

Applicable Standard

Alternatively, frequency hopping systems operating in the 2400–2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Report No.: SZGMA210719-29778E-RF-00AA1

Test Procedure

The following conditions shall be observed for measuring the occupied bandwidth and 20 dB bandwidth:

- The transmitter shall be operated at its maximum carrier power measured under normal test conditions.
- The span of the spectrum analyzer shall be set large enough to capture all products of the modulation process, including the emission skirts, around the carrier frequency, but small enough to avoid having other emissions (e.g. on adjacent channels) within the span.
- The detector of the spectrum analyzer shall be set to "Sample". However, a peak, or peak hold, may be used in place of the sampling detector since this usually produces a wider bandwidth than the actual bandwidth (worst-case measurement). Use of a peak hold (or "Max Hold") may be necessary to determine the occupied / 20 dB bandwidth if the device is not transmitting continuously.
- The resolution bandwidth (RBW) shall be in the range of 1% to 5% of the actual occupied / 20 dB bandwidth and the video bandwidth (VBW) shall not be smaller than three times the RBW value. Video averaging is not permitted.

Note: It may be necessary to repeat the measurement a few times until the RBW and VBW are in compliance with the above requirement.

For the 99% emission bandwidth, the trace data points are recovered and directly summed in linear power level terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached, and that frequency recorded. The process is repeated for the highest frequency data points (starting at the highest frequency, at the right side of the span, and going down in frequency). This frequency is then recorded. The difference between the two recorded frequencies is the occupied bandwidth (or the 99% emission bandwidth).

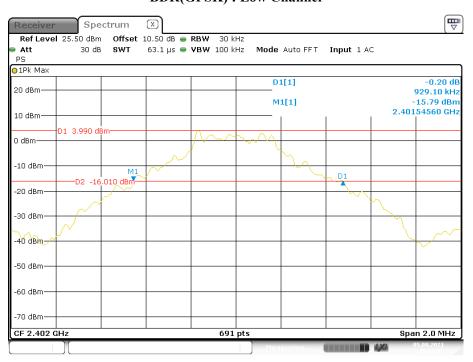
Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

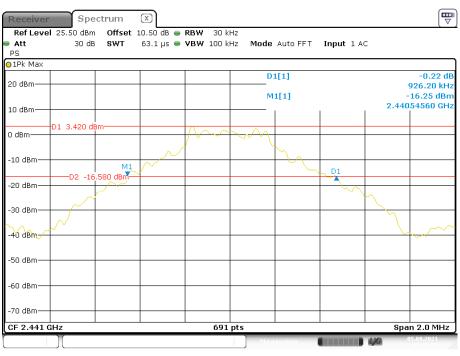
The testing was performed by Paul liu on 2021-08-05.

EUT operation mode: Transmitting


Test Result: Compliant. Please refer to following table and plots.

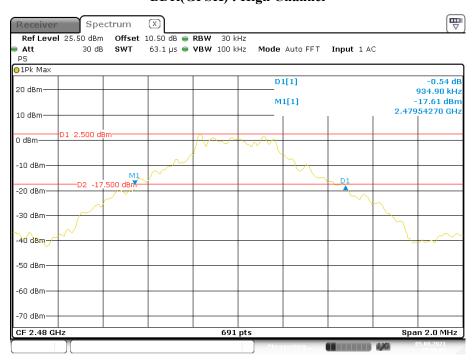
Mode	Channel	Frequency (MHz)	20 dB Emission Bandwidth (MHz)	
	Low	2402	0.929	
BDR (GFSK)	Middle	2441	0.926	
(01 212)	High	2480	0.935	
	Low	2402	1.271	
EDR (π/4-DQPSK)	Middle	2441	1.271	
(1 1. 2 (21 512)	High	2480	1.268	
	Low	2402	1.245	
EDR (8DPSK)	Middle	2441	1.245	
(021011)	High	2480	1.245	

Report No.: SZGMA210719-29778E-RF-00AA1

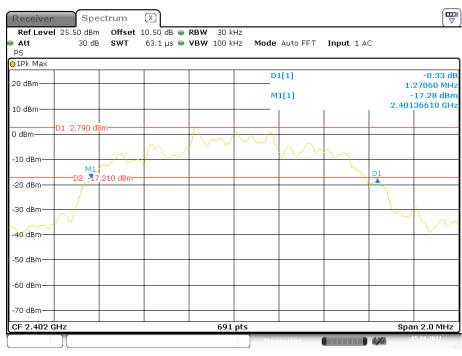

BDR(GFSK): Low Channel

Report No.: SZGMA210719-29778E-RF-00AA1

Date: 5.AUG.2021 18:11:35

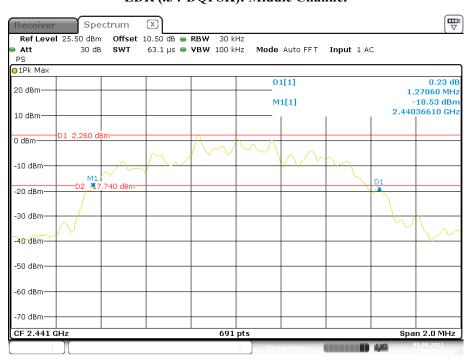

BDR(GFSK): Middle Channel

Date: 5.AUG.2021 18:09:56

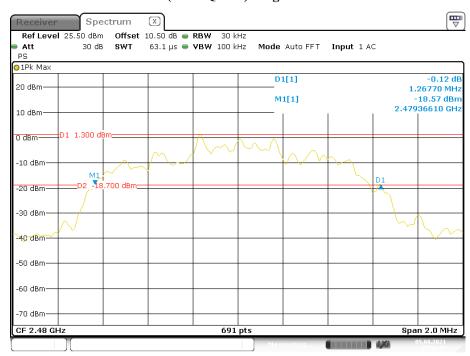

BDR(GFSK): High Channel

Report No.: SZGMA210719-29778E-RF-00AA1

Date: 5.AUG.2021 17:56:05

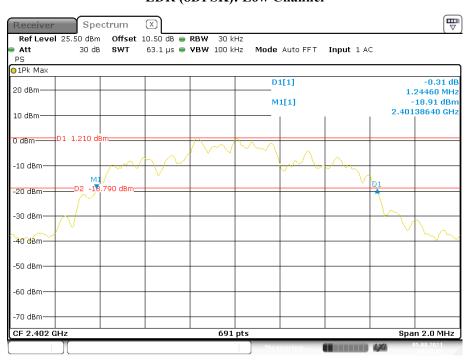

EDR ($\pi/4$ -DQPSK): Low Channel

Date: 5.AUG.2021 18:13:16

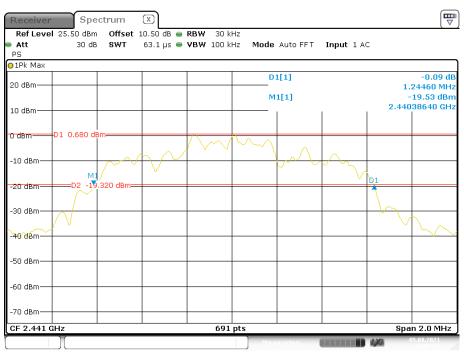

EDR (π/4-DQPSK): Middle Channel

Report No.: SZGMA210719-29778E-RF-00AA1

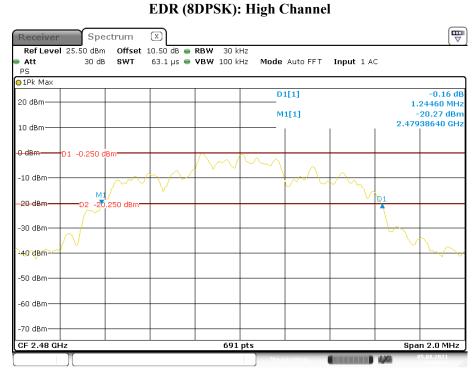
Date: 5.AUG.2021 18:06:13


EDR ($\pi/4$ -DQPSK): High Channel

Date: 5.AUG.2021 17:58:47


EDR (8DPSK): Low Channel

Report No.: SZGMA210719-29778E-RF-00AA1


Date: 5.AUG.2021 18:15:18

EDR (8DPSK): Middle Channel

Date: 5.AUG.2021 18:07:33

Report No.: SZGMA210719-29778E-RF-00AA1

Date: 5.AUG.2021 18:00:48

FCC §15.247(a) (1) (iii)-QUANTITY OF HOPPING CHANNEL TEST

Applicable Standard

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

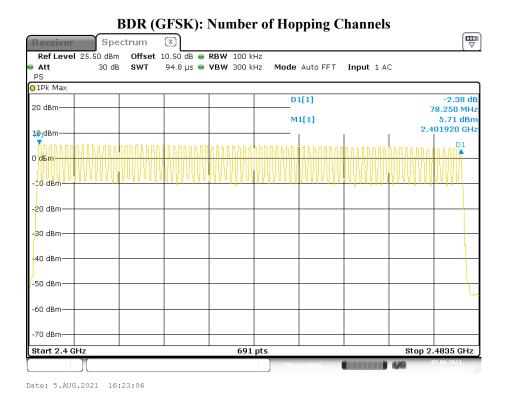
Report No.: SZGMA210719-29778E-RF-00AA1

Test Procedure

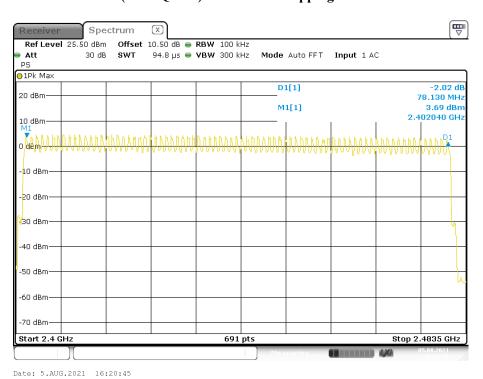
- 1. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- 2. Set the EUT in hopping mode from first channel to last.
- 3. By using the max-hold function record the quantity of the channel.

Test Data

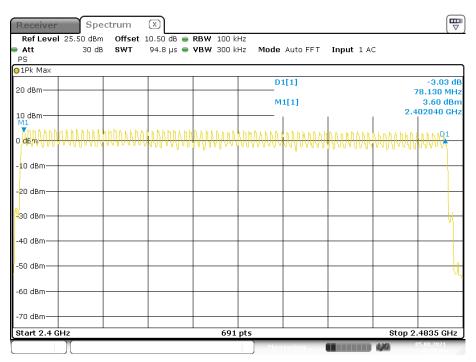
Environmental Conditions


Temperature:	25 ℃
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Paul liu on 2021-08-05.


EUT operation mode: Transmitting

Test Result: Compliant. Please refer to following table and plots.


Mode Frequency Range (MHz)		Number of Hopping Channel (CH)	Limit (CH)	
BDR (GFSK)	2400-2483.5	79	≥15	
EDR (π/4-DQPSK)	2400-2483.5	79	≥15	
EDR (8DPSK)	2400-2483.5	79	≥15	

EDR (π/4-DQPSK): Number of Hopping Channels

EDR (8DPSK): Number of Hopping Channels

Date: 5.AUG.2021 16:18:05

FCC §15.247(a) (1) (iii) - TIME OF OCCUPANCY (DWELL TIME)

Applicable Standard

Frequency hopping systems in the 2400-2483.5 MHz shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are used.

Report No.: SZGMA210719-29778E-RF-00AA1

Test Procedure

- 1. The EUT was worked in channel hopping.
- 2. Set the RBW to: 1MHz.
- 3. Set the VBW $> 3 \times RBW$.
- 4. Set the span to 0Hz.
- 5. Detector = peak.
- 6. Sweep time = auto couple.
- 7. Trace mode = max hold.
- 8. Allow trace to fully stabilize.
- 9. Recorded the time of single pulses

Test Data

Environmental Conditions

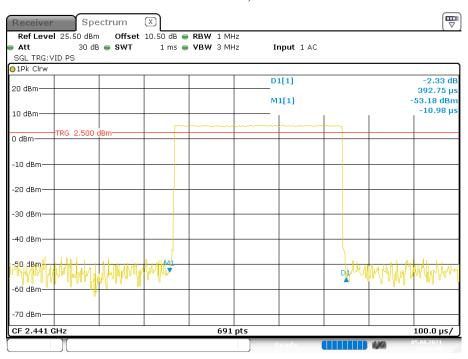
Temperature:	25 ℃	
Relative Humidity:	56 %	
ATM Pressure:	101.0 kPa	

The testing was performed by Paul liu on 2021-08-05 and 2021-08-12.

EUT operation mode: Transmitting

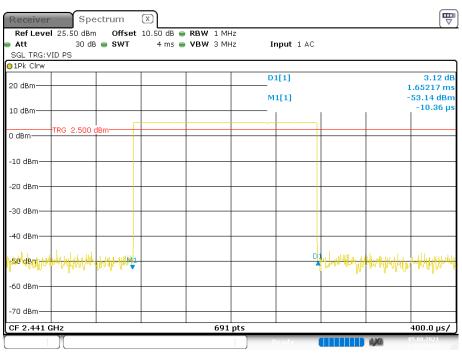
Test Result: Compliant. Please refer to following table and plots

Test Mode	Channel	Pulse Time [ms]	Result[s]	Limit[s]	Verdict
DH1	Нор	0.39	0.125	<=0.4	PASS
DH3	Нор	1.65	0.264	<=0.4	PASS
DH5	Нор	2.91	0.310	<=0.4	PASS
2DH1	Нор	0.40	0.128	<=0.4	PASS
2DH3	Нор	1.65	0.264	<=0.4	PASS
2DH5	Нор	2.92	0.311	<=0.4	PASS
3DH1	Нор	0.39	0.125	<=0.4	PASS
3DH3	Нор	1.65	0.264	<=0.4	PASS
3DH5	Нор	2.91	0.310	<=0.4	PASS


Note 1:

DH1: Result=Pulse Time ×(1600/2/79) ×31.6s DH3: Result=Pulse Time ×(1600/4/79) ×31.6s DH5: Result=Pulse Time ×(1600/6/79) ×31.6s

BDR (GFSK):

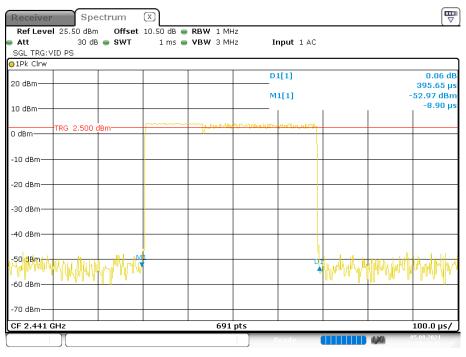

Report No.: SZGMA210719-29778E-RF-00AA1

Pulse time, DH1


Date: 5.AUG.2021 19:06:50

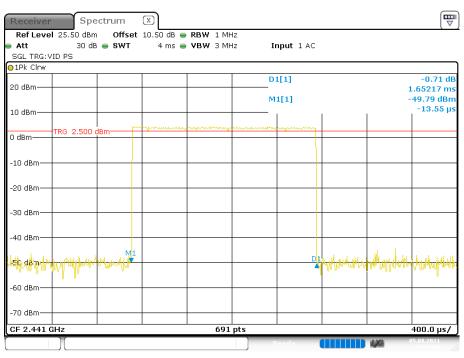
Pulse time, DH3

Pulse time, DH5

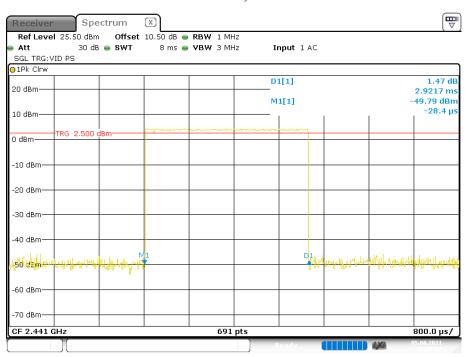

Report No.: SZGMA210719-29778E-RF-00AA1

Date: 5.AUG.2021 19:11:12

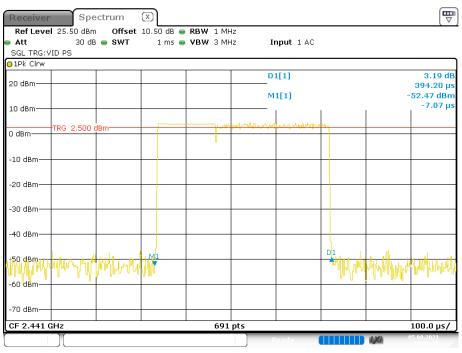
EDR ($\pi/4$ -DQPSK):


Pulse time, 2DH1

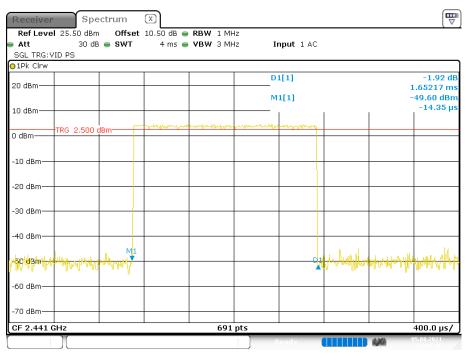
Date: 5.AUG.2021 18:47:17


Pulse time, 2DH3

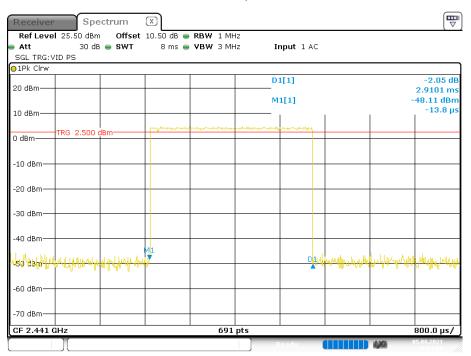
Report No.: SZGMA210719-29778E-RF-00AA1


Date: 5.AUG.2021 18:51:00

Pulse time, 2DH5


Date: 5.AUG.2021 18:55:02

EDR (8DPSK) Pulse time, 3DH1



Date: 5.AUG.2021 18:59:25

Pulse time, 3DH3

Pulse time, 3DH5

Date: 5.AUG.2021 19:04:09

FCC §15.247(b) (1) - PEAK OUTPUT POWER MEASUREMENT

Applicable Standard

According to §15.247(b) (1), for frequency hopping systems operating in the 2400–2483.5 MHz band employing at least 75 non-overlapping hopping channels, and all frequency hopping systems in the 5725-5850 MHz band: 1 watt. And for all other frequency hopping systems in the 2400–2483.5 MHz band: 0.125 watts.

Report No.: SZGMA210719-29778E-RF-00AA1

Test Procedure

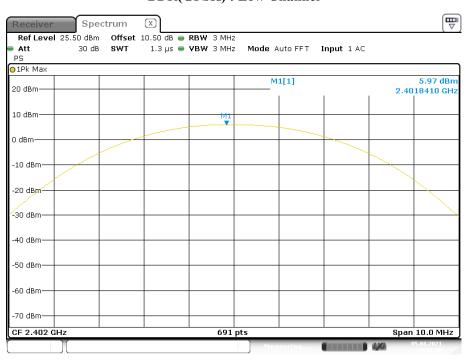
- 1. Place the EUT on a bench and set in transmitting mode.
- 2. Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to one test equipment.
- 3. Add a correction factor to the display.

Test Data

Environmental Conditions

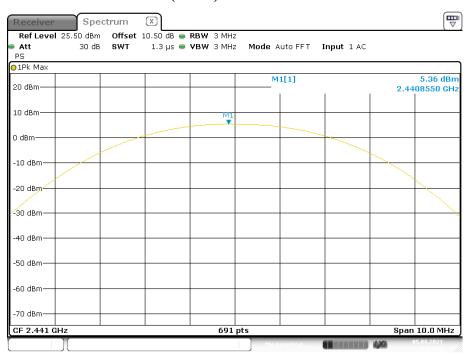
Temperature:	25 ℃
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

The testing was performed by Paul liu on 2021-08-05.

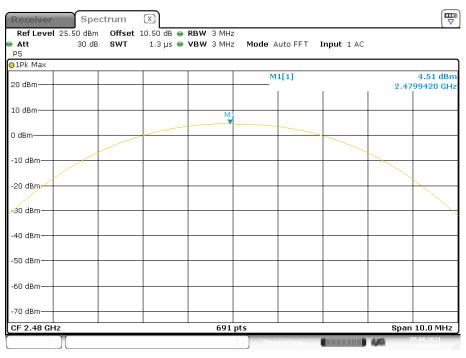

EUT operation mode: Transmitting

Test Result: Compliant. Please refer to following table.

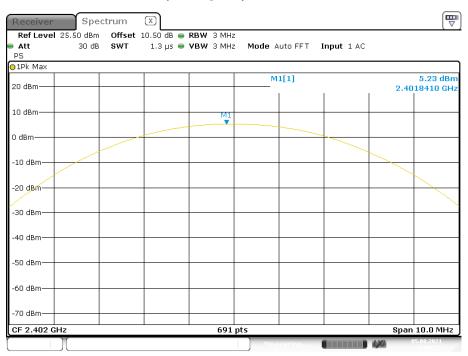
Mode	Channel	Frequency (MHz)	Peak Output Power	Limit
			(dBm)	(dBm)
BDR (GFSK)	Low	2402	5.97	21
	Middle	2441	5.36	21
	High	2480	4.51	21
EDR (π/4-DQPSK)	Low	2402	5.23	21
	Middle	2441	4.29	21
	High	2480	3.77	21
EDR (8DPSK)	Low	2402	5.39	21
	Middle	2441	4.34	21
	High	2480	4.05	21


BDR(GFSK): Low Channel

Report No.: SZGMA210719-29778E-RF-00AA1

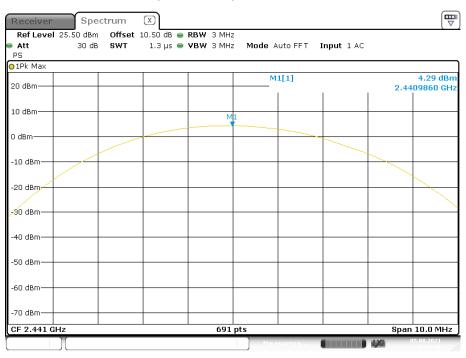

Date: 5.AUG.2021 15:58:30

BDR(GFSK): Middle Channel

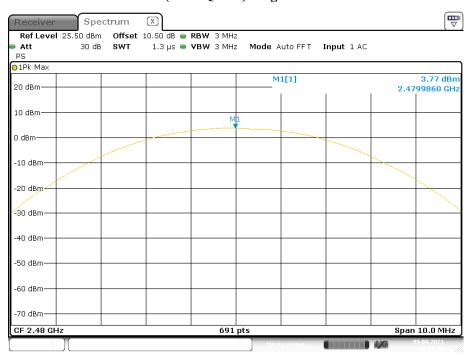

Date: 5.AUG.2021 16:02:13

BDR(GFSK): High Channel

Date: 5.AUG.2021 16:04:34

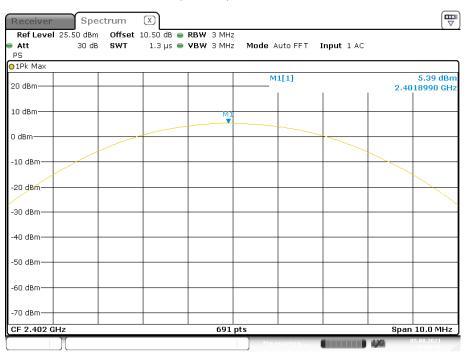

EDR ($\pi/4$ -DQPSK): Low Channel

Date: 5.AUG.2021 16:08:57

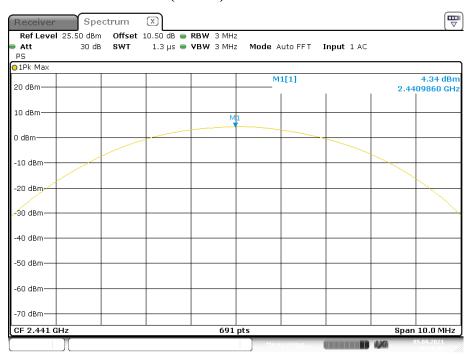

EDR ($\pi/4$ -DQPSK): Middle Channel

Report No.: SZGMA210719-29778E-RF-00AA1

Date: 5.AUG.2021 16:07:36

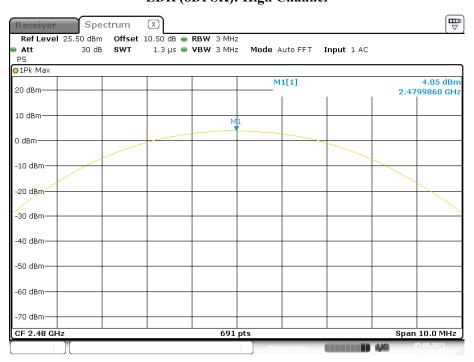

EDR ($\pi/4$ -DQPSK): High Channel

Date: 5.AUG.2021 16:06:40


EDR (8DPSK): Low Channel

Report No.: SZGMA210719-29778E-RF-00AA1

Date: 5.AUG.2021 16:09:39


EDR (8DPSK): Middle Channel

Date: 5.AUG.2021 16:10:42

EDR (8DPSK): High Channel

Report No.: SZGMA210719-29778E-RF-00AA1

Date: 5.AUG.2021 16:13:00

FCC §15.247(d) - BAND EDGES TESTING

Applicable Standard

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

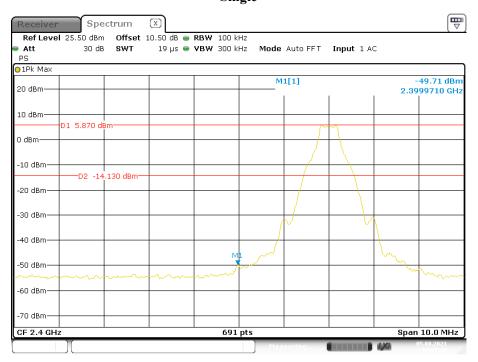
Report No.: SZGMA210719-29778E-RF-00AA1

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Remove the antenna from the EUT and then connect to a low loss RF cable from the antenna port to a EMI test receiver, then turn on the EUT and make it operate in transmitting mode. Then set it to Low Channel and High Channel within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 100 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

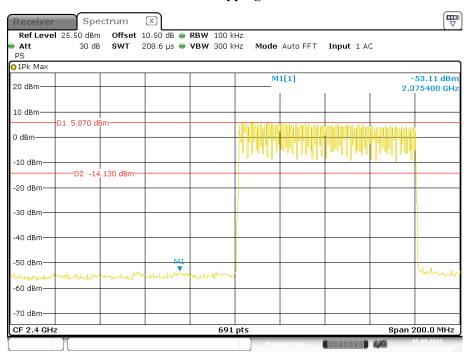
Test Data

Environmental Conditions


Temperature:	25 ℃
Relative Humidity:	56 %
ATM Pressure:	101.0 kPa

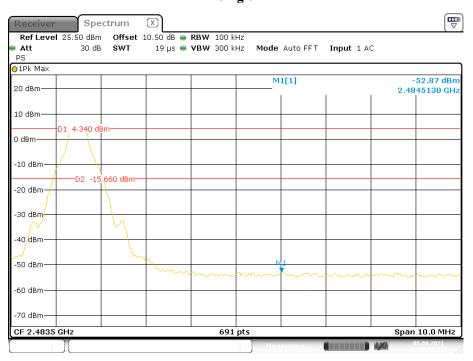
The testing was performed by Paul liu on 2021-08-05.

EUT operation mode: Transmitting

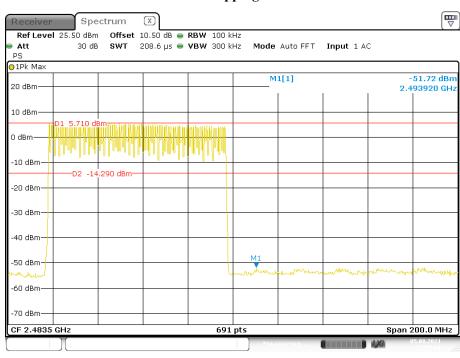

Test Result: Compliant. Please refer to following plots.

BDR (GFSK): Band Edge-Left Side Single

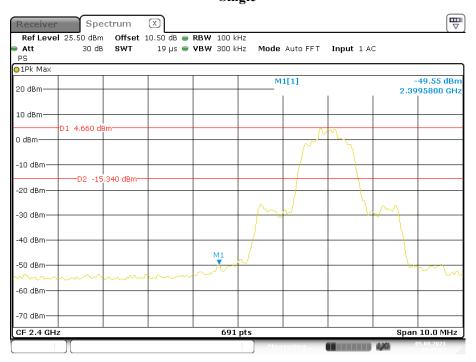
Date: 5.AUG.2021 17:47:00


Hopping

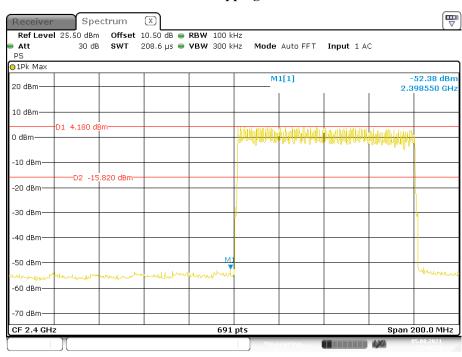
Date: 5.AUG.2021 17:48:22


BDR (GFSK): Band Edge-Right Side Single

Report No.: SZGMA210719-29778E-RF-00AA1

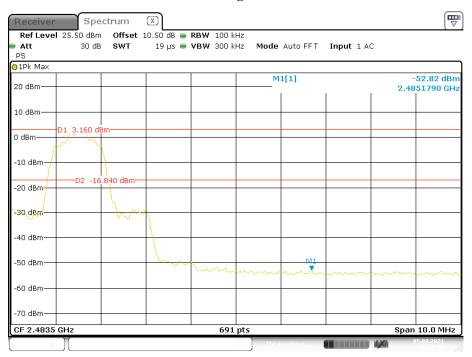

Date: 5.AUG.2021 17:51:23

Hopping

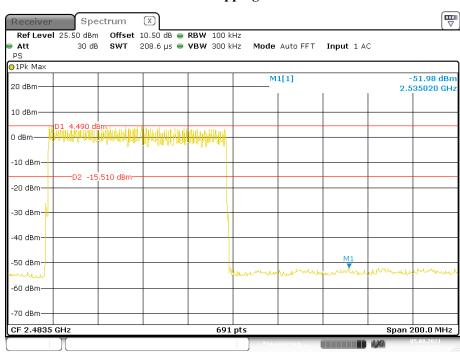

Date: 5.AUG.2021 17:50:02

EDR (π/4-DQPSK): Band Edge-Left Side Single

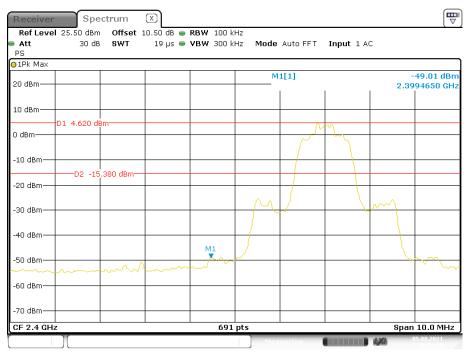
Date: 5.AUG.2021 17:45:22


Hopping

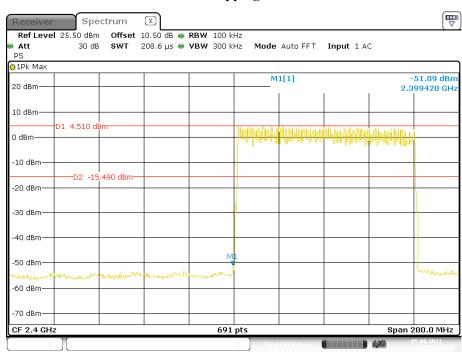
Date: 5.AUG.2021 17:40:36


EDR (π /4-DQPSK): Band Edge-Right Side Single

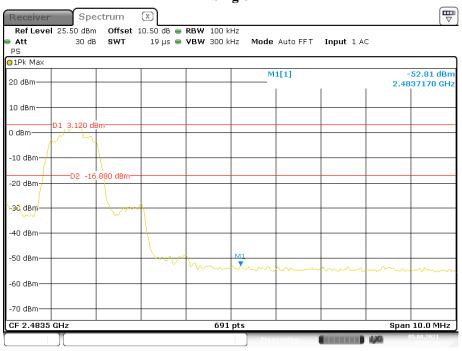
Report No.: SZGMA210719-29778E-RF-00AA1


Date: 5.AUG.2021 17:43:58

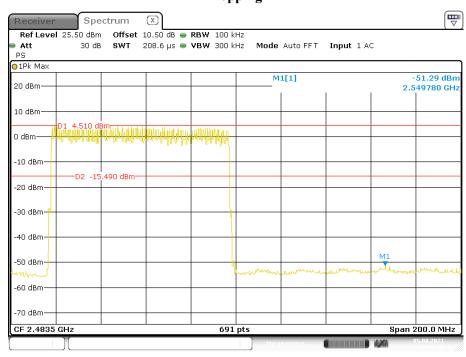
Hopping


Date: 5.AUG.2021 17:42:37

EDR (8DPSK): Band Edge-Left Side Single


Date: 5.AUG.2021 16:58:08

Hopping


Date: 5.AUG.2021 16:56:07

EDR (8DPSK): Band Edge-Right Side Single

Date: 5.AUG.2021 17:00:30

Hopping

Date: 5.AUG.2021 16:52:49

***** END OF REPORT *****