

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCISE181005804

FCC REPORT (BLE)

Applicant: Sun Cupid Technology (HK) Ltd.

Address of Applicant: 16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan,

Kowloon, Hong Kong.

Equipment Under Test (EUT)

Product Name: LTE Smart phone

Model No.: A6L-G, A6LG

Trade mark: NUU

FCC ID: 2ADINA6LG

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 29 Oct., 2018

Date of Test: 29 Oct., to 23 Nov., 2018

Date of report issued: 26 Nov., 2018

Test Result: PASS *

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	26 Nov., 2018	Original

Tested by: 26 Nov., 2018

Test Engineer

Reviewed by: Date: 26 Nov., 2018

Project Engineer

3 Contents

			Page	
1	CO	VER PAGE	1	
2	VERSION			
3	CO	NTENTS	3	
4	TES	ST SUMMARY	4	
5	GEN	NERAL INFORMATION	5	
	5.1	CLIENT INFORMATION	5	
	5.2	GENERAL DESCRIPTION OF E.U.T	5	
	5.3	TEST ENVIRONMENT AND TEST MODE	6	
	5.4	DESCRIPTION OF SUPPORT UNITS	6	
	5.5	MEASUREMENT UNCERTAINTY	6	
	5.6	LABORATORY FACILITY	7	
	5.7	LABORATORY LOCATION		
	5.8	TEST INSTRUMENTS LIST	8	
6	TES	ST RESULTS AND MEASUREMENT DATA	9	
	6.1	ANTENNA REQUIREMENT:	_	
	6.2	CONDUCTED EMISSION	10	
	6.3	CONDUCTED OUTPUT POWER	13	
	6.4	OCCUPY BANDWIDTH	_	
	6.5	POWER SPECTRAL DENSITY		
	6.6	BAND EDGE		
	6.6.			
	6.6.			
	6.7	Spurious Emission		
	6.7.			
	6.7.	2 Radiated Emission Method	28	
7	TES	ST SETUP PHOTO	33	
8	EU7	CONSTRUCTIONAL DETAILS	34	

Test Summary

Test Items	Section in CFR 47	Result	
Antenna requirement	15.203 & 15.247 (c)	Pass	
AC Power Line Conducted Emission	15.207	Pass	
Conducted Peak Output Power	15.247 (b)(3)	Pass	
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Pass	
Power Spectral Density	15.247 (e)	Pass	
Band Edge	15.247 (d)	Pass	
Spurious Emission	15.205 & 15.209	Pass	
Pass: The EUT complies with the essential requirements in the standard.			

5 General Information

5.1 Client Information

Applicant:	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Manufacturer	Sun Cupid Technology (HK) Ltd.
Address:	16/F, CEO Tower, 77 Wing Hong Street, Cheung Sha Wan, Kowloon, Hong Kong.
Factory:	SUNCUPID (ShenZhen) Electronic Ltd
Address:	Baolong Industrial City, Longgang District, Shenzhen Hi-Tech Road, Building 1, A 7, China.

5.2 General Description of E.U.T.

-	
Product Name:	LTE Smart phone
Model No.:	A6L-G, A6LG
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.48 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-2350mAh
AC adapter:	Model:RD0501000-USBA-18MG Input: AC100-240V, 50/60Hz, 0.25A
	Output: DC 5.0V, 1000mA
Test Sample Condition:	The test samples were provided in good working order with no visible defects.
Remarks:	LTE Smart phone item No.:A6L-G, A6LG were identical inside, the electrical circuit design, layout, components used and internal wiring, with only difference being model name and for different areas.

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

5.3 Test environment and test mode

24.0 °C
54 % RH
1010 mbar
Keep the EUT in continuous transmitting with modulation

The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (9kHz ~ 30MHz)	±2.22 dB (k=2)
Radiated Emission (9kHz ~ 30MHz)	±2.76 dB (k=2)
Radiated Emission (30MHz ~ 1000MHz)	±4.28 dB (k=2)
Radiated Emission (1GHz ~ 18GHz)	±5.72 dB (k=2)
Radiated Emission (18GHz ~ 40GHz)	±2.88 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

FCC - Registration No.: 727551

Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been accredited as a testing laboratory by FCC (Federal Communications Commission). The Registration No. is 727551.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2005 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info@ccis-cb.com, Website: http://www.ccis-cb.com

5.8 Test Instruments list

Radiated Emission:	Radiated Emission:				
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)
3m SAC	SAEMC	9m*6m*6m	966	07-22-2017	07-21-2020
Loop Antenna	SCHWARZBECK	FMZB1519B	00044	03-16-2018	03-15-2019
BiConiLog Antenna	SCHWARZBECK	VULB9163	497	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	916	03-16-2018	03-15-2019
Horn Antenna	SCHWARZBECK	BBHA9120D	1805	06-22-2017	06-21-2020
Horn Antenna	SCHWARZBECK	BBHA 9170	BBHA9170582	11-21-2017	11-20-2018
Hom Antenna	SCHWARZBECK	DDITA 9170	DDI 1A9 17 0302	11-21-2018	11-20-2019
EMI Test Software	AUDIX	E3	Version: 6.110919b		b
Pre-amplifier	HP	8447D	2944A09358	03-07-2018	03-06-2019
Pre-amplifier	CD	PAP-1G18	11804	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-07-2018	03-06-2019
Spectrum analyzer	Rohde & Schwarz	FSP40	100363	11-21-2017	11-20-2018
Spectrum analyzer	Ronde & Schwarz	1 31 40	100303	11-21-2018	11-20-2019
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-07-2018	03-06-2019
Cable	ZDECL	Z108-NJ-NJ-81	1608458	03-07-2018	03-06-2019
Cable	MICRO-COAX	MFR64639	K10742-5	03-07-2018	03-06-2019
Cable	SUHNER	SUCOFLEX100	58193/4PE	03-07-2018	03-06-2019
RF Switch Unit	MWRFTEST	MW200	N/A	N/A	N/A
Test Software	MWRFTEST	MTS8200		Version: 2.0.0.0	

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI	101189	03-07-2018	03-06-2019	
Pulse Limiter	SCHWARZBECK	OSRAM 2306	9731	03-07-2018	03-06-2019	
LISN	CHASE	MN2050D	1447	03-19-2018	03-18-2019	
LISN	Rohde & Schwarz	ESH3-Z5	8438621/010	07-21-2018	07-20-2019	
Cable	HP	10503A	N/A	03-07-2018	03-06-2019	
EMI Test Software	AUDIX	E3	\	/ersion: 6.110919	b	

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

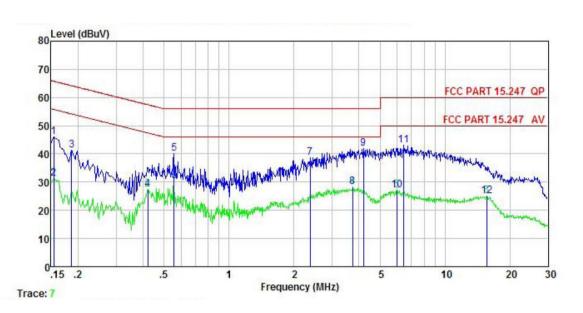
An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

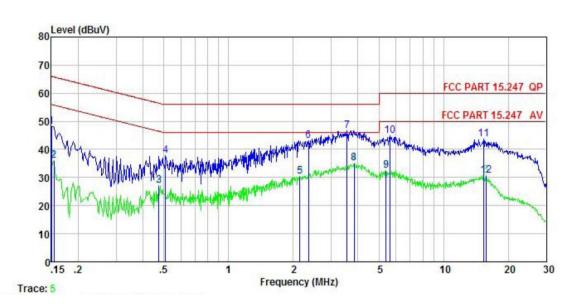
The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 0.48 dBi.


6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15	.207		
Test Method:	ANSI C63.10: 2013			
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9kHz, VBW=30kHz			
Limit:	·	Limit	(dBuV)	
Lillin.	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logar			
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2014 on conducted measurement. 			
Test setup:	Reference Plane LISN 40cm 80cm Filter AC power Equipment Test table/Insulation plane Remark E.U.T. Equipment Under Test LISN: Line Impedence Stabilization Network Test table height=0.8m			
Test Instruments:	Refer to section 5.8 for details			
Test mode:	Refer to section 5.3 for details			
Test results:	Passed			

Measurement Data:

Product name:	LTE Smart phone	Product model:	A6L-G
Test by:	YT	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%


Remark	·							
	F	Read	LISN	Cable	T 1	Limit	Over	Panaula
	Freq	rever	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	₫B	₫B	dBu∜	dBu₹	d₿	
1	0.154	35.01	0.18	10.78	45.97	65.78	-19.81	QP
2	0.154	20.33	0.18	10.78	31.29	55.78	-24.49	Average
3	0.186	30.40	0.16	10.76	41.32	64.20	-22.88	QP
4	0.421	16.52	0.12	10.73	27.37	47.42	-20.05	Average
5	0.555	29.14	0.12	10.76	40.02	56.00	-15.98	QP
1 2 3 4 5 6 7 8 9	0.555	19.43	0.12	10.76	30.31	46.00	-15.69	Average
7	2.371	27.59	0.15	10.94	38.68		-17.32	
8	3.740	17.16	0.18	10.90	28.24	46.00	-17.76	Average
	4.202	30.81	0.19	10.88	41.88		-14.12	
10	5.993	16.17	0.23	10.82	27.22	50.00	-22.78	Average
11	6.454	31.96	0.24	10.81	43.01		-16.99	
12	15.635	13.79	0.31	10.90	25.00	50.00	-25.00	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

Product name:	LTE Smart phone	Product model:	A6L-G
Test by:	YT	Test mode:	BLE Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

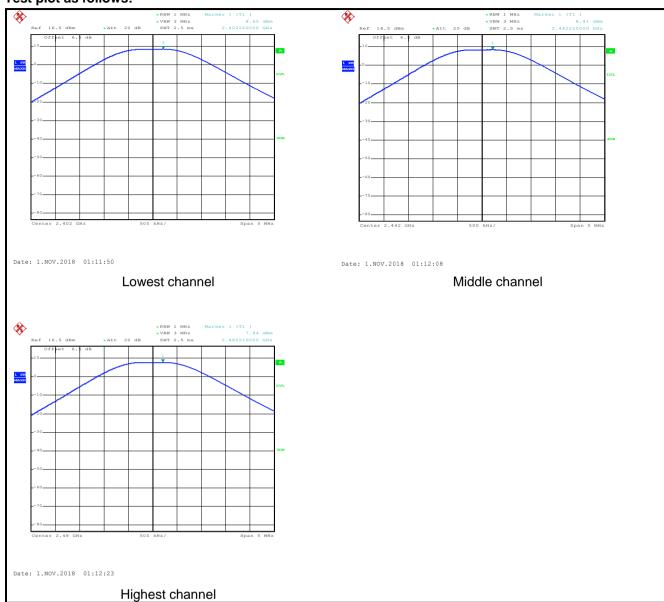
en		

emark.	Freq	Read Level	LISN Factor	Cable Loss		Limit Line	Over Limit	Remark
	MHz	dBu∜	<u>dB</u>	<u>d</u> B	dBu₹	dBu∇	<u>dB</u>	
1	0.150	36.23	0.99	10.78	48.00	66.00	-18.00	QP
1 2 3 4 5 6 7 8	0.154	24.11	0.98	10.78	35.87	55.78	-19.91	Average
3	0.474	15.48	0.97	10.75	27.20	46.45	-19.25	Average
4	0.510	26.06	0.97	10.76	37.79	56.00	-18.21	QP
5	2.144	18.52	0.98	10.95	30.45	46.00	-15.55	Average
6	2.358	31.25	0.98	10.94	43.17	56.00	-12.83	QP
7	3.565	34.70	1.00	10.90	46.60	56.00	-9.40	QP
8	3.840	23.36	1.00	10.89	35.25	46.00	-10.75	Average
	5.390	20.67	1.01	10.84	32.52	50.00	-17.48	Average
10	5.623	33.01	1.01	10.83	44.85	60.00	-15.15	QP
11	15.307	31.79	0.89	10.90	43.58	60.00	-16.42	QP
12	15.718	18.96	0.87	10.90	30.73	50.00	-19.27	Average

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Cable Loss.

6.3 Conducted Output Power


Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)				
Test Method:	ANSI C63.10:2013 and KDB 558074				
Limit:	30dBm				
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane				
Test Instruments:	Refer to section 5.8 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				

Measurement Data:

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	8.65		
Middle	8.41	30.00	Pass
Highest	7.84		

Test plot as follows:

6.4 Occupy Bandwidth

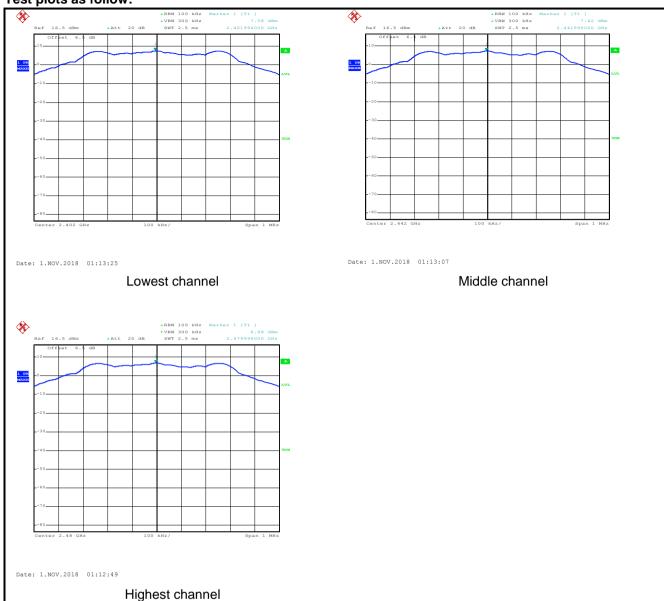
Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.726		
Middle	0.726	>500	Pass
Highest	0.720		
Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	Lowest 1.044		
Middle	1.050	N/A	N/A
Highest	1.050		

Test plot as follows:

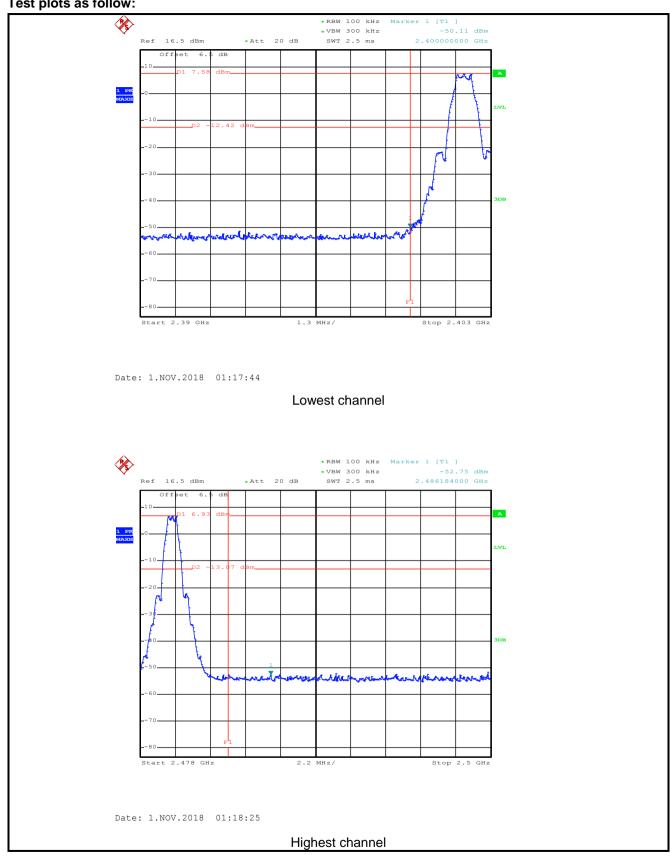
6.5 Power Spectral Density


Test Requirement:	FCC Part 15 C Section 15.247 (e)					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Limit:	8 dBm					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data:

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	7.58		
Middle	7.42	8.00	Pass
Highest	Highest 6.88		

Test plots as follow:


6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

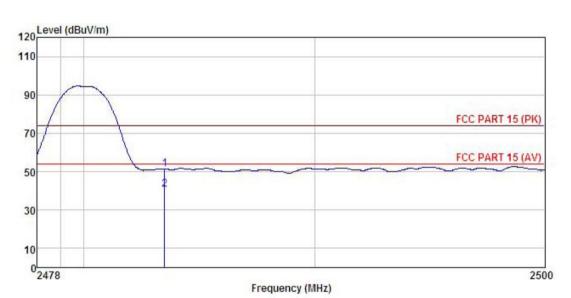
6.6.2 Radiated Emission Method

<u>0.0.2</u>	.o.z Radiated Emission Method							
	Test Requirement:	FCC Part 15 C Section 15.205 and 15.209						
	Test Method:	ANSI C63.10:	2013 and	KDE	3 558074			
	Test Frequency Range:	2.3GHz to 2.5	GHz					
	Test Distance:	3m						
	Receiver setup:	Frequency	Detecto	or RBW		VBW		Remark
		Above 1GHz	Peak		1MHz		MHz	Peak Value
	11. %		RMS		1MHz		MHz I	Average Value
	Limit:	Frequer	_	LIII	nit (dBuV/m @3 54.00			Remark verage Value
		Above 10	GHz		74.00			Peak Value
	Test potuni	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data 						
	Test setup:	AE (T	EUT Lumtable) Test Re		Horn Antenna Reference Plane Pre- Amptifer Contr	Antenna T	Tower S	
	Test Instruments:	Refer to section	on 5.8 for d	letail	S			
	Test mode:	Refer to section 5.3 for details						
	Test results:	Passed						
		İ.						

Product Name:	L	TE Smart p	hone		P	Product Model:		A6L-0	A6L-G	
Гest By:	Y	YT Test mode: BLE Tx mode Lowest channel Polarization: Vertical			Т	est mode	est mode: BLE Tx mode			
Test Channel:	L				Polarization:			Vertical		
Test Voltage:	P	C 120/60H	Z		E	nvironme	ent:	Temp	o: 24℃ Huni: 57%	
120L	Level (dBuV/n	n)								
110										
110										
90-										
30									[]	
70								FCC	PART 15 (PK)	
, ,								500	2007.45	
50	~~~	man	man	~~~~	v~~~	num	~~~ ^	THE I	PART 15 (AV)	
	1 (8)							7		
30										
10	-									
0	2310 2320	`		2350					2404	
4	2320	,			quency (MH	z)			2404	
REMAR	CK.	: Read	Ant enna	Cable	Preamn		Limit	Over		
	Fre	q Level								
		Iz dBuV		<u>dB</u>	<u>d</u> B	dBuV/m	dBuV/m	<u>d</u> B		
1	2390.00	0 17.61	27.37	4.69	0.00	49.67	74.00	-24.33	Peak	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.


Product Name:	LTE Smart phone Product Model:		lel:	A6L-G									
Test By:	YT			Tes	t mode:		BLE Tx m	node					
Test Channel:	Lowest cha	annel		Pol	Polarization:			Horizontal			Horizontal		
Test Voltage:	AC 120/60	Hz		Env	vironment	t:	Temp: 24	\mathbb{C}	Huni: 57%				
	•												
120 Level (d	BuV/m)		-										
110													
									0				
90									<i>f</i> \				
							FC	C PART 15	(PK)				
70							rc	CDADTAG	ALA				
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~	~~~~	~~~	FC	C PART 15	(AV)				
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	·····	~~~~	مرسررت	Luxu-vi	~~~	FC	C PART 15	(AV)				
		····	~~~~	~~~~	\	~~~	FC	C PART 15	AV)				
30	· · · · · · · · · · · · · · · · · · ·	~~~	~~~	~~~	\	~~~	FC	C PART 15	(AV)				
50 30 10		· · · · · · · · · · · · · · · · · · ·	~~~~		L	~~~	FC	PART 15					
30	2320	mm	2350 Fre	0 equency (M	NHZ)	~~~	FC	C PART 15	2404				
30 10 0 2310	2320	······			IHz)		FC	PART 151					
30 10 0 2310 REMARK	2320 : Re	adAntenna el Factor	Fre Cable	equency (M		Limit Line	Over		2404				
30 10 0 2310 REMARK	2320 : Re Freq Lev		Cable Loss	Preamp Factor		Line	Over Limit	Remark	2404				

Remark.

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE Smart phone	Product Model:	A6L-G
Test By:	YT	Test mode:	BLE Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

REMARI	к :	Read	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor						
5	MHz	dBu∀	<u>dB</u> /m	dB	dB	dBuV/m	dBu√/m	<u>dB</u>	
1 2	2483.500 2483.500		27.57 27.57	4.81 4.81		51.51 40.85			Peak Average

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE Smart phone	Product Model:	A6L-G		
Test By:	YT Test mode:		BLE Tx mode		
Test Channel:	Highest channel	Polarization:	Horizontal		
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%		
120 Level (dBu 110 90 70 70 70 70 70 70 70 70 70 70 70 70 70	Frequence:	cy (MHz)	FCC PART 15 (PK) FCC PART 15 (AV) 2500		

Loss Factor Level

Limit

0.00 51.77 74.00 -22.23 Peak 0.00 40.83 54.00 -13.17 Average

dB dBuV/m dBuV/m

Over

Line Limit Remark

Remark:

1. Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

dB/m

27.57

27.57

Level Factor

dBuV

19.39

8.45

2483.500

2483,500

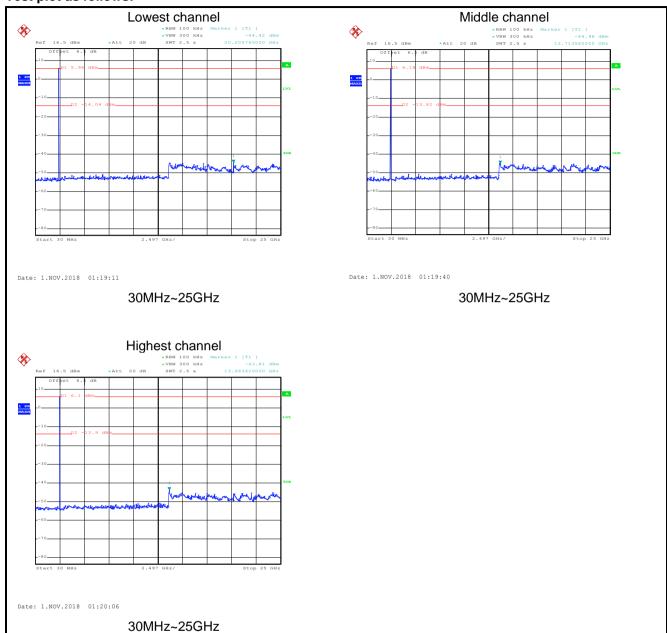
2. The emission levels of other frequencies are very lower than the limit and not show in test report.

ReadAntenna Cable Preamp

碅

4.81

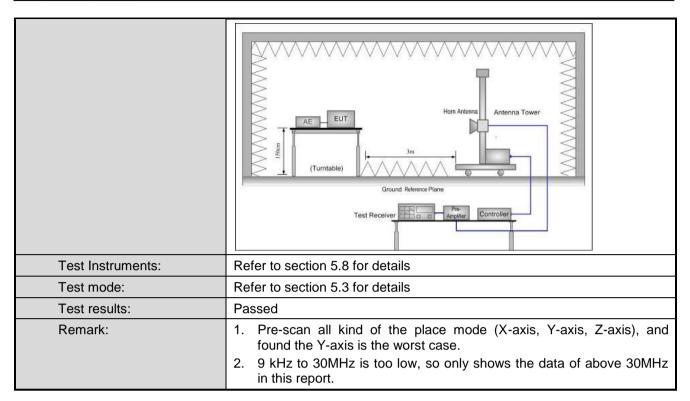
4.81


6.7 Spurious Emission

6.7.1 Conducted Emission Method

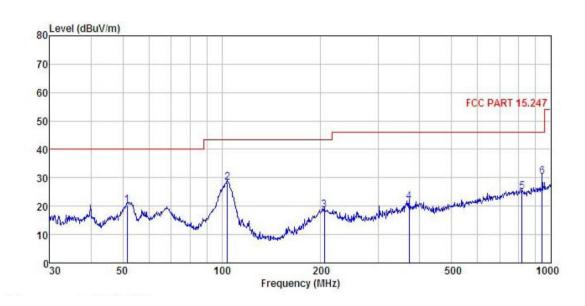
Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2013 and KDB 558074					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.8 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:



6.7.2 Radiated Emission Method

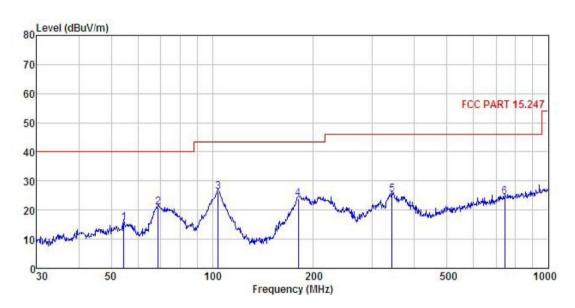
Test Requirement:	FCC Part 15 C	Section 1	5.20	5 and 15.209				
Test Method:	ANSI C63.10:2013							
Test Frequency Range:	9kHz to 25GHz	710						
Test Distance:	3m							
Receiver setup:	Frequency	Detecto	or	RBW	VB	sW	Remark	
receiver detap.	30MHz-1GHz	Quasi-pe		120KHz	300		Quasi-peak Value	
	Above 1CHz	Peak		1MHz	3M	Hz	Peak Value	
	Above 1GHz RMS 1MHz 3MHz Average Val							
Limit:	Frequency		Lir	mit (dBuV/m @	3m)		Remark	
	30MHz-88MHz 40.0 Quasi-peak Value							
	88MHz-216MHz 43.5 Quasi-peak						uasi-peak Value	
	216MHz-960N			46.0			uasi-peak Value	
	960MHz-1G	Hz		54.0			uasi-peak Value	
	Above 1GH	lz		54.0			Average Value	
Test Procedure:	1. The EUT	was nlac	od 6	74.0	f a rot	tating	Peak Value table 0.8m(below	
	The table with highest rad 2. The EUT antenna, with tower. 3. The antenrithe ground Both horizon make the minus and to find the meters and to find the meters. Specified Eight the limit specified EUT have 10 dE	was rotate iation. was set hich was na height to deter ontal and neasurem suspected hen the all the rota maximum eceiver sandwidth sion level ecified, the would be margin version.	3 mounts of the server to the	eters away funted on the trained from or the maximulical polarizate ission, the Enna was turned ling. In Maximum Hame EUT in peresting could be ported. Other the distance of the could be re-tested.	rom the op of a me met um valuions of to he from 0 to Pea old Moak mode stop wise the stop one be stop to the stop one stop	mine to the intervariable of the analysis degree of the wasped and elements of the control of th	3 meter camber. the position of the rference-receiving ble-height antenna our meters above the field strength. Intenna are set to anged to its worst from 1 meter to 4 es to 360 degrees ect Function and 10 dB lower than and the peak values asions that did not using peak, quasi-eported in a data	
Test setup:	Below 1GHz Turn Table Ground Plane Above 1GHz	4m 4m 0.8m 1	wm &			Antenna Search Antenn Test eiver —		



Measurement Data (worst case):

Below 1GHz:

Product Name:	LTE Smart phone	Product Model:	A6L-G
Test By:	YT	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


REMARK	: Freq		Antenna Factor			Level	Limit Line	Over Limit	Remark
	MHz	—dBu∜	<u>dB</u> /m	dB	<u>d</u> B	$\overline{dBuV/m}$	dBuV/m	dB	
1	51.481	35.07	13.83	1.27	29.81	20.36	40.00	-19.64	QP
2	104.170	43.82	11.96	1.99	29.50	28.27	43.50	-15.23	QP
3	204.955	32.87	11.70	2.86	28.80	18.63	43.50	-24.87	QP
4	370.702	32.01	14.99	3.09	28.65	21.44	46.00	-24.56	QP
2 3 4 5 6	818.834	27.68	21.12	4.29	28.12	24.97	46.00	-21.03	QP
6	942.131	31.72	22.38	4.13	27.75	30.48		-15.52	

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Product Name:	LTE Smart phone	Product Model:	A6L-G
Test By:	YT	Test mode:	BLE Tx mode
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%
	<u> </u>	·	

REMARK	:	Read.	Antenna	Cable	Preamn		Limit	Over	
	Freq		Factor			Level			Remark
-	MHz	dBu∜		<u>d</u> B	dB	$\overline{dBuV/m}$	dBuV/m	<u>d</u> B	
1	54.452	30.87	13.30	1.34	29.80	15.71	40.00	-24.29	QP
2	68.872	39.73	9.45	1.49	29.73	20.94	40.00	-19.06	QP
3	104.170	41.68	11.96	1.99	29.50	26.13	43.50	-17.37	QP
4	180.017	40.26	9.80	2.73	28.97	23.82	43.50	-19.68	QP
2 3 4 5	343.180	36.33	14.47	3.08	28.55	25.33	46.00	-20.67	QP
6	742.259	27.84	20.82	4.33	28.51	24.48	46.00	-21.52	QP

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Above 1GHz

Test channel: Lowest channel										
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	49.56	30.85	6.80	41.81	45.40	74.00	-28.60	Vertical		
4804.00	48.15	30.85	6.80	41.81	43.99	74.00	-30.01	Horizontal		
			Dete	ctor: Averag	je Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4804.00	40.15	30.85	6.80	41.81	35.99	54.00	-18.01	Vertical		
4804.00	39.65	30.85	6.80	41.81	35.49	54.00	-18.51	Horizontal		
			Test ch	nannel: Midd	le channel					
			De	tector: Peak	Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4884.00	48.95	31.20	6.86	41.84	45.17	74.00	-28.83	Vertical		
4884.00	49.47	31.20	6.86	41.84	45.69	74.00	-28.31	Horizontal		
			Dete	ctor: Averaç	je Value					
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization		
4884.00	39.26	31.20	6.86	41.84	35.48	54.00	-18.52	Vertical		
4884.00	38.51	31.20	6.86	41.84	34.73	54.00	-19.27	Horizontal		
			Toot ch	annel· Highe	et channel					

Test channel: Highest channel								
Detector: Peak Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	48.71	31.63	6.91	41.87	45.38	74.00	-28.62	Vertical
4960.00	49.53	31.63	6.91	41.87	46.20	74.00	-27.80	Horizontal
Detector: Average Value								
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	39.52	31.63	6.91	41.87	36.19	54.00	-17.81	Vertical
4960.00	38.49	31.63	6.91	41.87	35.16	54.00	-18.84	Horizontal

Remark:

^{1.} Final Level = Receiver Read level + Antenna Factor + Cable Loss - Preamplifier Factor.

^{2.} The emission levels of other frequencies are very lower than the limit and not show in test report.