Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

 Telephone:
 +86-755-26648640

 Fax:
 +86-755-26648637

 Website:
 www.cqa-cert.com

Report Template Version: V05 Report Template Revision Date: 2021-11-03

Test Report

Report No. : Applicant: Address of Applicant:	CQASZ20220100082E-01 Shenzhen DO Intelligent Technology Co., Ltd 11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China
Equipment Under Test (E	UT):
Product:	Smart Watch
Model No.:	IDW01 BT, IDW01, ColorFit Pro 3 Plus, NSW-41, NSW-42, NSW-43, NSW-44,
	NSW-45
Test Model No.:	IDW01 BT
Brand Name:	IDO
FCC ID:	2AHFT482
Standards:	47 CFR Part 15, Subpart C
Date of Receipt:	2022-01-14
Date of Test:	2022-01-14 to 2022-02-07
Date of Issue:	2022-04-11
Test Result :	PASS*

*In the configuration tested, the EUT complied with the standards specified above.

lewis 2h0u (Lewis Zhou) Tested By: wan **Reviewed By:** (Rock Huang) Approved By: (Jack Ai)

The test report is effective only with both signature and specialized stamp, The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CQA, this report can't be reproduced except in full.

PPPNV

1 Version

Revision History Of Report

Report No.	Version	Description	Issue Date
CQASZ20220100082E-01	Rev.01	Initial report	2022-04-11

2 Test Summary

Test Item	Test Requirement	Test method	Result	
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	ANSI C63.10 (2013)	PASS	
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	ANSI C63.10 (2013)	PASS	
Conducted Peak Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	ANSI C63.10 (2013)	PASS	
20dB Occupied Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS	
Carrier Frequencies Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS	
Hopping Channel Number	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS	
Dwell Time	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	ANSI C63.10 (2013)	PASS	
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	ANSI C63.10 (2013)	PASS	
Band-edge for RF Conducted Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS	
RF Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	ANSI C63.10 (2013)	PASS	
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS	
Restricted bands around fundamental frequency (Radiated Emission)	47 CFR Part 15, Subpart C Section 15.205/15.209	ANSI C63.10 (2013)	PASS	

3 Contents

1 VERSION	2
2 TEST SUMMARY	3
3 CONTENTS	4
4 GENERAL INFORMATION	
4.1 Client Information	
4.2 GENERAL DESCRIPTION OF EUT	
4.3 Additional Instructions	7
4.4 Test Environment	
4.5 DESCRIPTION OF SUPPORT UNITS	
4.6 STATEMENT OF THE MEASUREMENT UNCERTAINTY	
4.7 TEST LOCATION	
4.8 TEST FACILITY	
4.9 ABNORMALITIES FROM STANDARD CONDITIONS	
4.10 OTHER INFORMATION REQUESTED BY THE CUSTOMER	
4.11 Equipment List	
5 TEST RESULTS AND MEASUREMENT DATA	
5.1 ANTENNA REQUIREMENT	
5.2 Conducted Emissions	
5.3 CONDUCTED PEAK OUTPUT POWER	
5.4 20DB OCCUPY BANDWIDTH	
5.5 CARRIER FREQUENCIES SEPARATION	
5.6 HOPPING CHANNEL NUMBER	
5.7 DWELL TIME	
5.8 BAND-EDGE FOR RF CONDUCTED EMISSIONS	
5.9 Spurious RF Conducted Emissions 5.10 Other requirements Frequency Hopping Spread Spectrum System	
5.10 OTHER REQUIREMENTS FREQUENCY HOPPING SPREAD SPECTRUM SYSTEM	
5.11.1 Radiated Emission & Restricted Bands	
5.11.2 Transmitter Emission above 1GHz	
6 PHOTOGRAPHS - EUT TEST SETUP	
6.1 RADIATED EMISSION	
6.1 RADIATED EMISSION	
7 PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	
/ PHOTOGRAPHS - EUT CONSTRUCTIONAL DETAILS	

4 General Information

4.1 Client Information

Applicant:	Shenzhen DO Intelligent Technology Co., Ltd			
Address of Applicant:	11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China			
Manufacturer:	Shenzhen DO Intelligent Technology Co., Ltd			
Address of Manufacturer:	11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China			
Factory:	Shenzhen DO Intelligent Technology Co., Ltd			
Address of Factory:	11th Floor, 3# Building, Guole Tech Park, Lirong Road, Dalang, Longhua District, Shenzhen, China			

4.2 General Description of EUT

Product Name:	Smart Watch				
Model No.:	IDW01 BT, IDW01, ColorFit Pro 3 Plus, NSW-41, NSW-42, NSW-43,				
	NSW-44, NSW-45				
Test Model No.:	IDW01 BT				
Trade Mark:	IDO				
Software Version:	V1.00.01				
Hardware Version:	V1.1				
Operation Frequency:	2402MHz~2480MHz				
Bluetooth Version:	V5.1				
Modulation Technique:	Frequency Hopping Spread Spectrum(FHSS)				
Modulation Type:	GFSK, π/4DQPSK, 8DPSK				
Transfer Rate:	1Mbps/2Mbps/3Mbps				
Number of Channel:	79				
Hopping Channel Type:	Adaptive Frequency Hopping systems				
Product Type:	□ Mobile				
Test Software of EUT:	MainWindow				
Antenna Type:	FPC antenna				
Antenna Gain:	-0.23dBi				
Power Supply:	Li-ion battery: DC 3.8V 300mAh, Charge by DC 5V for adapter				

Note:

Model No.: IDW01 BT, IDW01, ColorFit Pro 3 Plus, NSW-41, NSW-42, NSW-43, NSW-44, NSW-45.

The model IDW01 BT was tested, their electrical circuit design, layout, components used and internal wiring are identical, only the model named is different.

Operation F	Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency	
0	2402MHz	20	2422MHz	40	2442MHz	60	2462MHz	
1	2403MHz	21	2423MHz	41	2443MHz	61	2463MHz	
2	2404MHz	22	2424MHz	42	2444MHz	62	2464MHz	
3	2405MHz	23	2425MHz	43	2445MHz	63	2465MHz	
4	2406MHz	24	2426MHz	44	2446MHz	64	2466MHz	
5	2407MHz	25	2427MHz	45	2447MHz	65	2467MHz	
6	2408MHz	26	2428MHz	46	2448MHz	66	2468MHz	
7	2409MHz	27	2429MHz	47	2449MHz	67	2469MHz	
8	2410MHz	28	2430MHz	48	2450MHz	68	2470MHz	
9	2411MHz	29	2431MHz	49	2451MHz	69	2471MHz	
10	2412MHz	30	2432MHz	50	2452MHz	70	2472MHz	
11	2413MHz	31	2433MHz	51	2453MHz	71	2473MHz	
12	2414MHz	32	2434MHz	52	2454MHz	72	2474MHz	
13	2415MHz	33	2435MHz	53	2455MHz	73	2475MHz	
14	2416MHz	34	2436MHz	54	2456MHz	74	2476MHz	
15	2417MHz	35	2437MHz	55	2457MHz	75	2477MHz	
16	2418MHz	36	2438MHz	56	2458MHz	76	2478MHz	
17	2419MHz	37	2439MHz	57	2459MHz	77	2479MHz	
18	2420MHz	38	2440MHz	58	2460MHz	78	2480MHz	
19	2421MHz	39	2441MHz	59	2461MHz			

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The Lowest channel	2402MHz
The Middle channel	2441MHz
The Highest channel	2480MHz

4.3 Additional Instructions

EUT Test Software Settings:					
Mode:	 Special software is used. Through engineering command into the engineering mode. engineering command: *#*#3646633#*#* 				
EUT Power level:	Class2 (Power level is built-in set parameters and cannot be changed and selected)				
Use test software to set the low	west frequency, the middle frequency and	the highest frequency keep			
transmitting of the EUT.	1				
Mode	Channel Frequency(MHz)				
	СН0	2402			
DH1/DH3/DH5	СН39	2441			
	CH78	2480			
	СНО	2402			
2DH1/2DH3/2DH5	СН39	2441			
	CH78	2480			
	СНО	2402			
3DH1/3DH3/3DH5	СН39	2441			
	CH78	2480			

Run Software:

BLE测试参数			BT测试参数		○ 重启动 ● 命令模式
包类型:	PRBS9	•	包类型	DM1 •	New Contraction of the Contracti
频段:	CH78:2480	•	频段:	跳频	8
功率:	0x16	•	功率:	0x10 •	当前状态: 已经连接(fla:
					香電
单载波测试参数				12	导入DAT文件 导出DAT文件
频段:	CHO:2402	-	功率:	0x0a •	导入程序补丁 导出程序补丁
则试选项		AT命令			导入DSP CODE 导出DSP_CODE
模式	发送 🔻				补丁大小为 0 dsp 大小为 0
● 测试BLE	〇 测试BT				烧录
执行	停止			输入	
				和小	写入所有内容
					读取所有内容
状态信息					版本
状态信息 28:39]:BLE测证	物行成功				СНПР

4.4 Test Environment

Operating Environment	
Temperature:	25 °C
Humidity:	54% RH
Atmospheric Pressure:	1009mbar
Test Mode:	Use test software to set the lowest frequency, the middle frequency and the highest frequency keep transmitting of the EUT.

4.5 Description of Support Units

The EUT has been tested with associated equipment below.

Description	Manufacturer	Model No.	Certification	Supplied by
Adapter	HUAWEI	HW-0502000C01	1	CQA

4.6 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate.

The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities.

The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16 - 4 "Specification for radio disturbance and immunity measuring apparatus and methods – Part 4: Uncertainty in EMC Measurements" and is documented in the **Shenzhen Huaxia Testing Technology Co., Ltd.** quality system acc. to DIN EN ISO/IEC 17025.

Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

No.	Item	Uncertainty
1	Radiated Emission (Below 1GHz)	5.12dB
2	Radiated Emission (Above 1GHz)	4.60dB
3	Conducted Disturbance (0.15~30MHz)	3.34dB
4	Radio Frequency	3×10 ⁻⁸
5	Duty cycle	0.6 %
6	Occupied Bandwidth	1.1%
7	RF conducted power	0.86dB
8	RF power density	0.74
9	Conducted Spurious emissions	0.86dB
10	Temperature test	0.8°C
11	Humidity test	2.0%
12	Supply voltages	0.5 %
13	Frequency Error	5.5 Hz

Hereafter the best measurement capability for CQA laboratory is reported:

4.7 Test Location

All tests were performed at:

Shenzhen Huaxia Testing Technology Co., Ltd.

1F., Block A of Tongsheng Technology Building, Huahui Road, Dalang Street, Longhua District, Shenzhen, China

4.8 Test Facility

The test facility is recognized, certified, or accredited by the following organizations: **IC Registration No.: 22984-1**

The 3m Semi-anechoic chamber of Shenzhen Huaxia Testing Technology Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing

The test facility is recognized, certified, or accredited by the following organizations:

• CNAS (No. CNAS L5785)

CNAS has accredited Shenzhen Huaxia Testing Technology Co., Ltd. Shenzhen Branch EMC Lab to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration Laboratories (CNAS-CL01 Accreditation Criteria for the Competence of Testing and Calibration Laboratories) for the competence in the field of testing.

• A2LA (Certificate No. 4742.01)

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory is accredited by the American Association for Laboratory Accreditation(A2LA). Certificate No. 4742.01.

• FCC Registration No.: 522263

Shenzhen Huaxia Testing Technology Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration No.:522263

4.9 Abnormalities from Standard Conditions

None.

4.10 Other Information Requested by the Customer

None.

4.11 Equipment List

			Instrument	Calibration	Calibration
Test Equipment	Manufacturer	Model No.	No.	Date	Due Date
EMI Test Receiver	R&S	ESR7	CQA-005	2021/9/10	2022/9/9
Spectrum analyzer	R&S	FSU26	CQA-038	2021/9/10	2022/9/9
		AFS4-00010300-18-10P-			
Preamplifier	MITEQ	4	CQA-035	2021/9/10	2022/9/9
		AMF-6D-02001800-29-			
Preamplifier	MITEQ	20P	CQA-036	2021/9/10	2022/9/9
Loop antenna	Schwarzbeck	FMZB1516	CQA-087	2021/9/16	2024/9/15
Bilog Antenna	R&S	HL562	CQA-011	2021/9/16	2024/9/15
Horn Antenna	R&S	HF906	CQA-012	2021/9/16	2024/9/15
Horn Antenna	Schwarzbeck	BBHA 9170	CQA-088	2021/9/16	2024/9/15
Coaxial Cable					
(Above 1GHz)	CQA	N/A	C019	2021/9/10	2022/9/9
Coaxial Cable					
(Below 1GHz)	CQA	N/A	C020	2021/9/10	2022/9/9
Antenna Connector	CQA	RFC-01	CQA-080	2021/9/10	2022/9/9
RF					
cable(9KHz~40GHz)	CQA	RF-01	CQA-079	2021/9/10	2022/9/9
Power divider	MIDWEST	PWD-2533-02-SMA-79	CQA-067	2021/9/10	2022/9/9
EMI Test Receiver	R&S	ESPI3	CQA-013	2021/9/10	2022/9/9
LISN	R&S	ENV216	CQA-003	2021/9/10	2022/9/9
Coaxial cable	CQA	N/A	CQA-C009	2021/9/10	2022/9/9

5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement:	47 CFR Part 15C Section 15.203 /247(c)
responsible party sha antenna that uses a u so that a broken ante electrical connector is 15.247(b) (4) requirer The conducted outpu antennas with direction section, if transmitting	
(b)(2), and (b)(3) of th antenna exceeds 6 d	nis section, as appropriate, by the amount in dB that the directional gain of the Bi.
EUT Antenna:	
The antenna is FPC	antenna. The best case gain of the antenna is -0.23dBi.

5.2 Conducted Emissions

 Conducted Emissio					
Test Requirement:	47 CFR Part 15C Section 15.2	207			
Test Method:	ANSI C63.10: 2013				
Test Frequency Range:	150kHz to 30MHz				
Limit:		Limit (c	lBuV)		
	Frequency range (MHz)	Quasi-peak	Average		
	0.15-0.5	66 to 56*	56 to 46*		
	0.5-5	56	46		
	5-30	60	50		
	* Decreases with the logarithn	n of the frequency.	·		
Test Procedure:	 The mains terminal disturbation of the EUT was connected to a second LIS reference plane in the same measured. A multiple sock power cables to a single Lie exceeded. The tabletop EUT was place ground reference plane. An placed on the horizontal grade on the horizontal grade on the horizontal grade on the tabletop EUT was placed on the horizontal grade on the tell shall be 0.4 m for the EUT shall be 0.4 m for the EUT shall be 0.4 m for the EUT and associated excertion of the grade on the closest points the EUT and associated excertional grade on the closest points the EUT and associated excertional grade on the maximum equipment and all of the in ANSI C63.10: 2013 on control on the place on the closest points the EUT and associated excertion of the grade on the maximum equipment and all of the in ANSI C63.10: 2013 on control on the place on the closest points the EUT and associated excertion of the grade on the maximum equipment and all of the in ANSI C63.10: 2013 on control on the place on t	b AC power source thro etwork) which provides bles of all other units of SN 2, which was bonde he way as the LISN 1 for set outlet strip was used ISN provided the rating ced upon a non-metalling of floor-standing ar round reference plane, th a vertical ground ref from the vertical ground ref from the vertical ground ref from the vertical ground blane was bonded to the 1 was placed 0.8 m from to a ground reference and reference plane. The s of the LISN 1 and the quipment was at least 0 im emission, the relative terface cables must be	bugh a LISN 1 (Line a $50\Omega/50\mu$ H + 5Ω line f the EUT were d to the ground or the unit being d to connect multiple g of the LISN was not c table 0.8m above the rangement, the EUT we ference plane. The read d reference plane for LISNs his distance was EUT. All other units of	near ne was ar e ne	
Test Setup:	Shielding Room	AE UISN2 + AC Ma Ground Reference Plane	Test Receiver		

Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of
	data type at the lowest, middle, high channel.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation at the lowest channel is the worst case. Only the worst case is recorded in the report.
Test Voltage:	AC 120V/60Hz
Test Results:	Pass

Measurement Data

7

8

10

11

12

Remark:

9 PP

1.205

1.205

1.835

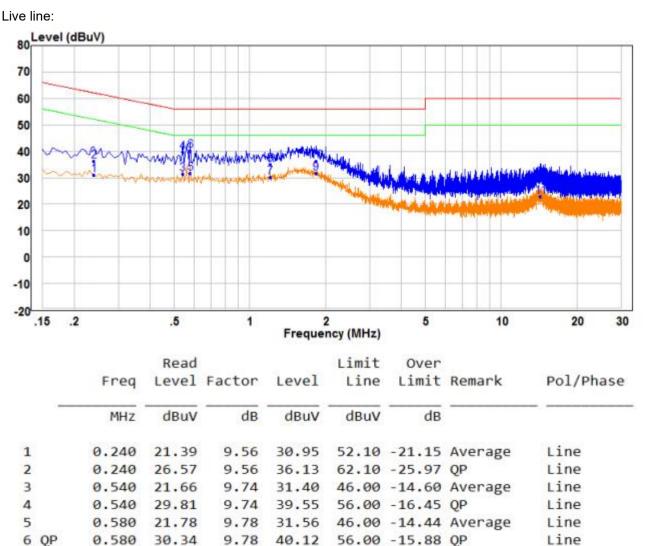
1.835

14.345

14.345

20.06

24.82


20.17

24.93

13.08

19.69

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

Page:15 of 90

3. If the Peak value under Average limit, the Average value is not recorded in the report.

1. The following Quasi-Peak and Average measurements were performed on the EUT:

10.22

10.22

11.40

11.40

9.75

9.75

30.28

35.04

31.57

36.33

22.83

29.44

46.00 -15.72 Average

46.00 -14.43 Average

50.00 -27.17 Average

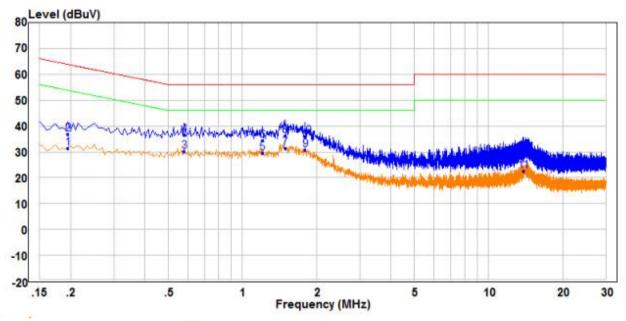
56.00 -20.96 QP

56.00 -19.67 QP

60.00 -30.56 QP

Line Line

Line


Line

Line

Line

Neutral line:

		Freq	Read Level	Factor	Level	Limit Line	Over Limit	Remark	Pol/Phase
		MHz	dBuV	dB	dBuV	dBuV	dB		
1		0.195	21.86	9.62	31.48	53.82	-22.34	Average	Neutral
2		0.195	27.13	9.62	36.75	63.82	-27.07	QP	Neutral
3		0.580	20.45	9.78	30.23	46.00	-15.77	Average	Neutral
4	QP	0.580	26.65	9.78	36.43	56.00	-19.57	QP	Neutral
5		1.205	19.79	9.71	29.50	46.00	-16.50	Average	Neutral
6		1.205	24.67	9.71	34.38	56.00	-21.62	QP	Neutral
7	PP	1.490	21.63	9.72	31.35	46.00	-14.65	Average	Neutral
8		1.490	26.59	9.72	36.31	56.00	-19.69	QP	Neutral
9		1.800	20.97	9.74	30.71	46.00	-15.29	Average	Neutral
10		1.800	26.23	9.74	35.97	56.00	-20.03	QP	Neutral
11		13.880	12.68	9.77	22.45	50.00	-27.55	Average	Neutral
12		13.880	20.34	9.77	30.11	60.00	-29.89	QP	Neutral

Remark:

1. The following Quasi-Peak and Average measurements were performed on the EUT:

2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

3. If the Peak value under Average limit, the Average value is not recorded in the report.

5.3 Conducted Peak Output Power

Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)					
· ·						
Test Method:	ANSI C63.10:2013					
Test Setup:	Spectrum Analyzer F.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=Cable loss+ attenuation factor.					
Limit:	21dBm					
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type					
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type. Only the worst case is recorded in the report.					
Test Results:	Pass					

Measurement Data

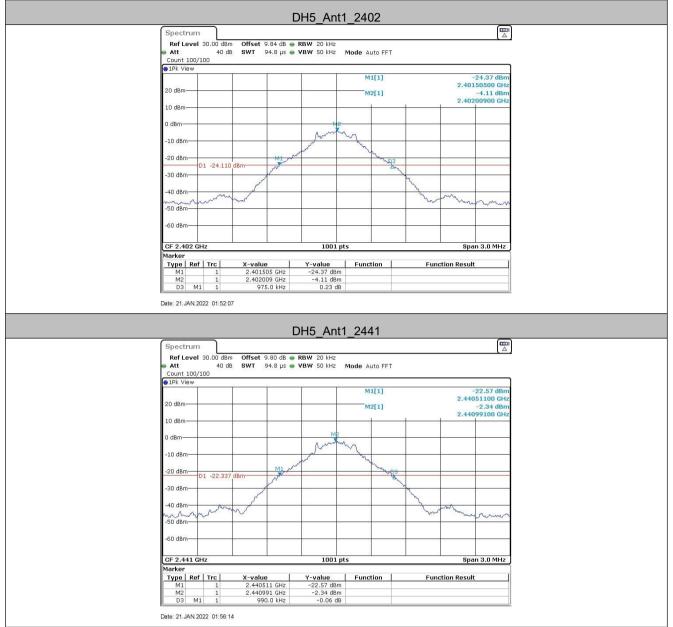
GFSK mode							
Test channel	Test channel Peak Output Power (dBm)		Result				
Lowest	-1.77	21.00	Pass				
Middle	-0.08	21.00	Pass				
Highest	1.37	21.00	Pass				
	π/4DQPSK m	ode					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest	Lowest -2.11		Pass				
Middle	-0.25	21.00	Pass				
Highest	1.08	21.00	Pass				
	8DPSK mod	le					
Test channel	Peak Output Power (dBm)	Limit (dBm)	Result				
Lowest			Pass				
Middle	Middle -0.33		Pass				
Highest	1.14	21.00	Pass				

Test plot as follows:

		DH5_/						
	Spectrum	_						
	Ref Level 30.00 dBm	Offset 9.84 dB 👄 RBW 3			(-)			
	👄 Att 40 dB SWT 1.3 μs 👄 VBW 10 MHz Mode Auto FFT							
	Count 100/100 • 1Pk View							
			M1[1]		-1.77 dBm			
			1	2.40	226370 GHz			
	20 dBm							
	10 dBm-							
			M1					
	0 dBm-		-					
	-10 dBm							
	-20 dBm							
	~20 UBII							
	-30 dBm							
	-so ubii							
	-40 dBm-							
	-50 dBm							
	-60 dBm				 			
	CF 2.402 GHz Date: 21.JAN.2022 06:43:22		Ant1 2441	spi	an 8.0 MHz _			
	Date: 21.JAN 2022 06:43:22		Ant1_2441	sp				
_	Date: 21.JAN 2022 06.43:22	DH5_/	Ant1_2441	Spe				
	Date: 21.JAN 2022 06.43.22		Ant1_2441	Spo				
	Date: 21.JAN 2022 06.43:22	DH5_/	Ant1_2441	Spa				
	Date: 21.JAN 2022 06.43.22	DH5_/	Ant1_2441 MHz MHZ Mode Auto FFT		-0.08 dBm			
	Date: 21.JAN 2022 06.43:22	DH5_/	Ant1_2441			-		
	Date: 21.JAN 2022 06.43:22	DH5_/	Ant1_2441 MHz MHZ Mode Auto FFT		-0.08 dBm			
	Date: 21, JAN 2022 06:43:22 Spectrum Ref Level 30:00 dBm Att 40 dB Count 100/100 IPk View 20 dBm	DH5_/	Ant1_2441 MHz MHZ Mode Auto FFT		-0.08 dBm			
	Date: 21.JAN 2022 06.43:22	DH5_/ Offset 9.80 dB • RBW 3 SWT 1.3 µs • VBW 10	Ant1_2441		-0.08 dBm			
	Date: 21.JAN 2022 06.43:22	DH5_/ Offset 9.80 dB • RBW 3 SWT 1.3 µs • VBW 10	Ant1_2441 MHz MHZ Mode Auto FFT		-0.08 dBm			
	Date: 21, JAN 2022 06:43:22 Spectrum Ref Level 30:00 dBm Att 40 dB Count 100/100 IPk View 20 dBm	DH5_/ Offset 9.80 dB • RBW 3 SWT 1.3 µs • VBW 10	Ant1_2441		-0.08 dBm			
	Date: 21, JAN 2022 06:43:22 Spectrum Ref Level 30.00 dBm Att Count 100/100 IPk View 20 dBm 10 dBm 0 dBm	DH5_/ Offset 9.80 dB • RBW 3 SWT 1.3 µs • VBW 10	Ant1_2441		-0.08 dBm			
	Date: 21.JAN 2022 06.43:22	DH5_/ Offset 9.80 dB • RBW 3 SWT 1.3 µs • VBW 10	Ant1_2441		-0.08 dBm			
	Date: 21, JAN 2022 06:43:22 Spectrum Ref Level 30.00 dBm Att Count 100/100 IPk View 20 dBm 10 dBm 0 dBm	DH5_/ Offset 9.80 dB • RBW 3 SWT 1.3 µs • VBW 10	Ant1_2441		-0.08 dBm			
	Date: 21.JAN 2022 06.43.22	DH5_/ Offset 9.80 dB • RBW 3 SWT 1.3 µs • VBW 10	Ant1_2441		-0.08 dBm			
	Date: 21.JAN 2022 06.43.22	DH5_/ Offset 9.80 dB • RBW 3 SWT 1.3 µs • VBW 10	Ant1_2441		-0.08 dBm			
	Date: 21.JAN 2022 06.43:22	DH5_/ Offset 9.80 dB • RBW 3 SWT 1.3 µs • VBW 10	Ant1_2441		-0.08 dBm			
	Date: 21.JAN 2022 06.43:22	DH5_/ Offset 9.80 dB • RBW 3 SWT 1.3 µs • VBW 10	Ant1_2441		-0.08 dBm			
	Dete: 21.JAN 2022 06.43.22	DH5_/ Offset 9.80 dB • RBW 3 SWT 1.3 µs • VBW 10	Ant1_2441		-0.08 dBm			
	Dete: 21.JAN 2022 06.43.22	DH5_/ Offset 9.80 dB • RBW 3 SWT 1.3 µs • VBW 10	Ant1_2441		-0.08 dBm			
	Date: 21.JAN 2022 06.43:22	DH5_/ Offset 9.80 dB • RBW 3 SWT 1.3 µs • VBW 10	Ant1_2441		-0.08 dBm			
	Date: 21.JAN 2022 06.43:22	DH5_/ Offset 9.80 dB • RBW 3 SWT 1.3 µs • VBW 10	Ant1_2441		-0.08 dBm			
	Dete: 21.JAN 2022 06.43:22	DH5_/ Offset 9.80 dB • RBW 3 SWT 1.3 µs • VBW 10	Ant1_2441		-0.08 dBm			
	Dete: 21.JAN 2022 06.43:22	DH5_/	Ant1_2441	2.44	-0.08 dBm			

3DH5_Ant1_2480
Spectrum
Ref Level 30.00 dBm Offset 9.80 dB RBW 3 MH≥ Att 40 40 SWT 1.3 µs VBW 10 MHz Mode Auto FFT Count 100/100 100 100 100 100 100
IPk View
20 dBm 1.14 dBm 2.47961640 GHz
10 dBm-
0 dBm
-10 dBm
-20 dBm
-40 dBm-
-50 dBm
-60 dBm-
CF 2.48 GHz 1001 pts Span 8.0 MHz
Date: 21.JAN 2022 06:47:27

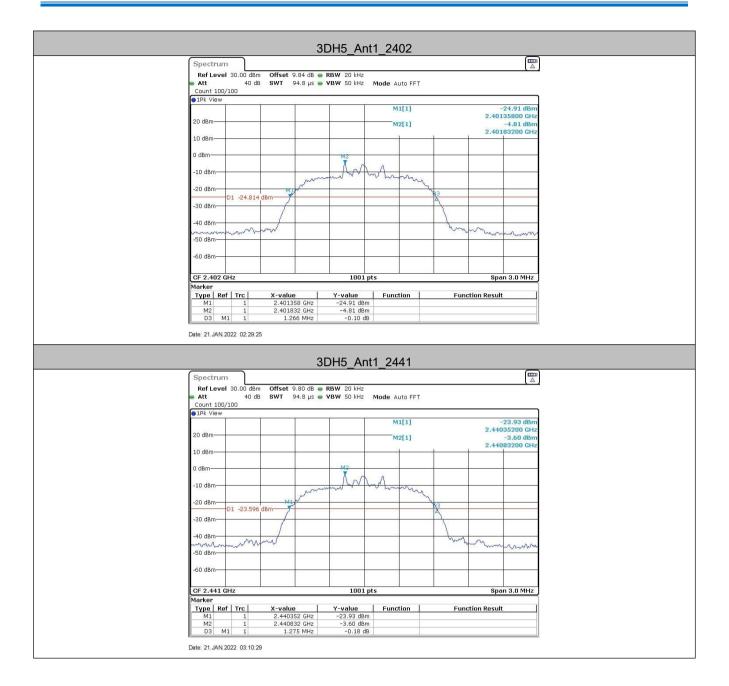
5.4 20dB Occupy Bandwidth

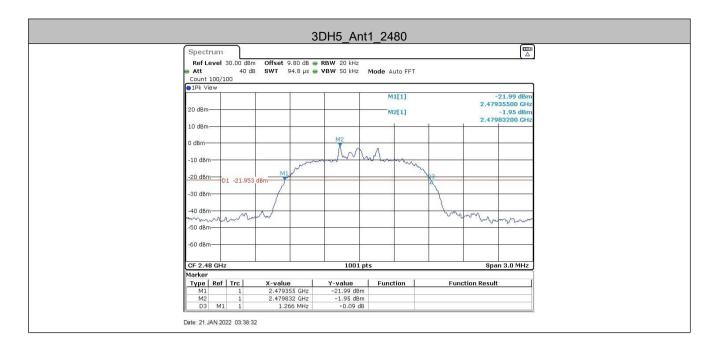

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)					
Test Method:	ANSI C63.10:2013					
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
	Remark: Offset=Cable loss+ attenuation factor.					
Limit:	NA					
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type					
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type. Only the worst case is recorded in the report.					
Test Results:	Pass					

Measurement Data

Test channel	20dB Occupy Bandwidth (MHz)				
rest channel	GFSK	π/4DQPSK	8DPSK		
Lowest	0.975	1.266	1.266		
Middle	0.990	1.278	1.275		
Highest	0.984	1.260	1.266		

Test plot as follows:



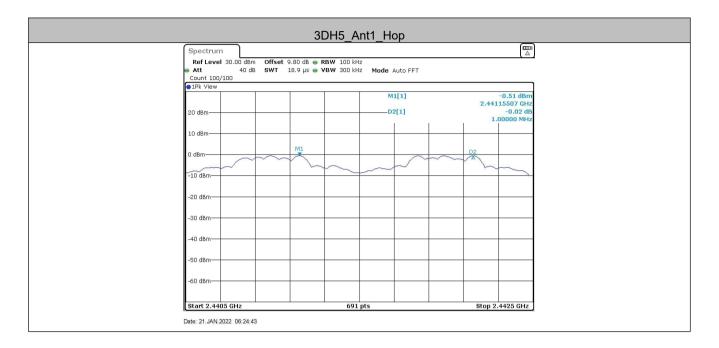


5.5 Carrier Frequencies Separation

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
	Remark: Offset=Cable loss+ attenuation factor.
Limit:	2/3 of the 20dB bandwidth
	Remark: the transmission power is less than 0.125W.
Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type. Only the worst case is recorded in the report.
Test Results:	Pass

Measurement Data

TestMode	Antenna	Channel	Result[dBm]	Limit[dBm]	Verdict
DH5	Ant1	Нор	0.849	≥0.66	PASS
2DH5	Ant1	Нор	1.148	≥0.852	PASS
3DH5	Ant1	Нор	1	≥0.850	PASS

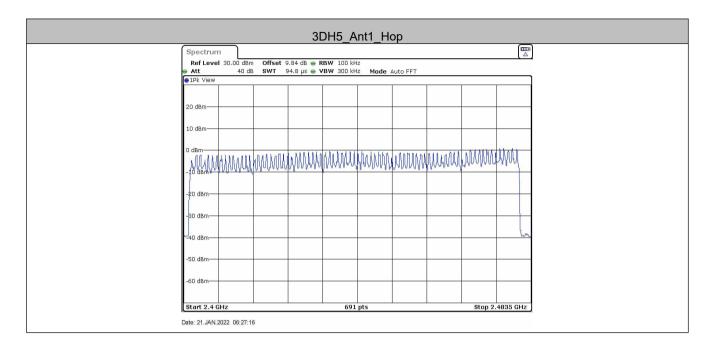

Mode	20dB bandwidth (MHz) (worse case)	Limit (MHz) (Carrier Frequencies Separation)
GFSK	0.99	0.66
π/4DQPSK	1.278	0.852
8DPSK	1.275	0.85

Test plot as follows:

5.6 Hopping Channel Number

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane Remark: Offset=Cable loss+ attenuation factor.
Limit:	At least 15 channels
Exploratory Test Mode:	hopping transmitting with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type. Only the worst case is recorded in the report.
Test Results:	Pass

Measurement Data


Mode	Hopping channel numbers	Limit
GFSK	79	≥15
π/4DQPSK	79	≥15
8DPSK	79	≥15

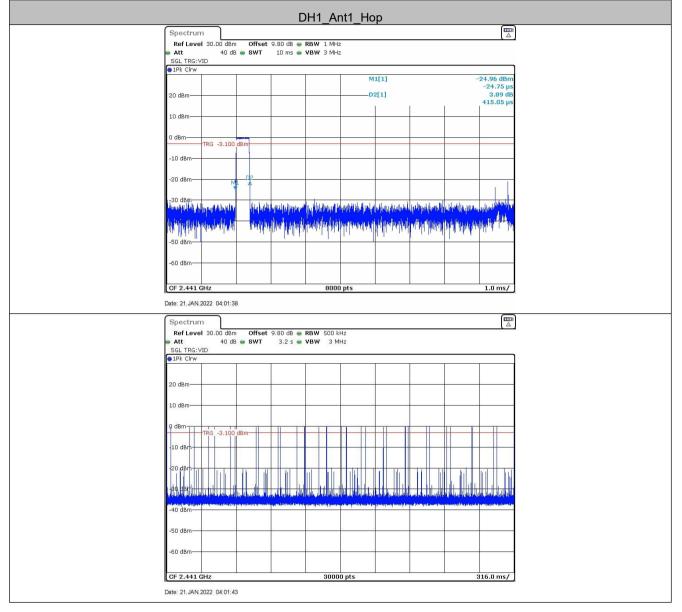
Test plot as follows:

			D	H5_Ar	nt1_Ho	р					
Spectr	um vel 30.00 dBr	n Offent (9.84 dB 🖷 R	BW 100 PH	7				[
Att IPk Vii	40 di	B SWT	94.8 µs 🖷 🎙	BW 300 kH	z Mode /	Auto FFT				-	
										1	
20 dBm-										-1	
10 dBm-	-									_	
0 dBm-									# D 0 D 0		
nn n	106414441	hannanna.	teranta)	111111		(ANDALAAA)	MIMI		WY I.		
-10 dBh	WWWW				WWWW	MANA		ANTANNA	MARIA		
-20 dBm										-	
-90 dBm	-	2	-							_	
40 dBm										~~	
-50 dBm				-							
-60 dBm		-								-	
Start 2	4 GHz			691	pts			Stop 2.	4835 GH	z	
Date: 21.J	N.2022 04:00:2	15									
Date: 21,J	N.2022 04:00:2	5									
		5	2[DH5_A	nt1_Ho	ор					
Spectr	um vel 30.00 dBr	n Offset 9				ор			[
Spectr	um vel 30.00 dBr 40 dl	n Offset 9	2[9.84 dB • F 94.8 µs • V	BW 100 kH	z				['		
Spectr Ref Lt Att	um vel 30.00 dBr 40 dl	n Offset 9	9.84 dB 🖷 R	BW 100 kH	z				[
Spectr Ref Lt Att	um vel 30.00 dBr 40 dl	n Offset 9	9.84 dB 🖷 R	BW 100 kH	z				[1		
Spectr RefLe Att 1Pk Vi	um vel 30.00 dBr 40 dl	n Offset 9	9.84 dB 🖷 R	BW 100 kH	z				[
Spectr RefLc Att 10 dBm- 10 dBm-	um vel 30.00 dBr 40 dl	n Offset 9 3 SWT 9	9.84 dB 🖷 R 94.8 µs 🖷 V	BW 100 kH	z Mode a	Auto FFT					
Spectr RefLc Att 10 dBm- 10 dBm-	um vel 30.00 dBr 40 dl	n Offset 9 3 SWT 9	9.84 dB 🖷 R 94.8 µs 🖷 V	BW 100 kH	z Mode a	Auto FFT	4MMM	WWW			
Spectr RefLc Att 10 dBm- 10 dBm-	um vel 30.00 dBr 40 dl	n Offset 9 3 SWT 9	9.84 dB 🖷 R 94.8 µs 🖷 V	BW 100 kH	z Mode a	Auto FFT	AMMAA	MMMM			
Spectr RefLc Att 10 dBm- 10 dBm-	um vel 30.00 dBr 40 dl	n Offset 9 3 SWT 9	9.84 dB 🖷 R 94.8 µs 🖷 V	BW 100 kH	z Mode a	Auto FFT	MMM	WWW			
Specta RefLa Att 1Pk Vii 20 dBm- 10 dBm- -10 dBm	um vel 30.00 dBr 40 dl	n Offset 9 3 SWT 9	9.84 dB 🖷 R 94.8 µs 🖷 V	BW 100 kH	z Mode a	Auto FFT	AMMAA	WWW			
Spectr RefLa Att 1Pk Vi 20 dBm- 10 dBm -t0 dBm -t0 dBm -t0 dBm -t0 dBm -t0 dBm -t0 dBm	um vel 30.00 dBr 40 dl	n Offset 9 3 SWT 9	9.84 dB 🖷 R 94.8 µs 🖷 V	BW 100 kH	z Mode a	Auto FFT	4/11/11/1	MMM			
Spectr RefLa Att 1Pk Vi 20 dBm- 0 dBm- 0 dBm- -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm	um vel 30.00 dBr 40 dl	n Offset 9 3 SWT 9	9.84 dB 🖷 R 94.8 µs 🖷 V	BW 100 kH	z Mode a	Auto FFT	400000 10000000000000000000000000000000	AMMM (M			
Spectr RefLa Att 1Pk Vi 20 dBm- 10 dBm -t0 dBm -t0 dBm -t0 dBm -t0 dBm -t0 dBm -t0 dBm	um vel 30.00 dBr 40 dl	n Offset 9 3 SWT 9	9.84 dB 🖷 R 94.8 µs 🖷 V	BW 100 kH	z Mode a	Auto FFT	MMM				
Spectr RefLa Att 1Pk Vi 20 dBm- 0 dBm- 0 dBm- -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm	um vel 30.00 dBr 40 dl	n Offset 9 3 SWT 9	9.84 dB 🖷 R 94.8 µs 🖷 V	BW 100 kH	z Mode a	Auto FFT	4/WUUU				
Spectr Ref La Att 1Pk Vi 20. dBm- 10 dBm- -10 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm -20 dBm	um	n Offset 9 3 SWT 9	9.84 dB 🖷 R 94.8 µs 🖷 V	BW 100 kH	z Mode /	Auto FFT	4/WUUU				

5.7 Dwell Time

Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Method:	ANSI C63.10:2013
Test Setup:	Spectrum Analyzer E.U.T Non-Conducted Table
	Ground Reference Plane
	Remark: Offset=Cable loss+ attenuation factor.
Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type.
Limit:	0.4 Second
Test Results:	Pass

Measurement Data


TestMode	Antenna	Channel	BurstWidth [ms]	TotalHops [Num]	Result[s]	Limit[s]	Verdict
DH1	Ant1	Нор	0.42	320	0.133	≤0.4	PASS
DH3	Ant1	Нор	1.58	200	0.315	≤0.4	PASS
DH5	Ant1	Нор	2.61	90	0.235	≤0.4	PASS
2DH1	Ant1	Нор	0.42	330	0.14	≤0.4	PASS
2DH3	Ant1	Нор	1.62	180	0.291	≤0.4	PASS
2DH5	Ant1	Нор	2.61	120	0.313	≤0.4	PASS
3DH1	Ant1	Нор	0.43	330	0.142	≤0.4	PASS
3DH3	Ant1	Нор	1.41	200	0.282	<u>≤</u> 0.4	PASS
3DH5	Ant1	Нор	2.61	100	0.261	<u>≤</u> 0.4	PASS

Remark:

The test period: T= 0.4 Second/Channel x 79 Channel = 31.6 s

Test plot as follows:

				-		. 44 1 1 -				
	<u> </u>			L	DH3_Ar	101_H0	р			
	Spectrur Ref Leve		Offset	9.80 dB 👄	RBW 1 MHz					
	Att	40 dB			VBW 3 MHz					
	SGL TRG:\ 1Pk Clrw	/ID								
						М	L[1]		-	23.06 dBm
	20 dBm					D:	[1]			-23.50 μs 3.35 dB
								1 1	1	.57520 ms
	10 dBm									
	0 dBm									
		TRG -3.100	dBm							
	-10 dBm									
	00.40-			D2						
	-20 dBm—			Î						
	-30 dBm-				. fuel de	No. 20 La La	na an il an	1 1	the fact	i var in Luci
	un phairte	h Hala Maha hak		al and a	10 million for the	ed bed about the	a fairling for the	la per la partal	a markada ave	th House the se
	1 May Bang May	Po O DWARD		, interest		and a start of the	hénekhané	NUM POINT	Apply A	INTERPORT
	-50 dBm	l la r		1.0	I ÜV	I. I	ll i n	I i t	a K F i	14C
	-60 dBm									
l	CF 2.441				8000	pts				1.0 ms/
I	Date: 21.JAN.	2022 06:08:4	7							
	Spectrur	n								
		30.00 dBm			RBW 500 k					
	Att SGL TRG: \		swi	3.2 s 🖷	VBW 3 M	-12				
	●1Pk Clrw	1						1		
	20 dBm			6.	-					
	10 d8m				5	2 5				
	10 dBm				-5	<u></u>				
	10 dBm	The 2 100	d0m	11						
	0 dBm	TRG -3.100	dBm							
		TRG -3.100	dBm-							
	0 dBm	-TRG -3.100	dBm-							
	0 dBm -10 dBm -20 dBm	-TRG -3.100	dBm-							
	0 dBm	-TRG -3.100								uranda kaja jujury. Kaj
	0 dBm -10 dBm -20 dBm -30 dBm	-TRG -3.100								
	0 dBm -10 dBm -20 dBm	-TRG -3.100	dBm-			a the galance for a feature				
	0 dBm -10 dBm -20 dBm -30 dBm	TRG -3.100								
	0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm	-TRG -3.100	dBm			a the difference of the second				
	0 dBm -10 dBm -20 dBm -30 dBm -40 dBm	TRG -3.100				Teathalasa				undh ite i (195. V
	0 dBm -10 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm				3000	pts				16.0 ms/
	0 dBm -10 dBm -20 dBm -20 dBm -30 dBm -40 dBm -50 dBm -60 dBm -60 dBm					D pts				16.0 ms/