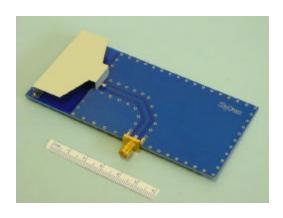
Applicant: Itronix Corporation FCC ID: KBCIX600-MC75

Antenna Information

Internal and External WAN Antenna Information

FCC ID: KBCIX600-MC75


Antenna Model	Antenna Part No.	Frequency (MHz)	Antenna Type	Antenna Gain (dBi)
Internal Skycross WAN	59-0479-001	806 - 960	Meander Line Antenna	3.8
Internal Skycross WAN	59-0479-001	1710-1990	Meander Line Antenna	-0.3
External MaxRad	BMLPVDB800/1900	806 - 960	Low profile vertical	3
External MaxRad	BMLPVDB800/1900	1710-1990	Low profile vertical	3

Note: Data sheets are available for both antennas.

Antenna Products

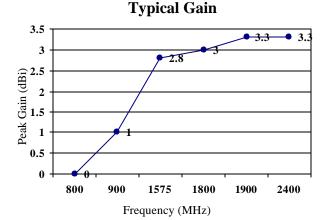
800 - 2500 MHz Ultra-Wideband Antenna for PCMCIA Applications

Features

- Ultra-wideband Antenna
- Ideal for Multi-mode Applications in a PCMIA Form Factor Including:
 - Cellular
 - GSM
 - PCS
 - GPS
 - WLAN/Bluetooth

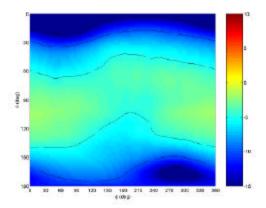
This Ultra-wideband antenna is designed using SkyCross' patented Meander Line Antenna (MLA) technology, providing superior efficiency and gain directivity in a small package. This antenna enables integration of six different popular frequency bands into one device for PCMCIA applications.

Electrical Specifications*			
Frequency Range	824 — 2500 MHz		
VSWR	< 2:1 across entire band		
Polarization	Linear		
Azimuth Pattern	Omni-directional across entire band		
Feed Impedance	50 Ohms unbalanced		
*Antenna measurements taken on 2 x 4 inch ground plane			

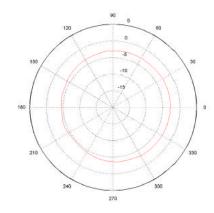

Mechanical Specifications

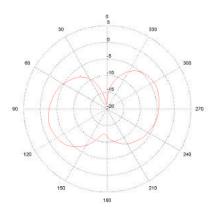
Size † 50 W x 28 L x 8 H mm

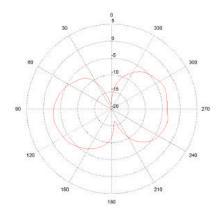
1.97 W x 1.1 L x 0.32 H in


Weight 4.2g

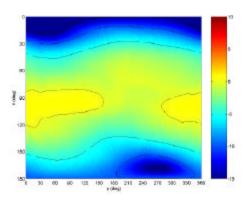
†does not include 2 x 4.4 inch ground plane



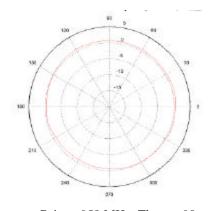

Spherical Gain Contour Map and Typical Gain Patterns at 860 MHz


Spherical Gain Contour Map at 860 MHz

Gain at 860 MHz, Theta = 90

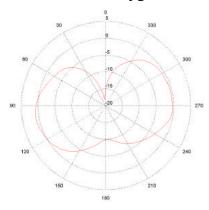


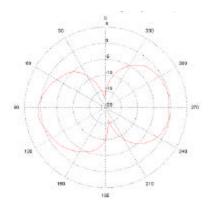
Gain at 860 MHz, Phi =0



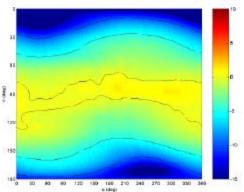
Gain at 860 MHz, Phi = 90

Spherical Gain Contour Maps and Typical Gain Pattern at 950 MHz

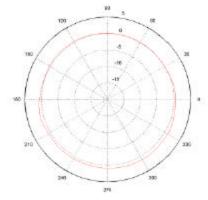

Spherical Gain Contour Map at 950 MHz


Gain at 950 MHz, Theta = 90 MHz

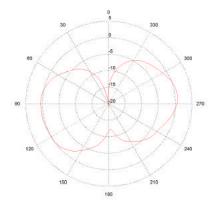
Typical Gain Patterns at 950 MHz

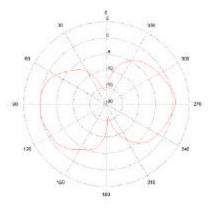


Gain at 950 MHz, Phi = 0

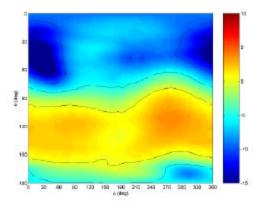


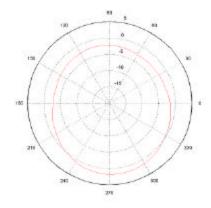
Gain at 950 MHz, Phi = 90

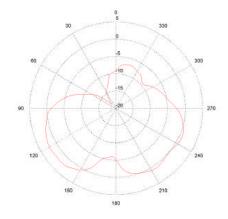

Spherical Gain Contour Maps and Typical Gain Pattern at 1580 MHz

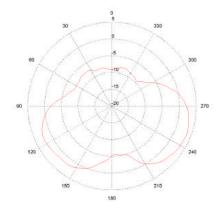

Spherical Gain Contour Map at 1580 MHz

Gain at 1580 MHz, Theta = 90

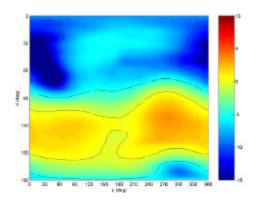

Gain at 1580 MHz, Phi = 0


Gain at 1580 MHz, Phi = 90

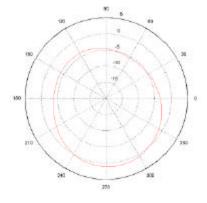

Spherical Gain Contour Map and Typical Gain Patterns at 1800 MHz


Spherical Gain Contour Map at 1800 MHz

Gain at 1800 MHz, Theta = 90

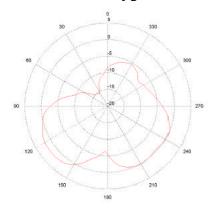


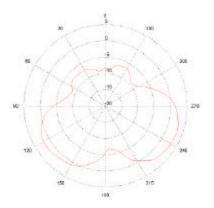
Gain at 1800 MHz, Phi = 0



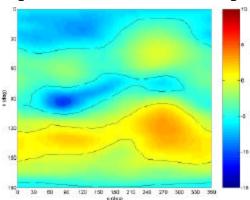
Gain at 1800 MHz, Phi = 90

Spherical Gain Contour Map and Typical Gain Pattern at 1900 MHz

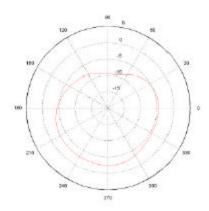

Spherical Gain Contour Map at 1900 MHz


Gain at 1900 MHz, Theta = 90

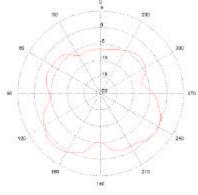
Typical Gain Patterns at 1900 MHz

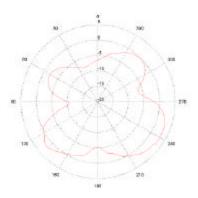


Gain at 1900 MHz, Phi = 0



Gain at 1900 MHz, Phi = 90


Spherical Gain Contour Map and Typical Gain Pattern at 2450 MHz


Spherical Gain Contour Map at 2450 MHz

Gain at 2450 MHz, Theta = 90

Gain at 2450 MHz, Phi = 0

Gain at 2450 MHz, Phi = 90

© 2002 SkyCross, Inc. SkyCross is a trademark of SkyCross, Inc. All rights reserved. Protected by one or more US Patents, in cluding No. 5,790,080. Additional US and Foreign patents pending. Specifications subject to change without notice.

REV.	REF.	DESCRIPTION	INPUT BY	DATE
A	2760	Release	G.WOOD	7/9/02

NOTICE OF PROPRIETARY INFORMATION

Information contained herein is proprietary and is the property of Itronix Corporation. Where furnished with a proposal, the recipient shall use it solely to evaluate the proposal. Where furnished to a customer, it shall be used solely for purposes of inspection, installation, or maintenance. Where furnished to a supplier, it shall be used solely in the performance of work contracted by this company. The information shall not be used or disclosed by the recipient for any other purpose whatsoever.

APPROVALS		ITRONIX CORPORATION S. 801 STEVENS AVE. P.O. BOX 0179 SPOKANE, WA 99210-0179
ORIGINATOR	DATE	PART DESCRIPTION:
Mike Decker	6/27/02	
ENGINEERING	DATE	ANTENNA, QUAD BAND, GPRS, CDMA
CHECKER	DATE	
MANUFACTURING	DATE	Drawing Number
JOHN E. HENNESSY	02-14-03	46-0115-000
PURCHASING	DATE	
		PAGE 1 OF 3

1.0 **DESCRIPTION**:

800/900 Mhz, PCS Low Profile Vertical (MLPV) Antenna. (Covers cellular and GSM, ISM, DCS and PCS frequencies.)

2.0 APPLICABLE DOCUMENTS AND REFERENCES:

MANUFACTURER'S SPECIFICATION: MaxRad Website:

http://www.maxrad.com/

Datasheet: R:\D46\Datasheets\Maxrad mlpvdb.pdf

3.0 **MECHANICAL REQUIREMENTS**:

- 3.1 Height (For Reference Only): 2.5"
- 3.2 Radiator Material: Solid Brass
- 3.3 Mounting (For Reference Only): Compatable with various mobile mounts (consult factory for more information.)
- 3.4 Weight: 0.29 lbs. (0.13kg)
- 3.5 Colors: black or white

4.0 **ELECTRICAL REQUIREMENTS**:

- 4.1 VSWR: <1.5:1 and <2:1
- 4.2 Nominal Impedance: 50Ω
- 4.3 Antenna Type: Quad-band low profile vertical
- 4.4 Operating Frequency Range: 806 to 960Mhz and 1710 to 1990MHz
- 4.5 Gain: 3dBi
- 4.7 Maximum Power: 150 W

5.0 ENVIRONMENTAL REQUIREMENTS:

- 5.1 Temperature: -40° C to $+85^{\circ}$ C
- 5.2 Humidity: 0% to 100% Relative Humidity

6.0 **SAFETY REQUIREMENTS**: N/A

7.0 **MARKING REQUIREMENTS**:

The bulk shipping container must bear the Manufacturer's name and part number.

8.0 **PACKAGING REQUIREMENTS**:

Packaging of components shall be such that no damage will occur to the component during shipment.

9.0 **ACCEPTABILITY REQUIREMENTS**:

These units must meet inspection requirements.

10.0 MANUFACTURER AND MANUFACTURER'S PART NUMBER:

See Section 9.0 for a list of parts included.

Part Number	Manufacturer	Manufacturer's Part Number
46-0115-001	MaxRad	BMLPVDB800/1900

Figure 1: Antenna Likeness (For Reference Only)

REV.	REF.	DESCRIPTION	INPUT BY	DATE
A	2390	RELEASE	S. HOUCK	11/06/01

NOTICE OF PROPRIETARY INFORMATION

Information contained herein is proprietary and is the property of Itronix Corporation. Where furnished with a proposal, the recipient shall use it solely to evaluate the proposal. Where furnished to a customer, it shall be used solely for purposes of inspection, installation, or maintenance. Where furnished to a supplier, it shall be used solely in the performance of work contracted by this company. The information shall not be used or disclosed by the recipient for any other purpose whatsoever.

APPROVALS		ITRONIX CORPORATION S. 801 STEVENS AVE. P.O. BOX 0179 SPOKANE, WA 99210-0179
ORIGINATOR Duane Radmer	DATE	PART DESCRIPTION:
ENGINEERING	11/02/01 DATE	VEHICLE ANTENNA ¾" MAGNETIC MOUNT, LMR195
CHECKER	DATE	
MANUFACTURING JOHN HENNESSY	DATE 04-16-02	Drawing Number 46-0103-000
OVERT ELECTRICAL	04 10-02	PAGE 1 OF 3

1.0 **DESCRIPTION:**

Vehicle Antenna, ³/₄" Magnetic Mount, LMR195 coax. (Similar to the 46-0065-XXX.)

2.0 APLLICABLE DOCUMENTS AND REFERENCES:

MANUFACTURER'S SPECIFICATION: CUSTOM

MaxRad Website: http://www.maxrad.com

3.0 MECHANICAL REQUIREMENTS:

- 3.1 Length of Coax: 17'
- 3.2 Connector: FME
- 3.3 Adapter: -001: FME, male to TNC, male adapter

-002: -001 with a FME male to SMA male adapter

- 3.4 Connector Type: Solder
- 3.5 Connector Diameter and Thread Size: $\frac{3}{4}$ " Hole; $1-\frac{1}{8}$ "-18 Thread
- 3.6 Physical Representation: See Figure 1.

4.0 **ELECTRICAL REQUIREMENTS:**

The coax shall be of the LMR195 type.

5.0 **ENVIRONMENTAL REQUIREMENTS:**

- 5.1 Temperature: -40° C to $+85^{\circ}$ C
- 5.2 Humidiy: 0% to 100% Relative Humidity

6.0 **SAFETY REQUIREMENTS:** N/A

7.0 **MARKING REQUIREMENTS:**

The bulk shipping container must bear the Manufacturer's name and part number.

8.0 **PACKAGING REQUIREMENTS:**

Packaging of components shall be such that no damage will occur to the component during shipment.

9.0 **ACCEPTABILITY REQUIREMENTS:**

These units must meet inspection requirements. The mount bag should contain 17 feet of LMR195 coax with an antenna mount on one end and an FME connector on the other end. Adapters will be in the bag as specified in Section 3.3.

10.0 MANUFACTURER AND MANUFACTURER'S PART NUMBER:

See Section 9.0 for a list of parts included.

Part Number	Manufacturer	Manufacturer's Part Number
46-0103-001	MaxRad	Z1300
46-0103-002	MaxRad	Z1383

Figure 1: Physical Representation Magnetic Antenna Mount Connector