Client : UL Certificate No: Z17-97243 ### CALIBRATION CERTIFICATE Object **DAE3 - SN: 427** Calibration Procedure(s) FF-Z11-002-01 Calibration Procedure for the Data Acquisition Electronics (DAEx) Calibration date: December 04, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)℃ and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |------------------------|---------|------------------------------------------|-----------------------| | Process Calibrator 753 | 1971018 | 27-Jun-17 (CTTL, No.J17X05859) | June-18 | Calibrated by: Name **Function** Yu Zongying **SAR Test Engineer** Reviewed by: Lin Hao SAR Test Engineer Approved by: Qi Dianyuan SAR Project Leader Issued: December 05, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Glossary: DAE data acquisition electronics Connector angle information used in DASY system to align probe sensor X to the robot coordinate system. ### **Methods Applied and Interpretation of Parameters:** - DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range. - Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required. - The report provide only calibration results for DAE, it does not contain other performance test results. Certificate No: Z17-97243 Page 2 of 3 ### **DC Voltage Measurement** A/D - Converter Resolution nominal | Calibration Factors | X | Y | Z | |---------------------|-----------------------|-----------------------|-----------------------| | High Range | 404.078 ± 0.15% (k=2) | 403.232 ± 0.15% (k=2) | 404.034 ± 0.15% (k=2) | | Low Range | 3.95413 ± 0.7% (k=2) | 3.99137 ± 0.7% (k=2) | 3.99992 ± 0.7% (k=2) | ### **Connector Angle** | Connector Angle to be used in DASY system | 183° ± 1 ° | |-------------------------------------------|------------| |-------------------------------------------|------------| Certificate No: Z17-97243 Page 3 of 3 Client UL Certificate No: Z17-97242 ### **CALIBRATION CERTIFICATE** Object EX3DV4 - SN:7383 Calibration Procedure(s) FF-Z11-004-01 Calibration Procedures for Dosimetric E-field Probes Calibration date: December 14, 2017 This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3) $^{\circ}$ C and humidity<70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | |-------------------------|-------------|------------------------------------------|-----------------------| | Power Meter NRP2 | 101919 | 27-Jun-17 (CTTL, No.J17X05857) | Jun-18 | | Power sensor NRP-Z91 | 101547 | 27-Jun-17 (CTTL, No.J17X05857) | Jun-18 | | Power sensor NRP-Z91 | 101548 | 27-Jun-17 (CTTL, No.J17X05857) | Jun-18 | | Reference10dBAttenuator | 18N50W-10dB | 13-Mar-16(CTTL,No.J16X01547) | Mar-18 | | Reference20dBAttenuator | 18N50W-20dB | 13-Mar-16(CTTL, No.J16X01548) | Mar-18 | | Reference Probe EX3DV4 | SN 7464 | 12-Sep-17(SPEAG,No.EX3-7464_Sep17) | Sep-18 | | DAE4 | SN 549 | 13-Dec-16(SPEAG, No.DAE4-549_Dec16) | Dec -17 | | DAE4 | SN 1524 | 13-Sep-17(SPEAG, No.DAE4-1524_Sep17 | 7) Sep -18 | | Secondary Standards | ID# | Cal Date(Calibrated by, Certificate No.) | Scheduled Calibration | | SignalGeneratorMG3700A | 6201052605 | 27-Jun-17 (CTTL, No.J17X05858) | Jun-18 | | Network Analyzer E5071C | MY46110673 | 13-Jan-17 (CTTL, No.J17X00285) | Jan -18 | | | Name | Function | Signature | | Calibrated by: | Yu Zongying | SAR Test Engineer | and the | | Reviewed by: | Lin Hao | SAR Test Engineer | 林光 | | Approved by: | Qi Dianyuan | SAR Project Leader | 30 | | | | | | Issued: December 16, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: Z17-97242 Glossary: TSL tissue simulating liquid NORMx,y,z sensitivity in free space ConvF sensitivity in TSL / NORMx,y,z DCP diode compression point CF crest factor (1/duty\_cycle) of the RF signal modulation dependent linearization parameters Polarization $\Phi$ $\Phi$ rotation around probe axis Polarization $\theta$ $\theta$ rotation around an axis that is in the plane normal to probe axis (at measurement center), i $\theta$ =0 is normal to probe axis Connector Angle information used in DASY system to align probe sensor X to the robot coordinate system Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from hand-held and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" ### Methods Applied and Interpretation of Parameters: - NORMx,y,z: Assessed for E-field polarization $\theta$ =0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the $E^2$ -field uncertainty inside TSL (see below ConvF). - NORM(f)x,y,z = NORMx,y,z\* frequency\_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF. - DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media. - PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics. - Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode. - ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z\* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz. - Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna. - Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required. - Connector Angle: The angle is assessed using the information gained by determining the NORMX (no uncertainty required). Certificate No: Z17-97242 Page 2 of 11 # Probe EX3DV4 SN: 7383 Calibrated: December 14, 2017 Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!) Certificate No: Z17-97242 ### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7383 ### **Basic Calibration Parameters** | | Sensor X | Sensor Y | Sensor Z | Unc (k=2) | |-------------------------|----------|----------|----------|-----------| | $Norm(\mu V/(V/m)^2)^A$ | 0.39 | 0.49 | 0.52 | ±10.0% | | DCP(mV) <sup>B</sup> | 98.4 | 97.4 | 100.3 | | ### **Modulation Calibration Parameters** | UID | Communication System Name | | A<br>dB | B<br>dBõV | С | D<br>dB | VR<br>mV | Unc <sup>E</sup><br>(k=2) | |------|---------------------------|---|---------|-----------|-----|---------|----------|---------------------------| | 0 CW | 0 | X | 0.0 | 0.0 | 1.0 | 0.00 | 139.8 | ±4.3% | | | | Υ | 0.0 | 0.0 | 1.0 | | 158.2 | | | | | Z | 0.0 | 0.0 | 1.0 | | 169.0 | | The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%. <sup>B</sup> Numerical linearization parameter: uncertainty not required. Certificate No: Z17-97242 A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6). <sup>&</sup>lt;sup>E</sup> Uncertainly is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value. ### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7383 ### Calibration Parameter Determined in Head Tissue Simulating Media | f [MHz] <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 41.9 | 0.89 | 10.56 | 10.56 | 10.56 | 0.40 | 0.75 | ±12.1% | | 835 | 41.5 | 0.90 | 10.09 | 10.09 | 10.09 | 0.11 | 1.54 | ±12.1% | | 900 | 41.5 | 0.97 | 10.22 | 10.22 | 10.22 | 0.26 | 0.96 | ±12.1% | | 1810 | 40.0 | 1.40 | 8.30 | 8.30 | 8.30 | 0.26 | 0.98 | ±12.1% | | 1900 | 40.0 | 1.40 | 8.34 | 8.34 | 8.34 | 0.25 | 0.96 | ±12.1% | | 2100 | 39.8 | 1.49 | 8.42 | 8.42 | 8.42 | 0.20 | 1.09 | ±12.1% | | 2300 | 39.5 | 1.67 | 8.14 | 8.14 | 8.14 | 0.27 | 1.07 | ±12.1% | | 2450 | 39.2 | 1.80 | 7.55 | 7.55 | 7.55 | 0.25 | 1.35 | ±12.1% | | 2600 | 39.0 | 1.96 | 7.59 | 7.59 | 7.59 | 0.36 | 0.96 | ±12.1% | | 3500 | 37.9 | 2.91 | 7.24 | 7.24 | 7.24 | 0.50 | 0.90 | ±13.3% | | 3700 | 37.7 | 3.12 | 6.96 | 6.96 | 6.96 | 0.57 | 0.84 | ±13.3% | | 5200 | 36.0 | 4.66 | 5.85 | 5.85 | 5.85 | 0.35 | 1.45 | ±13.3% | | 5300 | 35.9 | 4.76 | 5.55 | 5.55 | 5.55 | 0.35 | 1.55 | ±13.3% | | 5500 | 35.6 | 4.96 | 5.25 | 5.25 | 5.25 | 0.35 | 1.65 | ±13.3% | | 5600 | 35.5 | 5.07 | 5.03 | 5.03 | 5.03 | 0.35 | 1.80 | ±13.3% | | 5800 | 35.3 | 5.27 | 5.15 | 5.15 | 5.15 | 0.45 | 1.50 | ±13.3% | <sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z17-97242 Page 5 of 11 F At frequency below 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>&</sup>lt;sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm$ 1% for frequencies below 3 GHz and below $\pm$ 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. ### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7383 ### Calibration Parameter Determined in Body Tissue Simulating Media | f [MHz] <sup>C</sup> | Relative<br>Permittivity <sup>F</sup> | Conductivity<br>(S/m) <sup>F</sup> | ConvF X | ConvF Y | ConvF Z | Alpha <sup>G</sup> | Depth <sup>G</sup><br>(mm) | Unct.<br>(k=2) | |----------------------|---------------------------------------|------------------------------------|---------|---------|---------|--------------------|----------------------------|----------------| | 750 | 55.5 | 0.96 | 10.60 | 10.60 | 10.60 | 0.40 | 0.90 | ±12.1% | | 835 | 55.2 | 0.97 | 10.12 | 10.12 | 10.12 | 0.20 | 1.27 | ±12.1% | | 900 | 55.0 | 1.05 | 10.20 | 10.20 | 10.20 | 0.18 | 1.32 | ±12.1% | | 1810 | 53.3 | 1.52 | 8.36 | 8.36 | 8.36 | 0.17 | 1.19 | ±12.1% | | 1900 | 53.3 | 1.52 | 8.26 | 8.26 | 8.26 | 0.16 | 1.26 | ±12.1% | | 2100 | 53.2 | 1.62 | 8.30 | 8.30 | 8.30 | 0.20 | 1.20 | ±12.1% | | 2300 | 52.9 | 1.81 | 7.98 | 7.98 | 7.98 | 0.27 | 1.46 | ±12.1% | | 2450 | 52.7 | 1.95 | 7.82 | 7.82 | 7.82 | 0.27 | 1.49 | ±12.1% | | 2600 | 52.5 | 2.16 | 7.65 | 7.65 | 7.65 | 0.36 | 1.02 | ±12.1% | | 3500 | 51.3 | 3.31 | 6.85 | 6.85 | 6.85 | 0.58 | 0.95 | ±13.3% | | 3700 | 51.0 | 3.55 | 6.78 | 6.78 | 6.78 | 0.59 | 0.89 | ±13.3% | | 5200 | 49.0 | 5.30 | 5.44 | 5.44 | 5.44 | 0.45 | 1.50 | ±13.3% | | 5300 | 48.9 | 5.42 | 5.13 | 5.13 | 5.13 | 0.43 | 1.80 | ±13.3% | | 5500 | 48.6 | 5.65 | 4.54 | 4.54 | 4.54 | 0.53 | 1.51 | ±13.3% | | 5600 | 48.5 | 5.77 | 4.42 | 4.42 | 4.42 | 0.51 | 1.68 | ±13.3% | | 5800 | 48.2 | 6.00 | 4.58 | 4.58 | 4.58 | 0.53 | 1.47 | ±13.3% | <sup>&</sup>lt;sup>c</sup> Frequency validity above 300 MHz of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is ± 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to ± 110 MHz. Certificate No: Z17-97242 Page 6 of 11 F At frequency below 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters ( $\epsilon$ and $\sigma$ ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters. <sup>&</sup>lt;sup>G</sup> Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than $\pm$ 1% for frequencies below 3 GHz and below $\pm$ 2% for the frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary. # Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22) Uncertainty of Frequency Response of E-field: ±7.4% (k=2) Page 7 of 11 Certificate No: Z17-97242 ## Receiving Pattern (Φ), θ=0° ### f=600 MHz, TEM ## f=1800 MHz, R22 Uncertainty of Axial Isotropy Assessment: ±1.2% (k=2) Note: Increased noise level was detected on Z-channel. This probe is not standard conform for SAR compliance testing if a DUT produces peak spatial SAR value smaller than 0.04 W/kg. Certificate No: Z17-97242 Page 9 of 11 ### **Conversion Factor Assessment** ### f=835 MHz, WGLS R9(H\_convF) ### f=1810 MHz, WGLS R22(H\_convF) ## **Deviation from Isotropy in Liquid** Uncertainty of Spherical Isotropy Assessment: ±3.2% (K=2) ### DASY/EASY - Parameters of Probe: EX3DV4 - SN: 7383 ### **Other Probe Parameters** | Sensor Arrangement | Triangular | |-----------------------------------------------|------------| | Connector Angle (°) | 126.5 | | Mechanical Surface Detection Mode | enabled | | Optical Surface Detection Mode | disable | | Probe Overall Length | 337mm | | Probe Body Diameter | 10mm | | Tip Length | 9mm | | Tip Diameter | 2.5mm | | Probe Tip to Sensor X Calibration Point | 1mm | | Probe Tip to Sensor Y Calibration Point | 1mm | | Probe Tip to Sensor Z Calibration Point | 1mm | | Recommended Measurement Distance from Surface | 1.4mm | Certificate No: Z17-97242 Page 11 of 11 #### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **UL (Song Shan Lake) Branch** Certificate No: D750V3-1153\_Jan16/2 ### CALIBRATION CERTIFICATE (Replacement of No:D750V3-1153\_Jan16) Object D750V3 - SN: 1153 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: January 15, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | US37292783 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | MY41092317 | 07-Oct-15 (No. 217-02223) | Oct-16 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-15 (No. EX3-7349_Dec15) | Dec-16 | | DAE4 | SN: 601 | 30-Dec-15 (No. DAE4-601_Dec15) | Dec-16 | | Secondary Standards | ID # | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Jun-18 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | Calibrated by: Name Jeton Kastrati **Function** Laboratory Technician Approved by: Katia Pokovic Technical Manager Issued: March 14, 2016 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D750V3-1153\_Jan16/2 Page 1 of 8 ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D750V3-1153\_Jan16/2 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 750 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | 3, | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.9 | 0.89 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.2 ± 6 % | 0.90 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.07 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 8.22 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.35 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 5.37 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | The following parameters and earloans from upp. | Temperature | Permittivity | Conductivity | |-------------------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.5 | 0.96 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.4 ± 6 % | 0.97 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### **SAR** result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.20 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 8.73 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.45 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 5.76 W/kg ± 16.5 % (k=2) | Certificate No: D750V3-1153\_Jan16/2 Page 3 of 8 ### Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 53.4 Ω - 2.9 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.2 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 49.6 Ω - 4.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 27.5 dB | ### General Antenna Parameters and Design | Electrical Delay (one direction) | 1.030 ns | |----------------------------------|----------| | Liounian Danay (Continue) | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-----------------| | Manufactured on | August 12, 2015 | Certificate No: D750V3-1153\_Jan16/2 ### **DASY5 Validation Report for Head TSL** Date: 15.01.2016 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1153 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.9 \text{ S/m}$ ; $\varepsilon_r = 42.2$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(10.28, 10.28, 10.28); Calibrated: 31.12.2015; Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 58.29 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 3.12 W/kg SAR(1 g) = 2.07 W/kg; SAR(10 g) = 1.35 W/kg Maximum value of SAR (measured) = 2.77 W/kg 0 dB = 2.77 W/kg = 4.42 dBW/kg ### Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 15.01.2016 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 750 MHz; Type: D750V3; Serial: D750V3 - SN: 1153 Communication System: UID 0 - CW; Frequency: 750 MHz Medium parameters used: f = 750 MHz; $\sigma = 0.97 \text{ S/m}$ ; $\varepsilon_r = 55.4$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(9.99, 9.99, 9.99); Calibrated: 31.12.2015; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.12.2015 • Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 57.29 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 3.30 W/kg SAR(1 g) = 2.2 W/kg; SAR(10 g) = 1.45 W/kg Maximum value of SAR (measured) = 2.92 W/kg 0 dB = 2.92 W/kg = 4.65 dBW/kg ### Impedance Measurement Plot for Body TSL | Dipole750 Head TSL | Target Value | | Measure Value | | Difference | | |----------------------|-----------------|-------|---------------|---------|------------|-------| | Dipole 150 Flead TSL | R(Ω) | X(jΩ) | R(Ω) | Χ(jΩ) | R(Ω) | X(jΩ) | | Impedance | 53.4 | -2.9 | 52.4 | -3.5 | -1.0 | -0.6 | | Return loss(dB) | -27.2 -27.7 | | | 1.7% | | | | Measure Date | 15-Jan-18 | | | | | | | Dipole750 Body TSL | Target Value Me | | Measur | e Value | Diffe | rence | | Dipole 130 Body 13L | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | | Impedance | 49.6 | -4.2 | 50.7 | -4.1 | 1.1 | 0.1 | | Return loss(dB) | -27.5 -27.6 | | 0.4 | 1% | | | | Measure Date | 15-Jan-18 | | | | | | ### Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Certificate No: D835V2-4d206\_Jan16/2 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **UL (Song Shan Lake) Branch** CALIBRATION CERTIFICATE (Replacement of No:D835V2-4d206\_Jan16) Object D835V2 - SN: 4d206 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: January 15, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | US37292783 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | MY41092317 | 07-Oct-15 (No. 217-02223) | Oct-16 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-15 (No. EX3-7349_Dec15) | Dec-16 | | DAE4 | SN: 601 | 30-Dec-15 (No. DAE4-601_Dec15) | Dec-16 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Jun-18 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | | | | | | | | | F | Cianaturo | Calibrated by: Name Jeton Kastrati Function Laboratory Technician Signature Approved by: Katja Pokovic Technical Manager Issued: March 14, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D835V2-4d206\_Jan16/2 Page 1 of 8 #### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** Certificate No: D835V2-4d206\_Jan16/2 e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 15 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 835 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | The following parameters and careerasies were specific | Temperature | Permittivity | Conductivity | |--------------------------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 41.5 | 0.90 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 42.0 ± 6 % | 0.93 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.37 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 9.27 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.54 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 6.05 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | The following parameters and calculations were appli | Temperature | Permittivity | Conductivity | |------------------------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 55.2 | 0.97 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 55.2 ± 6 % | 1.00 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 2.46 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 9.62 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm³ (10 g) of Body TSL | condition | | |---------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 1.61 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 6.32 W/kg ± 16.5 % (k=2) | Certificate No: D835V2-4d206\_Jan16/2 Page 3 of 8 ### Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 50.9 $\Omega$ - 3.2 j $\Omega$ | |--------------------------------------|--------------------------------| | Return Loss | - 29.7 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 47.9 Ω - 4.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 25.5 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.391 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|------------------| | Manufactured on | January 15, 2015 | Certificate No: D835V2-4d206\_Jan16/2 Page 4 of 8 #### **DASY5 Validation Report for Head TSL** Date: 15.01.2016 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d206 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 0.93$ S/m; $\varepsilon_r = 42$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(9.83, 9.83, 9.83); Calibrated: 31.12.2015; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ### Dipole Calibration for Head Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 61.46 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 3.59 W/kg SAR(1 g) = 2.37 W/kg; SAR(10 g) = 1.54 W/kg Maximum value of SAR (measured) = 3.18 W/kg 0 dB = 3.18 W/kg = 5.02 dBW/kg ### Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 15.01.2016 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 835 MHz; Type: D835V2; Serial: D835V2 - SN: 4d206 Communication System: UID 0 - CW; Frequency: 835 MHz Medium parameters used: f = 835 MHz; $\sigma = 1$ S/m; $\varepsilon_r = 55.2$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(9.73, 9.73, 9.73); Calibrated: 31.12.2015; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 4.9L; Type: QD000P49AA; Serial: 1001 • DASY52 52.8.8(1222); SEMCAD X 14.6.10(7331) ### Dipole Calibration for Body Tissue/Pin=250 mW, d=15mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 60.22 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 3.61 W/kg SAR(1 g) = 2.46 W/kg; SAR(10 g) = 1.61 W/kg Maximum value of SAR (measured) = 3.25 W/kg 0 dB = 3.25 W/kg = 5.12 dBW/kg ### Impedance Measurement Plot for Body TSL | Dipole835 Head TSL | Target | Target Value Measure Value | | e Value | Difference | | | |---------------------|----------------|----------------------------|--------|---------------|------------|------------|--| | Dipoleo33 Flead TSL | R(Ω) | Χ(jΩ) | R(Ω) | Χ(jΩ) | R(Ω) | X(jΩ) | | | Impedance | 50.9 | -3.2 | 52.9 | -1.3 | 2.0 | 1.9 | | | Return loss(dB) | -29.7 -30.2 | | | 1.6% | | | | | Measure Date | 15-Jan-18 | | | | | | | | Dipole835 Body TSL | Target Value N | | Measur | Measure Value | | Difference | | | Dipoleoso Body TSL | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | | | Impedance | 47.9 | -4.8 | 49.2 | -3.7 | 1.3 | 1.1 | | | Return loss(dB) | -25 | 5.5 | -28.3 | | 11. | 1% | | | Measure Date | 15-Jan-18 | | | | | | | ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Certificate No: D1800V2-2d212\_Jan16/2 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **UL (Song Shan Lake) Branch** CALIBRATION CERTIFICATE (Replacement of No:D1800V2-2d212\_Jan16) Object D1800V2 - SN: 2d212 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: January 11, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)$ °C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | US37292783 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | MY41092317 | 07-Oct-15 (No. 217-02223) | Oct-16 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-15 (No. EX3-7349_Dec15) | Dec-16 | | DAE4 | SN: 601 | 30-Dec-15 (No. DAE4-601_Dec15) | Dec-16 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Jun-18 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | | | Name | Function | Signature | | Calibrated by | Jeton Kastrati | Laboratory Technician | | | Calibrated by: | 00(0)) ((00)) | | | Issued: March 14, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. ### **Calibration Laboratory of** Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1800 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | The following parameters and earodiations were appri | Temperature | Permittivity | Conductivity | |------------------------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 40.1 ± 6 % | 1.38 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | Passa | **** | #### SAR result with Head TSL | SAR averaged over 1 cm³ (1 g) of Head TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.66 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.08 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.4 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | ne following parameters and calculations were appli | Temperature | Permittivity | Conductivity | |-----------------------------------------------------|-----------------|--------------|-------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 53.7 ± 6 % | 1.51 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | (MARK) | A <del>7525</del> | ### **SAR** result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.71 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.1 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.6 W/kg ± 16.5 % (k=2) | Page 3 of 8 Certificate No: D1800V2-2d212\_Jan16/2 ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 48.4 Ω - 3.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 28.7 dB | | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 44.4 Ω - 3.2 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 23.3 dB | | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.213 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-----------------| | Manufactured on | August 29, 2013 | Certificate No: D1800V2-2d212\_Jan16/2 ### **DASY5 Validation Report for Head TSL** Date: 11.01.2016 Test Laboratory: SPEAG, Zurich, Switzerland **DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d212** Communication System: UID 0 - CW; Frequency: 1800 MHz Medium parameters used: f = 1800 MHz; $\sigma = 1.38 \text{ S/m}$ ; $\varepsilon_r = 40.1$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.26, 8.26, 8.26); Calibrated: 31.12.2015; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.6 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 17.8 W/kg SAR(1 g) = 9.66 W/kg; SAR(10 g) = 5.08 W/kg Maximum value of SAR (measured) = 14.8 W/kg 0 dB = 14.8 W/kg = 11.70 dBW/kg ## Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 11.01.2016 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 1800 MHz; Type: D1800V2; Serial: D1800V2 - SN: 2d212 Communication System: UID 0 - CW; Frequency: 1800 MHz Medium parameters used: f = 1800 MHz; $\sigma = 1.51 \text{ S/m}$ ; $\varepsilon_r = 53.7$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(8.17, 8.17, 8.17); Calibrated: 31.12.2015; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 103.3 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 17.1 W/kg SAR(1 g) = 9.71 W/kg; SAR(10 g) = 5.14 W/kg Maximum value of SAR (measured) = 14.7 W/kg 0 dB = 14.7 W/kg = 11.67 dBW/kg ## Impedance Measurement Plot for Body TSL | Dipole1800 Head TSL | Targe | t Value | Measur | e Value | Diffe | rence | |-----------------------|--------------|-------------|---------------|---------|------------|-------| | Dipole 1000 Flead 13L | R(Ω) | Χ(jΩ) | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | | Impedance | 48.4 | -3.2 | 47.4 | -0.6 | -1.0 | 2.6 | | Return loss(dB) | -28 | -28.7 -31.2 | | 8.8 | 3% | | | Measure Date | 15-Jan-18 | | | | | | | Dipole1800 Body TSL | Target Value | | Measure Value | | Difference | | | Dipole 1000 Body 13L | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | | Impedance | 44.4 | -3.2 | 44.0 | -3.4 | -0.4 | -0.2 | | Return loss(dB) | -23.3 -22.6 | | <b>-</b> 2. | 8% | | | | Measure Date | 15-Jan-18 | | | | | | Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Certificate No: D1900V2-5d212\_Jan16/2 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client UL (Song Shan Lake) Branch CALIBRATION CERTIFICATE (Replacement of No:D1900V2-5d212\_Jan16) Object D1900V2 - SN: 5d212 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: January 14, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | US37292783 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | MY41092317 | 07-Oct-15 (No. 217-02223) | Oct-16 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-15 (No. EX3-7349_Dec15) | Dec-16 | | DAE4 | SN: 601 | 30-Dec-15 (No. DAE4-601_Dec15) | Dec-16 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Jun-18 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | Calibrated by: Name Value Function Laboratory Technician Approved by: Katja Pokovic Technical Manager Issued: March 14, 2016 Signature This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D1900V2-5d212\_Jan16/2 Page 1 of 8 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ## Calibration is Performed According to the Following Standards: - a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 - b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 - c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 - d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy, dz = 5 mm | | | Frequency | 1900 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | The following parameters and calculations were appro- | Temperature | Permittivity | Conductivity | |-------------------------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 40.0 | 1.40 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 38.9 ± 6 % | 1.39 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.78 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 39.0 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.12 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 20.5 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 53.3 | 1.52 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.4 ± 6 % | 1.52 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ## SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 9.94 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 39.6 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 5.25 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 20.9 W/kg ± 16.5 % (k=2) | Certificate No: D1900V2-5d212\_Jan16/2 ## Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 53.9 Ω + 5.6 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.7 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 48.0 Ω + 5.2 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.9 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.201 ns | |----------------------------------|----------| | , | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|------------------| | Manufactured on | October 21, 2014 | Certificate No: D1900V2-5d212\_Jan16/2 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 14.01.2016 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d212 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.39 \text{ S/m}$ ; $\varepsilon_r = 38.9$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.2, 8.2, 8.2); Calibrated: 31.12.2015; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.0 V/m; Power Drift = 0.07 dB Peak SAR (extrapolated) = 18.0 W/kg SAR(1 g) = 9.78 W/kg; SAR(10 g) = 5.12 W/kg Maximum value of SAR (measured) = 14.8 W/kg 0 dB = 14.8 W/kg = 11.70 dBW/kg ### Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 14.01.2016 Test Laboratory: SPEAG, Zurich, Switzerland ### DUT: Dipole 1900 MHz; Type: D1900V2; Serial: D1900V2 - SN: 5d212 Communication System: UID 0 - CW; Frequency: 1900 MHz Medium parameters used: f = 1900 MHz; $\sigma = 1.52 \text{ S/m}$ ; $\varepsilon_r = 52.4$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(8.03, 8.03, 8.03); Calibrated: 31.12.2015; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 104.2 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 17.6 W/kg SAR(1 g) = 9.94 W/kg; SAR(10 g) = 5.25 W/kg Maximum value of SAR (measured) = 15.1 W/kg 0 dB = 15.1 W/kg = 11.79 dBW/kg ### Impedance Measurement Plot for Body TSL | Dipole1900 Head TSL Target Value | | Measure Value | | Difference | | | |----------------------------------|------------------|-------------------|---------------|------------|------------|-------| | Dipole 1900 Flead TSL | R(Ω) | Χ(jΩ) | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | | Impedance | 53.9 | 5.6 | 52.6 | 4.1 | -1.3 | -1.5 | | Return loss(dB) | -23 | -23.7 -26.5 11.7% | | | 7% | | | Measure Date | 15-Jan-18 | | | | | | | Dipole1900 Body TSL | Target Value | | Measure Value | | Difference | | | Dipole 1900 Body 13L | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | | Impedance | 48.0 | 5.2 | 51.7 | 5.3 | 3.7 | 0.1 | | Return loss(dB) | -24.9 -25.3 1.6% | | <u>6</u> % | | | | | Measure Date | 15-Jan-18 | | | | | | Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Certificate No: D2450V2-977\_Jan16/2 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **UL (Song Shan Lake) Branch** CALIBRATION CERTIFICATE (Replacement of No:D2450V2-977\_Jan16) Object D2450V2 - SN: 977 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: January 14, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | US37292783 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | MY41092317 | 07-Oct-15 (No. 217-02223) | Oct-16 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-15 (No. EX3-7349_Dec15) | Dec-16 | | DAE4 | SN: 601 | 30-Dec-15 (No. DAE4-601_Dec15) | Dec-16 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Jun-18 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | Calibrated by: Michael Weber Name Function Laboratory Technician Signatur Approved by: Katja Pokovic Technical Manager Issued: March 14, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2450V2-977\_Jan16/2 Page 1 of 8 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland C Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2450V2-977\_Jan16/2 Page 2 of 8 #### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, $dy$ , $dz = 5 mm$ | | | Frequency | 2450 MHz ± 1 MHz | | #### **Head TSL parameters** The following parameters and calculations were applied. | The following parameters and edibulations were appropriate | Temperature | Permittivity | Conductivity | |------------------------------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.2 | 1.80 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.9 ± 6 % | 1.88 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.5 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 52.5 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.23 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.5 W/kg ± 16.5 % (k=2) | Body TSL parameters The following parameters and calculations were applied. | The following parameters and calculations were appli | Temperature | Permittivity | Conductivity | |------------------------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 52.7 | 1.95 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.2 ± 6 % | 2.03 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | | ### SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.2 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 51.7 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.14 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.3 W/kg ± 16.5 % (k=2) | Certificate No: D2450V2-977\_Jan16/2 Page 3 of 8 ### Appendix (Additional assessments outside the scope of SCS 0108) #### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 55.3 Ω + 5.3 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.0 dB | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 52.1 Ω + 7.0 jΩ | |--------------------------------------|-----------------| | Return Loss | - 22.9 dB | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.157 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|-------------------| | Manufactured on | December 30, 2014 | Certificate No: D2450V2-977\_Jan16/2 Page 4 of 8 ### **DASY5 Validation Report for Head TSL** Date: 14.01.2016 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 977 Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 1.88 \text{ S/m}$ ; $\varepsilon_r = 37.9$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.76, 7.76, 7.76); Calibrated: 31.12.2015; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 113.8 V/m; Power Drift = 0.06 dB Peak SAR (extrapolated) = 27.7 W/kg SAR(1 g) = 13.5 W/kg; SAR(10 g) = 6.23 W/kg Maximum value of SAR (measured) = 22.1 W/kg 0 dB = 22.1 W/kg = 13.44 dBW/kg ### Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 14.01.2016 Test Laboratory: SPEAG, Zurich, Switzerland **DUT: Dipole 2450 MHz ; Type: D2450V2; Serial: D2450V2 - SN: 977** Communication System: UID 0 - CW; Frequency: 2450 MHz Medium parameters used: f = 2450 MHz; $\sigma = 2.03$ S/m; $\varepsilon_r = 52.2$ ; $\rho = 1000$ kg/m<sup>3</sup> Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) ### DASY52 Configuration: • Probe: EX3DV4 - SN7349; ConvF(7.79, 7.79, 7.79); Calibrated: 31.12.2015; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 • DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 107.4 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 26.5 W/kg SAR(1 g) = 13.2 W/kg; SAR(10 g) = 6.14 W/kg Maximum value of SAR (measured) = 21.6 W/kg 0 dB = 21.6 W/kg = 13.34 dBW/kg ## Impedance Measurement Plot for Body TSL | Dipole2450 Head TSL | Target Value | | Measure Value | | Difference | | |---------------------|--------------|-------------|---------------|-------|------------|-------| | | R(Ω) | Χ(jΩ) | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | | Impedance | 55.3 | 5.3 | 53.5 | 6.2 | -1.8 | 0.9 | | Return loss(dB) | -23 | -23.0 -23.3 | | | 1.4% | | | Measure Date | | 15-Jan-18 | | | | | | Dipole2450 Body TSL | Target Value | | Measure Value | | Difference | | | | R(Ω) | X(jΩ) | R(Ω) | Χ(jΩ) | R(Ω) | X(jΩ) | | Impedance | 52.1 | 7.0 | 53.7 | 5.9 | 1.6 | -1.1 | | Return loss(dB) | -22.9 -23.5 | | 2.8 | 3% | | | | Measure Date | 15-Jan-18 | | | | | | Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Certificate No: D2600V2-1117\_Jan16/2 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client **UL (Song Shan Lake) Branch** CALIBRATION CERTIFICATE (Replacement of No:D2600V2-1117\_Jan16) Object D2600V2 - SN: 1117 Calibration procedure(s) QA CAL-05.v9 Calibration procedure for dipole validation kits above 700 MHz Calibration date: January 14, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature $(22 \pm 3)^{\circ}$ C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | US37292783 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | MY41092317 | 07-Oct-15 (No. 217-02223) | Oct-16 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe EX3DV4 | SN: 7349 | 31-Dec-15 (No. EX3-7349_Dec15) | Dec-16 | | DAE4 | SN: 601 | 30-Dec-15 (No. DAE4-601_Dec15) | Dec-16 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Jun-18 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | | | Name | Function | Signature | | Calibrated by: | Leif Klysner | Laboratory Technician | Seef Them | | Approved by: | Katja Pokovic | Technical Manager | MIL | Issued: March 14, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D2600V2-1117\_Jan16/2 Page 1 of 8 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates #### Glossary: TSL tiss tissue simulating liquid ConvF N/A sensitivity in TSL / NORM x,y,z not applicable or not measured ## Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005 c) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** e) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - Measurement Conditions: Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Certificate No: D2600V2-1117\_Jan16/2 Page 2 of 8 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|------------------------|-------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, $dy$ , $dz = 5 mm$ | | | Frequency | 2600 MHz ± 1 MHz | | ### **Head TSL parameters** The following parameters and calculations were applied. | The following parameters and calculations were appli- | Temperature | Permittivity | Conductivity | |-------------------------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 39.0 | 1.96 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 37.4 ± 6 % | 2.02 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | ### SAR result with Head TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 14.2 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 55.5 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.29 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.8 W/kg ± 16.5 % (k=2) | #### **Body TSL parameters** The following parameters and calculations were applied. | ne following parameters and calculations were appli | eu. | | | |--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------|------------------| | , and the second | Temperature | Permittivity | Conductivity | | Nominal Body TSL parameters | 22.0 °C | 52.5 | 2.16 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 52.4 ± 6 % | 2.18 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | Table 1 | | ### SAR result with Body TSL | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 13.8 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 54.9 W/kg ± 17.0 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 250 mW input power | 6.15 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 24.5 W/kg ± 16.5 % (k=2) | Certificate No: D2600V2-1117\_Jan16/2 Page 3 of 8 ### Appendix (Additional assessments outside the scope of SCS 0108) ### **Antenna Parameters with Head TSL** | Impedance, transformed to feed point | 49.4 Ω - 6.3 jΩ | | |--------------------------------------|-----------------|--| | Return Loss | - 24.0 dB | | ### **Antenna Parameters with Body TSL** | Impedance, transformed to feed point | 46.1 Ω - 4.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 23.8 dB | ### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.155 ns | |----------------------------------|----------| | | | After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | |-----------------|--------------------| | Manufactured on | September 10, 2015 | Certificate No: D2600V2-1117\_Jan16/2 ### **DASY5 Validation Report for Head TSL** Date: 14.01.2016 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1117 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.02 \text{ S/m}$ ; $\varepsilon_r = 37.4$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.49, 7.49, 7.49); Calibrated: 31.12.2015; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ## Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 115.3 V/m; Power Drift = 0.04 dB Peak SAR (extrapolated) = 30.2 W/kg SAR(1 g) = 14.2 W/kg; SAR(10 g) = 6.29 W/kg Maximum value of SAR (measured) = 24.0 W/kg 0 dB = 24.0 W/kg = 13.80 dBW/kg ### Impedance Measurement Plot for Head TSL ### **DASY5 Validation Report for Body TSL** Date: 14.01.2016 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 2600 MHz; Type: D2600V2; Serial: D2600V2 - SN: 1117 Communication System: UID 0 - CW; Frequency: 2600 MHz Medium parameters used: f = 2600 MHz; $\sigma = 2.18 \text{ S/m}$ ; $\varepsilon_r = 52.4$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: Probe: EX3DV4 - SN7349; ConvF(7.6, 7.6, 7.6); Calibrated: 31.12.2015; • Sensor-Surface: 1.4mm (Mechanical Surface Detection) • Electronics: DAE4 Sn601; Calibrated: 30.12.2015 Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) ## Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 108.5 V/m; Power Drift = 0.01 dB Peak SAR (extrapolated) = 28.7 W/kg SAR(1 g) = 13.8 W/kg; SAR(10 g) = 6.15 W/kg Maximum value of SAR (measured) = 23.4 W/kg 0 dB = 23.4 W/kg = 13.69 dBW/kg ### Impedance Measurement Plot for Body TSL | Dipole2600 Head TSL | Target Value | | Measure Value | | Difference | | |---------------------|------------------|-------|---------------|-------|------------|-------| | Dipole2000 Head TSL | R(Ω) | Χ(jΩ) | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | | Impedance | 49.4 | -6.3 | 53.5 | -3.6 | 4.1 | 2.7 | | Return loss(dB) | -24.0 -26.3 | | | 9.5% | | | | Measure Date | 15-Jan-18 | | | | | | | Dipole2600 Body TSL | Target Value | | Measure Value | | Difference | | | Dipole2000 Body 13L | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | | Impedance | 46.1 | -4.8 | 48.8 | -5.4 | 2.7 | -0.6 | | Return loss(dB) | -23.8 -25.0 5.2% | | | 2% | | | | Measure Date | 15-Jan-18 | | | | | | Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Certificate No: D5GHzV2-1231\_Jan16/2 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Client UL (Song Shan Lake) Branch ## CALIBRATION CERTIFICATE (Replacement of No:D5GHzV2-1231\_Jan16) Object D5GHzV2 - SN: 1231 Calibration procedure(s) QA CAL-22.v2 Calibration procedure for dipole validation kits between 3-6 GHz Calibration date: January 13, 2016 This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%. Calibration Equipment used (M&TE critical for calibration) | Primary Standards | ID# | Cal Date (Certificate No.) | Scheduled Calibration | |-----------------------------|--------------------|-----------------------------------|------------------------| | Power meter EPM-442A | GB37480704 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | US37292783 | 07-Oct-15 (No. 217-02222) | Oct-16 | | Power sensor HP 8481A | MY41092317 | 07-Oct-15 (No. 217-02223) | Oct-16 | | Reference 20 dB Attenuator | SN: 5058 (20k) | 01-Apr-15 (No. 217-02131) | Mar-16 | | Type-N mismatch combination | SN: 5047.2 / 06327 | 01-Apr-15 (No. 217-02134) | Mar-16 | | Reference Probe EX3DV4 | SN: 3503 | 31-Dec-15 (No. EX3-3503_Dec15) | Dec-16 | | DAE4 | SN: 601 | 30-Dec-15 (No. DAE4-601_Dec15) | Dec-16 | | Secondary Standards | ID# | Check Date (in house) | Scheduled Check | | RF generator R&S SMT-06 | 100972 | 15-Jun-15 (in house check Jun-15) | In house check: Jun-18 | | Network Analyzer HP 8753E | US37390585 S4206 | 18-Oct-01 (in house check Oct-15) | In house check: Oct-16 | | | Name | Function | Signature | | Calibrated by: | Jeton Kastrati | Laboratory Technician | <del></del> | | Approved by: | Katja Pokovic | Technical Manager | 2014 | Issued: March 14, 2016 This calibration certificate shall not be reproduced except in full without written approval of the laboratory. Certificate No: D5GHzV2-1231\_Jan16/2 Page 1 of 13 Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland S Schweizerischer Kalibrierdienst C Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates ### Glossary: TSL tissue simulating liquid ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured ### Calibration is Performed According to the Following Standards: a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013 b) IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 c) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz" #### **Additional Documentation:** Certificate No: D5GHzV2-1231\_Jan16/2 d) DASY4/5 System Handbook ### Methods Applied and Interpretation of Parameters: - *Measurement Conditions:* Further details are available from the Validation Report at the end of the certificate. All figures stated in the certificate are valid at the frequency indicated. - Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed point exactly below the center marking of the flat phantom section, with the arms oriented parallel to the body axis. - Feed Point Impedance and Return Loss: These parameters are measured with the dipole positioned under the liquid filled phantom. The impedance stated is transformed from the measurement at the SMA connector to the feed point. The Return Loss ensures low reflected power. No uncertainty required. - Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required. - SAR measured: SAR measured at the stated antenna input power. - SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector. - SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result. The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%. Page 2 of 13 ### **Measurement Conditions** DASY system configuration, as far as not given on page 1. | DASY Version | DASY5 | V52.8.8 | |------------------------------|----------------------------------------------------------|----------------------------------| | Extrapolation | Advanced Extrapolation | | | Phantom | Modular Flat Phantom V5.0 | | | Distance Dipole Center - TSL | 10 mm | with Spacer | | Zoom Scan Resolution | dx, dy = 4.0 mm, dz = 1.4 mm | Graded Ratio = 1.4 (Z direction) | | Frequency | 5250 MHz ± 1 MHz<br>5600 MHz ± 1 MHz<br>5750 MHz ± 1 MHz | | ### Head TSL parameters at 5250 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.9 | 4.71 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 35.3 ± 6 % | 4.61 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | | | #### SAR result with Head TSL at 5250 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.08 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 80.5 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.32 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1231\_Jan16/2 ### Head TSL parameters at 5600 MHz The following parameters and calculations were applied. | The following parameters and edicalations were appr | Temperature | Permittivity | Conductivity | |-----------------------------------------------------|-----------------|--------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.5 | 5.07 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.8 ± 6 % | 4.97 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | 2000 | | #### SAR result with Head TSL at 5600 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|----------------------------| | SAR measured | 100 mW input power | 8.42 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 83.8 W / kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.41 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 24.0 W/kg ± 19.5 % (k=2) | # Head TSL parameters at 5750 MHz The following parameters and calculations were applied. | The following parameters and salodiations were appri- | Temperature | Permittivity | Conductivity | |-------------------------------------------------------|-----------------|-----------------------|------------------| | Nominal Head TSL parameters | 22.0 °C | 35.4 | 5.22 mho/m | | Measured Head TSL parameters | (22.0 ± 0.2) °C | 34.6 ± 6 % | 5.13 mho/m ± 6 % | | Head TSL temperature change during test | < 0.5 °C | ड <del>र्मसदत्त</del> | | ## SAR result with Head TSL at 5750 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Head TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.21 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 81.7 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Head TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.33 W/kg | | SAR for nominal Head TSL parameters | normalized to 1W | 23.1 W/kg ± 19.5 % (k=2) | Page 4 of 13 Certificate No: D5GHzV2-1231\_Jan16/2 # **Body TSL parameters at 5250 MHz** The following parameters and calculations were applied. | The following parameters and calculations were applied | Temperature | Permittivity | Conductivity | |--------------------------------------------------------|-----------------|---------------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.9 | 5.36 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 47.2 ± 6 % | 5.40 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | <del>*****</del> ** | =====; | ### SAR result with Body TSL at 5250 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.66 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 76.1 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.16 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.4 W/kg ± 19.5 % (k=2) | #### Body TSL parameters at 5600 MHz The following parameters and calculations were applied. | The following parameters and schedulations were approximately | Temperature | Permittivity | Conductivity | |---------------------------------------------------------------|-----------------|--------------------|---------------------| | Nominal Body TSL parameters | 22.0 °C | 48.5 | 5.77 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.6 ± 6 % | 5.87 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | ( <del>eet</del> e | ( <del>23.21)</del> | ### SAR result with Body TSL at 5600 MHz | SAR averaged over 1 cm <sup>3</sup> (1 g) of Body TSL | Condition | | |-------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 8.10 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 80.4 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.27 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 22.5 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1231\_Jan16/2 # Body TSL parameters at 5750 MHz The following parameters and calculations were applied. | | Temperature | Permittivity | Conductivity | |-----------------------------------------|-----------------|--------------|------------------| | Nominal Body TSL parameters | 22.0 °C | 48.3 | 5.94 mho/m | | Measured Body TSL parameters | (22.0 ± 0.2) °C | 46.3 ± 6 % | 6.09 mho/m ± 6 % | | Body TSL temperature change during test | < 0.5 °C | | HERE. | ### SAR result with Body TSL at 5750 MHz | SAR averaged over 1 cm³ (1 g) of Body TSL | Condition | | |-------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 7.76 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 77.0 W/kg ± 19.9 % (k=2) | | SAR averaged over 10 cm <sup>3</sup> (10 g) of Body TSL | condition | | |---------------------------------------------------------|--------------------|--------------------------| | SAR measured | 100 mW input power | 2.17 W/kg | | SAR for nominal Body TSL parameters | normalized to 1W | 21.5 W/kg ± 19.5 % (k=2) | Certificate No: D5GHzV2-1231\_Jan16/2 #### Appendix (Additional assessments outside the scope of SCS 0108) #### Antenna Parameters with Head TSL at 5250 MHz | Impedance, transformed to feed point | 49.3 Ω - 5.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 24.6 dB | #### Antenna Parameters with Head TSL at 5600 MHz | Impedance, transformed to feed point | 50.5 Ω - 0.8 jΩ | |--------------------------------------|-----------------| | Return Loss | - 40.8 dB | #### Antenna Parameters with Head TSL at 5750 MHz | Impedance, transformed to feed point | $56.6 \Omega + 0.9 j\Omega$ | |--------------------------------------|-----------------------------| | Return Loss | - 24.1 dB | ### Antenna Parameters with Body TSL at 5250 MHz | Impedance, transformed to feed point | 48.6 Ω - 4.0 jΩ | | | | |--------------------------------------|-----------------|--|--|--| | Return Loss | - 27.3 dB | | | | #### Antenna Parameters with Body TSL at 5600 MHz | Impedance, transformed to feed point | 50.8 Ω + 1.4 jΩ | | | | | |--------------------------------------|-----------------|--|--|--|--| | Return Loss | - 35.7 dB | | | | | ### Antenna Parameters with Body TSL at 5750 MHz | Impedance, transformed to feed point | $56.9 \Omega + 3.0 j\Omega$ | | | | | |--------------------------------------|-----------------------------|--|--|--|--| | Return Loss | - 23.1 dB | | | | | #### **General Antenna Parameters and Design** | Electrical Delay (one direction) | 1.195 ns | |----------------------------------|----------| After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured. The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard. No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged. #### **Additional EUT Data** | Manufactured by | SPEAG | | | | | |-----------------|--------------|--|--|--|--| | Manufactured on | May 04, 2015 | | | | | Certificate No: D5GHzV2-1231\_Jan16/2 Page 7 of 13 #### **DASY5 Validation Report for Head TSL** Date: 12.01.2016 Test Laboratory: SPEAG, Zurich, Switzerland #### DUT: Dipole D5GHzV2; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1231 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 4.61$ S/m; $\epsilon_r = 35.3$ ; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 4.97$ S/m; $\epsilon_r = 34.8$ ; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 5.13$ S/m; $\epsilon_r = 34.6$ ; $\rho = 1000$ kg/m³ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(5.53, 5.53, 5.53); Calibrated: 31.12.2015, ConvF(4.99, 4.99, 4.99); Calibrated: 31.12.2015, ConvF(4.95, 4.95); Calibrated: 31.12.2015; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.12.2015 - Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001 - DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.26 V/m; Power Drift = 0.02 dB Peak SAR (extrapolated) = 29.6 W/kg SAR(1 g) = 8.08 W/kg; SAR(10 g) = 2.32 W/kg Maximum value of SAR (measured) = 18.6 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 74.04 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 33.3 W/kg SAR(1 g) = 8.42 W/kg; SAR(10 g) = 2.41 W/kg Maximum value of SAR (measured) = 19.9 W/kg # Dipole Calibration for Head Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 72.59 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 33.9 W/kg SAR(1 g) = 8.21 W/kg; SAR(10 g) = 2.33 W/kg Maximum value of SAR (measured) = 19.8 W/kg Certificate No: D5GHzV2-1231\_Jan16/2 Page 8 of 13 0 dB = 18.6 W/kg = 12.70 dBW/kg ### Impedance Measurement Plot for Head TSL Page 10 of 13 #### **DASY5 Validation Report for Body TSL** Date: 13.01.2016 Test Laboratory: SPEAG, Zurich, Switzerland DUT: Dipole 5GHz; Type: D5GHzV2; Serial: D5GHzV2 - SN: 1231 Communication System: UID 0 - CW; Frequency: 5250 MHz, Frequency: 5600 MHz, Frequency: 5750 MHz Medium parameters used: f = 5250 MHz; $\sigma = 5.4$ S/m; $\epsilon_r = 47.2$ ; $\rho = 1000$ kg/m³, Medium parameters used: f = 5600 MHz; $\sigma = 5.87$ S/m; $\epsilon_r = 46.6$ ; $\rho = 1000$ kg/m³, Medium parameters used: f = 5750 MHz; $\sigma = 6.09$ S/m; $\varepsilon_r = 46.3$ ; $\rho = 1000 \text{ kg/m}^3$ Phantom section: Flat Section Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011) #### DASY52 Configuration: - Probe: EX3DV4 SN3503; ConvF(4.85, 4.85, 4.85); Calibrated: 31.12.2015, ConvF(4.35, 4.35); Calibrated: 31.12.2015, ConvF(4.3, 4.3, 4.3); Calibrated: 31.12.2015; - Sensor-Surface: 1.4mm (Mechanical Surface Detection) - Electronics: DAE4 Sn601; Calibrated: 30.12.2015 - Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002 - DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372) # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5250 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 67.92 V/m; Power Drift = -0.04 dB Peak SAR (extrapolated) = 29.1 W/kg SAR(1 g) = 7.66 W/kg; SAR(10 g) = 2.16 W/kg Maximum value of SAR (measured) = 17.4 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5600 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 68.32 V/m; Power Drift = -0.02 dB Peak SAR (extrapolated) = 33.8 W/kg SAR(1 g) = 8.1 W/kg; SAR(10 g) = 2.27 W/kg Maximum value of SAR (measured) = 19.3 W/kg # Dipole Calibration for Body Tissue/Pin=100mW, dist=10mm, f=5750 MHz/Zoom Scan, dist=1.4mm (8x8x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm Reference Value = 66.32 V/m; Power Drift = -0.01 dB Peak SAR (extrapolated) = 33.5 W/kg SAR(1 g) = 7.76 W/kg; SAR(10 g) = 2.17 W/kg Maximum value of SAR (measured) = 18.7 W/kg Certificate No: D5GHzV2-1231\_Jan16/2 Page 11 of 13 0 dB = 17.4 W/kg = 12.41 dBW/kg ### Impedance Measurement Plot for Body TSL | Dipole5250 Head TSL | Target Value | | Measure Value | | Difference | | |----------------------|--------------|-------|---------------|-------|------------|-------| | Dipole3230 Flead TSL | R(Ω) | Χ(jΩ) | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | | Impedance | 49.3 | -5.8 | 51.9 | -7.2 | 2.6 | -1.4 | | Return loss(dB) | -24.6 -22.8 | | | -7.5% | | | | Measure Date | 15-Jan-18 | | | | | | | Dipole5250 Body TSL | Target Value | | Measure Value | | Difference | | | | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | | Impedance | 48.6 | -4.0 | 46.9 | -2.3 | -1.7 | 1.7 | | Return loss(dB) | -27.3 | | -28.0 | | 2.6% | | | Measure Date | 15-Jan-18 | | | | | | | Dipole5600 Head TSL | Target Value | | Measure Value | | Difference | | | |----------------------|--------------|-------|---------------|-------|------------|-------|--| | Dipole3000 Flead TSL | R(Ω) | Χ(jΩ) | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | | | Impedance | 50.5 | -0.8 | 50.8 | -1.3 | 0.3 | -0.5 | | | Return loss(dB) | -40.8 -36.7 | | | 6.7 | -10.1% | | | | Measure Date | 15-Jan-18 | | | | | | | | Dipole5600 Body TSL | Target Value | | Measure Value | | Difference | | | | | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | | | Impedance | 50.8 | 1.4 | 49.8 | -1.8 | -1.1 | -3.2 | | | Return loss(dB) | -35.7 | | -35.0 | | -1.9% | | | | Measure Date | 15-Jan-18 | | | | | | | | Dipole5750 Head TSL | Target Value | | Measure Value | | Difference | | |----------------------|--------------|-------|---------------|-------|------------|-------| | Dipole3730 Flead TSL | R(Ω) | Χ(jΩ) | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | | Impedance | 56.6 | 0.9 | 56.8 | 1.5 | 0.2 | 0.6 | | Return loss(dB) | -24.1 -23.7 | | | -1.7% | | | | Measure Date | 15-Jan-18 | | | | | | | Dipole5750 Body TSL | Target Value | | Measure Value | | Difference | | | | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | R(Ω) | X(jΩ) | | Impedance | 56.9 | 3.0 | 57.3 | 3.7 | 0.4 | 0.7 | | Return loss(dB) | -23.1 | | -22.3 | | -3.4% | | | Measure Date | 15-Jan-18 | | | | | |