

FCC TEST REPORT FCC ID:2BN9J-XGACW

Applicant:	Shenzhenshi Xinxingou Technology Co.,Limited					
Address:	A1002, Furui Pavilion, No. 33, Xinzhou 9th Street, Xinhua Community, Shatou Street, Futian District, Shenzhen					
Manufacturer:	Shenzhenshi Xinxingou Technology Co.,Limited					
Address:	A1002, Furui Pavilion, No. 33, Xinzhou 9th Street, Xinhua Community, Shatou Street, Futian District, Shenzhen					
EUT:	COMPUTER CASE					
Trade Mark:	N/A					
Model Number:	XG682 XG683, XG687, XG688, XG689, XG690, XG691, XG692, XG693, XG694, XG695, XG696, XG697, XG698					
Date of Receipt:	Mar. 27, 2025					
Test Date:	Mar. 27, 2025 to Apr. 03, 2025					
Date of Report:	Apr. 03, 2025					
Prepared By:	Shenzhen DL Testing Technology Co., Ltd.					
Address:	101-201, Comprehensive Building, Tongzhou Electronics Longgang Factory Area, No.1 Baolong Fifth Road, Baolong Community, Baolong Street, Longgang District, Shenzhen, China					
Applicable Standards:	FCC CFR Title 47 Part 15 Subpart E Section 15.407 ANSI C63.10:2013 KDB 789033 D02 v02r01					
Test Result:	Pass					
Report Number:	DLE-250412003R					
Prepared (Test Engi	neer): Dimon Tan Dimonoling or): Jack Bu					
Reviewer (Supervise	or): Jack Bu					
Approved (Manager): Jade Yang					

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Shenzhen DL Testing Technology Co., Ltd.

Table of Contents

1. VERSION
2. SUMMARY OF TEST RESULTS
2.1 TEST FACILITY
2.2 MEASUREMENT UNCERTAINTY
3. GENERAL INFORMATION
3.1 GENERAL DESCRIPTION OF EUT 8
3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED
3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)10
3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS 11
4. EMC EMISSION TEST
4.1 CONDUCTED EMISSION MEASUREMENT
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS
4.1.2 TEST PROCEDURE
4.1.3 DEVIATION FROM TEST STANDARD
4.1.4 TEST SETOP
4.1.6 TEST RESULT
4.2 RADIATED EMISSION MEASUREMENT 17
4.2.1 APPLICABLE STANDARD
4.2.2 CONFORMANCE LIMIT
4.2.3 MEASURING INSTRUMENTS
4.2.5 TEST PROCEDURE
4.2.6 TEST RESULT
5. POWER SPECTRAL DENSITY TEST
5.1 APPLIED PROCEDURES / LIMIT
5.2 TEST PROCEDURE
5.3 DEVIATION FROM STANDARD
5.4 TEST SETUP
5.5 EUT OPERATION CONDITIONS
5.6 TEST RESULTS
6. 26DB EMISSION BANDWIDTH & 6DB OCCUPIED BANDWIDTH
6.1 APPLIED PROCEDURES / LIMIT
6.2 TEST PROCEDURE

Table of Contents

Page

6.3 EUT OPERATION CONDITIONS	32
6.4 TEST RESULTS	33
7. MAXIMUM CONDUCTED OUTPUT POWER	37
7.1 PPLIED PROCEDURES / LIMIT	
7.2 TEST PROCEDURE	
7.3 DEVIATION FROM STANDARD	
7.4 TEST SETUP	
7.5 EUT OPERATION CONDITIONS	
7.6 TEST RESULTS	39
8. OUT OF BAND EMISSIONS	40
8.1 APPLICABLE STANDARD	
8.2 TEST PROCEDURE	40
8.3 DEVIATION FROM STANDARD	40
8.4 TEST SETUP	
8.5 EUT OPERATION CONDITIONS	41
8.6 TEST RESULTS	41
9. SPURIOUS RF CONDUCTED EMISSIONS	43
9.1 CONFORMANCE LIMIT	43
9.2 MEASURING INSTRUMENTS	43
9.3 TEST SETUP	
9.4 TEST PROCEDURE	43
9.5 TEST RESULTS	43
10. FREQUENCY STABILITY MEASUREMENT	46
10.1 LIMIT	
10.2 TEST PROCEDURES	46
10.3 TEST SETUP LAYOUT	46
10.4 EUT OPERATION DURING TEST	
10.5 TEST RESULTS	47
11. DUTY CYCLE	49
11.1 APPLIED PROCEDURES / LIMIT	49
11.2 DEVIATION FROM STANDARD	
11.3 TEST SETUP	49
11.4 EUT OPERATION CONDITIONS	

Table of Contents

Page

11.5 TEST RESULTS	50
12. ANTENNA REQUIREMENT	52
13. TEST SETUP PHOTO	53
14. EUT CONSTRUCTIONAL DETAILS	53

1. VERSION

Report No.	Version	Description	Approved
DLE-250412003R Rev.01		Initial issue of report	Apr. 03, 2025

E.

2. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.407) , Subpart E						
Standard Section	Lest Item					
15.207 (a)	AC Power Line Conducted Emission	PASS				
789033 D02 General U-NII	Duty Cycle	PASS				
15.205 (a) 15.209 (a) 15.407 (b)(4)	Radiated Emissions & Band Edge	PASS				
15.407 (e)	26dB Emission Bandwidth & 6dB Occupied Bandwidth	PASS				
15.407 (a)(3) i	Maximum Conducted Output Power	PASS				
2.1051 15.407 (b)(4) 15.407 (b)(8)	Conducted Band Edge	PASS				
15.407 (a)(3) i	Power Spectral Density	PASS				
2.1051, 15.407 (b)(4)	Conducted Emissions at Antenna Terminals	PASS				
15.203	Antenna Requirement	PASS				

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

2.1 TEST FACILITY

Shenzhen DL Testing Technology Co., Ltd. Add. : 101-201, Building C, Shuanghuan, No.8, Baoqing Roa Baolong Industrial Zone, Baolong Street, Longgang Shenzhen, Guangdong, China

FCC Test Firm Registration Number: 854456 Designation Number: CN1307 IC Registered No.: 27485 CAB identifier: CN0118

2.2 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $y \pm U$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

No.	Item	Uncertainty	
1	3m camber Radiated spurious emission(9KHz-30MHz)	U=4.5dB	
2	3m camber Radiated spurious emission(30MHz-1GHz)	U=4.8dB	
3	3m chamber Radiated spurious emission(1GHz-6GHz)	U=4.9dB	
4	3m chamber Radiated spurious emission(6GHz-40GHz)	U=5.0dB	
5	Conducted disturbance	U=3.2dB	
6	RF Band Edge	U=1.68dB	
7	RF power conducted	U=1.86dB	
8	RF conducted Spurious Emission	U=2.2dB	
9	RF Occupied Bandwidth	U=1.8MHz	
10	RF Power Spectral Density	U=1.75dB	
11	humidity uncertainty	U=5.3%	
12	Temperature uncertainty	U=0.59°C	

3. GENERAL INFORMATION

3.1 GENERAL DESCRIPTION OF EUT

Product Name:	COMPUTER CASE				
Model No.:	XG682				
Serial Model:	XG683, XG687, XG688, XG689, XG690, XG691, XG692, XG693, XG694, XG695, XG696, XG697, XG698				
Model Different .:	All the model are t is different.	All the model are the same circuit and RF module, only the model name is different.			
Sample ID	E-1				
Sample(s) Status:	Engineer sample				
	IEEE 802.11 WLAN Mode Supported	⊠ 802.11a/n			
	Data Rate	802.11a: 6/9/12/24/18/36/48/54Mbit/s; 802.11n: MCS0-MCS7;			
Product Description:	Modulation	802.11a/n: Orthogonal Frequency Division Multiplexing(OFDM)			
	Operating Frequency Range	⊠ 5745-5825 MHz for 802.11a/n (20M) ⊠ 5755-5795 MHz for 802.11n (40M)			
	Number of Channels	 ☑ 5 channels for 802.11a/n (20M) in the 5745-5825MHz band; ☑ 2 channels for 802.11n (40M) in the 5755-5795 MHz band; 			
Channel List:	Please refer to the Note 2.				
Antenna Type:	PCB Antenna				
Antenna gain:	-1.05dBi				
Power Supply:	Input: 5V===1A				

Note:

For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

802.11a/n (20MHz) Frequency Channel							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
149	5745	153	5765	157	5785	161	5805
165	5825	-	-	-	-	-	-

802.11n (40MHz) Frequency Channel							
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
151	5755	159	5795	-	-	-	-

3.2 DESCRIPTION OF TEST MODES

Pretest Mode	Description			
Mode 1	802.11a/n (20M) CH149 / CH157 / CH 165			
Mode 2	802.11n (40M) CH 151 / CH 159			
Final Test Mode	For Conducted Emission			
	Description			
Mode 1	802.11a/n (20M) CH149 / CH157 / CH 165			
Mode 2	802.11n (40M) CH 151 / CH 159			
	For Radiated Emission			

Final Test Mode	For Radiated Emission
Final Test Mode	Description
Mode 1	802.11a/n (20M) CH149 / CH157 / CH 165
Mode 2	802.11n (40M) CH 151 / CH 159

Transmitting mode Keep the EUT in continuously transmitting mode								
Remark: During the test, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.								
We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:								
Pre-scan all kind of data rate in lowest channel, and found the follow list which it was worst case.								
		000.44	000.44.00	000 44 40	1			

Test Software	REALTEK 11n 8723FU		
Power level setup	Default		

3.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Conducted Emission

Radiated Emission

Laptop(E-2)		EUT(E-1)
-------------	--	----------

Conducted Spurious

Laptop(E-2) EUT(E-1)

3.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Item	Equipment	Mfr/Brand	Model/Type No.	Series No.	Note
E-1	COMPUTER CASE	N/A	XG682	N/A	EUT
E-2	Laptop	Lenovo	G455A	N/A	Auxiliary
E-3	AC/DC Adapter N/A		GT1455	N/A	Auxiliary

Ite	em	Shielded Type	Ferrite Core	Length	Note

Note:

- (1) The support equipment was authorized by Declaration of Confirmation.
- (2) For detachable type I/O cable should be specified the length in cm in $\[\]$ Length $\]$ column.

3.5 EQUIPMENTS LIST FOR ALL TEST ITEMS

Conduction Emissions Test

Item	Kind of Equipment	Manufacturer	Туре No.	Serial No	Firmware Version	Last calibration	Calibrated until
1	LISN	R&S	ENV216	101471	N/A	Sep. 30, 2024	Sep. 29, 2025
2	LISN	CYBERTEK	EM5040A	E1850400149	N/A	Sep. 30, 2024	Sep. 29, 2025
3	Test Cable	N/A	C-01	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
4	EMI Test Receiver	R&S	ESCI3	101393	4.42 SP3	Sep. 29, 2024	Sep. 28, 2025
5	EMC Software	Frad	EZ-EMC	Ver.EMC-CON 3A1.1	N/A	١	١

Radiation Emissions & Radiation Spurious Emissions Test

Item	Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	N9020A	MY55370835	A.17.05	Sep. 29, 2024	Sep. 28, 2025
2	Spectrum Analyzer (10kHz-39.9GHz)	R&S	FSV40-N	100363	1.71 SP2	Sep. 30, 2024	Sep. 29, 2025
3	EMI Test Receiver (9kHz-7GHz)	R&S	ESCI7	100969	4.32	Sep. 29, 2024	Sep. 28, 2025
4	Bilog Antenna (30MHz-1500MHz)	Schwarzbeck	VULB9168	00877	N/A	Sep. 30, 2024	Sep. 29, 2025
5	Horn Antenna (1GHz-18GHz)	Agilent	AH-118	071145	N/A	Sep. 30, 2024	Sep. 29, 2025
6	Horn Antenna (15GHz-40GHz)	A.H.System	SAS-574	588	N/A	Sep. 30, 2024	Sep. 29, 2025
7	Loop Antenna	TESEQ	HLA6121	58357	N/A	Oct. 11, 2024	Oct. 10, 2025
8	Amplifier (30-1000MHz)	EM Electronics	EM330 Amplifier	60747	N/A	Sep. 29, 2024	Sep. 28, 2025
9	Amplifier (1GHz-26.5GHz)	HuiPu	8449B	3008A00315	N/A	Sep. 29, 2024	Sep. 28, 2025
10	Amplifier (500MHz-40GHz)	QuanJuDa	DLE-161	097	N/A	Sep. 30, 2024	Sep. 29, 2025
11	Test Cable	N/A	R-01	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
12	Test Cable	N/A	R-02	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
13	Test Cable	N/A	R-03	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
14	D.C. Power Supply	LongWei	TPR-6405D	GQ7516	N/A	Sep. 29, 2024	Sep. 28, 2025
15	EMC Software	Frad	EZ-EMC	Ver.EMC-CO N 3A1.1	N/A	١	\
16	Turntable	MF	MF-7802BS	N/A	N/A	١	λ
17	Antenna tower	MF	MF-7802BS	N/A	N/A	١	١

	RF Conducted Test						
Item	Equipment	Manufacturer	Type No.	Serial No.	Firmware Version	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	KEYSIGHT	N9020A	MY55370835	A.17.05	Sep. 29, 2024	Sep. 28, 2025
2	Spectrum Analyzer (10kHz-39.9GHz)	R&S	FSV40-N	100363	1.71 SP2	Sep. 30, 2024	Sep. 29, 2025
3	Test Cable	N/A	RF-01	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
4	Test Cable	N/A	RF-02	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
5	Test Cable	N/A	RF-03	N/A	N/A	Sep. 30, 2024	Sep. 29, 2025
6	ESG Signal Generator	Agilent	E4421B	GB40051203	B.03.84	Sep. 29, 2024	Sep. 28, 2025
7	Signal Generator	Agilent	N5182A	MY47420215	A.01.87	Sep. 29, 2024	Sep. 28, 2025
8	Magnetic Field Probe Tester	Narda	ELT-400	0-0344	N/A	Sep. 29, 2024	Sep. 28, 2025
9	Van der Hoofden measuring head	Schwarzbeck Mess-elektron ik	VDHH 9502	9502-039	N/A	Sep. 30, 2024	Sep. 29, 2025
10	Wideband Radio Communication Test	R&S	CMW500	106504	V 3.7.22	Sep. 30, 2024	Sep. 29, 2025
11	MWRF Power Meter Test system	MW	MW100-RF CB	10371	N/A	Sep. 29, 2024	Sep. 28, 2025
12	Power Meter	KEYSIGHT	N1912AP	926431	A.05.00	Sep. 29, 2024	Sep. 28, 2025
13	D.C. Power Supply	LongWei	TPR-6405D	GQ7516	N/A	Sep. 29, 2024	Sep. 28, 2025
14	RF Software	MW	MTS8310	V2.0.0.0	N/A	1	١

4. EMC EMISSION TEST

4.1 CONDUCTED EMISSION MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.207
Test Method:	ANSI C63.10:2013
Test Frequency Range:	150KHz to 30MHz
Receiver setup:	RBW=9KHz, VBW=30KHz, Sweep time=auto

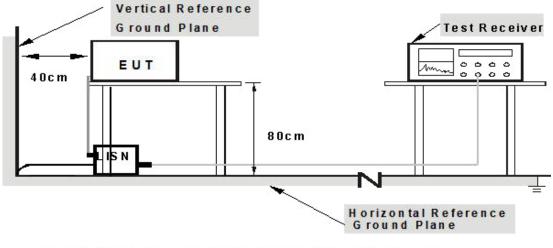
4.1.1 POWER LINE CONDUCTED EMISSION LIMITS

FREQUENCY (MHz)	Limit (Standard	
	Quasi-peak	Average	Stanuaru
0.15 -0.5	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

(1) *Decreases with the logarithm of the frequency.

4.1.2 TEST PROCEDURE

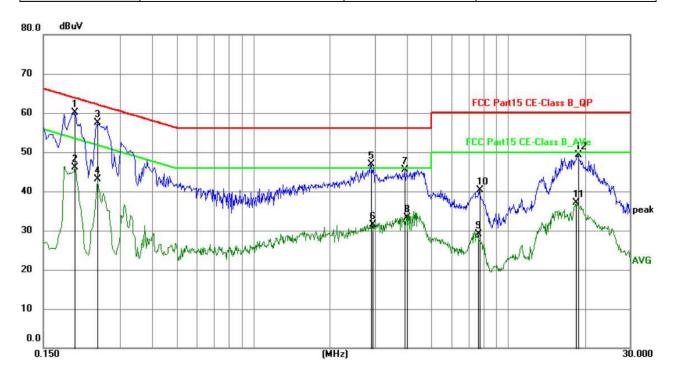

The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments

- a. powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back
- and forth in the center forming a bundle 30 to 40 cm long.
 I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the
- c. cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.

4.1.3 DEVIATION FROM TEST STANDARD No deviation

4.1.4 TEST SETUP

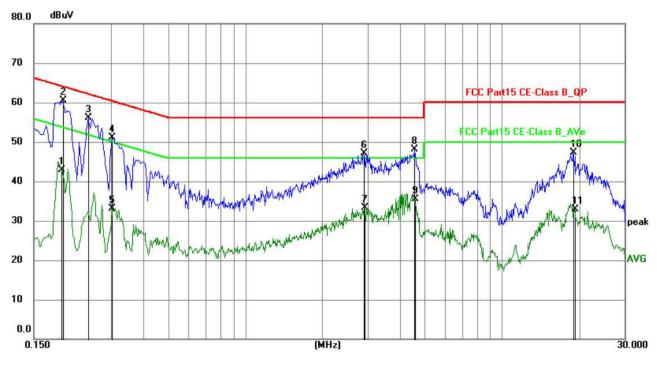
Note: 1.Support units were connected to second LISN. 2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes


4.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

4.1.6 TEST RESULT

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	L
Test Voltage:	AC 120V/60Hz	Test Mode:	802.11n20 - 5745MHz


No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1995	39.68	20.38	60.06	63.63	-3.57	QP	Ρ	
2	0.1995	25.67	20.38	46.05	53.63	-7.58	AVG	Ρ	
3	0.2444	37.07	20.37	57.44	61.95	-4.51	QP	Ρ	
4	0.2444	22.67	20.37	43.04	51.95	-8.91	AVG	Ρ	
5	2.8950	26.65	20.33	46.98	56.00	-9.02	QP	Ρ	
6	2.9400	11.11	20.33	31.44	46.00	-14.56	AVG	Ρ	
7	3.9344	25.26	20.34	45.60	56.00	-10.40	QP	Ρ	
8	<mark>3.9975</mark>	12.97	20.34	33.31	46.00	-12.69	AVG	Ρ	
9	7.6200	8.61	20.41	29.02	50.00	-20.98	AVG	Ρ	
10	7.7008	19.80	20.41	40.21	60.00	-19.79	QP	Ρ	
11	18.4649	16.61	20.50	37.11	50.00	-12.89	AVG	Ρ	
12	<u>18.7213</u>	28.90	20.50	49.40	60.00	-10.60	QP	Ρ	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Reading level + Correct Factor.
- 4. Correct Factor = Lisn factor+ Cable loss factor + limiter factor.
- 5. Margin = Measurement Level-Limit.
- 6. The test data shows only the worst case TX 802.11n20 5745MHz.

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	N
Test Voltage:	AC 120V/60Hz	Test Mode:	802.11n20 - 5745MHz

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1923	22.52	20.34	42.86	53.94	-11.08	AVG	Р	
2	0.1949	40.07	20.35	60.42	63.83	-3.41	QP	Р	
3	0.2444	35.73	20.36	56.09	61.95	-5.86	QP	Р	
4	0.3029	30.80	20.35	51.15	60.16	-9.01	QP	Р	
5	0.3029	12.77	20.35	33.12	50.16	-17.04	AVG	Ρ	
6	2.8950	26.78	20.33	47.11	56.00	-8.89	QP	Р	
7	2.9085	13.03	20.33	33.36	46.00	-12.64	AVG	Р	
8	4.5644	27.83	20.34	48.17	56.00	-7.83	QP	P	
9	4.5780	<mark>15.15</mark>	20.34	35.49	46.00	-10.51	AVG	Р	
10	18.9555	26.74	20.53	47.27	60.00	-12.73	QP	Р	
11	19.1535	12.35	20.53	32.88	50.00	-17.12	AVG	Ρ	

Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Reading level + Correct Factor.
- 4. Correct Factor = Lisn factor+ Cable loss factor + limiter factor.
- 5. Margin = Measurement Level-Limit.
- 6. The test data shows only the worst case TX 802.11n20 5745MHz.

4.2 RADIATED EMISSION MEASUREMENT

4.2.1 APPLICABLE STANDARD

According to FCC Part 15.407(d) and 15.209

4.2.2 CONFORMANCE LIMIT

According to FCC Part 15.407(b)(7): radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)). According to FCC Part15.205, Restricted bands

7.0001 ang 10 1 00 1 art 10.2						
(MHz)	(MHz)	(MHz)	(GHz)			
0.090-0.110	16.42-16.423	399.9-410	4.5-5.15			
10.495-0.505	16.69475-16.69525	608-614	5.35-5.46			
2.1735-2.1905	16.80425-16.80475	960-1240	7.25-7.75			
4.125-4.128	25.5-25.67	1300-1427	8.025-8.5			
4.17725-4.17775	37.5-38.25	1435-1626.5	9.0-9.2			
4.20725-4.20775	73-74.6	1645.5-1646.5	9.3-9.5			
6.215-6.218	74.8-75.2	1660-1710	10.6-12.7			
6.26775-6.26825	123-138	2200-2300	14.47-14.5			
8.291-8.294	149.9-150.05	2310-2390	15.35-16.2			
8.362-8.366	156.52475-156.52525	2483.5-2500	17.7-21.4			
8.37625-8.38675	156.7-156.9	2690-2900	22.01-23.12			
8.41425-8.41475	162.0125-167.17	3260-3267	23.6-24.0			
12.29-12.293	167.72-173.2	3332-3339	31.2-31.8			
12.51975-12.52025	240-285	3345.8-3358	36.43-36.5			
12.57675-12.57725	322-335.4	3600-4400	(2)			
13.36-13.41						

Restricted Frequency (MHz)	Field Strength (µV/m)	Field Strength (dBµV/m)	Measurement Distance
0.009~0.490	2400/F(KHz)	20 log (uV/m)	300
0.490~1.705	2400/F(KHz)	20 log (uV/m)	30
1.705~30.0	30	29.5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Limits of Radiated Emission Measurement(Above 1000MHz)

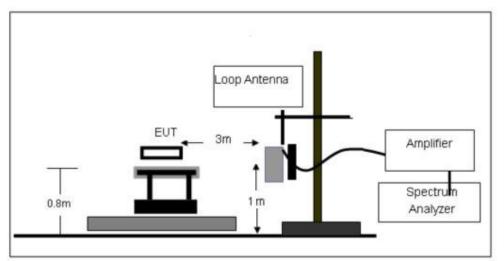
Eroguopov(MHz)	Class B (dBuV/	(m) (at 3M)		
Frequency(MHz)	PEAK AVERAGE			
Above 1000	74	54		

Remark :1. Emission level in dBuV/m=20 log (uV/m)

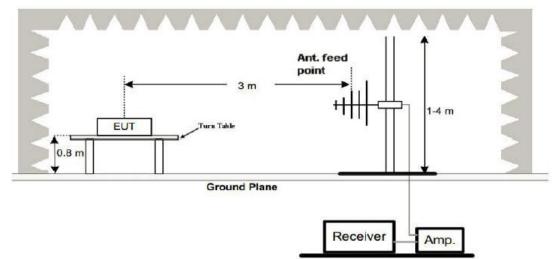
2. Measurement was performed at an antenna to the closed point of EUT distance of meters.

3. Distance extrapolation factor =40log(Specific distance/ test distance)(dB);

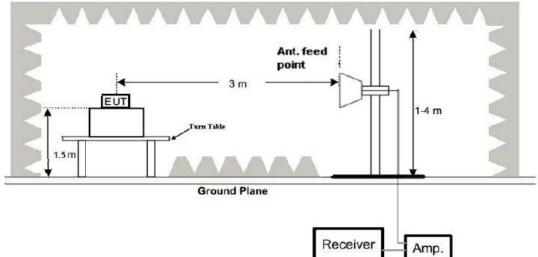
Limit line=Specific limits(dBuV) + distance extrapolation factor.


4.2.3 MEASURING INSTRUMENTS

The Measuring equipment is listed in the section 3.5 of this test report.



4.2.4 TEST CONFIGURATION


1.For radiated emissions below 30MHz

2.For radiated emissions from 30MHz to 1000MHz

3. Radiated Emission Test-Up Frequency Above 1GHz

4.2.5 TEST PROCEDURE

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4 dB according to the standards: ANSI C63.10-2013. The test distance is 3m.The setup is according to the requirements in Section 13.1.4.1 of ANSI C63.10-2013 and CAN/CSA-CEI/IEC CISPR 22.

This test is required for any spurious emission that falls in a Restricted Band, as defined in Section 15.205. It must be performed with the highest gain of each type of antenna proposed for use with the EUT. Use the following spectrum analyzer settings:

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency 10th carrier harmonic	
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

- a. The measuring distance of at 3 m shall be used for measurements at frequency up to 1GHz. For frequencies above 1GHz, any suitable measuring distance may be used.
- b. The EUT was placed on the top of a rotating table 0.8 m for below 1GHz and 1.5m for above 1GHz the ground at a 3 meter. The table was rotated 360 degrees to determine the position of the highest radiation.
- c. The height of the equipment or of the substitution antenna shall be 0.8 m for below 1GHz and 1.5m for above 1GHz; the height of the test antenna shall vary between 1 m to 4 m. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.
- e. If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed.
- For the actual test configuration, please refer to the related Item EUT Test Photos.
 Note:

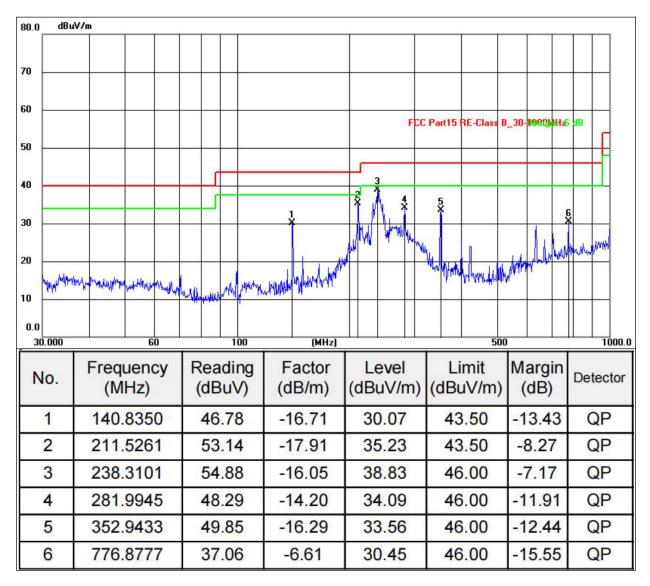
Both horizontal and vertical antenna polarities were tested

and performed pretest to three orthogonal axis. The worst case emissions were reported

During the radiated emission test, the Spectrum Analyzer was set with the following configurations:

Frequency Band (MHz)	Function	Resolution bandwidth	Video Bandwidth
30 to 1000	QP	120 kHz	300 kHz
Above 1000	Peak	1 MHz	1 MHz
Above 1000	Average	1 MHz	10 Hz

Note: for the frequency ranges below 30 MHz, a narrower RBW is used for these ranges but the measured value should add a RBW correction factor (RBWCF) where RBWCF [dB] =10*lg(100 [kHz]/narrower RBW [kHz]). , the narrower RBW is 1 kHz and RBWCF is 20 dB for the frequency 9 kHz to 150 kHz, and the narrower RBW is 10 kHz and RBWCF is 10 dB for the frequency 150 kHz to 30 MHz.

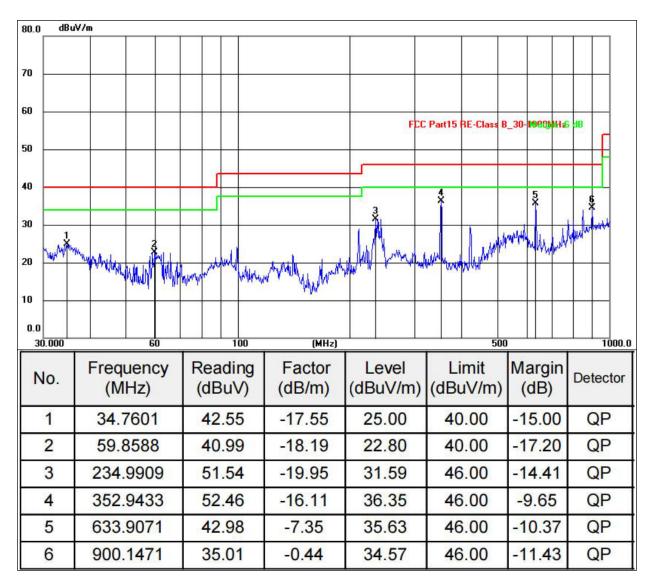

4.2.6 TEST RESULT

Between 9KHz - 30MHz

The emission from 9 kHz to 30MHz was pre-tested and found the result was 20dB lower than the limit, and according to 15.31(o) & RSS-Gen 6.13, the test result no need to reported.

Between 30MHz – 1GHz:

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101 kPa	Polarization:	Horizontal
Test Voltage:	DC 5V	Test Mode :	TX 802.11n20 - 5745MHz



Notes:

- 1. An initial pre-scan was performed on the peak detector.
- 2. Quasi Peak measurement were performed at the frequencies with maximized peak emission.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Final Level = Reading level + Correct Factor.
- 5. Correct Factor = Antenna factor+ Cable loss factor Amplifier factor.
- 6. Margin = Measurement Level-Limit.
- 7. The test data shows only the worst case TX 802.11n20 5745MHz.

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	101kPa	Polarization:	Vertical
Test Voltage:	DC 5V	Test Mode :	TX 802.11n20 - 5745MHz

Notes:

- 1. An initial pre-scan was performed on the peak detector.
- 2. Quasi Peak measurement were performed at the frequencies with maximized peak emission.
- 3. The emission levels of other frequencies are very lower than the limit and not show in test report.
- 4. Final Level = Reading level + Correct Factor.
- 5. Correct Factor = Antenna factor+ Cable loss factor Amplifier factor.
- 6. Margin = Measurement Level-Limit.
- 7. The test data shows only the worst case TX 802.11n20 5745MHz.

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1010 hPa	Test Voltage :	DC 5V
Test Mode :	802.11a/ n20/ n40		

				80	2.11a			-			
Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect or		
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре		
	Low Channel:5745MHz										
V	11490.00	50.28	30.55	5.77	24.66	50.16	74.00	-23.84	PK		
V	11490.00	42.42	30.55	5.77	24.66	42.30	54.00	-11.70	AV		
V	17235.00	52.31	30.33	6.32	24.55	52.85	68.20	-15.35	PK		
V	17235.00	41.92	30.33	6.32	24.55	42.46	54.00	-11.54	AV		
V	22980.00	48.95	30.85	7.45	24.69	50.24	74.00	-23.76	PK		
V	22980.00	43.16	30.85	7.45	24.69	44.45	54.00	-9.55	AV		
V	28725.00	53.54	31.02	8.99	25.57	57.08	68.20	-11.12	PK		
V	28725.00	42.22	31.02	8.99	25.57	45.76	54.00	-8.24	AV		
Н	11490.00	52.29	30.55	5.77	24.66	52.17	74.00	-21.83	PK		
Н	11490.00	43.56	30.55	5.77	24.66	43.44	54.00	-10.56	AV		
Н	17235.00	53.46	30.33	6.32	24.55	54.00	68.20	-14.20	PK		
Н	17235.00	42.60	30.33	6.32	24.55	43.14	54.00	-10.86	AV		
Н	22980.00	50.89	30.85	7.45	24.69	52.18	74.00	-21.82	PK		
Н	22980.00	42.54	30.85	7.45	24.69	43.83	54.00	-10.17	AV		
Н	28725.00	52.68	31.02	8.99	25.57	56.22	68.20	-11.98	PK		
Н	28725.00	43.36	31.02	8.99	25.57	46.90	54.00	-7.10	AV		

Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect or
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
	·		Mi	ddle Cha	nnel:5785M	Hz	•		
V	11570.00	49.48	30.55	5.77	24.66	49.36	74.00	-24.64	PK
V	11570.00	41.88	30.55	5.77	24.66	41.76	54.00	-12.24	AV
V	17355.00	48.22	30.33	6.32	24.55	48.76	68.20	-19.44	PK
V	17355.00	41.52	30.33	6.32	24.55	42.06	54.00	-11.94	AV
V	23140.00	50.61	30.85	7.45	24.69	51.90	68.20	-16.30	PK
V	23140.00	41.15	30.85	7.45	24.69	42.44	54.00	-11.56	AV
V	28925.00	48.57	31.02	8.99	25.57	52.11	68.20	-16.09	PK
V	28925.00	41.29	31.02	8.99	25.57	44.83	54.00	-9.17	AV
Н	11570.00	48.68	30.55	5.77	24.66	48.56	74.00	-25.44	PK
Н	11570.00	41.62	30.55	5.77	24.66	41.50	54.00	-12.50	AV
Н	17355.00	52.65	30.33	6.32	24.55	53.19	68.20	-15.01	PK
Н	17355.00	41.23	30.33	6.32	24.55	41.77	54.00	-12.23	AV
Н	23140.00	50.46	30.85	7.45	24.69	51.75	68.20	-16.45	PK
Н	23140.00	41.59	30.85	7.45	24.69	42.88	54.00	-11.12	AV
Н	28925.00	48.44	31.02	8.99	25.57	51.98	68.20	-16.22	PK
Н	28925.00	42.15	31.02	8.99	25.57	45.69	54.00	-8.31	AV

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect or
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
			H	ligh Chan	nel:5825MH	z	•		
V	11650.00	49.85	30.55	5.77	24.66	49.73	74.00	-24.27	PK
V	11650.00	41.80	30.55	5.77	24.66	41.68	54.00	-12.32	AV
V	17475.00	48.24	30.33	6.32	24.55	48.78	68.20	-19.42	PK
V	17475.00	41.38	30.33	6.32	24.55	41.92	54.00	-12.08	AV
V	23300.00	49.54	30.85	7.45	24.69	50.83	68.20	-17.37	PK
V	23300.00	41.47	30.85	7.45	24.69	42.76	54.00	-11.24	AV
V	29125.00	52.11	31.02	8.99	25.57	55.65	68.20	-12.55	PK
V	29125.00	40.96	31.02	8.99	25.57	44.50	54.00	-9.50	AV
Н	11650.00	50.96	30.55	5.77	24.66	50.84	74.00	-23.16	PK
Н	11650.00	40.86	30.55	5.77	24.66	40.74	54.00	-13.26	AV
Н	17475.00	51.56	30.33	6.32	24.55	52.10	68.20	-16.10	PK
Н	17475.00	41.35	30.33	6.32	24.55	41.89	54.00	-12.11	AV
Н	23300.00	51.89	30.85	7.45	24.69	53.18	68.20	-15.02	PK
Н	23300.00	41.30	30.85	7.45	24.69	42.59	54.00	-11.41	AV
Н	29125.00	48.19	31.02	8.99	25.57	51.73	68.20	-16.47	PK
Н	29125.00	41.95	31.02	8.99	25.57	45.49	54.00	-8.51	AV

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier,

Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

				802	.11n20					
Polar	Frequency	Meter	Pre-ampl	Cable	Antenna	Emission	Limits	Margin	Detect	
(H/V)		Reading	ifier	Loss	Factor	Level		-	or	
(1	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре	
			L	ow Chan	nel:5745MH	Z	I			
V	11490.00	50.41	30.55	5.77	24.66	50.29	74.00	-23.71	PK	
V	11490.00	43.45	30.55	5.77	24.66	43.33	54.00	-10.67	AV	
V	17235.00	51.51	30.33	6.32	24.55	52.05	68.20	-16.15	PK	
V	17235.00	42.16	30.33	6.32	24.55	42.70	54.00	-11.30	AV	
V	22980.00	50.01	30.85	7.45	24.69	51.30	74.00	-22.70	PK	
V	22980.00	42.57	30.85	7.45	24.69	43.86	54.00	-10.14	AV	
V	28725.00	51.97	31.02	8.99	25.57	55.51	68.20	-12.69	PK	
V	28725.00	42.82	31.02	8.99	25.57	46.36	54.00	-7.64	AV	
Н	11490.00	52.10	30.55	5.77	24.66	51.98	74.00	-22.02	PK	
Н	11490.00	42.21	30.55	5.77	24.66	42.09	54.00	-11.91	AV	
Н	17235.00	53.15	30.33	6.32	24.55	53.69	68.20	-14.51	PK	
Н	17235.00	42.93	30.33	6.32	24.55	43.47	54.00	-10.53	AV	
Н	22980.00	51.01	30.85	7.45	24.69	52.30	74.00	-21.70	PK	
Н	22980.00	42.38	30.85	7.45	24.69	43.67	54.00	-10.33	AV	
Н	28725.00	52.88	31.02	8.99	25.57	56.42	68.20	-11.78	PK	
Н	28725.00	42.70	31.02	8.99	25.57	46.24	54.00	-7.76	AV	
	Frequency	Frequency	Meter	Pre-ampl	Cable	Antenna	Emission	Limits	Margin	Detect
Polar	Frequency	Reading	ifier	Loss	Factor	Level	Linnis	Maryin	or	
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре	
			Mi	ddle Cha	nnel:5785M	Hz				
V	11570.00	49.32	00.55							
V	1		30.55	5.77		1	74.00	-24.80	PK	
	11570.00	41.65	30.55 30.55	5.77 5.77	24.66 24.66	49.20 41.53	74.00 54.00	-24.80 -12.47	PK AV	
V				5.77	24.66	49.20 41.53			AV	
V V	11570.00 17355.00 17355.00	41.65	30.55		24.66 24.66	49.20	54.00	-12.47		
	17355.00 17355.00	41.65 48.74 41.59	30.55 30.33	5.77 6.32	24.66 24.66 24.55	49.20 41.53 49.28 42.13	54.00 68.20	-12.47 -18.92	AV PK	
V	17355.00 17355.00 23140.00	41.65 48.74 41.59 50.59	30.55 30.33 30.33 30.85	5.77 6.32 6.32 7.45	24.66 24.66 24.55 24.55 24.69	49.20 41.53 49.28	54.00 68.20 54.00 68.20	-12.47 -18.92 -11.87 -16.32	AV PK AV PK	
V V	17355.00 17355.00 23140.00 23140.00	41.65 48.74 41.59 50.59 41.44	30.55 30.33 30.33 30.85 30.85	5.77 6.32 6.32 7.45 7.45	24.66 24.66 24.55 24.55 24.69 24.69	49.20 41.53 49.28 42.13 51.88 42.73	54.00 68.20 54.00 68.20 54.00	-12.47 -18.92 -11.87 -16.32 -11.27	AV PK AV	
V V V	17355.00 17355.00 23140.00 23140.00 28925.00	41.65 48.74 41.59 50.59 41.44 48.41	30.55 30.33 30.33 30.85 30.85 31.02	5.77 6.32 6.32 7.45 7.45 8.99	24.66 24.66 24.55 24.55 24.69 24.69 25.57	49.20 41.53 49.28 42.13 51.88 42.73 51.95	54.00 68.20 54.00 68.20 54.00 68.20	-12.47 -18.92 -11.87 -16.32 -11.27 -16.25	AV PK AV PK AV PK	
V V V V	17355.00 17355.00 23140.00 23140.00	41.65 48.74 41.59 50.59 41.44	30.55 30.33 30.33 30.85 30.85	5.77 6.32 6.32 7.45 7.45	24.66 24.66 24.55 24.55 24.69 24.69	49.20 41.53 49.28 42.13 51.88 42.73	54.00 68.20 54.00 68.20 54.00	-12.47 -18.92 -11.87 -16.32 -11.27	AV PK AV PK AV	
V V V V V	17355.00 17355.00 23140.00 23140.00 28925.00 28925.00	41.65 48.74 41.59 50.59 41.44 48.41 41.50	30.55 30.33 30.33 30.85 30.85 31.02 31.02	5.77 6.32 6.32 7.45 7.45 8.99 8.99	24.66 24.55 24.55 24.69 24.69 24.69 25.57 25.57	49.20 41.53 49.28 42.13 51.88 42.73 51.95 45.04	54.00 68.20 54.00 68.20 54.00 68.20 54.00	-12.47 -18.92 -11.87 -16.32 -11.27 -16.25 -8.96	AV PK AV PK AV PK AV	
V V V V V H	17355.00 17355.00 23140.00 23140.00 28925.00 28925.00 11570.00	41.65 48.74 41.59 50.59 41.44 48.41 41.50 48.55	30.55 30.33 30.33 30.85 30.85 31.02 31.02 30.55	5.77 6.32 6.32 7.45 7.45 8.99 8.99 5.77	24.66 24.55 24.55 24.69 24.69 24.69 25.57 25.57 24.66	49.20 41.53 49.28 42.13 51.88 42.73 51.95 45.04 48.43	54.00 68.20 54.00 68.20 54.00 68.20 54.00 74.00	-12.47 -18.92 -11.87 -16.32 -11.27 -16.25 -8.96 -25.57	AV PK AV PK AV PK AV PK	
V V V V H H	17355.00 17355.00 23140.00 23140.00 28925.00 28925.00 11570.00 11570.00	41.65 48.74 41.59 50.59 41.44 48.41 41.50 48.55 42.03	30.55 30.33 30.33 30.85 30.85 31.02 31.02 30.55 30.55	5.77 6.32 6.32 7.45 7.45 8.99 8.99 5.77 5.77	24.66 24.55 24.55 24.69 24.69 25.57 25.57 24.66 24.66	49.20 41.53 49.28 42.13 51.88 42.73 51.95 45.04 48.43 41.91	54.00 68.20 54.00 68.20 54.00 68.20 54.00 74.00 54.00	-12.47 -18.92 -11.87 -16.32 -11.27 -16.25 -8.96 -25.57 -12.09	AV PK AV PK AV PK AV PK AV	
V V V V H H H	17355.00 17355.00 23140.00 23140.00 28925.00 28925.00 11570.00 11570.00 17355.00	41.65 48.74 41.59 50.59 41.44 48.41 41.50 48.55 42.03 52.92	30.55 30.33 30.33 30.85 30.85 31.02 31.02 30.55 30.55 30.33	5.77 6.32 6.32 7.45 7.45 8.99 8.99 5.77 5.77 6.32	24.66 24.66 24.55 24.69 24.69 25.57 25.57 24.66 24.66 24.55	49.20 41.53 49.28 42.13 51.88 42.73 51.95 45.04 48.43 41.91 53.46	54.00 68.20 54.00 68.20 54.00 68.20 54.00 74.00 54.00 68.20	-12.47 -18.92 -11.87 -16.32 -11.27 -16.25 -8.96 -25.57 -12.09 -14.74	AV PK AV PK AV PK AV PK AV PK	
V V V V H H H	17355.00 17355.00 23140.00 23140.00 28925.00 28925.00 11570.00 11570.00 17355.00	41.65 48.74 41.59 50.59 41.44 48.41 41.50 48.55 42.03 52.92 41.23	30.55 30.33 30.33 30.85 30.85 31.02 31.02 30.55 30.55 30.33 30.33	5.77 6.32 6.32 7.45 7.45 8.99 8.99 5.77 5.77 6.32 6.32	24.66 24.55 24.55 24.69 24.69 25.57 25.57 24.66 24.66 24.55 24.55	49.20 41.53 49.28 42.13 51.88 42.73 51.95 45.04 48.43 41.91 53.46 41.77	54.00 68.20 54.00 68.20 54.00 68.20 54.00 74.00 54.00 68.20 54.00	-12.47 -18.92 -11.87 -16.32 -11.27 -16.25 -8.96 -25.57 -12.09 -14.74 -12.23	AV PK AV PK AV PK AV PK AV	
V V V V H H H H	17355.00 17355.00 23140.00 23140.00 28925.00 28925.00 11570.00 11570.00 17355.00 23140.00	41.65 48.74 41.59 50.59 41.44 48.41 41.50 48.55 42.03 52.92 41.23 50.22	30.55 30.33 30.33 30.85 30.85 31.02 31.02 30.55 30.55 30.33 30.33 30.33	5.77 6.32 6.32 7.45 7.45 8.99 8.99 5.77 5.77 6.32 6.32 7.45	24.66 24.55 24.55 24.69 24.69 25.57 25.57 24.66 24.66 24.55 24.55 24.55 24.69	49.20 41.53 49.28 42.13 51.88 42.73 51.95 45.04 48.43 41.91 53.46 41.77 51.51	54.00 68.20 54.00 68.20 54.00 68.20 54.00 74.00 54.00 68.20 54.00 68.20	-12.47 -18.92 -11.87 -16.32 -11.27 -16.25 -8.96 -25.57 -12.09 -14.74 -12.23 -16.69	AV PK AV PK AV PK AV PK AV PK	

Polar	Frequency	Meter Reading	Pre-ampli fier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect or
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
			Н	igh Chan	nel:5825MH	z	•		
V	11650.00	50.09	30.55	5.77	24.66	49.97	74.00	-24.03	PK
V	11650.00	41.17	30.55	5.77	24.66	41.05	54.00	-12.95	AV
V	17475.00	48.14	30.33	6.32	24.55	48.68	68.20	-19.52	PK
V	17475.00	40.97	30.33	6.32	24.55	41.51	54.00	-12.49	AV
V	23300.00	49.64	30.85	7.45	24.69	50.93	68.20	-17.27	PK
V	23300.00	41.53	30.85	7.45	24.69	42.82	54.00	-11.18	AV
V	29125.00	51.69	31.02	8.99	25.57	55.23	68.20	-12.97	PK
V	29125.00	41.50	31.02	8.99	25.57	45.04	54.00	-8.96	AV
Н	11650.00	50.90	30.55	5.77	24.66	50.78	74.00	-23.22	PK
Н	11650.00	40.71	30.55	5.77	24.66	40.59	54.00	-13.41	AV
Н	17475.00	51.49	30.33	6.32	24.55	52.03	68.20	-16.17	PK
Н	17475.00	41.25	30.33	6.32	24.55	41.79	54.00	-12.21	AV
Н	23300.00	51.86	30.85	7.45	24.69	53.15	68.20	-15.05	PK
Н	23300.00	40.98	30.85	7.45	24.69	42.27	54.00	-11.73	AV
Н	29125.00	48.12	31.02	8.99	25.57	51.66	68.20	-16.54	PK
Н	29125.00	41.75	31.02	8.99	25.57	45.29	54.00	-8.71	AV

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier,

Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

				802	.11n40				
Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect or
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
			L	ow Chan	nel:5755MH	z			
V	11510.00	50.71	30.55	5.77	24.66	50.59	74.00	-23.41	PK
V	11510.00	42.28	30.55	5.77	24.66	42.16	54.00	-11.84	AV
V	17265.00	51.27	30.33	6.32	24.55	51.81	68.20	-16.39	PK
V	17265.00	43.17	30.33	6.32	24.55	43.71	54.00	-10.29	AV
V	23020.00	48.73	30.85	7.45	24.69	50.02	74.00	-23.98	PK
V	23020.00	43.07	30.85	7.45	24.69	44.36	54.00	-9.64	AV
V	28775.00	53.01	31.02	8.99	25.57	56.55	68.20	-11.65	PK
V	28775.00	42.86	31.02	8.99	25.57	46.40	54.00	-7.60	AV
Н	11510.00	51.03	30.55	5.77	24.66	50.91	74.00	-23.09	PK
Н	11510.00	42.49	30.55	5.77	24.66	42.37	54.00	-11.63	AV
Н	17265.00	54.02	30.33	6.32	24.55	54.56	68.20	-13.64	PK
Н	17265.00	43.11	30.33	6.32	24.55	43.65	54.00	-10.35	AV
Н	23020.00	51.74	30.85	7.45	24.69	53.03	74.00	-20.97	PK
Н	23020.00	43.06	30.85	7.45	24.69	44.35	54.00	-9.65	AV
Н	28775.00	51.50	31.02	8.99	25.57	55.04	68.20	-13.16	PK
Н	28775.00	42.54	31.02	8.99	25.57	46.08	54.00	-7.92	AV
Polar	Frequency	Meter Reading	Pre-ampl ifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detect or
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	Туре
			Mi	ddle Cha	nnel:5795M	Hz			
l v	11590.00	50.60	30.55	5 77	24 66	50.48	74 00	-23 52	PK

	(MHZ)	(dBuV)	(dB)	(dB)	(dB)	(dBuV/m)	(dBuV/m)	(dB)	туре
			Mi	ddle Cha	nnel:5795M	Hz			
V	11590.00	50.60	30.55	5.77	24.66	50.48	74.00	-23.52	PK
V	11590.00	43.46	30.55	5.77	24.66	43.34	54.00	-10.66	AV
V	17385.00	51.26	30.33	6.32	24.55	51.80	68.20	-16.40	PK
V	17385.00	41.91	30.33	6.32	24.55	42.45	54.00	-11.55	AV
V	23180.00	49.43	30.85	7.45	24.69	50.72	74.00	-23.28	PK
V	23180.00	42.93	30.85	7.45	24.69	44.22	54.00	-9.78	AV
V	28975.00	52.03	31.02	8.99	25.57	55.57	68.20	-12.63	PK
V	28975.00	41.83	31.02	8.99	25.57	45.37	54.00	-8.63	AV
Н	11590.00	50.79	30.55	5.77	24.66	50.67	74.00	-23.33	PK
Н	11590.00	42.63	30.55	5.77	24.66	42.51	54.00	-11.49	AV
Н	17385.00	52.66	30.33	6.32	24.55	53.20	68.20	-15.00	PK
Н	17385.00	43.01	30.33	6.32	24.55	43.55	54.00	-10.45	AV
Н	23180.00	50.96	30.85	7.45	24.69	52.25	74.00	-21.75	PK
Н	23180.00	42.89	30.85	7.45	24.69	44.18	54.00	-9.82	AV
Н	28975.00	52.34	31.02	8.99	25.57	55.88	68.20	-12.32	PK
Н	28975.00	43.33	31.02	8.99	25.57	46.87	54.00	-7.13	AV

Remark:

1. Emission Level = Meter Reading + Antenna Factor + Cable Loss – Pre-amplifier,

Margin= Emission Level - Limit

2. If peak below the average limit, the average emission was no test.

3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

5. POWER SPECTRAL DENSITY TEST

5.1 APPLIED PROCEDURES / LIMIT

According to FCC §15.407(a) (3) (i)

(1) Power limits:

For the band 5.725-5.85 GHz, the maximum conducted output power over the frequency band of operation shall not exceed 1 W. In addition, the maximum power spectral density shall not exceed 30 dBm in any 500-kHz band. If transmitting antennas of directional gain greater than 6 dBi are used, both the maximum conducted output power and the maximum power spectral density shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. However, fixed point-to-point U-NII devices operating in this band may employ transmitting antennas with directional gain greater than 6 dBi without any corresponding reduction in transmitter conducted power. Fixed, point-to-point operations exclude the use of point-to-multipoint systems, omnidirectional applications, and multiple collocated transmitters transmitting the same information. The operator of the U-NII device, or if the equipment is professionally installed, the installer, is responsible for ensuring that systems employing high gain directional antennas are used exclusively for fixed, point-to-point operations.

5.2 TEST PROCEDURE

For devices operating in the band 5.725-5.85 GHz, the rules specify a measurement bandwidth of 500 kHz. Many spectrum analyzers do not have 500 kHz RBW, thus a narrower RBW may need to be used. The rules permit the use of a RBWs less than 1 MHz, or 500 kHz, "provided that the measured power is integrated over the full reference bandwidth" to show the total power over the specified measurement bandwidth (i.e., 1 MHz, or 500 kHz). If measurements are performed using a reduced resolution bandwidth (< 1 MHz, or < 500 kHz) and integrated over 1 MHz, or 500 KHz bandwidth, the following adjustments to the procedures apply:

a) Set RBW \geq 1/T, where T is defined in section II.B.I.a).

b) Set VBW ≥ 3 RBW.

c) If measurement bandwidth of Maximum PSD is specified in 500 kHz, add 10log(500kHz/RBW) to the measured result, whereas RBW (< 500 KHz) is the reduced resolution bandwidth of the spectrum analyzer set during measurement.

d) If measurement bandwidth of Maximum PSD is specified in 1 MHz, add 10log(1MHz/RBW) to the measured result, whereas RBW (< 1 MHz) is the reduced resolution bandwidth of spectrum analyzer set during measurement.

e) Care must be taken to ensure that the measurements are performed during a period of continuous transmission or are corrected upward for duty cycle.

Note: As a practical matter, it is recommended to use reduced RBW of 100 KHz for the sections 5.c) and 5.d) above, since RBW=100 KHZ is available on nearly all spectrum analyzers.

5.3 DEVIATION FROM STANDARD

No deviation.

EUT	SPECTRUM
	ANALYZER

5.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of chapter 3, Unless otherwise a special operating condition is specified in the follows during the testing.



Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1015 hPa	Test Voltage :	DC 5V
Test Band :	5.8G		

Test mode	Test Channel	PSD	Duty Cycle Factor	Total PSD	Limit	Result
	(MHz)	(dBm/500kHz)	(dB)	(dBm)	(dBm/500kHz)	
	5745	-7.403	0	-7.403	30	Pass
802.11a	5785	-7.832	0	-7.832	30	Pass
	5825	-6.839	0	-6.839	30	Pass
	5745	-8.209	0	-8.209	30	Pass
802.11n20	5785	-8.190	0	-8.190	30	Pass
	5825	-7.637	0	-7.637	30	Pass
902 11-10	5755	-10.473	0	-10.473	30	Pass
802.11n40	5795	-11.161	0	-11.161	30	Pass
Note: Total PS	SD = PSD + Duty	Cycle Factor.		•	,	

802.11a CH149

CH157

R RF 50 Ω AC	SEN	SE:PULSE	ALIGN AUTO	02:04:52 PM Apr 03, 202
enter Freq 5.785000000 GHz	PNO: Fast	Trig: Free Run #Atten: 30 dB	#Avg Type: RMS Avg Hold: 100/100	TRACE 2 3 4 9 TYPE A WWWW DET A NNN
Ref Offset 3.61 dB dB/div Ref 20.00 dBm			Mkr	1 5.779 037 50 GH -7.832 dBr
0				
υ	1			
	an lase to the sequence		-	
•				
·				
				C. C
0				
enter 5.78500 GHz es BW 510 kHz		1.5 MHz*		Span 30.00 Mi p 2.667 ms (40001 pt

CH165

 Keysight Spectrum Analyze
 SO Ω
 AC

 00
 R
 RF
 SO Ω
 AC

 Center Freq 5.745000000 GHz

Ref Offset 3.66 dB Ref 20.00 dBm

er 5.74500 GHz BW 510 kHz

802.11n20

CH149

Trig: Free Run #Atten: 30 dB

#VBW 1.5 MHz*

PNO: Fa

Ø

#Avg Type: RMS Avg|Hold: 100/100

0 978 50 G

Span 30.00 MHz Sweep 2.667 ms (40001 pts)

#VBW 1.5 MHz*

802.11n40

6. 26DB EMISSION BANDWIDTH & 6DB OCCUPIED BANDWIDTH

6.1 APPLIED PROCEDURES / LIMIT

The maximum power spectral density is measured as a conducted emission by direct connection of a calibrated test instrument to the equipment under test. If the device cannot be connected directly, alternative techniques acceptable to the Commission may be used. Measurements in the 5.725-5.85 GHz band, the minimum bandwidth 6 dB bandwidth of U-NII devices shall be at least 500KHz. Measurements in the 5.15-5.25 GHz, 5.25-5.35 GHz, and the 5.47-5.725 GHz bands are made over a bandwidth of 1 MHz or the 26 dB emission bandwidth of the device, whichever is less. A narrower resolution bandwidth can be used, provided that the measured power is integrated over the full reference bandwidth.

6.2 TEST PROCEDURE

The following procedure shall be used for measuring 6dB Occupied Bandwidth:

The procedure for this method is as follows:

a) Set RBW = 100KHz.

b) Set the VBW > RBW.

c) Detector = Peak.

d) Trace mode = max hold.

e) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

The following procedure shall be used for measuring 26dB Emission bandwidth:

The procedure for this method is as follows:

a) Set RBW = approximately 1% of the emission bandwidth.

b) Set the VBW > RBW.

c) Detector = peak.

d) Trace mode = max hold.

e) Measure the maximum width of the emission that is 26 dB down from the peak of the emission. Compare this with the RBW setting of the instrument. Readjust RBW and repeat measurement as needed until the RBW/EBW ratio is approximately 1%.

EUT	SPECTRUM
	ANALYZER

6.3 EUT OPERATION CONDITIONS

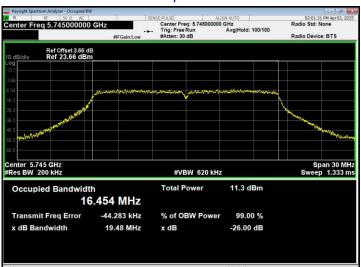
The EUT tested system was configured as the statements of chapter 3, Unless otherwise a special operating condition is specified in the follows during the testing.

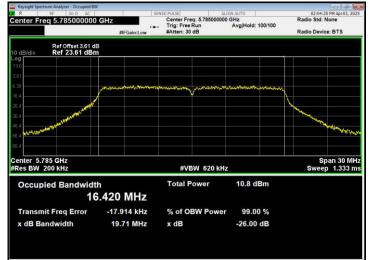
6.4 TEST RESULTS

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	101kPa	Test Voltage :	DC 5V
Test Band :	5.8G		


Test Mode	Test Channel	6dB Bandwidth	26dB Bandwidth	6dB Limit	Result	
	(MHz)	(MHz)	(MHz)	(kHz)	Result	
802.11a	5745	16.52	19.48		Pass	
	5785	16.46	19.71	>500		
	5825	16.48	19.47			
802.11n20	5745	17.59	20.59		Pass	
	5785	17.58	20.53	>500		
	5825	17.64	20.40			
802.11n40	5755	36.41	41.77	>500	Pass	
	5795	36.44	42.84	>500		

802.11a 6dB Bandwidth plot on channel 149


6dB Bandwidth plot on channel 157



802.11a 26dB Bandwidth plot on channel 149

26dB Bandwidth plot on channel 157

26dB Bandwidth plot on channel 165

802.11n20 6dB Bandwidth plot on channel 149

6dB Bandwidth plot on channel 157

6dB Bandwidth plot on channel 165



802.11n20

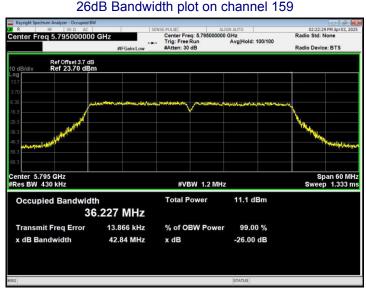
26dB Bandwidth plot on channel 149

26dB Bandwidth plot on channel 157

26dB Bandwidth plot on channel 165

802.11n40

6dB Bandwidth plot on channel 151



6dB Bandwidth plot on channel 159

02:20:41 PM Apr 03, 2025 Radio Std: None SENSE-PULSE ALIGN AUTO Center Freq: 5.75500000 GHz Trig: Free Run #Atten: 30 dB Avg|Hold: 100/100 Center Freq 5.755000000 GHz Radio Device: BTS Ref Offset 3.79 dB Ref 23.79 dBm Center 5.755 GHz #Res BW 430 kHz Span 60 MHz Sweep 1.333 ms #VBW 1.2 MHz Occupied Bandwidth Total Power 11.7 dBm 36.204 MHz 13.978 kHz % of OBW Power 99.00 % Transmit Freq Error x dB Bandwidth 41.77 MHz x dB -26.00 dB

STATUS

802.11n40 26dB Bandwidth plot on channel 151

7. MAXIMUM CONDUCTED OUTPUT POWER

7.1 PPLIED PROCEDURES / LIMIT

According to FCC §15.407 (a)(3)(i)

The maximum conduced output power should not exceed:

Frequency Band(MHz)	Limit
5725~5850	1W

7.2 TEST PROCEDURE

The EUT was directly connected to the Power meter

1. Device Configuration

If possible, configure or modify the operation of the EUT so that it transmits continuously at its maximum power control level (see section II.B.).

a) The intent is to test at 100 percent duty cycle; however a small reduction in duty cycle (to no lower than 98 percent) is permitted if required by the EUT for amplitude control purposes. Manufacturers are expected to provide software to the test lab to permit such continuous operation.

b) If continuous transmission (or at least 98 percent duty cycle) cannot be achieved due to hardware limitations (e.g., overheating), the EUT shall be operated at its maximum power control level with the transmit duration as long as possible and the duty cycle as high as possible.

2. Measurement using a Spectrum Analyzer or EMI Receiver (SA)

Measurement of maximum conducted output power using a spectrum analyzer requires integrating the spectrum across a frequency span that encompasses, at a minimum, either the EBW or the 99-percent occupied bandwidth of the signal.1 However, the EBW must be used to determine bandwidth dependent limits on maximum conducted output power in accordance with § 15.407(a).

a) The test method shall be selected as follows: (i) Method SA-1 or SA-1 Alternative (averaging with the EUT transmitting at full power throughout each sweep) shall be applied if either of the following conditions can be satisfied:

• The EUT transmits continuously (or with a duty cycle \geq 98 percent).

• Sweep triggering or gating can be implemented in a way that the device transmits at the maximum power control level throughout the duration of each of the instrument sweeps to be averaged. This condition can generally be achieved by triggering the instrument's sweep if the duration of the sweep (with the analyzer configured as in Method SA-1, below) is equal to or shorter than the duration T of each transmission from the EUT and if those transmissions exhibit full power throughout their durations.

(ii) Method SA-2 or SA-2 Alternative (averaging across on and off times of the EUT transmissions, followed by duty cycle correction) shall be applied if the conditions of (i) cannot be achieved and the transmissions exhibit a constant duty cycle during the measurement duration. Duty cycle will be considered to be constant if variations are less than ± 2 percent.

(iii) Method SA-3 (RMS detection with max hold) or SA-3 Alternative (reduced VBW with max hold) shall be applied if the conditions of (i) and (ii) cannot be achieved.

b) Method SA-1 (trace averaging with the EUT transmitting at full power throughout each sweep): (i) Set span to encompass the entire emission bandwidth (EBW) (or, alternatively, the entire 99% occupied bandwidth) of the signal.

(ii) Set RBW = 1 MHz.

(iii) Set VBW ≥ 3 MHz.

(iv) Number of points in sweep \geq 2 Span / RBW. (This ensures that bin-to-bin spacing is \leq RBW/2, so that narrowband signals are not lost between frequency bins.)

(v) Sweep time = auto.

(vi) Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.

(vii) If transmit duty cycle < 98 percent, use a video trigger with the trigger level set to enable triggering only on full power pulses. Transmitter must operate at maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no off intervals) or at duty cycle \ge 98 percent, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run".

(viii) Trace average at least 100 traces in power averaging (i.e., RMS) mode.

(ix) Compute power by integrating the spectrum across the EBW (or, alternatively, the entire 99% occupied bandwidth) of the signal using the instrument's band power measurement function with band limits set equal to the EBW (or occupied bandwidth) band edges. If the instrument does not have a band power function, sum the spectrum

7.3 DEVIATION FROM STANDARD

No deviation.

7.4 TEST SETUP

EUT	POWER METER	

7.5 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of chapter 3, Unless otherwise a special operating condition is specified in the follows during the testing.

7.6 TEST RESULTS

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1012 hPa	Test Voltage :	DC 5V
Test Band :	5.8G		

Test Mode	Frequency (MHz)	Output Power (dBm)	Duty Cycle Factor (dB)	Total Power (dBm)	Limit (dBm)	Result				
	5745	5.777	0	5.977	30	Pass				
802.11 a	5785	5.613	0	5.713	30	Pass				
	5825	5.994	0	6.294	30	Pass				
	5745	5.273	0	5.473	30	Pass				
802.11 n20	5785	5.055	0	5.355	30	Pass				
	5825	5.476	0	5.676	30	Pass				
902 11 p40	5755	5.658	0	5.958	30	Pass				
802.11 n40	5795	5.367	0	5.167	30	Pass				
Note: Total Powe	er = Output Pov	Note: Total Power = Output Power + Duty Cycle Factor.								

8. OUT OF BAND EMISSIONS

8.1 APPLICABLE STANDARD

According to FCC §15.407 (b) (4)

Undesirable emission limits. Except as shown in paragraph (b)(10) of this section, the maximum emissions outside of the frequency bands of operation shall be attenuated in accordance with the following limits:

For transmitters operating solely in the 5.725-5.850 GHz band:

(i) All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

(ii) Devices certified before March 2, 2017 with antenna gain greater than 10 dBi may demonstrate compliance with the emission limits in § 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in § 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease by March 2, 2018. Devices certified before March 2, 2018 with antenna gain of 10 dBi or less may demonstrate compliance with the emission limits in § 15.247(d), but manufacturing, marketing and importing of devices certified under this alternative must cease before March 2, 2020.

8.2 TEST PROCEDURE

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW of spectrum analyzer to 1 MHz with a convenient frequency span.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

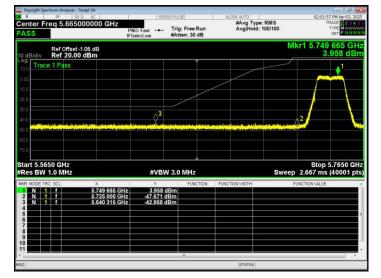
8.3 DEVIATION FROM STANDARD

No deviation.

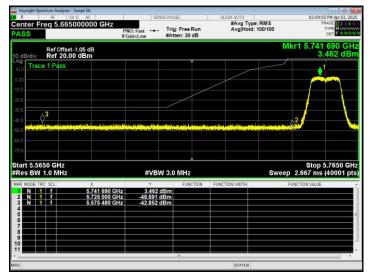
8.4 TEST SETUP

EUT	SPECTRUM
	ANALYZER

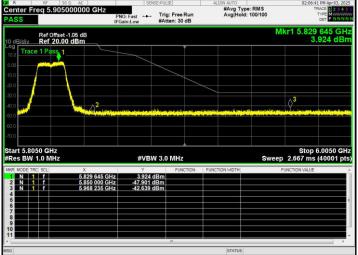
8.5 EUT OPERATION CONDITIONS

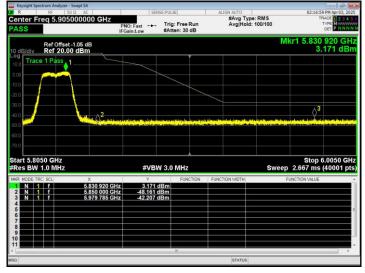

The EUT tested system was configured as the statements of chapter 3, Unless otherwise a special operating condition is specified in the follows during the testing.

8.6 TEST RESULTS


Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1012 hPa	Test Voltage :	DC 5V
Test band :	5.8G	Antenna gain :	-1.05dBi

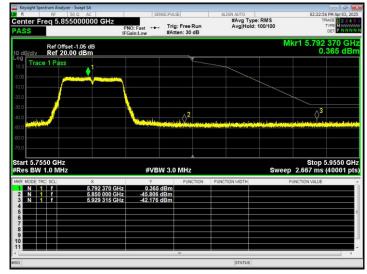
5.745~5.825 GHz


(802.11a) Band Edge, Left Side


(802.11n20) Band Edge, Left Side

(802.11a) Band Edge, Right Side

(802.11n20) Band Edge, Right Side



(802.11n40) Band Edge, Left Side

(802.11n40) Band Edge, Right Side

Keysight Spectrum Analyzer - Swept SA R RF 50 Q AC	SENSE-PULSE	ALIGN AUTO	02:21:08 PM Apr 03, 2025
enter Freq 5.695000000 GH		#Avg Type: RMS Avg Hold: 100/100	TRACE 2 3 4 5 TYPE M WWWW DET P NNNN
Ref Offset -1.05 dB dB/div Ref 20.00 dBm		Mk	r1 5.752 280 GHz 0.930 dBm
0 0 Trace 1 Pass			
00			
			<u> </u>
	and Stationic date and a static static	Q2/	The second se
	an periodi di sumali de sobil di da si de selección del manifesta independente del de s		Contraction of the local states of the local s
0.0			
art 5.5950 GHz Res BW 1.0 MHz	#VBW 3.0 MHz	Sweep	Stop 5.7950 GHz 2.667 ms (40001 pts
R MODE TRC SCL X	V FUNCTION 0 GHz 0.930 dBm	FUNCTION WIDTH FU	NCTION VALUE
2 N 1 f 5.725 00 3 N 1 f 5.617 86 4	0 GHz -47.435 dBm		
5 6 7			
1			
			•

9. SPURIOUS RF CONDUCTED EMISSIONS

9.1 CONFORMANCE LIMIT

Frequency Band (MHz)	Limit
5150 - 5250	Outside of the 5.15-5.35 GHz band: e.i.r.p27 dBm
5250 - 5350	Outside of the 5.15-5.35 GHz band: e.i.r.p27 dBm
5470 - 5725	Outside of the 5.47-5.725 GHz band: e.i.r.p27 dBm
5725 - 5850	All emissions shall be limited to a level of -27 dBm/MHz at 75 MHz or more above or below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above or below the band edge, and from 25 MHz above or below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above or below the band edge, and from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge.

9.2 MEASURING INSTRUMENTS

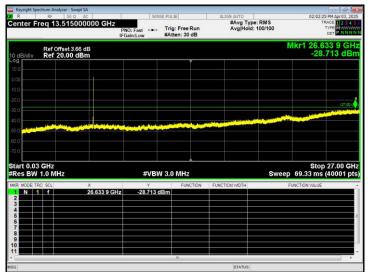
The Measuring equipment is listed in the section 3.5 of this test report.

9.3 TEST SETUP

EUT	SPECTRUM
	ANALYZER

9.4 TEST PROCEDURE

The Spurious RF conducted emissions compliance of RF radiated emission should be measured by following the guidance in ANSI C63.10-2013 with respect to maximizing the emission by rotating the EUT, measuring the emission while the EUT is situated in three orthogonal planes (if appropriate), adjusting the measurement antenna height and polarization etc. Set RBW=1MHz and VBW= 3MHz to measure the peak field strength, and measure frequency range from 30MHz to 26.5GHz.


9.5 TEST RESULTS

Temperature :	26 ℃	Relative Humidity :	54%				
Pressure :	1012 hPa	Test Voltage :	DC 5V				
Test band :	5.8G						
above 26.5GHz of s has no need to be re	requency range is from 30MHz to t purious emissions which are attenu eported. The lowest, middle and hig edge measurement data.	lated by more than 200	dB below the permissible value				

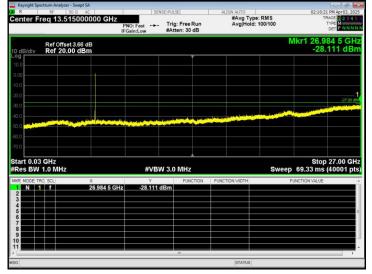
5.8G - 802.11a

CH157

R	RF	halyzer - Swept S 50 Ω A	c	SE	NSE:PULSE		ALIGN AUTO	pe: RMS		B PM Apr 03, 20
enter Fi	req 1	3.515000	F	NO: Fast +-	Trig: Free #Atten: 30			d: 100/100		
dB/div		Dffset 3.61 c 20.00 dBi						N	lkr1 26.7 -28	75 5 GI .419 dB
00			1							
.0										
										-27.00
									North Contraction	
.0		Mary Sural A				-				
.0										
.0										
art 0.03 Res BW				#VB	W 3.0 MHz			Sweep	Stop 69.33 ms	27.00 GI
R MODE TP			x	Y	FUN	CTION	FUNCTION WIDTH		UNCTION VALUE	
N 1	1 1		26.775 5 GHz	-28.419	dBm					
1										

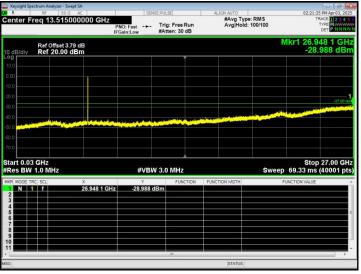
CH165

2	RF 50		SENSE:P	u se	ALIGN AUTO		02:07:09 PM Apr 03, 20
nter Fi		5000000 GHz	NO: Fast	rig: Free Run Atten: 30 dB	#Avg Ty	pe: RMS d: 100/100	TRACE 2 3 4 TYPE MWWW DET PINNIN
B/div	Ref Offset Ref 20.00	4.34 dB 0 dBm				N	lkr1 26.153 8 GH -28.314 dB
i							
, —							
, <u> </u>							
						in the second	
	State of the local division of the local div				States of States		
rt 0.03 es BW	3 GHz 1.0 MHz		#VBW 3	.0 MHz		Sweep	Stop 27.00 G 69.33 ms (40001 p
MODE TF		x	Y	FUNCTION	FUNCTION WIDTH	F	JNCTION VALUE
N 1	l f	26.153 8 GHz	-28.314 dBn	n	<u> </u>		
							,

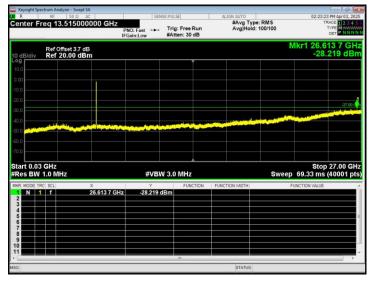


5.8G - 802.11n20

CH149


5.8G - 802.11n40

CH151



CH157

R	ctrum Analyzer - Swe RF 50 Ω	AC	SENSE:PL	JLSE	ALIGN AUTO		02:14:04 PM Apr 03, 20
enter Fr	eq 13.5150		PNO: Fast Tr FGain:Low #A	ig: Free Run Atten: 30 dB	#Avg Typ Avg Hold		TRACE 2 3 4 TYPE M WWW DET P NNN
dB/div	Ref Offset 3.6 Ref 20.00 d					M	kr1 26.611 6 GH -28.339 dBi
00		-					
.0							
1.0						al des stated of the	-27.00 d
.0 0							
.0							
art 0.03 tes BW	GHz 1.0 MHz		#VBW 3.	0 MHz		Sweep	Stop 27.00 GH 69.33 ms (40001 pt
R MODE TR	C SCL	× 26.611 6 GHz	-28.339 dBm	FUNCTION	FUNCTION WIDTH	FU	NCTION VALUE
				10			

CH159

CH165

R	RF 50 Q AC		SENSE	-0111 SE	ALIGN AUTO		02:17:26 PM Apr 03, 20
nter F	req 13.51500000		Fast 🔸	Trig: Free Run #Atten: 30 dB	#Avg Type: Avg Hold: 1	RMS 00/100	TRACE 1234 TYPE M
dB/div	Ref Offset 4.34 dB Ref 20.00 dBm					N	lkr1 26.180 1 GH -27.600 dB
0							
0							
							-27 1.
						No. of Concession, Name	
-	and the second						
)							
rt 0.03	3 GHz		#VBW	3.0 MHz		Sweep	Stop 27.00 GF 69.33 ms (40001 pt
	1.0 MHZ						
MODE TH	RC SCL X	190.1 CH	Y 27 600 dB	FUNCTION	FUNCTION WDTH	FI	UNCTION VALUE
es BW	RC SCL X	.180 1 GHz	Y -27.600 dB		FUNCTION WIDTH	F	UNCTION VALUE
MODE TH	RC SCL X	180 1 GHz			FUNCTION WDTH	Fl	UNCTION VALUE
MODE TH	RC SCL X	180 1 GHz			FUNCTION WIDTH	Fi	UNCTION VALUE
MODE TH	RC SCL X	180 1 GHz			FUNCTION WIDTH	F	INCTION VALUE
MODE TH	RC SCL X	180 1 GHz			FUNCTION WIDTH	F	INCTION VALUE

10. FREQUENCY STABILITY MEASUREMENT

10.1 LIMIT

Manufactures of U-NII devices are responsible for ensuring frequency stability such that an emission is maintained within the band of operation under all conditions of normal operation as specified in the user's manual.

The transmitter center frequency tolerance shall be \pm 20 ppm maximum for the 5 GHz band (IEEE 802.11n specification).

10.2 TEST PROCEDURES

1. The transmitter output (antenna port) was connected to the spectrum analyzer.

2. EUT have transmitted absence of modulation signal and fixed channelize.

3. Set the spectrum analyzer span to view the entire absence of modulation emissions bandwidth.

4. Set RBW = 10 kHz, VBW = 10 kHz with peak detector and maxhold settings.

5. fc is declaring of channel frequency. Then the frequency error formula is $(fc-f)/fc \times 106$ ppm and the limit is less than ±20ppm (IEEE 802.11nspecification).

6. The test extreme voltage is to change the primary supply voltage from 85 to 115 percent of the nominal value

7. Extreme temperature is -20°C~70°C.

10.3 TEST SETUP LAYOUT

10.4 EUT OPERATION DURING TEST

The EUT tested system was configured as the statements of chapter 3, Unless otherwise a special operating condition is specified in the follows during the testing.

10.5 TEST RESULTS

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1012 hPa	Test Voltage :	DC 5V
Note: Note: All chan	nels have been tested, and only th	e worst test data is rec	orded in this report.

	Reference Frequency: 802.11a - 5745MHz							
Environment	Power Supplied	Frequency Measure with Time Elapsed						
Temperature	(VDC)	Measured Frequency	Deviation					
(°C)	(VDC)	(MHz)	(ppm)					
70	5	5744.962	-6.553					
60	5	5744.970	-5.184					
50	5	5744.961	-6.751					
40	5	5744.978	-3.759					
30	5	5744.965	-6.130					
25	5	5744.979	-3.581					
10	5	5744.970	-5.256					
0	5	5744.980	-3.539					
-10	5	5744.964	-6.225					
-20	5	5744.967	-5.683					

	Reference Frequence	cy: 802.11n20 - 5745MHz			
Environment	Power Supplied	Frequency Measure with Time Elapsed			
Temperature		Measured Frequency	Deviation		
(°C)	(VDC)	(MHz)	(ppm)		
70	5	5744.969	-5.469		
60	5	5744.969	-5.480		
50	5	5744.978	-3.746		
40	5	5744.955	-7.768		
30	5	5744.972	-4.903		
25	5	5744.971	-5.078		
10	5	5744.973	-4.749		
0	5	5744.978	-3.849		
-10	5	5744.962	-6.674		
-20	5	5744.972	-4.959		

	Reference Frequence	cy: 802.11n40 - 5755MHz			
Environment	Power Supplied	Frequency Measure with Time Elapsed			
Temperature		Measured Frequency	Deviation		
(°C)	(VDC)	(MHz)	(ppm)		
70	5	5744.960	-6.888		
60	5	5744.969	-5.418		
50	5	5754.978	-3.880		
40	5	5754.953	-8.091		
30	5	5754.973	-4.698		
25	5	5754.960	-6.892		
10	5	5754.968	-5.480		
0	5	5754.950	-8.658		
-10	5	5754.977	-4.049		
-20	5	5754.968	-5.482		

11.1 APPLIED PROCEDURES / LIMIT

Measurements of duty cycle and transmission duration shall be performed using one of the following techniques:

- A diode detector and an oscilloscope that together have a sufficiently short response time to permit accurate measurements of the ON and OFF times of the transmitted signal.
- b) The zero-span mode on a spectrum analyzer or EMI receiver if the response time and spacing between bins on the sweep are sufficient to permit accurate measurements of the ON and OFF times of the transmitted signal:
 - 1) Set the center frequency of the instrument to the center frequency of the transmission.
 - 2) Set RBW ≥ OBW if possible; otherwise, set RBW to the largest available value.
 - 3) Set $VBW \ge RBW$. Set detector = peak or average.
 - 4) The zero-span measurement method shall not be used unless both RBW and VBW are > 50/T and the number of sweep points across duration *T* exceeds 100. (For example, if VBW and/or RBW are limited to 3 MHz, then the zero-span method of measuring the duty cycle shall not be used if $T \le 16.7 \,\mu\text{s.}$)

11.2 DEVIATION FROM STANDARD

No deviation.

11.3 TEST SETUP

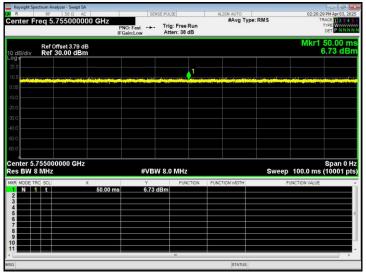
11.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of chapter 3, Unless otherwise a special operating condition is specified in the follows during the testing.

11.5 TEST RESULTS

Temperature :	26 ℃	Relative Humidity :	54%
Pressure :	1012 hPa	Test Voltage :	DC 5V
Note: All channels h	ave been tested, and only the wors	st test data is recorded	in this report.

Test Mode	Frequency (MHz)	Duty Cycle (%)	Factor (dB)	Result			
802.11a	5745	100	0	Pass			
802.11n20	5745	100	0	Pass			
802.11n40	5755	100	0	Pass			
	Note: Duty Cycle= Ton /Total*100% Duty Cycle Correction Factor = 10log (1/Duty Cycle)						


802.11a - 5745MHz

		IFGain:	ast Tri .ow At	ten: 38 dB				PNNN
	Offset 3.66 dB 30.00 dBm						Mkr1 50 11.3	2 dB
0.0				1-				
0.0	and the second second	Contraction of the last		and the second states of		and the second		
.00								
0.0								
0.0								
0.0								
0.0								
enter 5.7450			#VBW 8.0) MHz		Sweep	Sp 100.0 ms (10	an 0 H 001 pt
enter 5.7450 es BW 8 MH: RR MODE TRC SCL	z X		Y	D MHZ	FUNCTION WIDTH		Sp 100.0 ms (10 UNCTION VALUE	an 0 H 001 pt
enter 5.7450 es BW 8 MH; R MODE TRC SCL 1 N 1 t 2	z X	50.00 ms			FUNCTION WIDTH		100.0 ms (10	an 0 H 001 pt
enter 5.7450 es BW 8 MH; R MODE TRC SCL 1 N 1 t 3 4	z X	50.00 ms	Y		FUNCTION WIDTH		100.0 ms (10	an 0 H 001 pt
enter 5.7450 es BW 8 MH; R MODE TRC SCL 1 N 1 t 2 3 4 5	z X	50.00 ms	Y		FUNCTION WIDTH		100.0 ms (10	an 0 H 001 pt
enter 5.7450 es BW 8 MH; R MODE TRC SCL 1 N 1 t	z X	50.00 ms	Y		FUNCTION WIDTH		100.0 ms (10	oan 0 H 001 pt

802.11n20 - 5745MHz

R	RF	50 Q AC	-		ENSE:PULSE		ALIGN AUTO		02-00-	15 PM Apr 03, 20
		74500000	P	NO: Fast -		ree Run 38 dB		ype: RMS		TRACE 234 TYPE WHITE DET PNNN
dB/div		offset 3.66 dB 30.00 dBm							Mkr1	50.00 n 8.57 dB
0.0						1				
0.0 - 10 - 10 - 10	an baska			eletere territere	eneri et letti ke	ide <mark>Ashadin</mark>		telefore in the later		inierzienierza (d
3.0										
1.0										
1.0										
enter 5.7		0000 GHz		#VE	3W 8.0 M	Hz		Swee	p 100.0 ms	Span 0 5 (10001 p
enter 5.7 es BW 8 R MODE TR	BIMIHZ	0000 GHz ×		Y		HZ	FUNCTION WIDTH	Swee	p 100.0 ms	s (10001 p
enter 5.7 es BW 8 R MODE TR N 1	3 MHz		50.00 ms	Y			FUNCTION WIDTH	Swee		
enter 5.7 es BW 8 R MODE TR N 1	BIMIHZ			Y			FUNCTION WIDTH	Swee		s (10001 p
enter 5.7 es BW 8 R MODE TR	BIMIHZ			Y			FUNCTION WIDTH	Swee		s (10001 p
enter 5.7 es BW 8 R MODE TR N 1 2 3 4 5 5 6 6 7 8	BIMIHZ			Y			FUNCTION WIDTH	Swee		s (10001 p
R MODE TR	BIMIHZ			Y			FUNCTION WIDTH	Swee		s (10001 p

802.11n40 - 5755MHz

Note: All channel have been tested, and the report only reflects the worst case data.

12. ANTENNA REQUIREMENT

Standard requirement:	FCC Part15 C Section 15.203				
15.203 requirement:					
be used with the device. The use of a	ed to ensure that no antenna other than that furnished by the responsible party shall permanently attached antenna or of an antenna that uses a unique coupling to the nay design the unit so that a broken antenna can be replaced by the user, but the trical connector is prohibited.				
EUT Antenna:					
The antenna is PCB Antenna, the bes	t case gain of the antenna is -1.05dBi, reference to the appendix II for details				

13. TEST SETUP PHOTO

Reference to the appendix I for details.

14. EUT CONSTRUCTIONAL DETAILS

Reference to the appendix II for details.

***** END OF REPORT *****