

Report No.: STS2503054H01

Issued for

THINKCAR TECH CO., LTD.

2606, building 4, phase II, TiananYungu, Gangtou community, Bantian, Longgang District, Shenzhen, China

Product Name: Automotive Diagnostic Tool

Brand Name: THINKCAR, MUCAR, UDIAG

Model Name: TKX13

Series Model(s): X-95 Pro

FCC ID: 2AUARTKX13

ANSI/IEEE Std. C95.1

Test Standard: FCC 47 CFR Part 2 (2.1093)

IEEE Std. 1528-2013

Max. Report

Body: 0.151 W/kg

SAR (1g)

The test results presented in this report relate only to the object tested. This report shall not be reproduced, except in full, without the written approval of the Shenzhen STS Test Services Co., Ltd.

Page 2 of 43 Report No.: STS2503054H01

TEST REPORT CERTIFICATION

Applicant's name:	THINKCAR TECH CO.,	LTD.
-------------------	--------------------	------

Address 2606, building 4, phase II, TiananYungu, Gangtou community,

Bantian, Longgang District, Shenzhen, China

Manufacturer's Name: THINKCAR TECH CO., LTD.

Bantian, Longgang District, Shenzhen, China

Product description

Product name Automotive Diagnostic Tool

Brand name: THINKCAR, MUCAR, UDIAG

Model name: TKX13

Series Model(s): X-95 Pro

ANSI/IEEE Std. C95.1

Standards..... FCC 47 CFR Part 2 (2.1093)

IEEE Std. 1528-2013

The device was tested by Shenzhen STS Test Services Co., Ltd. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties.

Date of Test

Date (s) of performance of tests...... 14 Mar. 2025 ~ 17 Mar. 2025

Test Result..... Pass

Testing Engineer : Xin Lik

(Xin.Liu)

Technical Manager:

(Shifan. Long)

Authorized Signatory:

(Bovey Yang)

Page 3 of 43 Report No.: STS2503054H01

Table of Contents

1. General Information		5
1.1 EUT Description		5
1.2 Test Environment		6
1.3 Test Factory		6
2. Test Standards and Limits		7
3. SAR Measurement System		8
3.1 Definition of Specific Absorption Rate (SAR)		8
3.2 SAR System		8
4. Tissue Simulating Liquids		11
4.1 Simulating Liquids Parameter Check		11
5. SAR System Validation		13
5.1 Validation System		13
5.2 Validation Result		13
6. SAR Evaluation Procedures		14
7. EUT Antenna Location Sketch		15
7.1 SAR test exclusion consider table		16
8. EUT Test Position		19
8.1 Test Positions		19
9. Uncertainty		20
9.1 Measurement Uncertainty		20
10. Conducted Power Measurement		23
10.1 Test Result		23
11. EUT and Test Setup Photo		26
11.1 EUT Photo		26
11.2 Setup Photo		29
12. SAR Result Summary		31
12.1 Body-worn SAR		31
13. Equipment List		32
Appendix A. System Validation Plots		33
Appendix B. SAR Test Plots		39
Appendix C. Probe Calibration and Dipole Calibration	ation Report	43

Page 4 of 43

Report No.: STS2503054H01

Revision History

Rev.	Issue Date	Report No.	Effect Page	Contents
00	21 Mar. 2025	STS2503054H01	ALL	Initial Issue
	3			

Page 5 of 43 Report No.: STS2503054H01

1. General Information

Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC).

1.1 EUT Description

1.1 EUT Descri	ption									
Product Name	Automotiv	e Diagnostic Tool								
Brand Name	THINKCA	THINKCAR, MUCAR, UDIAG								
Model Name	TKX13	TKX13								
Series Model	X-95 Pro									
Model Difference	Only mode	el name, brand name a	and appearance colour is different, others are same.							
Battery	Charge Li	Rated Voltage: 3.8V Charge Limit Voltage: 4.35V Capacity: 12600mAh								
Device Category	Portable									
Product stage	Production	n unit								
RF Exposure Environment	General P	opulation / Uncontrolle	ed							
Hardware Version	V1.0									
Software Version	V1.0									
Frequency Range	WLAN 802 WLAN 802 WLAN 802	WLAN802.11b/g/n20: 2412 MHz ~ 2462 MHz WLAN 802.11n40: 2422 MHz ~ 2452 MHz WLAN 802.11a/n20/n40/ac20/ac40/ac80: 5150 ~ 5250 MHz WLAN 802.11a/n20/n40/ac20/ac40/ac80: 5725 ~ 5850 MHz Bluetooth: 2402 MHz to 2480 MHz								
	Band	Mode	Body Worn (W/kg)							
Max. Reported	DTS	2.4G WLAN	0.099							
SAR(1g): (Limit:1.6W/kg)	DSS	ВТ	0.033							
Test distance: Body:0mm	NII	5.2G WLAN	0.151							
Body.oniin	NII	5.8G WLAN	0.114							
FCC Equipment Class	Part 15 Sp	nsmission System (D ⁻ pread Spectrum Trans d National Information	mitter (DSS)							
Operating Mode:	802.11g(C 802.11n(C 5G WLAN 802.11n(C	Unlicensed National Information Infrastructure TX(NII) 2.4G WLAN: 802.11b(DSSS):CCK,DQPSK,DBPSK 802.11g(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11n(OFDM):BPSK,QPSK,16-QAM,64-QAM 5G WLAN: 802.11a(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11n(OFDM):BPSK,QPSK,16-QAM,64-QAM 802.11ac(OFDM):BPSK,QPSK,16-QAM,64-QAM								
Antenna		Internal Antenna ternal Antenna								
Specification: Hotspot Mode	Not Suppo									
DTM Mode	Not Suppo	Not Support								
Note:	J- F -2									

1. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power

Page 6 of 43 Report No.: STS2503054H01

1.2 Test Environment

Ambient conditions in the SAR laboratory:

Items	Required
Temperature (°C)	18-25
Humidity (%RH)	30-70

1.3 Test Factory

ShenZhen STS Test Services Co.,Ltd.

101, Building B, Zhuoke Science Park, No.190 Chongqing Road, ZhanChengShequ, Fuhai Sub-District, Bao'an District, Shenzhen, Guang Dong, China

FCC test Firm Registration No.: 625569

IC Registration No.: 12108A A2LA Certificate No.: 4338.01

Page 7 of 43 Report No.: STS2503054H01

2. Test Standards and Limits

No.	Identity	Document Title
1	47 CFR Part 2	Frequency Allocations and Radio Treaty Matters; General Rules and Regulations
2	IEEE Std C95.1, 2019	IEEE Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic, and Electromagnetic Fields, 0 Hz to 300 GHz. It specifies the maximum exposure limit of 1.6 W/kg as averaged over any 1 gram of tissue for portable devices being used within 20 cm of the user in the uncontrolled environment.
3	IEEE Std. 1528-2013	Recommended Practice for Determining the Peak Spatial- Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques
4	FCC KDB 447498 D04 v01	RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices
5	FCC KDB 865664 D01 v01r04	SAR Measurement 100 MHz to 6 GHz
6	FCC KDB 865664 D02 v01r02	RF Exposure Reporting
7	FCC KDB 248227 D01 Wi-Fi SAR v02r02	SAR Considerations for 802.11 Devices
8	FCC KDB 616217 D04 v01r02	SAR for laptop and tablets

(A). Limits for Occupational/Controlled Exposure (W/kg)

Whole-Body Partial-Body Hands, Wrists, Feet and Ankles 0.4 8.0 20.0

(B). Limits for General Population/Uncontrolled Exposure (W/kg)

Whole-Body Partial-Body Hands, Wrists, Feet and Ankles 0.08 1.6 4.0

NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube.

Population/Uncontrolled Environments:

Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure.

Occupational/Controlled Environments:

Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation).

NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 W/kg

Page 8 of 43 Report No.: STS2503054H01

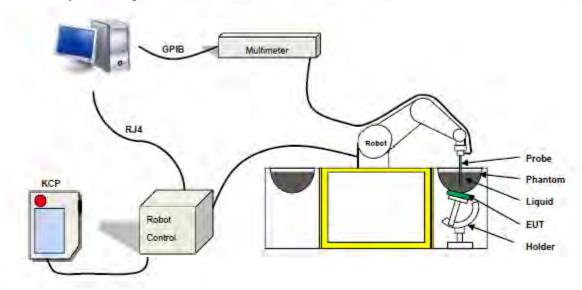
3. SAR Measurement System

3.1 Definition of Specific Absorption Rate (SAR)

SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled.

The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below:

$$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$


SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by

$$SAR = \frac{\sigma E^2}{\rho}$$

Where: σ is the conductivity of the tissue, ρ is the mass density of the tissue and E is the RMS electrical field strength.

3.2 SAR System

MVG SAR System Diagram:

COMOSAR is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The COMOSAR system consists of the following items:

- Main computer to control all the system
- 6 axis robot
- Data acquisition system
- Miniature E-field probe
- Phone holder
- Head simulating tissue

Page 9 of 43 Report No.: STS2503054H01

The following figure shows the system.

The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The Open SAR software computes the results to give a SAR value in a 1g or 10g mass.

3.2.1 Probe

For the measurements the Specific Dosimetric E-Field Probe SN 08/21 EPGO352 with following specifications is used

- Probe Length: 330 mm
- Length of Individual Dipoles: 2 mm
- Maximum external diameter: 8 mm
- Probe Tip External Diameter: 2.5 mm
- Distance between dipole/probe extremity: 1 mm
- Dynamic range: 0.01-100 W/kg
- Probe linearity: 3%
- Axial Isotropy: < 0.10 dB
- Spherical Isotropy: <0.10 dB
- Calibration range: 150 MHz to 6 GHz for head & body simulating liquid.
- Angle between probe axis (evaluation axis) and surface normal line: less than 30°

Figure 1-MVG COMOSAR Dosimetric E field Dipole

Page 10 of 43 Report No.: STS2503054H01

3.2.2 Phantom

For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid.

3.2.3 Device Holder

The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of \pm 0.5 mm would produce a SAR uncertainty of \pm 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards.4. Tissue Simulating Liquids

Page 11 of 43 Report No.: STS2503054H01

4. Tissue Simulating Liquids

4.1 Simulating Liquids Parameter Check

The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528.

Head Tissue

Frequency	cellulose	DGBE	HEC	NaCl	Preventol	Sugar	X100	Water	Conductivity	Permittivity
(MHz)	%	%	%	%	%	%	%	%	σ	εr
750	0.2	1	1	1.4	0.2	57.0	1	41.1	0.89	41.9
835	0.2	/	1	1.4	0.2	57.9	1	40.3	0.90	41.5
900	0.2	1	1	1.4	0.2	57.9	/	40.3	0.97	41.5
1800	1	44.5	- 1	0.3	/	1	30.45	55.2	1.4	40.0
1900	1	44.5	1	0.3	/	1	30.45	55.2	1.4	40.0
2000	1	44.5	1	0.3	/	1	/	55.2	1.4	40.0
2450	1	44.9	/	0.1	/	1	/	55.0	1.80	39.2
2600	1	45.0	1	0.1	1	1	1	54.9	1.96	39.0

Body Tissue

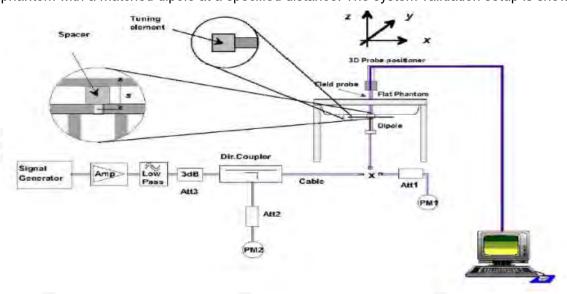
Frequency	cellulose	DGBE	HEC	NaCl	Preventol	Sugar	X100	Water	Conductivity	Permittivity
(MHz)	%	%	%	%	%	%	%	%	σ	εr
750	0.2	/	1	0.9	0.1	47.2	1	51.7	0.96	55.5
835	0.2	1	1	0.9	0.1	48.2	1	50.8	0.97	55.2
900	0.2	/	1	0.9	0.1	48.2	/	50.8	1.05	55.0
1800	1	29.4	1	0.4	/	1	30.45	70.2	1.52	53.3
1900	1	29.4	1	0.4	/	1	30.45	70.2	1.52	53.3
2000	1	29.4	/	0.4	/	1	/	70.2	1.52	53.3
2450	1	31.3	/	0.1	/	1	/	68.6	1.95	52.7
2600	1	31.7	1	0.1	/	1	/	68.2	2.16	52.3

	Tissue dielectric na	rameters for head and	hody phantoms	
Frequency	εr			σ S/m
	Head	Body	Head	Body
300	45.3	58.2	0.87	0.92
450	43.5	56.7	0.87	0.94
900	41.5	55.0	0.97	1.05
1450	40.5	54.0	1.20	1.30
1800	40.0	53.3	1.40	1.52
2450	39.2	52.7	1.80	1.95
3000	38.5	52.0	2.40	2.73
5800	35.3	48.2	5.27	6.00

Page 12 of 43

Report No.: STS2503054H01

LIQUID MEASUREMENT RESULTS


Date	Ambient		Simulating Liquid		- Parameters	Torget	Measured	Deviation	Limited
Date	Temp.	Humidity	Frequency	Temp.	Farameters	Target	Measureu	%	%
	[°C]	%	(MHz)	[°C]					
2025-03-14	22.0	49	2437 21.7	Permittivity	39.22	39.18	-0.11	±5	
2025-03-14	22.0	49	2437	2437 21.7	Conductivity	1.79	1.77	-1.03	±5
0005 00 44	22.0	40	0450	21.7	Permittivity	39.20	40.08	2.24	±5
2025-03-14	22.0	49	2450		Conductivity	1.80	1.82	1.11	±5
0005 00 44	22.0	40	0400	21.7	Permittivity	39.15	40.05	2.31	±5
2025-03-14	22.0	49	2480		Conductivity	1.83	1.83	0.18	±5
2025 02 47	20.0	5400	20.4	Permittivity	36.02	36.85	2.30	±5	
2025-03-17	20.6	50	5180	20.4	Conductivity	4.64	4.61	-0.63	±5
0005 00 47	00.0	50	5000	00.0	Permittivity	36.00	36.33	0.92	±5
2025-03-17	20.6	50	5200	20.2	Conductivity	4.66	4.63	-0.64	±5
0005 00 47	00.0	50	5040	00.0	Permittivity	35.96	36.44	1.33	±5
2025-03-17	20.6	50	5240	20.3	Conductivity	4.70	4.67	-0.68	±5
0005 00 47	00.0	50	5705	00.0	Permittivity	35.32	36.53	3.44	±5
2025-03-17	20.6	50	5785	20.3	Conductivity	5.25	5.19	-1.22	±5
0005 00 47	00.7			00.5	Permittivity	35.30	35.67	1.05	±5
2025-03-17	20.7	51	5800	20.5	Conductivity	5.27	5.30	0.57	±5

Page 13 of 43 Report No.: STS2503054H01

5. SAR System Validation

5.1 Validation System

Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder. The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below.

5.2 Validation Result

Comparing to the original SAR value provided by MVG, the validation data should be within its specification of 10 %.

specification of 10 70.									
Date	Freq.	Power	Tested Value	Normalized SAR	Target SAR	Tolerance	Limit		
	(MHz)	(mW)	(W/Kg)	(W/kg)	1g(W/kg)	(%)	(%)		
	()	()	(******3)	(*****3)	19(11119)	(1-7)	(11)		
2025-03-14	2450	100	5.638	56.38	54.70	3.07	10		
2025-03-17	5200	100	16.132	161.32	163.88	-1.56	10		
2025-03-17	5800	100	18.507	185.07	188.95	-2.05	10		

Note:

- The tolerance limit of System validation ±10%.
- 2. The dipole input power (forward power) was 100 mW.
- 3. The results are normalized to 1 W input power.

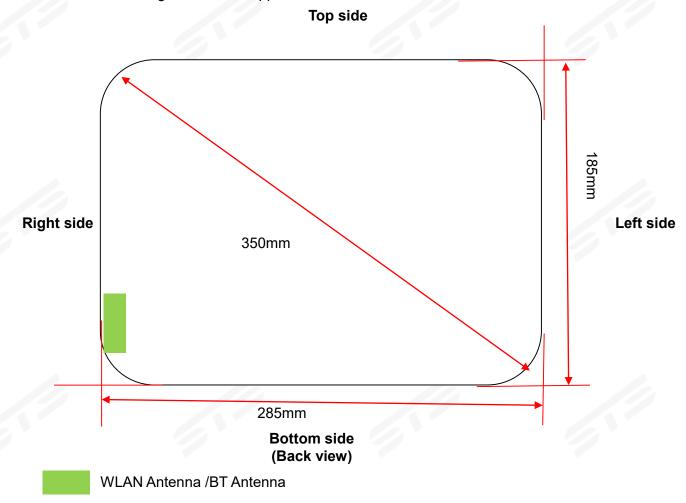
Page 14 of 43 Report No.: STS2503054H01

6. SAR Evaluation Procedures

The procedure for assessing the average SAR value consists of the following steps: The following steps are used for each test position

- Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface
- Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift.
- Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme.
- Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated.

Area Scan& Zoom Scan


First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR-distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01 quoted below. When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR.

Page 15 of 43 Report No.: STS2503054H01

7. EUT Antenna Location Sketch

It is a Automotive Diagnostic Tool, support WLAN/BT mode.

Antenna Separation Distance(cm)									
ANT Back Side Left Side Right Side Top Side Bottom Side									
WLAN/BT	1	27	≤0.5	14	1				

Note 1: The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report.

Page 16 of 43 Report No.: STS2503054H01

7.1 SAR test exclusion consider table

The WLAN/BT SAR evaluation of Maximum power (dBm) summing tolerance.

THE WLANDI	SAR evaluation of Maximum power (dbm)	Summing	olerance.		
	Wireless Interfess	ВТ	2.4G	5.2G	5.8G
_	Wireless Interface	BI	WLAN	WLAN	WLAN
Exposure	Calculated Frequency(GHz)	2.48	2.437	5.18	5.785
Position	Maximum Turn-up power (dBm)	7.5	15	10	13
	Maximum rated power(mW)	5.62	31.62	10.00	19.95
	Separation distance (cm)	1	1	1	1
Back Side	exclusion threshold(mW)	10.17	10.29	6.30	5.86
	Testing required?	NO	YES	YES	YES
	Separation distance (cm)	27	27	27	27
Left Side	exclusion threshold(mW)	5419.77	5413.59	5686.25	5727.33
	Testing required?	NO	NO	NO	NO
	Separation distance (cm)	≤0.5	≤0.5	≤0.5	≤0.5
Right Side	exclusion threshold(mW)	2.72	2.76	1.51	1.38
	Testing required?	YES	YES	YES	YES
	Separation distance (cm)	14	14	14	14
Top Side	exclusion threshold(mW)	1551.19	1553.29	1465.18	1452.69
	Testing required?	NO	NO	NO	NO
	Separation distance (cm)	1	1	1	1
Bottom Side	exclusion threshold(mW)	10.17	10.29	6.30	5.86
	Testing required?	NO	YES	YES	YES

Note:

- 1. maximum power is the source-based time-average power and represents the maximum RF output power among production units.
- 2. Per KDB 447498 D04, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user.
- 3. Per KDB 447498 D04, if the maximum time-averaged power available does not exceed 1 mW. This stand-alone SAR exemption test.

Page 17 of 43 Report No.: STS2503054H01

4. Per KDB 447498 D04, the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold Pth (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). Pth is given by:

$$P_{th} (\text{mW}) = \begin{cases} ERP_{20\ cm} (d/20\ \text{cm})^x & d \leq 20\ \text{cm} \\ ERP_{20\ cm} & 20\ \text{cm} < d \leq 40\ \text{cm} \end{cases}$$
 Where
$$x = -\log_{10} \left(\frac{60}{ERP_{20\ cm} \sqrt{f}}\right) \text{ and } f \text{ is in GHz};$$
 and
$$ERP_{20\ cm} (\text{mW}) = \begin{cases} 2040f & 0.3\ \text{GHz} \leq f < 1.5\ \text{GHz} \\ 3060 & 1.5\ \text{GHz} \leq f \leq 6\ \text{GHz} \end{cases}$$

$$d = \text{the separation distance (cm)};$$

5. Per KDB 447498 D04, An alternative to the SAR-based exemption is using below table and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in below table to apply, R must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value).

RF Source frequency (MHz)	Threshold ERP(watts)
0.3-1.34	1,920 R ² .
1.34-30	3,450 R ² /f ² .
30-300	3.83 R ² .
300-1,500	0.0128 R ² f.
1,500-100,000	19.2R².

Page 18 of 43 Report No.: STS2503054H01

- 6. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion 8.for each frequency band ,testing at higher data rates and higher order modulations is not required when the maximum average output power for each of each of these configurations is less than 1/4db higher than those measured at the lower data rate than 11b mode ,thus the SAR can be excluded.
- 7. Per KDB 616217 D04, SAR evaluation for the front surface of tablet display screens are generally not necessary.
- 8. Per KDB 248227, as maximum rated power for U-NII-1>U-NII-2A, U-NII-1 was chosen for SAR evaluation. Based on the measurements obtained, SAR measurements on U-NII-2A are not required as highest reported SAR from U-NII-1 band is≤1.2W/Kg.

Page 19 of 43 Report No.: STS2503054H01

8. EUT Test Position

This EUT was tested in Back Side and Right Side.

8.1 Test Positions

According to KDB 616217 D04, SAR evaluation is required for back surface and edges of the devices. The back surface and edges of the tablet are tested with the tablet touching the phantom. Exposures from antennas through the front surface of the display section of a tablet are generally limited to the user's hands. Exposures to hands for typical consumer transmitters used in tablets are not expected to exceed the extremity SAR limit; therefore, SAR evaluation for the front surface of tablet display screens are generally not necessary. When voice mode is supported on a tablet and it is limited to speaker mode or headset operations only, additional SAR testing for this type of voice use is not required.

Fig-4.1 Illustration for Tablet Setup

Page 20 of 43 Report No.: STS2503054H01

9. Uncertainty

9.1 Measurement Uncertainty

The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

approximately the 95	% confide			overage fac ty- SN 08/21					
	Measure			JT averaged		1 / 10 gram			
	Measure	Tol	Prob.	l averaged			1g Ui (+-	10g Ui (+-	
Uncertainty Component	Sec.	(+- %)	Dist.	Div.	Ci (1g)	Ci (10g)	%)	%)	vi
			Measure	ment Systen	n	l		l	ı
Probe calibration	E.2.1	5.72	N	1.00	1.00	1.00	5.72	5.72	8
Axial Isotropy	E.2.2	0.18	R	1.73	0.71	0.71	0.07	0.07	8
Hemispherical Isotropy	E.2.2	1.04	R	1.73	0.71	0.71	0.42	0.42	8
Boundary effect	E.2.3	0.80	R	1.73	1.00	1.00	0.46	0.46	8
Linearity	E.2.4	1.25	R	1.73	1.00	1.00	0.72	0.72	00
System detection limits	E.2.4	1.20	R	1.73	1.00	1.00	0.69	0.69	00
Modulation response	E2.5	3.42	R	1.73	1.00	1.00	1.97	1.97	00
Readout Electronics	E.2.6	0.26	N	1.00	1.00	1.00	0.26	0.26	00
Response Time	E.2.7	0.17	R	1.73	1.00	1.00	0.10	0.10	00
Integration Time	E.2.8	1.43	R	1.73	1.00	1.00	0.83	0.83	∞
RF ambient conditions-Noise	E.6.1	3.51	R	1.73	1.00	1.00	2.03	2.03	œ
RF ambient conditions- reflections	E.6.1	3.15	R	1.73	1.00	1.00	1.82	1.82	00
Probe positioner mechanical tolerance	E.6.2	1.20	R	1.73	1.00	1.00	0.69	0.69	8
Probe positioning with respect to phantom shell	E.6.3	1.40	R	1.73	1.00	1.00	0.81	0.81	00
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.10	R	1.73	1.00	1.00	1.21	1.21	8
		•	Test san	ple Related		•		•	
Test sample positioning	E.4.2	3.10	N	1.00	1.00	1.00	3.10	3.10	8
Device holder uncertainty	E.4.1	3.80	N	1.00	1.00	1.00	3.80	3.80	8
Output power variation— SAR drift measurement	E.2.9	4.50	R	1.73	1.00	1.00	2.60	2.60	8
SAR scaling	E.6.5	1.80	R	1.73	1.00	1.00	1.04	1.04	œ
		Pha	ntom and	tissue parar	neters				
Phantom shell uncertainty— shape, thickness, and permittivity	E.3.1	3.70	R	1.73	1.00	1.00	2.14	2.14	00
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.90	N	1.00	1.00	0.84	1.90	1.60	8
Liquid conductivity measurement	E.3.3	2.40	R	1.73	0.78	0.71	1.08	0.98	М
Liquid permittivity measurement	E.3.3	4.10	N	1.00	0.78	0.71	3.20	2.91	М
Liquid conductivity— temperature uncertainty	E.3.4	2.70	R	1.73	0.23	0.26	0.36	0.41	8
Liquid permittivity— temperature uncertainty	E.3.4	4.80	N	1.00	0.23	0.26	1.10	1.25	8
Combined Standard Uncertainty			RSS				10.08	9.59	
Expanded Uncertainty (95% Confidence interval)			K=2				19.58	19.18	

Page 21 of 43 Report No.: STS2503054H01

		SATIMO) Uncertaint	ty- SN 08/21	EPGO352				
	Svstem Val				ed over 1 gra	am / 10 gram) <u>.</u>		
Uncertainty Component	Sec.	Tol (+- %)	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+- %)	10g Ui (+-%)	vi
Measurement System									1
Probe calibration	E.2.1	5.72	N	1.00	1.00	1.00	5.72	5.72	00
Axial Isotropy	E.2.2	0.18	R	1.73	1.00	1.00	0.10	0.10	00
Hemispherical Isotropy	E.2.2	1.04	R	1.73	0.00	0.00	0.00	0.00	00
Boundary effect	E.2.3	0.80	R	1.73	1.00	1.00	0.46	0.46	00
Linearity	E.2.4	1.25	R	1.73	1.00	1.00	0.72	0.72	00
System detection limits	E.2.4	1.20	R	1.73	1.00	1.00	0.69	0.69	8
Modulation response	E2.5	3.42	R	1.73	0.00	0.00	0.00	0.00	00
Readout Electronics	E.2.6	0.26	N	1.00	1.00	1.00	0.26	0.26	00
Response Time	E.2.7	0.17	R	1.73	0.00	0.00	0.00	0.00	00
Integration Time	E.2.8	1.43	R	1.73	0.00	0.00	0.00	0.00	8
RF ambient conditions- Noise	E.6.1	3.51	R	1.73	1.00	1.00	2.03	2.03	8
RF ambient conditions- reflections	E.6.1	3.15	R	1.73	1.00	1.00	1.82	1.82	8
Probe positioner mechanical tolerance	E.6.2	1.20	R	1.73	1.00	1.00	0.69	0.69	∞
Probe positioning with respect to phantom shell	E.6.3	1.40	R	1.73	1.00	1.00	0.81	0.81	∞
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	2.10	R	1.73	1.00	1.00	1.21	1.21	8
System validation source									
Deviation of experimental dipole from numerical dipole	E.6.4	4.80	N	1.00	1.00	1.00	4.80	4.80	8
Input power and SAR drift measurement	8,6.6.4	5.10	R	1.73	1.00	1.00	2.94	2.94	00
Dipole axis to liquid distance	8,E.6.6	2.40	R	1.73	1.00	1.00	1.39	1.39	00
Phantom and set-up	T	1	•		_	_		1	1
Phantom shell uncertainty— shape, thickness, and permittivity	E.3.1	3.70	R	1.73	1.00	1.00	2.14	2.14	8
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.90	N	1.00	1.00	0.84	1.90	1.60	8
Liquid conductivity (temperature uncertainty)	E.3.3	2.40	R	1.73	0.78	0.71	1.08	0.98	8
Liquid conductivity (measured)	E.3.3	4.10	N	1.00	0.78	0.71	3.20	2.91	М
Liquid permittivity (temperature uncertainty)	E.3.4	2.70	R	1.73	0.23	0.26	0.36	0.41	8
Liquid permittivity (measured)	E.3.4	4.80	N	1.00	0.23	0.26	1.10	1.25	М
Combined Standard Uncertainty			RSS				9.72	9.52	
Expanded Uncertainty (95% Confidence interval)			K=2				19.44	19.03	

Page 22 of 43 Report No.: STS2503054H01

	System	Check unc		DUT averag	ed over 1 gra	am / 10 gran			
Uncertainty Component	Sec.	Tol	Prob. Dist.	Div.	Ci (1g)	Ci (10g)	1g Ui (+- %)	10g Ui (+-%)	vi
		(+- %)							
Measurement System									
Probe calibration drift	E.2.1.3	5.72	N	1.00	1.00	1.00	5.72	5.72	0
Axial Isotropy	E.2.2	0.18	R	1.73	0.00	0.00	0.00	0.00	0
Hemispherical Isotropy	E.2.2	1.04	R	1.73	0.00	0.00	0.00	0.00	0
Boundary effect	E.2.3	0.8	R	1.73	0.00	0.00	0.00	0.00	0
	E.2.4							-	
Linearity		1.25	R	1.73	0.00	0.00	0.00	0.00	0
System detection limits	E.2.4	1.20	R	1.73	0.00	0.00	0.00	0.00	oc
Modulation response	E2.5	3.42	R	1.73	0.00	0.00	0.00	0.00	o
Readout Electronics	E.2.6	0.26	N	1.00	0.00	0.00	0.00	0.00	o
Response Time	E.2.7	0.17	R	1.73	0.00	0.00	0.00	0.00	o
Integration Time	E.2.8	1.43	R	1.73	0.00	0.00	0.00	0.00	o
RF ambient conditions- Noise	E.6.1	3.51	R	1.73	0.00	0.00	0.00	0.00	o
RF ambient conditions- reflections	E.6.1	3.15	R	1.73	0.00	0.00	0.00	0.00	ŏ
Probe positioner mechanical tolerance	E.6.2	1.2	R	1.73	1.00	1.00	0.69	0.69	ŏ
Probe positioning with respect to phantom shell	E.6.3	1.4	R	1.73	1.00	1.00	0.81	0.81	o
Extrapolation, interpolation, and integrations algorithms for max. SAR evaluation	E.5	3.9	R	1.73	0.00	0.00	0.00	0.00	o
System check source (dipole)									
Deviation of experimental dipoles	E.6.4	4.8	N	1.00	1.00	1.00	4.80	4.80	o
Input power and SAR drift measurement	8,6.6.4	5.1	R	1.73	1.00	1.00	2.94	2.94	o
Dipole axis to liquid distance	8,E.6.6	2.4	R	1.73	1.00	1.00	1.39	1.39	O
Phantom and tissue									
parameters Phantom shell uncertainty— shape, thickness, and permittivity	E.3.1	3.7	R	1.73	1.00	1.00	2.14	2.14	ox
Uncertainty in SAR correction for deviations in permittivity and conductivity	E.3.2	1.9	N	1.00	1.00	0.84	1.90	1.60	o
Liquid conductivity measurement	E.3.3	2.4	R	1.73	0.78	0.71	1.08	0.98	0
Liquid permittivity measurement	E.3.3	4.1	N	1.00	0.78	0.71	3.20	2.91	ľ
Liquid conductivity— temperature uncertainty	E.3.4	2.7	R	1.73	0.23	0.26	0.36	0.41	0
Liquid permittivity— temperature uncertainty	E.3.4	4.8	N	1.00	0.23	0.26	1.10	1.25	ı
Combined Standard Uncertainty			RSS				5.56	5.20	
Expanded Uncertainty (95% Confidence interval)			K=2				11.12	10.41	

Page 23 of 43 Report No.: STS2503054H01

10. Conducted Power Measurement

10.1 Test Result

2.4G WLAN

		2.4GWIFI		
Mode	Channel Number	Frequency (MHz)	Average Power (dBm)	Output Power (mW)
	1	2412	14.75	29.85
802.11b	6	2437	14.80	30.20
	11	2462	14.53	28.38
	1	2412	10.60	11.48
802.11g	6	2437	10.69	11.72
	11	2462	10.39	10.94
	1	2412	10.44	11.07
802.11 n-HT20	6	2437	10.53	11.30
	11	2462	10.31	10.74
802.11 n-HT40	3	2422	10.47	11.14
	6	2437	10.61	11.51
	9	2452	10.50	11.22

BLE

		BLE		
Mode	Channel Number	Frequency (MHz)	Average Power (dBm)	Output Power (mW)
	0	2402	-3.25	0.47
GFSK(1Mbps)	19	2440	-2.73	0.53
	39	2480	-2.38	0.58
	0	2402	-3.49	0.45
GFSK(2Mbps)	19	2440	-2.71	0.54
	39	2480	-2.61	0.55

Page 24 of 43

Report No.: STS2503054H01

B1

		ВТ		
Mode	Channel Number	Frequency (MHz)	Average Power (dBm)	Output Power (mW)
	0	2402	6.93	4.93
GFSK(1Mbps)	39	2441	6.40	4.37
	78	2480	7.15	5.19
	0	2402	5.74	3.75
π/4-QPSK(2Mbps)	39	2441	5.56	3.60
	78	2480	6.29	4.26
	0	2402	5.71	3.72
8DPSK(3Mbps)	39	2441	5.46	3.52
	78	2480	6.27	4.24

WLAN (5.2Gband)

5.2G WLAN								
Mode	Channel Number	Frequency (MHz)	Average Power (dBm)	Output Power (mW)				
	36	5180	9.62	9.16				
802.11a	40	5200	8.94	7.83				
	48	5240	9.20	8.32				
802.11 n-HT20	36	5180	9.43	8.77				
	40	5200	8.80	7.59				
	48	5240	9.05	8.04				
000 44 11740	38	5190	9.30	8.51				
802.11 n-HT40	46	5230	8.95	7.85				
	36	5180	9.40	8.71				
802.11ac-VHT20	40	5200	8.67	7.36				
	48	5240	8.99	7.93				
	38	5190	9.21	8.34				
802.11ac-VHT40	46	5230	8.97	7.89				
802.11ac-VHT80	42	5210	8.95	7.85				

Page 25 of 43 Report No.: STS2503054H01

WLAN (5.8Gband)

		5.8G WLAN		
Mode	Channel Number	Frequency (MHz)	Average Power (dBm)	Output Power (mW)
	149	5745	12.52	17.86
802.11a	157	5785	12.87	19.36
	165	5825	12.77	18.92
	149	5745	12.20	16.60
802.11 n-HT20	157	5785	12.51	17.82
	165	5825	12.66	18.45
000 44 × UT40	151	5755	12.27	16.87
802.11 n-HT40	159	5795	12.87	19.36
	149	5745	12.34	17.14
802.11ac-VHT20	157	5785	12.59	18.16
	165	5825	12.68	18.54
902 44cc V/UT40	151	5755	12.12	16.29
802.11ac-VHT40	159	5795	12.51	17.82
802.11ac-VHT80	155	5775	12.70	18.62

Page 26 of 43 Report No.: STS2503054H01

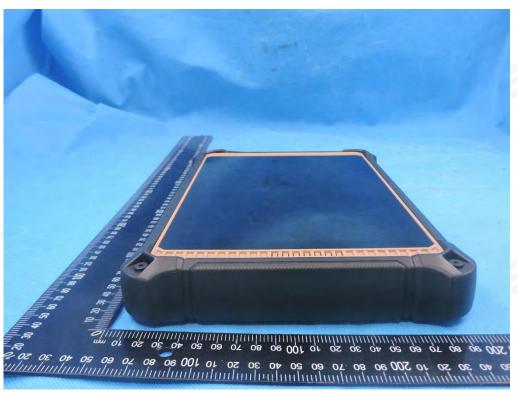
11. EUT and Test Setup Photo

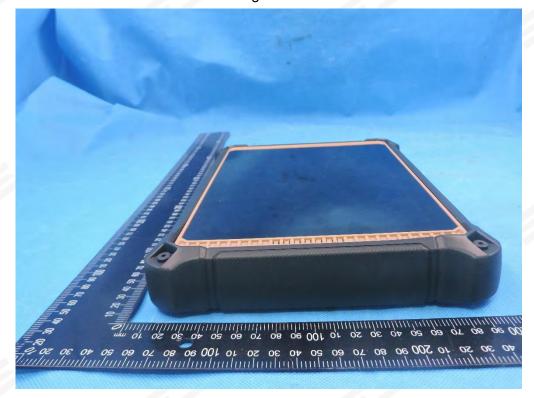
11.1 EUT Photo

Back side

Page 27 of 43 Report No.: STS2503054H01

Top side


Bottom side



Page 28 of 43 Report No.: STS2503054H01

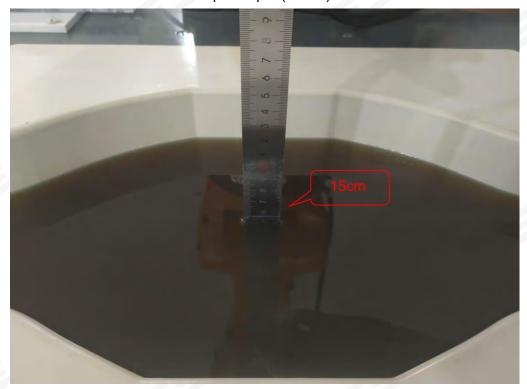
Left side

Right side

Page 29 of 43 Report No.: STS2503054H01

Body Back side(separation distance is 0mm)

Body Right Side (separation distance is 0mm)



Page 30 of 43 Report No.: STS2503054H01

Body Bottom side (separation distance is 0mm)

Liquid depth (15 cm)

Page 31 of 43 Report No.: STS2503054H01

12. SAR Result Summary

12.1 Body-worn SAR

Band	Model	Test Position	Freq.	SAR (1g) (W/kg)	Power Drift(%)	Max.Turn- up Power(dBm)	Meas.Output Power(dBm)	Scaling Factor	Scaled SAR (W/Kg)	Meas.No.
2.4GHz		Back Side	2437	0.052	-3.95	15.00	14.80	1.047	0.054	1
WLAN	802.11b	Right Side	2437	0.095	-3.08	15.00	14.80	1.047	0.099	1
WLAIN		Bottom Side	2437	0.041	-0.31	15.00	14.80	1.047	0.043	/
ВТ	GFSK	Right Side	2480	0.030	3.06	7.50	7.15	1.084	0.033	2
		Back Side	5180	0.069	1.87	10.00	9.62	1.091	0.075	1
F 2011-		Right Side	5180	0.138	3.60	10.00	9.62	1.091	0.151	3
5.2GHz WLAN	802.11a	Right Side	5200	0.102	3.19	10.00	8.94	1.276	0.130	1
WLAIN		Right Side	5240	0.106	2.75	10.00	9.20	1.202	0.127	1
		Bottom Side	5180	0.052	-2.96	10.00	9.62	1.091	0.057	/
F 0011-		Back Side	5785	0.069	3.76	13.00	12.87	1.030	0.071	/
5.8GHz	802.11a	Right Side	5785	0.111	-1.63	13.00	12.87	1.030	0.114	4
WLAN		Bottom Side	5785	0.063	-3.05	13.00	12.87	1.030	0.065	1

Note:

- 1. The test separation of all above table is 0mm.
- 2. Per KDB 447498 D04, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.
 - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.
 - b. Scaled SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor
- 3. Per KDB 248227- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. (The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power was **0.369** W/Kg for Body)
- 4. Per KDB 248227- When the highest reported SAR for U-NII-1 is adjusted by the ratio of U-NII-2A to U-NII-1 specified maximum output power and the adjusted SAR is ≤ 1.2 W/kg. (The highest reported SAR for U-NII-1 is adjusted by the ratio of U-NII-2A to U-NII-1 specified maximum output power was 0.384
- W/Ka for Body)
- 6. When the user enables the personal Wireless router functions for the handsets, actual operations include simultaneous transmission of both the Wi-Fi transmitting frequency and thus cannot be evaluated for SAR under actual use conditions. The "Portable Hotspot" feature on the handset was NOT activated, to ensure the SAR measurements were evaluated for a single transmission frequency RF signal.

Page 32 of 43 Report No.: STS2503054H01

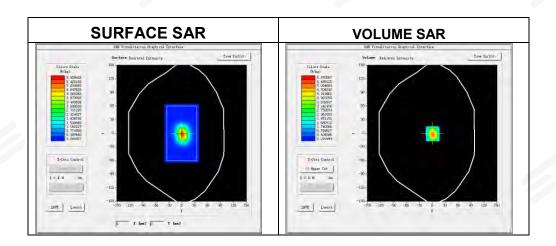
13. Equipment List

Kind of Equipment	Manufacturer	Type No.	Serial No.	Last Calibration	Calibrated Until
2450MHzDipole	MVG	SID2450	SN 30/14 DIP2G450-335	2023.07.04	2026.07.03
Waveguide	MVG	SWG5500	SN 13/14 WGA32	2023.07.04	2026.07.03
E-Field Probe	MVG	SSE2	SN 08/21 EPGO352	2024.09.18	2025.09.17
Dielectric Probe Kit	MVG	SCLMP	SN 32/14 OCPG67	2024.09.18	2025.09.17
Antenna	MVG	ANTA3	SN 07/13 ZNTA52	N/A	N/A
Phantom1	MVG	SAM	SN 32/14 SAM115	N/A	N/A
Phantom3	MVG	SAM	SN 21/21 ELLI48	N/A	N/A
Phone holder	MVG	N/A	SN 32/14 MSH97	N/A	N/A
Laptop holder	MVG	N/A	SN 32/14 LSH29	N/A	N/A
Attenuator	Agilent	HXT-10-8-SMA	240327017	2025-02-22	2026-02-21
Directional coupler	Xi'an Xingbo	XBOH-OA08- 20dB	211123-4-3	2025-02-22	2026-02-21
Network Analyzer	Agilent	E5071C	MY46520378	2024-09-25	2025-09-26
Multi Meter	Keithley	Multi Meter 2000	4050073	2024-09-25	2025-09-26
Signal Generator	Agilent	N5182A	MY50140530	2024-09-25	2025-09-26
Wireless Communication Test Set	Agilent	8960-E5515C	MY48360751	2025-02-22	2026-02-21
Wireless Communication Test Set	R&S	CMW500	156324	2024-09-25	2025-09-26
Power Amplifier	DESAY	ZHL-42W	9638	2024-09-25	2025-09-26
Power Meter	R&S	NRP	100510	2024-09-25	2025-09-26
Power Sensor	R&S	NRP-Z11	101919	2024-09-25	2025-09-26
Power Sensor	Keysight	U2021XA	MY56280002	2024-09-25	2025-09-26
Temperature hygrometer	SuWei	SW-108	N/A	2024.10.15	2025.10.14
Thermograph	Elitech	RC-4	S/N EF7176501537	2024.10.15	2025.10.14

Page 33 of 43 Report No.: STS2503054H01

Appendix A. System Validation Plots

System Performance Check Data (2450MHz)

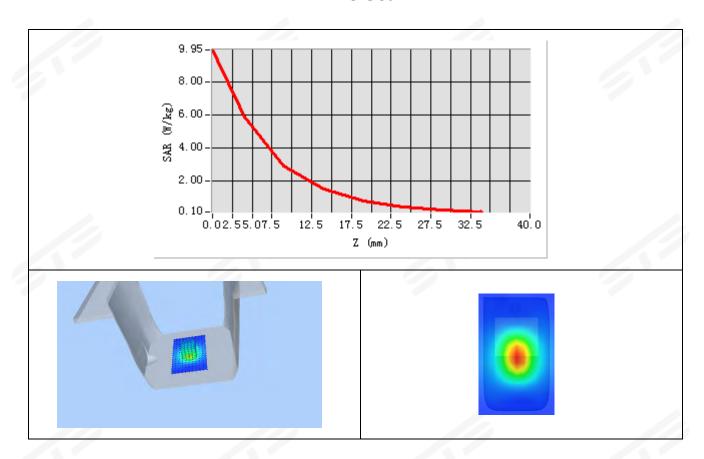

Type: Phone measurement (Complete)
Area scan resolution: dx=8mm, dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2025-03-14

Experimental conditions.

Device Position	Validation plane
Band	2450 MHz
Channels	-
Signal	CW
Frequency (MHz)	2450
Relative permittivity	40.08
Conductivity (S/m)	1.82
Probe	SN 08/21 EPGO352
ConvF	1.80
Crest factor:	1:1


Maximum location: X=1.00, Y=0.00

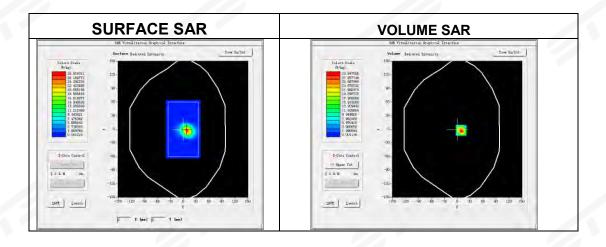
SAR 10g (W/Kg)	2.640048
SAR 1g (W/Kg)	5.637668

Page 34 of 43 Report No.: STS2503054H01

Z Axis Scan

Page 35 of 43 Report No.: STS2503054H01

System Performance Check Data (5200MHz)

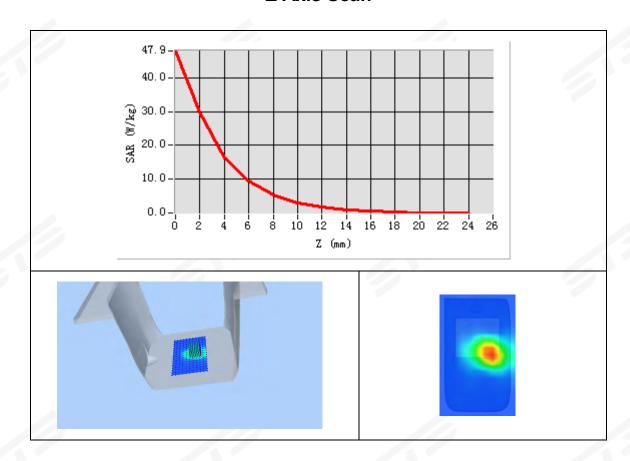

Type: Dipole measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm

Date of measurement: 2025-03-17

Experimental conditions.

Device Position	Validation plane
Band	5200 MHz
Channels	66
Signal	CW
Frequency (MHz)	5200
Relative permittivity	36.33
Conductivity (S/m)	4.63
Probe	SN 08/21 EPGO352
ConvF	1.33
Crest factor:	1:1


Maximum location: X=7.00, Y=2.00

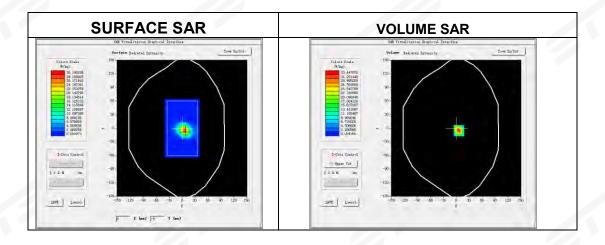
SAR 10g (W/Kg)	5.501261
SAR 1g (W/Kg)	16.132387

Page 36 of 43 Report No.: STS2503054H01

Z Axis Scan

Page 37 of 43 Report No.: STS2503054H01

System Performance Check Data (5800MHz)

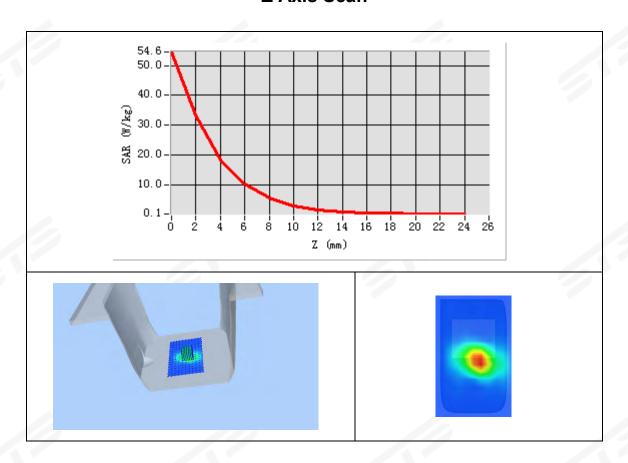

Type: Dipole measurement (Complete)
Area scan resolution: dx=8mm,dy=8mm

Zoom scan resolution: dx=8mm, dy=8mm, dz=5mm

Date of measurement: 2025-03-17

Experimental conditions.

Device Position	Validation plane
Band	5800 MHz
Channels	
Signal	CW
Frequency (MHz)	5800
Relative permittivity	35.67
Conductivity (S/m)	5.30
Probe	SN 08/21 EPGO352
ConvF	1.35
Crest factor:	1:1

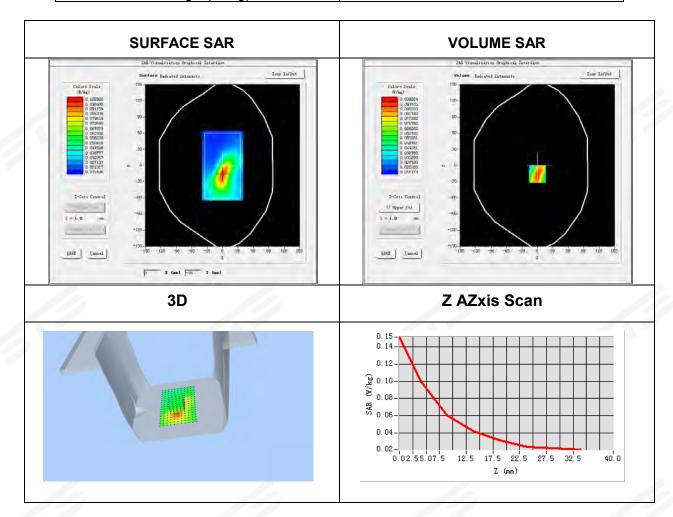

Maximum location: X=7.00, Y=2.00

SAR 10g (W/Kg)	6.295054
SAR 1g (W/Kg)	18.506822

Page 38 of 43 Report No.: STS2503054H01

Z Axis Scan

Page 39 of 43 Report No.: STS2503054H01


Appendix B. SAR Test Plots

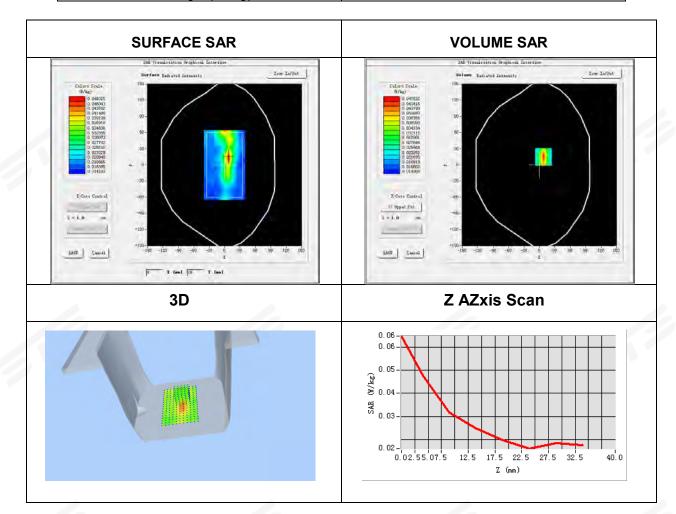
Plot 1: DUT: Automotive Diagnostic Tool; EUT Model: TKX13

Test Date	2025-03-14
Probe	SN 08/21 EPGO352
Area Scan	dx=8mm, dy=8mm, h= 5.00 mm
Zoom Scan	5x5x7, dx=8mm, dy=8mm, dz=5mm
Phantom	Validation plane
Device Position	Right Side
Band	IEEE 802.11b ISM
Signal	IEEE802.b (Crest factor: 1.0)
Frequency (MHz)	2437
Relative permittivity (real part)	39.18
Conductivity (S/m)	1.77

Maximum location: X=0.00, Y=-16.00 SAR Peak: 0.15 W/kg

SAR 10g (W/Kg)	0.056716
SAR 1g (W/Kg)	0.094620

Page 40 of 43 Report No.: STS2503054H01

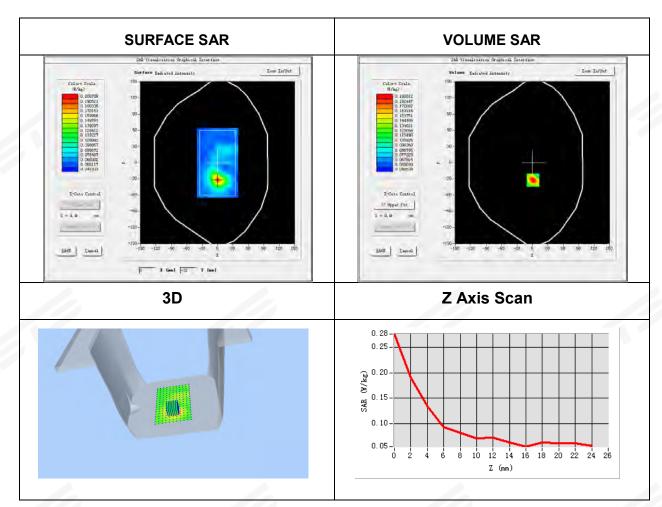

Plot 2: DUT: Automotive Diagnostic Tool; EUT Model: TKX13

Test Date	2025-03-14
Probe	SN 08/21 EPGO352
Area Scan	dx=8mm, dy=8mm, h= 5.00 mm
Zoom Scan	5x5x7, dx=8mm, dy=8mm, dz=5mm
Phantom	Validation plane
Device Position	Right Side
Band	ВТ
Signal	GFSK (Crest factor: 1.0)
Frequency (MHz)	2480
Relative permittivity (real part)	40.05
Conductivity (S/m)	1.83

Maximum location: X=8.00, Y=15.00

SAR Peak: 0.06 W/kg

SAR 10g (W/Kg)	0.018303
SAR 1g (W/Kg)	0.029648

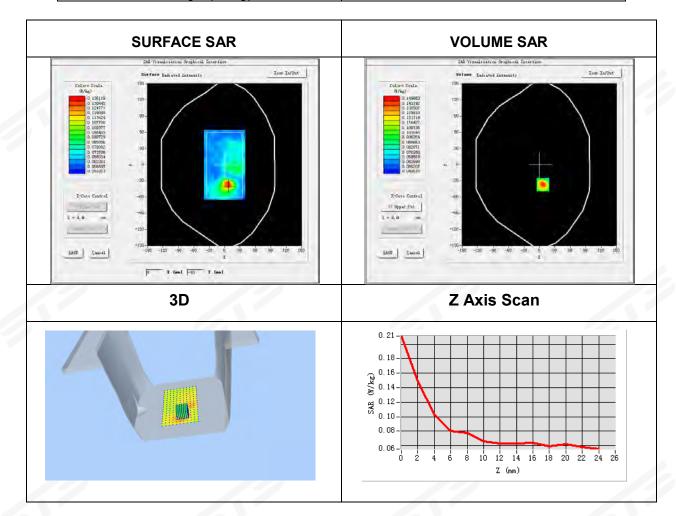

Page 41 of 43 Report No.: STS2503054H01

Plot 3: DUT: Automotive Diagnostic Tool; EUT Model: TKX13

Test Date	2025-03-17
Probe	SN 08/21 EPGO352
Area Scan	dx=8mm, dy=8mm, h= 5.00 mm
Zoom Scan	7x7x12, dx=4mm, dy=4mm, dz=2mm,
Phantom	Validation plane
Device Position	Right Side
Band	5.2GHz WLAN
Signal	IEEE802.a (Crest factor: 1.0)
Frequency (MHz)	5180
Relative permittivity (real part)	36.33
Conductivity (S/m)	4.63

Maximum location: X=1.00, Y=-32.00 SAR Peak: 0.29 W/kg

SAR 10g (W/Kg)	0.088962
SAR 1g (W/Kg)	0.137552


Page 42 of 43 Report No.: STS2503054H01

Plot 4: DUT: Automotive Diagnostic Tool; EUT Model: TKX13

Test Date	2025-03-17
Probe	SN 08/21 EPGO352
Area Scan	dx=8mm, dy=8mm, h= 5.00 mm
Zoom Scan	7x7x12, dx=4mm, dy=4mm, dz=2mm,
Phantom	Validation plane
Device Position	Right Side
Band	5.8GHz WLAN
Signal	HEW20 (Crest factor: 1.0)
Frequency (MHz)	5785
Relative permittivity (real part)	35.67
Conductivity (S/m)	5.30

Maximum location: X=7.00, Y=-37.00 SAR Peak: 0.22 W/kg

SAR 10g (W/Kg)	0.078432
SAR 1g (W/Kg)	0.110273

Page 43 of 43 Report No.: STS2503054H01

Appendix C. Probe Calibration and Dipole Calibration Report

Refer the appendix Calibration Report.

*****END OF THE REPORT***