	B U R E A U VERITAS
	FCC Test Report
Report No.:	RFBDGD-WTW-P24060412
FCC ID:	Q3N-NUHF
Test Model:	RS36 NUHF
Received Date:	2024/6/18
Test Date:	2024/8/1 ~ 2024/8/13
Issued Date:	2024/11/6
Applicant	CIPHERLAB CO., LTD
Address:	12F, 333 Dunhua S. Rd., Sec.2 Taipei, Taiwan 106
Issued By:	Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch
	Lin Kou Laboratories
Lab Address:	No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan
Test Location:	No.19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan
FCC Registration /	788550 / TW0003
Designation Number:	

This report is governed by, and incorporates by reference, the Conditions of Testing as posted at the date of issuance of this report at http://www.bureauveritas.com/home/about-us/our-business/cps/about-us/terms-conditions/ and is intended for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. Measurement uncertainty is only provided upon request for accredited tests. Statements of conformity are based on simple acceptance criteria without taking measurement uncertainty into account, unless otherwise requested in writing. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our angligence or if you require measurement uncertainty; provided, however, that such notice shall be in writing and specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the contents.

Testing Laboratory 2021

Table of Contents

R	eleas	e Control Record	4
1		Certificate of Conformity	
2	5	Summary of Test Results	6
	2.1 2.2	Measurement Uncertainty Modification Record	
~			
3	C	General Information	
	3.1	General Description of EUT	
	3.2	Description of Test Modes	
	3.2.1	Test Mode Applicability and Tested Channel Detail	
	3.3	Description of Support Units	
	3.3.1	Configuration of System under Test	
	3.4	General Description of Applied Standards and References	
4		est Types and Results	
	4.1	Radiated Emission and Bandedge Measurement	
	4.1.1		
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		EUT Operating Conditions	
		Test Results	
	4.2	Conducted Emission Measurement	
		Limits of Conducted Emission Measurement	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Setup EUT Operating Conditions	
		Test Results	
	4.2.7 4.3	Number of Hopping Frequency Used	
	4.3.1	Limits of Hopping Frequency Used Measurement	
	4.3.1		
		Test Instruments	
		Test Procedure	
		Deviation from Test Standard	
		Test Results	
	4.4	Dwell Time on Each Channel	
	4.4.1		
		Test Setup	
		Test Instruments	
		Test Procedures	
		Deviation from Test Standard	
		Test Results	
	4.5	Channel Bandwidth	. 36
	4.5.1	Limits of Channel Bandwidth Measurement	. 36
	4.5.2	Test Setup	36
	4.5.3		
	4.5.4	Test Procedure	36
	4.5.5		
		EUT Operating Condition	
	4.5.7	Test Results	
	4.6	Hopping Channel Separation	
	4.6.1	Limits of Hopping Channel Separation Measurement	38

	4.6.2	Test Setup	38
	4.6.3	Test Instruments	38
	4.6.4	Test Procedure	38
		Deviation from Test Standard	
		Test Results	
	4.7	Maximum Output Power	
	4.7.1	Limits of Maximum Output Power Measurement	40
	4.7.2	Test Setup	40
		Test Instruments	
	4.7.4	Test Procedure	40
	4.7.5	Deviation from Test Standard	40
	4.7.6	EUT Operating Condition	40
	4.7.7	Test Results	
	4.8	Conducted Out of Band Emission Measurement	42
	4.8.1	Limits Of Conducted Out Of Band Emission Measurement	42
		Test Instruments	
		Test Procedure	
	4.8.4	Deviation from Test Standard	42
	4.8.5	EUT Operating Condition	42
		Test Results	
5	P	ictures of Test Arrangements	11
A	ppend	ix – Information of the Testing Laboratories	45

Release Control Record

Issue No.	Description	Date Issued
RFBDGD-WTW-P24060412	Original release	2024/11/6

1	Certificate of Co	onformity
	Product:	UHF reader
	Brand:	CIPHERLAB
	Test Model:	RS36 NUHF
	Sample Status:	Engineering sample
	Applicant:	CIPHERLAB CO., LTD
	Test Date:	2024/8/1 ~ 2024/8/13
	Standards:	47 CFR FCC Part 15, Subpart C (Section 15.247) ANSI C63.10-2013

The above equipment has been tested by **Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch**, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report.

Prepared by :

ina Lu

Gina Liu / Specialist

Date:

2024/11/6

Approved by :

Date:

2024/11/6

Jeremy Lin / Project Engineer

2 Summary of Test Results

	47 CFR FCC Part 15, Su	bpart C (Sec	tion 15.247)
FCC Clause	Test Item	Result	Remarks
15.207	AC Power Conducted Emission	Pass	Meet the requirement of limit. Minimum passing margin is -11.41dB at 0.59655MHz.
15.247(a)(1) (i)	Number of Hopping Frequency Used	Pass	Meet the requirement of limit.
15.247(a)(1) (i)	Dwell Time on Each Channel	Pass	Meet the requirement of limit.
15.247(a)(1) (i)	 Hopping Channel Separation Spectrum Bandwidth of a Frequency Hopping Sequence Spread Spectrum System 	Pass	Meet the requirement of limit.
15.247(b)(2)	Maximum Peak Output Power	Pass	Meet the requirement of limit.
15.205 & 209 & 15.247(d)	Radiated Emissions & Band Edge Measurement	Pass	Meet the requirement of limit. Minimum passing margin is -0.1dB at 7318.00MHz.
15.247(d)	Antenna Port Emission	Pass	Meet the requirement of limit.
15.203	Antenna Requirement	Pass	No antenna connector is used.

Note:

1. 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period.

2. Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty.

2.1 Measurement Uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2:

Measurement	Frequency	Expanded Uncertainty (k=2) (±)
Conducted Emissions at mains ports	150kHz ~ 30MHz	2.79 dB
Radiated Emissions up to 1 GHz	9kHz ~ 30MHz	2.60 dB
Radiated Emissions up to 1 GHz	30MHz ~1000MHz	4.47 dB
Radiated Emissions above 1 GHz	1GHz ~ 18GHz	2.29 dB
	18GHz ~ 40GHz	2.29 dB

2.2 Modification Record

There were no modifications required for compliance.

3 General Information

3.1 General Description of EUT

Product	UHF reader
Brand	CIPHERLAB
Test Model	RS36 NUHF
Sample Status	Engineering sample
Power Supply Rating	5 Vdc (Adapter)
Modulation Type	ASK
Operating Frequency	902.75 ~ 927.25MHz
Number of Channel	50
Channel Spacing	500kHz
Output Power	341.193mW
Antenna Type	Refer to note
Antenna Connector	Refer to note
Accessory Device	Refer to note
Cable Supplied	NA

Note:

1. The EUT uses following accessories.

AC Adapter (Support Unit)		
Brand	Model	Specification
Suppy Electronics COPP	SYS1561-1005	AC Input : 100-240V, 50/60Hz, 0.35A
Sunny Electronics CORP	3131301-1003	DC Output : 5 0V=2 0A

2. The antenna information is listed as below.

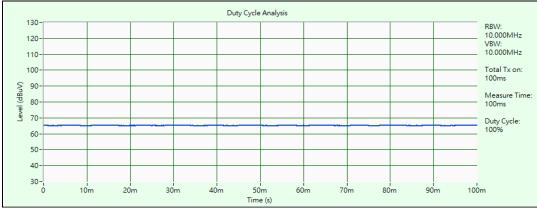
Brand	Model	Antenna Type	Connector Type	Gain (dBi)
FAVEPC INC.	KZURUPA363101 (RS36 Short Range UHFRFID Antenna US FAVEPC)	Patch	MMCX	0.23

*Detail antenna specification please refer to antenna photos/or drawings, including antenna dimensions.

3.2 Description of Test Modes

50 channels are provided to this EUT:

Channel	Freq. (MHz)	Channel	Freq. (MHz)
0	902.75	25	915.25
1	903.25	26	915.75
2	903.75	27	916.25
3	904.25	28	916.75
4	904.75	29	917.25
5	905.25	30	917.75
6	905.75	31	918.25
7	906.25	32	918.75
8	906.75	33	919.25
9	907.25	34	919.75
10	907.75	35	920.25
11	908.25	36	920.75
12	908.75	37	921.25
13	909.25	38	921.75
14	909.75	39	922.25
15	910.25	40	922.75
16	910.75	41	923.25
17	911.25	42	923.75
18	911.75	43	924.25
19	912.25	44	924.75
20	912.75	45	925.25
21	913.25	46	925.75
22	913.75	47	926.25
23	914.25	48	926.75
24	914.75	49	927.25

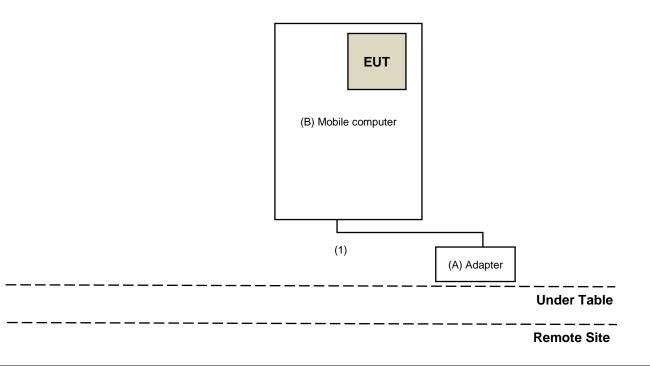


3.2.1 Test Mode Applicability and Tested Channel Detail

JT Configure		Applic	able to		Des	cription
Mode	RE≥1G	RE<1G	PLC	APCM	Des	
-	\checkmark	\checkmark	\checkmark	\checkmark	-	
ere RE≥1	G: Radiated E	Emission abov	ve 1GHz & Ba	andedge	RE<1G: Radiated Emission b	elow 1GHz
	urement					
PLC:	Power Line C	onducted Em	ission		APCM: Antenna Port Conduc	ted Measurement
e: The EUT ha	id been pre-te	ested on the p	ositioned of e	ach 3 axis. Tl	he worst case was found wher	n positioned on Z-plane.
diated Emi	ssion Tost	(Abovo 1)	CH4).			
diated Emis						
					t-case mode from all pos	
					na ports (if EUT with ant I test as listed below	enna diversity architectu
EUT Config			ailable Chann		I test as listed below. Tested Channel	Modulation Type
_0. 00mg		~~~	0 to 49		0, 24, 49	ASK
			0.040		୰, ∠⊐, ⊤∨	
diated Emis	ssion Test	(Below 10	GHz):			
				o the set	t ooo mada frans sil	poible combinations
					t-case mode from all por na ports (if EUT with ant	
					I test as listed below.	and averagy arounded
			ailable Chann		Tested Channel	Modulation Time
EUT Config	ure wode	AVa	allable Chann	ei		Modulation Type
wer Line Co	onducted	Emission	0 to 49 Test:		0, 24, 49	ASK
wer Line Co Pre-Scan between a	onducted has been o available m	Emission ⁻ conducted to odulations,	0 to 49 Test: to determir , data rates	ne the wors and anten	0, 24, 49 t-case mode from all po na ports (if EUT with ant	ASK ssible combinations
wer Line Co Pre-Scan between a Following	onducted has been o available m channel(s)	Emission conducted odulations, was (were	0 to 49 Test: to determir , data rates e) selected	ne the wors and anten for the fina	0, 24, 49 t-case mode from all po na ports (if EUT with ant I test as listed below.	ASK ssible combinations enna diversity architectu
wer Line Co Pre-Scan between a	onducted has been o available m channel(s)	Emission conducted odulations, was (were	0 to 49 Test: to determin , data rates e) selected ailable Chann	ne the wors and anten for the fina	0, 24, 49 t-case mode from all por na ports (if EUT with ant I test as listed below. Tested Channel	ASK ssible combinations enna diversity architectu Modulation Type
wer Line Co Pre-Scan between a Following	onducted has been o available m channel(s)	Emission conducted odulations, was (were	0 to 49 Test: to determir , data rates e) selected	ne the wors and anten for the fina	0, 24, 49 t-case mode from all po na ports (if EUT with ant I test as listed below.	ASK ssible combinations enna diversity architectu
wer Line Co Pre-Scan between a Following EUT Config	onducted has been o available m channel(s) ure Mode	Emission conducted to odulations, was (were Ava	0 to 49 Test: to determin , data rates a) selected ailable Chann 0 to 49	ne the wors and anten for the fina	0, 24, 49 t-case mode from all por na ports (if EUT with ant I test as listed below. Tested Channel	ASK ssible combinations enna diversity architectu Modulation Type
wer Line Co Pre-Scan between a Following EUT Config - tenna Port	onducted has been o available m channel(s) ure Mode Conducte	Emission conducted to odulations, was (were Ava d Measure	0 to 49 Test: to determin , data rates b) selected ailable Chann 0 to 49 ement:	ne the wors and anten for the fina el	0, 24, 49 t-case mode from all po- na ports (if EUT with ant <u>I test as listed below.</u> Tested Channel 49	ASK ssible combinations enna diversity architectu Modulation Type ASK
wer Line Co Pre-Scan between a Following EUT Config - tenna Port This item	onducted has been o available m channel(s) ure Mode Conducte	Emission conducted to odulations, was (were Ava d Measure	0 to 49 Test: to determin , data rates b) selected ailable Chann 0 to 49 ement:	ne the wors and anten for the fina el	0, 24, 49 t-case mode from all por na ports (if EUT with ant I test as listed below. Tested Channel	ASK ssible combinations enna diversity architectu Modulation Type ASK
wer Line Co Pre-Scan between a Following EUT Config - tenna Port This item mode.	onducted has been o available m channel(s) ure Mode Conducte includes al	Emission conducted to odulations, was (were Ava d Measure I test value	0 to 49 Test: to determin , data rates e) selected ailable Chann 0 to 49 ement: e of each m	ne the wors and anten for the fina el	0, 24, 49 t-case mode from all po- na ports (if EUT with ant <u>I test as listed below.</u> Tested Channel 49	ASK ssible combinations enna diversity architectu Modulation Type ASK
wer Line Co Pre-Scan between a Following EUT Config EUT Config - tenna Port This item mode. Pre-Scan between a	onducted has been o available m channel(s) ure Mode <u>Conducte</u> includes al has been o available m	Emission conducted to odulations, was (were Ava d Measure l test value conducted to odulations,	0 to 49 Test: to determin , data rates a) selected ailable Chann 0 to 49 ement: of each m to determin , data rates	e the wors and anten for the fina el ode, but or ne the wors and anten	0, 24, 49 t-case mode from all por na ports (if EUT with ant <u>I test as listed below.</u> Tested Channel 49 hly includes spectrum plo t-case mode from all por na ports (if EUT with ant	ASK ssible combinations enna diversity architectu Modulation Type ASK ot of worst value of each ssible combinations
wer Line Co Pre-Scan between a Following EUT Config EUT Config - - tenna Port This item mode. Pre-Scan between a Following	onducted has been o available m channel(s) ure Mode Conducte includes al has been o available m channel(s)	Emission conducted to odulations, was (were Avain d Measure l test value conducted to odulations, was (were	0 to 49 Test: to determin , data rates a) selected ailable Chann 0 to 49 ement: e of each m to determin , data rates a) selected	e the wors and anten for the fina el ode, but or ne the wors and anten for the fina	0, 24, 49 t-case mode from all por na ports (if EUT with ant <u>I test as listed below.</u> <u>Tested Channel</u> 49 hly includes spectrum plo t-case mode from all por na ports (if EUT with ant <u>I test as listed below.</u>	ASK ssible combinations enna diversity architectu Modulation Type ASK ot of worst value of each ssible combinations enna diversity architectu
wer Line Co Pre-Scan between a Following EUT Config EUT Config - - - - - - - - - - - - - - - - - - -	onducted has been o available m channel(s) ure Mode Conducte includes al has been o available m channel(s)	Emission conducted to odulations, was (were Avain d Measure l test value conducted to odulations, was (were	0 to 49 Test: to determin , data rates e) selected ailable Chann 0 to 49 ement: e of each m to determin , data rates e) selected ailable Chann	e the wors and anten for the fina el ode, but or ne the wors and anten for the fina	0, 24, 49 t-case mode from all por na ports (if EUT with ant l test as listed below. Tested Channel 49 hly includes spectrum plo t-case mode from all por na ports (if EUT with ant l test as listed below. Tested Channel	ASK ssible combinations enna diversity architectu Modulation Type ASK ot of worst value of each ssible combinations enna diversity architectu Modulation Type
wer Line Co Pre-Scan between a Following EUT Config EUT Config - tenna Port This item mode. Pre-Scan between a Following	onducted has been o available m channel(s) ure Mode Conducte includes al has been o available m channel(s)	Emission conducted to odulations, was (were Avain d Measure l test value conducted to odulations, was (were	0 to 49 Test: to determin , data rates a) selected ailable Chann 0 to 49 ement: e of each m to determin , data rates a) selected	e the wors and anten for the fina el ode, but or ne the wors and anten for the fina	0, 24, 49 t-case mode from all por na ports (if EUT with ant <u>I test as listed below.</u> <u>Tested Channel</u> 49 hly includes spectrum plo t-case mode from all por na ports (if EUT with ant <u>I test as listed below.</u>	ASK ssible combinations enna diversity architectu Modulation Type ASK ot of worst value of each ssible combinations enna diversity architectu
ver Line Co Pre-Scan between a Following EUT Config - : : : : : : : : : : : : : : : : : :	onducted has been o available m channel(s) ure Mode Conducte includes al has been o available m channel(s) ure Mode	Emission conducted to odulations, was (were Avain d Measure l test value conducted to odulations, was (were	0 to 49 Test: to determin , data rates e) selected ailable Chann 0 to 49 ement: e of each m to determin , data rates e) selected ailable Chann	e the wors and anten for the fina el ode, but or ne the wors and anten for the fina	0, 24, 49 t-case mode from all por na ports (if EUT with ant l test as listed below. Tested Channel 49 hly includes spectrum plo t-case mode from all por na ports (if EUT with ant l test as listed below. Tested Channel	ASK ssible combinations enna diversity architectu Modulation Type ASK ot of worst value of each ssible combinations enna diversity architectu Modulation Type
ver Line Co Pre-Scan between a Following EUT Config - - - - - - - - - - - - - - - - - - -	onducted has been o available m channel(s) ure Mode Conducte includes al has been o available m channel(s) ure Mode	Emission conducted to odulations, was (were Avain d Measure I test value conducted to odulations, was (were Avain Ava	0 to 49 Test: to determin , data rates e) selected ailable Chann 0 to 49 ement: e of each m to determin , data rates e) selected ailable Chann	e the wors and anten for the fina el ode, but or ne the wors and anten for the fina el	0, 24, 49 t-case mode from all por na ports (if EUT with ant l test as listed below. Tested Channel 49 hly includes spectrum plo t-case mode from all por na ports (if EUT with ant l test as listed below. Tested Channel	ASK ssible combinations enna diversity architectu Modulation Type ASK ot of worst value of each ssible combinations enna diversity architectu Modulation Type
ver Line Co Pre-Scan between a Following EUT Config - - - - - - - - - - - - - - - - - - -	onducted has been o available m channel(s) ure Mode Conducte includes al has been o available m channel(s) ure Mode	Emission conducted to odulations, was (were Avain d Measure I test value conducted to odulations, was (were Avain conducted to odulations, was (were Avain conducted to odulations,	0 to 49 Test: to determin , data rates a) selected ailable Chann 0 to 49 ement: e of each m to determin , data rates e) selected ailable Chann 0 to 49	e the wors and anten for the fina el ode, but or he the wors and anten for the fina el	0, 24, 49 t-case mode from all por na ports (if EUT with ant <u>I test as listed below.</u> <u>Tested Channel</u> 49 hly includes spectrum plo t-case mode from all por na ports (if EUT with ant <u>I test as listed below.</u> <u>Tested Channel</u> 0, 24, 49	ASK ssible combinations enna diversity architectu Modulation Type ASK ot of worst value of each ssible combinations enna diversity architectu Modulation Type ASK
ver Line Co Pre-Scan between a Following EUT Config - - 	onducted has been o available m channel(s) ure Mode Conducte includes al has been o available m channel(s) ure Mode	Emission conducted to odulations, was (were Ava d Measure I test value conducted to odulations, was (were Ava I test value conducted to odulations, was (were Ava 20.6 de	0 to 49 Test: to determin , data rates a) selected ailable Chann 0 to 49 ement: of each m to determin , data rates a) selected ailable Chann 0 to 49 emental Condit	ions	0, 24, 49 t-case mode from all por na ports (if EUT with ant l test as listed below. Tested Channel 49 hly includes spectrum plo t-case mode from all por na ports (if EUT with ant l test as listed below. Tested Channel 0, 24, 49	ASK ssible combinations enna diversity architectu Modulation Type ASK ot of worst value of each ssible combinations enna diversity architectu Modulation Type ASK
ver Line Co Pre-Scan between a Following EUT Config - tenna Port This item mode. Pre-Scan between a Following EUT Config EUT Config c t Condition Applicable RE≥1G	onducted has been o available m channel(s) ure Mode Conducte includes al has been o available m channel(s) ure Mode	Emission conducted to odulations, was (were Ava d Measure d Measure d Measure conducted to odulations, was (were Ava Conducted to odulations, was (were Ava 20.6 de 20.6 de	0 to 49 Test: to determin , data rates e) selected ailable Chann 0 to 49 ement: e of each m to determin , data rates e) selected ailable Chann 0 to 49 mental Condit g. C, 73.3% F	e the wors and anten for the fina el ode, but or he the wors and anten for the fina el ions	0, 24, 49 t-case mode from all por na ports (if EUT with ant l test as listed below. Tested Channel 49 hly includes spectrum plo t-case mode from all por na ports (if EUT with ant l test as listed below. Tested Channel 0, 24, 49 input Power 120 Vac, 60 Hz	ASK ssible combinations enna diversity architectu Modulation Type ASK ot of worst value of each ssible combinations enna diversity architectu Modulation Type ASK Tested by Rex Wang

3.3 Duty Cycle of Test Signal

Duty cycle of test signal is 100 %, duty factor is not required.


3.4 Description of Support Units

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

ID	Product	Brand	Model No.	Serial No.	FCC ID	Remarks
А	Adapter	Adapter Sunny Electronics CORP		N/A	N/A	Supplied by applicant
В	Mobile computer	CIPHERLAB	RS36	N/A	N/A	Supplied by applicant

ID	Cable Descriptions	Qty.	Length (m)	Shielding (Yes/No)	Cores (Qty.)	Remarks
1	Snapon	1	1.0	No	0	Supplied by applicant

3.4.1 Configuration of System under Test

3.5 General Description of Applied Standards and References

The EUT is a RF Product. According to the specifications of the manufacturer, it must comply with the requirements of the following standards and references:

Test standard:

FCC Part 15, Subpart C (15.247)

ANSI C63.10-2013

All test items have been performed and recorded as per the above standards.

References Test Guidance: KDB 558074 D01 15.247 Meas Guidance v05r02

All test items have been performed as a reference to the above KDB test guidance.

4 Test Types and Results

4.1 Radiated Emission and Bandedge Measurement

4.1.1 Limits of Radiated Emission and Bandedge Measurement

Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 20dB below the highest level of the desired power:

Frequencies (MHz)	Field Strength (microvolts/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Note:

- 1. The lower limit shall apply at the transition frequencies.
- 2. Emission level (dBuV/m) = 20 log Emission level (uV/m).
- 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation.

4.1.2 Test Instruments

Description Manufacturer	Model No.	Serial No.	Calibrated Date	Calibrated Until
Antenna Tower &Turn BV ADT	AT100	AT93021705	N/A	N/A
Bi_Log Antenna Schwarzbeck	VULB 9168	9168-160	2023/10/17	2024/10/16
Loop Antenna Electro-Metrics	EM-6879	269	2023/9/23	2024/9/22
Loop Antenna TESEQ	HLA 6121	64095	2023/9/23	2024/9/22
MXE EMI Receiver Keysight	N9038B	MY60180018	2024/3/13	2025/3/12
Preamplifier Agilent	8447D	2944A10638	2024/5/1	2025/4/30
Preamplifier EMCI	EMC001340	980201	2023/9/27	2024/9/26
RF Coaxial Cable Woken	8D-FB	Cable-CH9-01	2024/5/1	2025/4/30
Signal & Spectrum Analyzer R&S	FSW43	101867	2023/12/29	2024/12/28
Software BV ADT	ADT_Radiated_ V7.6.15.9.5	N/A	N/A	N/A
Turn Table BV ADT	TT100	TT93021705	N/A	N/A
Turn Table Controller BV ADT	SC100	SC93021705	N/A	N/A
Boresight antenna tower fixture BV	BAF-02	5	N/A	N/A
	BBHA 9120D	9120D-1169	2023/11/12	2024/11/11
Horn Antenna		9170-480	2023/11/12	2024/11/11
Schwarzbeck	BBHA 9170	BBHA9170243	2023/11/12	2024/11/11
Preamplifier Agilent	8449B	3008A02367	2024/1/6	2025/1/5
Preamplifier EMCI	EMC 184045	980116	2023/9/27	2024/9/26
RF Coaxial Cable	EMC102-KM-KM-600	150928	2024/7/6	2025/7/5
EMCI	EMC102-KM-KM-3000		2024/7/6	2025/7/5
RF Coaxial Cable HUBER+SUHNER	SUCOFLEX 104	CABLE-CH9-(250795/4)	2024/1/6	2025/1/5
RF Coaxial Cable HUBER+SUHNER&EMCI	SUCOFLEX 104& EMC104-SM-SM8000	CABLE-CH9-02 (248780+171006)	2024/1/6	2025/1/5
Spectrum Analyzer ROHDE & SCHWARZ	FSV40	100980	2024/5/6	2025/5/5
Peak Power Analyzer KEYSIGHT	8990B	MY51000485	2024/1/21	2025/1/20
Wideband Power Sensor KEYSIGHT	N1923A	MY58020002	2024/1/18	2025/1/17
Notes:				

Notes:

1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HY- 966 chamber 4.

3. Tested date: 2024/8/1-2024/8/13

4.1.3 Test Procedures

For Radiated emission below 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

Note:

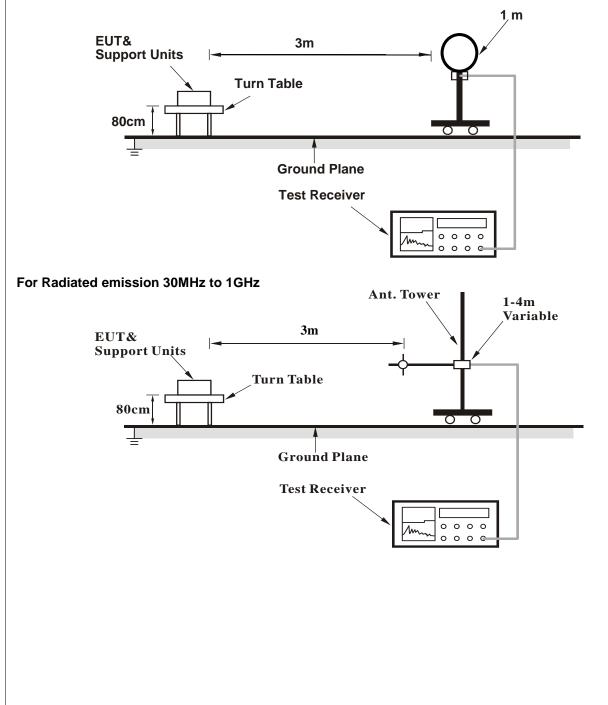
1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz.

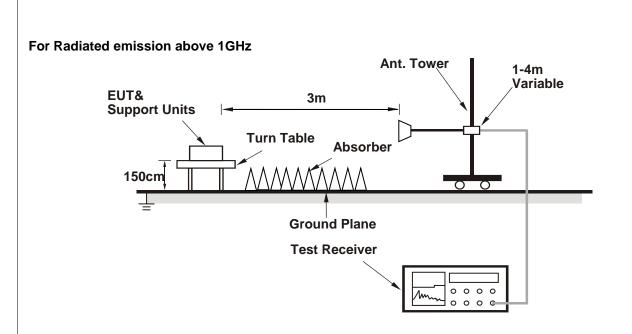
For Radiated emission above 30MHz

- a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz.
- f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary.

Note:

- 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz.
- 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) and Average detection (RMS AV) at frequency above 1GHz. The instrument settings are as follows: Sweep time: Auto; Trace count: trace average of at least 100 traces.


4.1.4 Deviation from Test Standard


No deviation.

4.1.5 Test Setup

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.1.6 EUT Operating Conditions

a. Set the EUT under transmission condition continuously at specific channel frequency.

4.1.7 Test Results

Channel	TX Channel 0	Detector Function	Quasi-Peak (QP) Peak (PK)
Frequency Range	902MHz ~ 928MHz		

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	902.00	57.2 QP	81.7	-24.5	1.60 H	217	24.5	32.7			
2	*902.75	101.7 QP			1.60 H	217	69.0	32.7			
		Ą	Antenna Polar	ity & Test Dis	tance : Vertic	al at 3 m					
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	902.00	59.4 QP	93.9	-34.5	1.00 V	184	26.7	32.7			
2	*902.75	113.9 QP			1.00 V	184	81.2	32.7			

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value.

5. " * ": Fundamental frequency.

			Quasi-Peak (QP)
Channel	TX Channel 24	Detector Function	Peak (PK)
Frequency Range	902MHz ~ 928MHz		

	Antenna Polarity & Test Distance : Horizontal at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	*914.75	110.5 QP			1.89 H	227	77.6	32.9				
		A	Antenna Polar	ity & Test Dis	tance : Vertic	al at 3 m						
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	*914.75	120.9 QP			1.00 V	181	88.0	32.9				

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value.

5. " * ": Fundamental frequency.

			Quasi-Peak (QP)
Channel	TX Channel 49	Detector Function	Peak (PK)
Frequency Range	902MHz ~ 928MHz		

	Antenna Polarity & Test Distance : Horizontal at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	*927.25	114.1 QP			2.13 H	235	81.0	33.1				
2	928.00	59.5 QP	94.1	-34.6	2.13 H	235	26.4	33.1				
		Ą	Antenna Polar	ity & Test Dis	tance : Vertic	al at 3 m						
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	*927.25	121.8 QP			1.00 V	183	88.7	33.1				
2	928.00	64.8 QP	101.8	-37.0	1.00 V	183	31.7	33.1				

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB).

3. The other emission levels were very low against the limit.

4. Margin value = Emission Level – Limit value.

5. " * ": Fundamental frequency.

Above 1GHz Data

Channel	TX Channel 0	Detector Function	Peak (PK) Average (AV)
Frequency Range	1GHz ~ 10GHz		

Antenna Polarity & Test Distance : Horizontal at 3 m									
Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
2708.25	45.3 PK	74.0	-28.7	2.41 H	260	46.6	-1.3		
2708.25	39.3 AV	54.0	-14.7	2.41 H	260	40.6	-1.3		
4513.75	51.5 PK	74.0	-22.5	1.49 H	166	48.4	3.1		
4513.75	47.9 AV	54.0	-6.1	1.49 H	166	44.8	3.1		
8124.75	53.8 PK	74.0	-20.2	1.76 H	242	42.5	11.3		
8124.75	45.1 AV	54.0	-8.9	1.76 H	242	33.8	11.3		
	A	ntenna Polar	ity & Test Dis	tance : Vertic	al at 3 m				
Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)		
2708.30	46.2 PK	74.0	-27.8	2.35 V	222	47.5	-1.3		
2708.30	39.8 AV	54.0	-14.2	2.35 V	222	41.1	-1.3		
4513.75	54.4 PK	74.0	-19.6	1.39 V	145	51.3	3.1		
4513.75	53.0 AV	54.0	-1.0	1.39 V	145	49.9	3.1		
8124.75	52.4 PK	74.0	-21.6	2.51 V	160	41.1	11.3		
8124.75	40.7 AV	54.0	-13.3	2.51 V	160	29.4	11.3		
	(MHz) 2708.25 2708.25 4513.75 8124.75 8124.75 8124.75 Frequency (MHz) 2708.30 2708.30 2708.30 4513.75 8124.75	Frequency (MHz) Emission (dBuV/m) 2708.25 45.3 PK 2708.25 39.3 AV 4513.75 51.5 PK 4513.75 47.9 AV 8124.75 53.8 PK 8124.75 45.1 AV Prequency (MHz) 2708.30 46.2 PK 2708.30 39.8 AV 4513.75 53.0 AV 8124.75 53.0 AV	Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) 2708.25 45.3 PK 74.0 2708.25 39.3 AV 54.0 2708.25 39.3 AV 54.0 4513.75 51.5 PK 74.0 4513.75 51.5 PK 74.0 8124.75 53.8 PK 74.0 8124.75 45.1 AV 54.0 8124.75 45.1 AV 54.0 8124.75 45.1 AV 54.0 8124.75 45.1 AV 54.0 B124.75 45.1 AV 54.0 B124.75 45.1 AV 54.0 Comparison Level (dBuV/m) Limit (dBuV/m) 2708.30 46.2 PK 74.0 2708.30 39.8 AV 54.0 4513.75 54.4 PK 74.0 4513.75 53.0 AV 54.0 4513.75 52.4 PK 74.0	Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) 2708.25 45.3 PK 74.0 -28.7 2708.25 39.3 AV 54.0 -14.7 4513.75 51.5 PK 74.0 -22.5 4513.75 47.9 AV 54.0 -6.1 8124.75 53.8 PK 74.0 -20.2 8124.75 45.1 AV 54.0 -8.9 Antenna Polarity & Test Dis Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) 2708.30 46.2 PK 74.0 -27.8 2708.30 39.8 AV 54.0 -14.2 4513.75 53.0 AV 54.0 -14.2 4513.75 54.4 PK 74.0 -27.8 2708.30 39.8 AV 54.0 -14.2 4513.75 53.0 AV 54.0 -10.6 8124.75 52.4 PK 74.0 -21.6	Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (m) 2708.25 45.3 PK 74.0 -28.7 2.41 H 2708.25 39.3 AV 54.0 -14.7 2.41 H 4513.75 51.5 PK 74.0 -22.5 1.49 H 4513.75 51.5 PK 74.0 -20.2 1.76 H 8124.75 53.8 PK 74.0 -20.2 1.76 H 8124.75 45.1 AV 54.0 -8.9 1.76 H 6000000000000000000000000000000000000	Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (dB) Table Angle (Degree) 2708.25 45.3 PK 74.0 -28.7 2.41 H 260 2708.25 39.3 AV 54.0 -14.7 2.41 H 260 4513.75 51.5 PK 74.0 -22.5 1.49 H 166 4513.75 51.5 PK 74.0 -22.5 1.49 H 166 4513.75 47.9 AV 54.0 -6.1 1.49 H 166 8124.75 53.8 PK 74.0 -20.2 1.76 H 242 8124.75 45.1 AV 54.0 -8.9 1.76 H 242 8124.75 45.1 AV 54.0 -8.9 1.76 H 242 Mtenna Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (m) Table 9 1.76 H 2.35 V 222 2708.30 46.2 PK 74.0 -27.8 2.35 V 222 2708.30 46.2 PK 74.0 -19.6	Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (dB) Table Angle (m) Raw Value (Degree) 2708.25 45.3 PK 74.0 -28.7 2.41 H 260 46.6 2708.25 39.3 AV 54.0 -14.7 2.41 H 260 40.6 4513.75 51.5 PK 74.0 -22.5 1.49 H 166 48.4 4513.75 47.9 AV 54.0 -6.1 1.49 H 166 44.8 8124.75 53.8 PK 74.0 -20.2 1.76 H 242 42.5 8124.75 45.1 AV 54.0 -8.9 1.76 H 242 33.8 Frequency (MHz) Emission Level (dBuV/m) Limit (dBuV/m) Margin (dB) Antenna Height (dB) Table Angle (Degree) Raw Value (dBuV) 2708.30 46.2 PK 74.0 -27.8 2.35 V 222 47.5 2708.30 39.8 AV 54.0 -14.2 2.35 V 222 41.1 4513.75 53.0 AV		

Remarks:

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level – Limit value

4. The other emission levels were very low against the limit.

Channel	TX Channel 24	Detector Function	Peak (PK) Average (AV)
Frequency Range	1GHz ~ 10GHz		

		Ar	ntenna Polarit	v & Test Dist	ance : Horizo	ntal at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2744.25	50.3 PK	74.0	-23.7	2.44 H	176	51.4	-1.1
2	2744.25	46.7 AV	54.0	-7.3	2.44 H	176	47.8	-1.1
3	4573.75	54.3 PK	74.0	-19.7	1.58 H	190	51.0	3.3
4	4573.75	51.1 AV	54.0	-2.9	1.58 H	190	47.8	3.3
5	7318.00	57.9 PK	74.0	-16.1	1.37 H	229	47.5	10.4
6	7318.00	53.9 AV	54.0	-0.1	1.37 H	229	43.5	10.4
7	8232.75	56.9 PK	74.0	-17.1	1.42 H	210	45.9	11.0
8	8232.75	52.4 AV	54.0	-1.6	1.42 H	210	41.4	11.0
		A	Antenna Polar	ity & Test Dis	stance : Vertic	al at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2744.25	50.9 PK	74.0	-23.1	2.31 V	219	52.0	-1.1
2	2744.25	47.9 AV	54.0	-6.1	2.31 V	219	49.0	-1.1
3	4573.75	53.0 PK	74.0	-21.0	3.05 V	199	49.7	3.3
4	4573.75	49.4 AV	54.0	-4.6	3.05 V	199	46.1	3.3
5	7318.00	55.9 PK	74.0	-18.1	2.56 V	256	45.5	10.4
6	7318.00	48.9 AV	54.0	-5.1	2.56 V	256	38.5	10.4
7	8232.75	56.5 PK	74.0	-17.5	2.26 V	173	45.5	11.0
8	8232.75	52.0 AV	54.0	-2.0	2.26 V	173	41.0	11.0

1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

Channel	TX Channel 49	Detector Function	Peak (PK) Average (AV)
Frequency Range	1GHz ~ 10GHz		

		Ar	ntenna Polarit	y & Test Dista	ance : Horizo	ntal at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2781.75	45.2 PK	74.0	-28.8	1.70 H	218	46.5	-1.3
2	2781.75	40.0 AV	54.0	-14.0	1.70 H	218	41.3	-1.3
3	4636.25	46.3 PK	74.0	-27.7	1.63 H	220	42.8	3.5
4	4636.25	37.2 AV	54.0	-16.8	1.63 H	220	33.7	3.5
5	7418.00	54.0 PK	74.0	-20.0	1.37 H	228	43.6	10.4
6	7418.00	46.9 AV	54.0	-7.1	1.37 H	228	36.5	10.4
7	8345.25	51.9 PK	74.0	-22.1	1.65 H	242	41.3	10.6
8	8345.25	40.5 AV	54.0	-13.5	1.65 H	242	29.9	10.6
		A	Antenna Polar	ity & Test Dis	stance : Vertic	al at 3 m		
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)
1	2781.75	51.9 PK	74.0	-22.1	1.97 V	252	53.2	-1.3
2	2781.75	48.6 AV	54.0	-5.4	1.97 V	252	49.9	-1.3
3	4636.25	47.1 PK	74.0	-26.9	2.06 V	199	43.6	3.5
4	4636.25	39.7 AV	54.0	-14.3	2.06 V	199	36.2	3.5
5	7418.00	52.4 PK	74.0	-21.6	2.00 V	199	42.0	10.4
6	7418.00	43.2 AV	54.0	-10.8	2.00 V	199	32.8	10.4
7	8345.25	51.8 PK	74.0	-22.2	2.54 V	161	41.2	10.6
8	8345.25	40.2 AV	54.0	-13.8	2.54 V	161	29.6	10.6

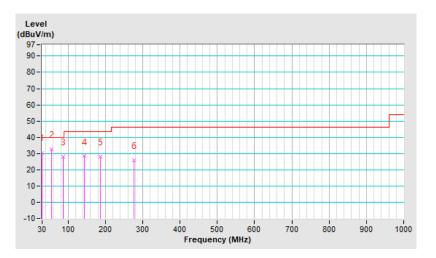
1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m)

2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) – Pre-Amplifier Factor(dB)

3. Margin value = Emission Level - Limit value

4. The other emission levels were very low against the limit.

5. " # ": The radiated frequency is out of the restricted band, the limit was restricted at the Conducted Out of Band Emissions.

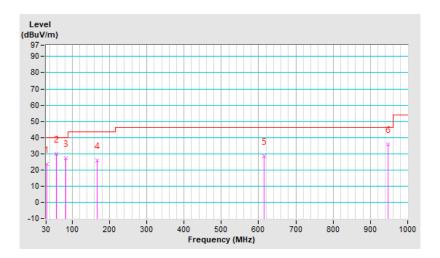


Below 1GHz worst-case data:

Channel	TX Channel 0	Detector Function	Quasi-Peak (QP)
Frequency Range	9kHz ~ 1GHz		

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	30.00	30.6 QP	40.0	-9.4	1.49 H	9	41.1	-10.5	
2	55.22	32.6 QP	40.0	-7.4	1.00 H	184	41.7	-9.1	
3	86.26	28.3 QP	40.0	-11.7	1.99 H	22	42.5	-14.2	
4	142.52	28.3 QP	43.5	-15.2	1.49 H	138	37.1	-8.8	
5	187.14	28.0 QP	43.5	-15.5	1.00 H	144	38.6	-10.6	
6	276.38	25.7 QP	46.0	-20.3	1.49 H	226	33.1	-7.4	

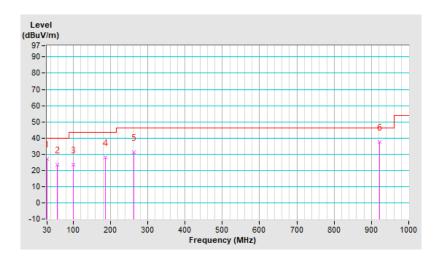
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz.
- 4. Margin value = Emission Level Limit value.
- 5. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.



Channel	TX Channel 0	Detector Function	Quasi-Peak (QP)
Frequency Range	9kHz ~ 1GHz		

	Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	31.94	23.7 QP	40.0	-16.3	1.99 V	201	34.3	-10.6	
2	57.16	29.8 QP	40.0	-10.2	1.00 V	7	39.2	-9.4	
3	83.35	27.1 QP	40.0	-12.9	1.50 V	258	41.0	-13.9	
4	167.74	25.7 QP	43.5	-17.8	1.99 V	13	34.2	-8.5	
5	614.91	28.4 QP	46.0	-17.6	1.00 V	7	29.0	-0.6	
6	946.65	35.7 QP	46.0	-10.3	1.50 V	6	30.4	5.3	

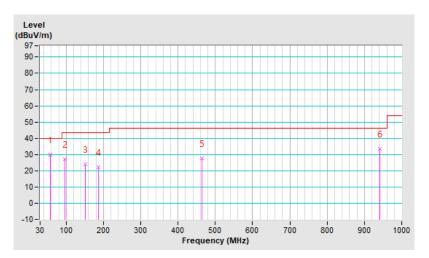
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz.
- 4. Margin value = Emission Level Limit value.
- 5. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.



Channel	TX Channel 24	Detector Function	Quasi-Peak (QP)
Frequency Range	9kHz ~ 1GHz		

	Antenna Polarity & Test Distance : Horizontal at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	30.00	27.0 QP	40.0	-13.0	1.00 H	178	37.5	-10.5	
2	57.16	23.7 QP	40.0	-16.3	2.00 H	7	33.1	-9.4	
3	99.84	23.6 QP	43.5	-19.9	1.00 H	176	36.8	-13.2	
4	186.17	28.0 QP	43.5	-15.5	2.00 H	145	38.5	-10.5	
5	261.83	31.1 QP	46.0	-14.9	1.50 H	6	39.3	-8.2	
6	922.40	37.4 QP	46.0	-8.6	1.00 H	151	32.1	5.3	

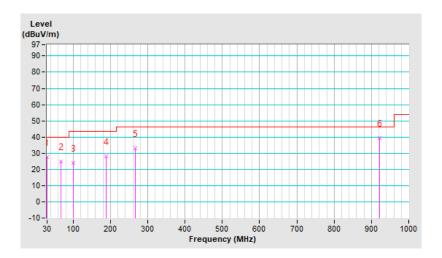
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz.
- 4. Margin value = Emission Level Limit value.
- 5. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.



Channel	TX Channel 24	Detector Function	Quasi-Peak (QP)
Frequency Range	9kHz ~ 1GHz		

	Antenna Polarity & Test Distance : Vertical at 3 m								
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)	
1	57.16	29.8 QP	40.0	-10.2	1.50 V	180	39.2	-9.4	
2	96.93	27.1 QP	43.5	-16.4	1.00 V	15	40.8	-13.7	
3	151.25	23.9 QP	43.5	-19.6	2.00 V	15	32.2	-8.3	
4	187.14	22.0 QP	43.5	-21.5	1.00 V	7	32.6	-10.6	
5	464.56	27.7 QP	46.0	-18.3	2.00 V	237	31.2	-3.5	
6	940.83	33.5 QP	46.0	-12.5	1.00 V	113	28.2	5.3	

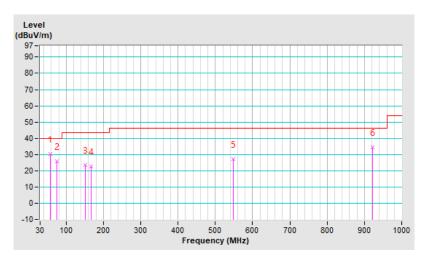
- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz.
- 4. Margin value = Emission Level Limit value.
- 5. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.



Channel	TX Channel 49	Detector Function	Quasi-Peak (QP)
Frequency Range	9kHz ~ 1GHz		

	Antenna Polarity & Test Distance : Horizontal at 3 m										
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)			
1	30.00	27.5 QP	40.0	-12.5	1.00 H	169	38.0	-10.5			
2	67.83	24.7 QP	40.0	-15.3	2.00 H	97	35.2	-10.5			
3	99.84	24.0 QP	43.5	-19.5	1.50 H	145	37.2	-13.2			
4	189.08	27.9 QP	43.5	-15.6	1.50 H	145	38.7	-10.8			
5	266.68	33.0 QP	46.0	-13.0	1.00 H	204	40.9	-7.9			
6	922.40	39.5 QP	46.0	-6.5	1.00 H	100	34.2	5.3			

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz.
- 4. Margin value = Emission Level Limit value.
- 5. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.



Channel	TX Channel 49	Detector Function	Quasi-Peak (QP)
Frequency Range	9kHz ~ 1GHz		

	Antenna Polarity & Test Distance : Vertical at 3 m											
No	Frequency (MHz)	Emission Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Antenna Height (m)	Table Angle (Degree)	Raw Value (dBuV)	Correction Factor (dB/m)				
1	57.16	30.3 QP	40.0	-9.7	1.00 V	326	39.7	-9.4				
2	75.59	25.9 QP	40.0	-14.1	1.00 V	350	38.1	-12.2				
3	151.25	23.4 QP	43.5	-20.1	1.50 V	298	31.7	-8.3				
4	167.74	22.8 QP	43.5	-20.7	1.00 V	253	31.3	-8.5				
5	548.95	27.0 QP	46.0	-19.0	2.00 V	30	29.3	-2.3				
6	922.40	34.5 QP	46.0	-11.5	1.00 V	4	29.2	5.3				

- 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m).
- 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB).
- 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz.
- 4. Margin value = Emission Level Limit value.
- 5. The frequency range 9 kHz ~ 30 MHz: all emissions are more than 20 dB below the limit, therefore do not be recorded in this report.

4.2 Conducted Emission Measurement

4.2.1 Limits of Conducted Emission Measurement

	Conducted L	.imit (dBuV)
Frequency (MHz)	Quasi-peak	Average
0.15 - 0.5	66 - 56	56 - 46
0.50 - 5.0	56	46
5.0 - 30.0	60	50

Note: 1. The lower limit shall apply at the transition frequencies.

2. The limit decreases in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

4.2.2 Test Instruments

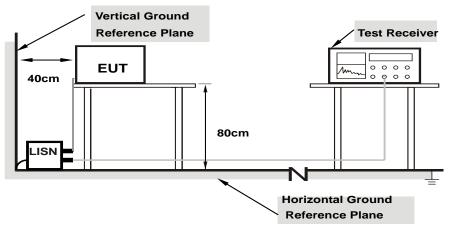
Description & Manufacturer	Model No.	Serial No.	Cal. Date	Cal. Due
LISN R&S	ESH2-Z5	100100	2024/3/6	2025/3/5
LISN Schwarzbeck	NNLK 8121	8121-731	2024/6/12	2025/6/11
Receiver R&S	ESCI	100412	2023/8/23	2024/8/22
RF Coaxial Cable WORKEN	5D-FB	Cable-cond2-01	2023/9/2	2024/9/1
Software BVADT	BVADT_Cond_ V7.3.7.4	N/A	N/A	N/A
Temperature&Humidity Meter Lufft	5098.00	Lf11015	2024/1/4	2025/1/3
V-LISN Schwarzbeck	NNBL 8226-2	8226-142	2023/8/31	2024/8/30

Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA.

2. The test was performed in HwaYa Shielded Room 2 (Conduction 2).

3. The VCCI Site Registration No. is C-12047.

4. Tested date: 2024/8/9


4.2.3 Test Procedures

- a. The EUT was placed 0.4 meters from the conducting wall of the shielded room with EUT being connected to the power mains through a line impedance stabilization network (LISN). Other support units were connected to the power mains through another LISN. The two LISNs provide 50 ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Both lines of the power mains connected to the EUT were checked for maximum conducted interference.
- c. The frequency range from 150kHz to 30MHz was searched. Emission levels under (Limit 20dB) was not recorded.
- Note: The resolution bandwidth and video bandwidth of test receiver is 9kHz for quasi-peak detection (QP) and average detection (AV) at frequency 0.15MHz-30MHz.

4.2.4 Deviation from Test Standard

No deviation.

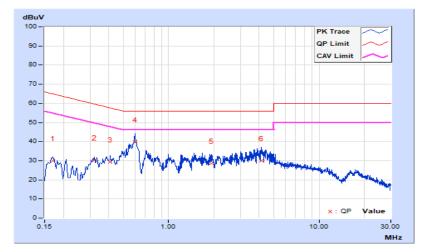
4.2.5 Test Setup

Note: 1.Support units were connected to second LISN.

For the actual test configuration, please refer to the attached file (Test Setup Photo).

4.2.6 EUT Operating Conditions

Same as 4.1.6.



4.2.7 Test Results

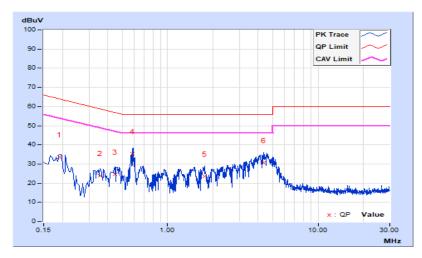
Phase	Line (L)	Detector Function	Quasi-Peak (QP) / Average (AV)
Channel	TX Channel 49		

	Frog	Corr.	Readin	g Value	Emissic	on Level	Lir	nit	Ma	rgin
No	Freq.	Factor	[dB ((uV)]	[dB (uV)]		[dB (uV)]		(dB)	
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.
1	0.16932	10.40	19.43	11.67	29.83	22.07	64.99	54.99	-35.16	-32.92
2	0.32200	10.47	19.70	11.79	30.17	22.26	59.66	49.66	-29.49	-27.40
3	0.41000	10.51	18.75	9.76	29.26	20.27	57.65	47.65	-28.39	-27.38
4	0.59655	10.53	29.09	24.06	39.62	34.59	56.00	46.00	-16.38	-11.41
5	1.92600	10.57	18.19	11.93	28.76	22.50	56.00	46.00	-27.24	-23.50
6	4.15800	10.67	19.20	10.45	29.87	21.12	56.00	46.00	-26.13	-24.88

- 1. Q.P. and AV. are abbreviations of quasi-peak and average individually.
- 2. The emission levels of other frequencies were very low against the limit.
- 3. Margin value = Emission level Limit value
- 4. Correction factor = Insertion loss + Cable loss
- 5. Emission Level = Correction Factor + Reading Value.

Phase	Neutral (N)	Detector Function	Quasi-Peak (QP) / Average (AV)
Channel	TX Channel 49		

	Frog	Freq. Corr.		rr. Reading Value		Emissic	Emission Level		Limit		Margin	
No	Fleq.	Factor	[dB ((uV)]	[dB ((uV)]	[dB ((uV)]	(d	B)		
	[MHz]	(dB)	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.	Q.P.	AV.		
1	0.19013	10.46	23.33	12.66	33.79	23.12	64.03	54.03	-30.24	-30.91		
2	0.35594	10.54	13.28	4.17	23.82	14.71	58.82	48.82	-35.00	-34.11		
3	0.44600	10.56	13.97	4.67	24.53	15.23	56.95	46.95	-32.42	-31.72		
4	0.58719	10.57	24.94	15.41	35.51	25.98	56.00	46.00	-20.49	-20.02		
5	1.75800	10.61	12.93	3.36	23.54	13.97	56.00	46.00	-32.46	-32.03		
6	4.33400	10.76	19.75	5.98	30.51	16.74	56.00	46.00	-25.49	-29.26		


1. Q.P. and AV. are abbreviations of quasi-peak and average individually.

2. The emission levels of other frequencies were very low against the limit.

3. Margin value = Emission level - Limit value

4. Correction factor = Insertion loss + Cable loss

5. Emission Level = Correction Factor + Reading Value.



4.3 Number of Hopping Frequency Used

4.3.1 Limits of Hopping Frequency Used Measurement

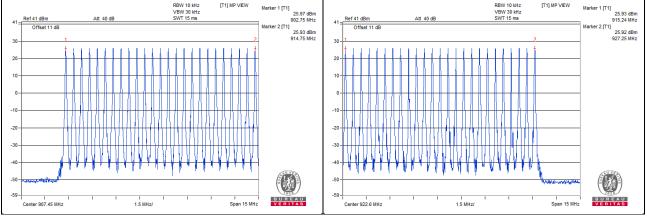
The 20 dB bandwidth of the hopping channel is less than 250 kHz, at least 50 channels frequencies, and should be equally spaced.

4.3.2 Test Setup

4.3.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.3.4 Test Procedure


- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Set the SA on MaxHold Mode, and then keep the EUT in hopping mode. Record all the signals from each channel until each one has been recorded.
- d. Set the SA on View mode and then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.

4.3.5 Deviation from Test Standard

No deviation.

4.3.6 Test Results

There are 50 hopping frequencies in the hopping mode. On the plots, it shows that the hopping frequencies are equally spaced.

4.4 Dwell Time on Each Channel

4.4.1 Limits of Dwell Time on Each Channel Measurement

The average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period. (If the 20 dB bandwidth of the hopping channel is less than 250 kHz)

4.4.2 Test Setup

4.4.3 Test Instruments

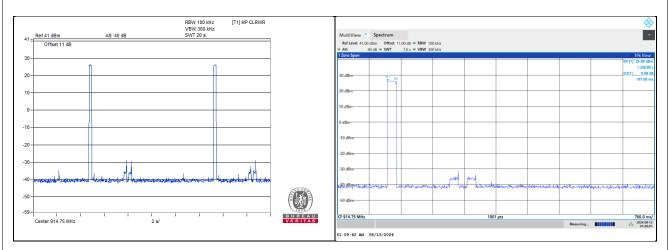
Refer to section 4.1.2 to get information of above instrument.

4.4.4 Test Procedures

- a. Check the calibration of the measuring instrument (SA) using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect its antenna terminal to measurement via a low loss cable. Then set it to any one measured frequency within its operating range and make sure the instrument is operated in its linear range.
- c. Adjust the center frequency of SA on any frequency be measured and set SA to zero span mode. And then, set RBW and VBW of spectrum analyzer to proper value.
- d. Measure the time duration of one transmission on the measured frequency. And then plot the result with time difference of this time duration.
- e. Repeat above procedures until all different time-slot modes have been completed.

4.4.5 Deviation from Test Standard

No deviation.



4.4.6 **Test Results**

Number of transmission in a period	Length of transmission time (msec)	Result (msec)	Limit (msec)
2 time	197.6	395.2	400

Note:

- Test plots of the transmitting time slot are shown as below. Calculator Result = 2 time * 197.6 = 395.2 1.
- 2.

4.5 Channel Bandwidth

4.5.1 Limits of Channel Bandwidth Measurement

The maximum allowed 20 dB bandwidth of the hopping channel is 250 kHz.

4.5.2 Test Setup

4.5.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

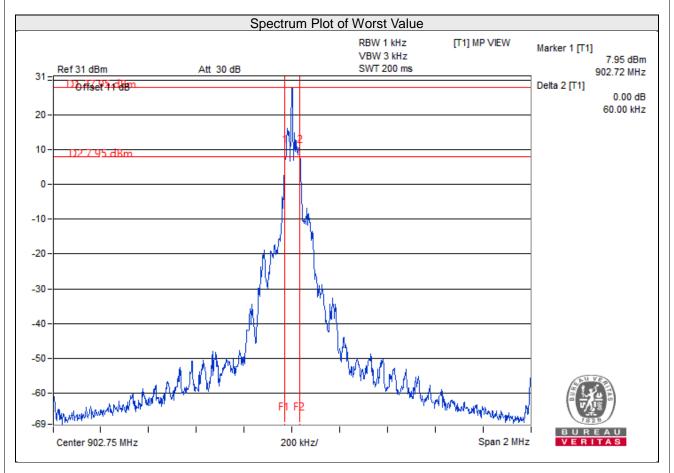
4.5.4 Test Procedure

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- c. Measure the frequency difference of two frequencies that were attenuated 20dB from the reference level. Record the frequency difference as the emission bandwidth.
- d. Repeat above procedures until all frequencies measured were complete.

4.5.5 Deviation from Test Standard

No deviation.

4.5.6 EUT Operating Condition


The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.5.7 Test Results

Channel	Frequency (MHz)	20dB Bandwidth (MHz)	Limit (MHz)
0	902.75	0.06	0.25
24	914.75	0.06	0.25
49	927.25	0.06	0.25

Note: 20 dB bandwidth of the hopping channel is less than 250 kHz, the system shall use at least 50 hopping frequencies and the average time of occupancy on any frequency shall not be greater than 0.4 seconds within a 20 second period.

4.6 Hopping Channel Separation

4.6.1 Limits of Hopping Channel Separation Measurement

At least 25kHz or 20dB hopping channel bandwidth (whichever is greater).

4.6.2 Test Setup

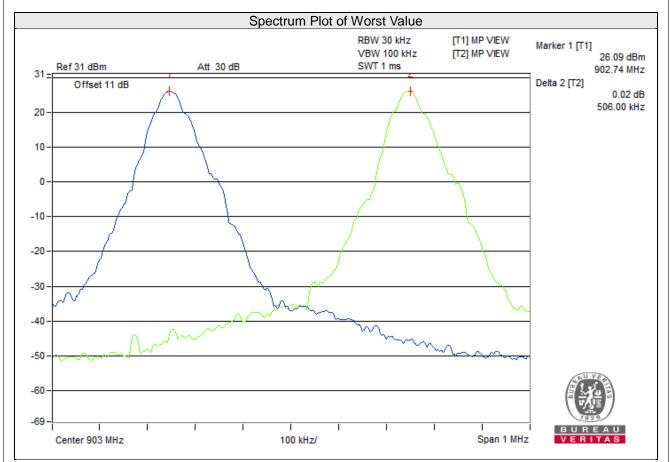
4.6.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.6.4 Test Procedure

Measurement Procedure REF

- a. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- b. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range.
- c. By using the MaxHold function record the separation of two adjacent channels.
- d. Measure the frequency difference of these two adjacent channels by SA MARK function. And then plot the result on SA screen.
- e. Repeat above procedures until all frequencies measured were complete.


4.6.5 Deviation from Test Standard

No deviation.

4.6.6 Test Results

Channel	Frequency (MHz)	Adjacent Channel Separation (MHz)	Minimum Limit (MHz)	Pass / Fail
0	902.75	0.506	0.06	Pass
24	914.75	0.500	0.06	Pass
49	927.25	0.503	0.06	Pass

4.7 Maximum Output Power

4.7.1 Limits of Maximum Output Power Measurement

For frequency hopping systems operating in the 902-928 MHz band: 1 watt for systems employing at least 50 hopping channels.

4.7.2 Test Setup

4.7.3 Test Instruments

Refer to section 4.1.2 to get information of above instrument.

4.7.4 Test Procedure

For Peak Power

A peak power sensor was used on the output port of the EUT. A power meter was used to read the response of the peak power sensor. Record the power level.

For Average Power

Average power sensor was used to perform output power measurement, trigger and gating function of wide band power meter is enabled to measure max output power of TX on burst. Duty factor is not added to measured value.

4.7.5 Deviation from Test Standard

No deviation.

4.7.6 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.7.7 Test Results

For Peak Power

Channel	Frequency (MHz)	Output Power (mW)	Output Power (dBm)	Power Limit (dBm)	Pass / Fail
0	902.75	144.877	21.61	30	Pass
24	914.75	337.287	25.28	30	Pass
49	927.25	341.193	25.33	30	Pass

For Average Power

Channel	Frequency (MHz)	Average Power (mW)	Average Power (dBm)
0	902.75	143.549	21.57
24	914.75	334.195	25.24
49	927.25	338.065	25.29

4.8 Conducted Out of Band Emission Measurement

4.8.1 Limits Of Conducted Out Of Band Emission Measurement

Below 20dB of the highest emission level of operating band (in 100kHz RBW).

4.8.2 Test Instruments

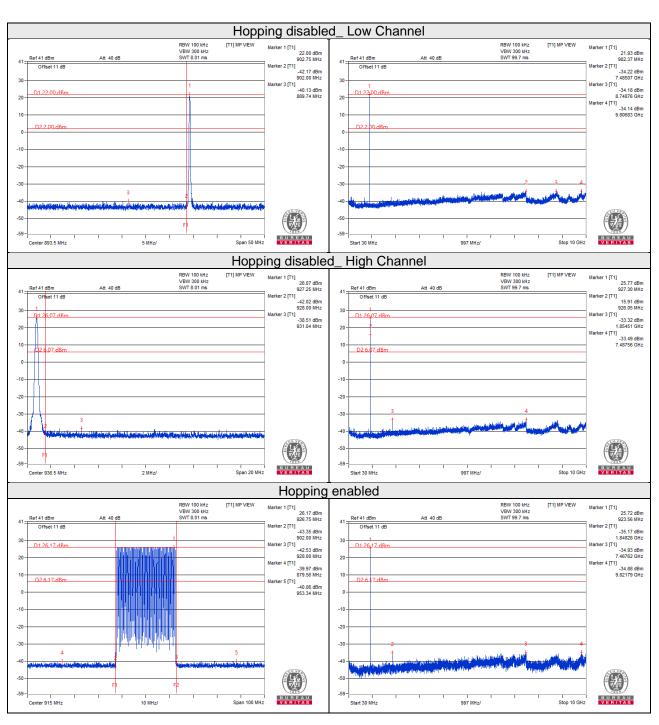
Refer to section 4.1.2 to get information of above instrument.

4.8.3 Test Procedure

The transmitter output was connected to the spectrum analyzer via a low lose cable. Set both RBW and VBW of spectrum analyzer to 100 kHz and 300 kHz with suitable frequency span including 100 MHz bandwidth from band edge. The band edges was measured and recorded.

4.8.4 Deviation from Test Standard

No deviation.


4.8.5 EUT Operating Condition

The software provided by client enabled the EUT to transmit and receive data at lowest, middle and highest channel frequencies individually.

4.8.6 Test Results

The spectrum plots are attached on the following images. D1 line indicates the highest level, D2 line indicates the 20dB offset below D1. It shows compliance with the requirement.

5 Pictures of Test Arrangements

Please refer to the attached file (Test Setup Photo).

Appendix – Information of the Testing Laboratories

We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025.

If you have any comments, please feel free to contact us at the following:

Lin Kou EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hsin Chu EMC/RF/Telecom Lab

Tel: 886-3-6668565 Fax: 886-3-6668323

Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892

Email: <u>service.adt@bureauveritas.com</u> Web Site: <u>http://ee.bureauveritas.com.tw</u>

The address and road map of all our labs can be found in our web site also.

--- END ----