FCC 47 CFR PART 15 SUBPART C INDUSTRY CANADA RSS 210 ## **CERTIFICATION TEST REPORT** **FOR** **WIRELESS SENSOR** **MODEL NUMBER: SS-319** FCC ID: XQC-SS319 IC: 9863B-SS319 **REPORT NUMBER: 14U19726 REVISION D** **ISSUE DATE: MARCH 19, 2015** Prepared for ECOLINK INTELLIGENT TECHNOLOGY, INC. 2055 CORTE DEL NOGAL CARLSBAD CA, 92011, U.S.A Prepared by UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A. TEL: (510) 771-1000 FAX: (510) 661-0888 NVLAP® NVLAP LAB CODE 200065-0 # **Revision History** | Rev. | Issue
Date | Revisions | Revised By | |------|---------------|--|------------| | | 2/24/15 | Initial Issue | P. ZHANG | | Α | 3/13/15 | Update page 8&9 | P. ZHANG | | В | 3/16/15 | Updated DCCF | P. ZHANG | | С | 3/17/15 | Updated DCCF test plot with only one pulse width | P. ZHANG | | D | 3/19/15 | Updated page 20; section 5.4; page 21; page 22 | P. ZHANG | # **TABLE OF CONTENTS** | 1. | AT | TESTATION OF TEST RESULTS | 4 | |-----|------|-----------------------------------|----| | 2. | TES | ST METHODOLOGY | 5 | | 3. | FA | CILITIES AND ACCREDITATION | 5 | | 4. | CA | LIBRATION AND UNCERTAINTY | 5 | | 4 | 1.1. | MEASURING INSTRUMENT CALIBRATION | 5 | | 4 | 1.2. | SAMPLE CALCULATION | 5 | | 4 | 1.3. | MEASUREMENT UNCERTAINTY | 6 | | 5. | EQ | UIPMENT UNDER TEST | 7 | | 5 | 5.1. | DESCRIPTION OF EUT | 7 | | 5 | 5.2. | DESCRIPTION OF AVAILABLE ANTENNAS | 7 | | 5 | 5.3. | SOFTWARE AND FIRMWARE | 7 | | 5 | 5.4. | WORST-CASE CONFIGURATION AND MODE | 7 | | 5 | 5.5. | MODIFICATIONS | 7 | | 5 | 5.1. | DESCRIPTION OF TEST SETUP | 8 | | 6. | TES | ST AND MEASUREMENT EQUIPMENT | 10 | | 7. | AN | TENNA PORT TEST RESULTS | 11 | | 7 | 7.1. | 20 dB AND 99% BW | 11 | | 7 | 7.2. | DUTY CYCLE | 15 | | 7 | 7.3. | TRANSMISSION TIME | 19 | | 8. | RA | DIATED EMISSION TEST RESULTS | 20 | | 8 | 3.1. | TX RADIATED SPURIOUS EMISSION | 20 | | 9. | AC | POWER LINE CONDUCTED EMISSIONS | 28 | | 10. | S | SETUP PHOTOS | 31 | # 1. ATTESTATION OF TEST RESULTS **COMPANY NAME:** ECOLINK INTELLIGENT TECHNOLOGY, INC. > 2055 CORTE DEL NOGAL CARLSBAD, CA, 92011, U.S.A WIRELESS SENSOR **EUT DESCRIPTION:** SS-319 MODEL: **SERIAL NUMBER:** 2056552 **DATE TESTED:** FEB 17 - MAR 13, 2015 #### APPLICABLE STANDARDS **STANDARD TEST RESULTS** FCC PART 15 SUBPART C **Pass** INDUSTRY CANADA RSS-210 Issue 8, Annex 1 **Pass** **INDUSTRY CANADA RSS-GEN Issue 4 Pass** UL Verification Services Inc tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report. Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government. Approved & Released For UL Verification Services Inc By: Tested By: **PENG ZHANG** PROJECT LEAD UL Verification Services Inc. **R.ALEGRE** LAB ENGINEER UL Verification Services Inc. Rally Clame REPORT NO: 14U19726D DATE: MARCH 19, 2015 FCC ID: XQC-SS319 DATE: MARCH 19, 2015 ## 2. TEST METHODOLOGY The tests documented in this report were performed in accordance with ANSI C63.4-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15, RSS-GEN Issue 4, and RSS-210 Issue 8. ## 3. FACILITIES AND ACCREDITATION The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA. The test sites and measurement facilities used to collect data are located at 47173 and 47266 Benicia Street, Fremont, California, USA. Line conducted emissions are measured only at the 47173 address. The following table identifies which facilities were utilized for radiated emission measurements documented in this report. Specific facilities are also identified in the test results sections. | 47173 Benicia Street | 47266 Benicia Street | |----------------------|----------------------| | ☐ Chamber A | ☐ Chamber D | | | ☐ Chamber E | | ☐ Chamber C | ☐ Chamber F | UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/2000650.htm. #### 4. CALIBRATION AND UNCERTAINTY ## 4.1. MEASURING INSTRUMENT CALIBRATION The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards. #### 4.2. SAMPLE CALCULATION Where relevant, the following sample calculation is provided: Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) - Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB - 26.9 dB = 28.9 dBuV/m # 4.3. MEASUREMENT UNCERTAINTY Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus: | PARAMETER | UNCERTAINTY | |---------------------------------------|-------------| | Conducted Disturbance, 0.15 to 30 MHz | ±3.52 dB | | Radiated Disturbance, 30 to 18000 MHz | ±4.94 dB | Uncertainty figures are valid to a confidence level of 95%. # 5. EQUIPMENT UNDER TEST #### 5.1. **DESCRIPTION OF EUT** The EUT is a Wireless Sensor. #### **DESCRIPTION OF AVAILABLE ANTENNAS** 5.2. The radio utilizes an internal, wire, monopole antenna, with a maximum gain of -5 dBi. #### 5.3. SOFTWARE AND FIRMWARE The typical factory firmware installed in the EUT during testing was ESW1063-01-014.HEX. The firmware installed in the EUT to allow continuous transmit during testing was ESW1063-01-FCC TX.HEX. #### 5.4. **WORST-CASE CONFIGURATION AND MODE** The EUT was investigated in each of its three orthogonal axes. All radiated testing was performed in the worse-case axis, which was found to be the "Z-axis". See photos for details. Both AC line powered and Battery powered configuration was investigated during exploratory and determine AC line powered is the worst case. #### 5.5. **MODIFICATIONS** No modifications were made during testing. # 5.1. DESCRIPTION OF TEST SETUP ## **SUPPORT EQUIPMENT** **NONE** **I/O CABLES** NONE ## **TEST SETUP** The EUT is an AC powered device, which operated on a button push. ## **SETUP DIAGRAM FOR TESTS** # **6. TEST AND MEASUREMENT EQUIPMENT** The following test and measurement equipment was utilized for the tests documented in this report: | Test Equipment List | | | | | | |--|----------------|-------------|--------|----------|--| | Description Manufacturer Model Asset Cal Due | | | | | | | Antenna, Biconolog, 30MHz-1 GHz | Sunol Sciences | JB1 | C01171 | 02/13/16 | | | Antenna, Horn, 18GHz | EMCO | 3115 | C00783 | 10/25/15 | | | Antenna, Horn, 25.5 GHz | ARA | MWH-1826/B | C00980 | 11/14/15 | | | Preamplifier, 1300 MHz | Agilent / HP | 8447D | C00580 | 01/28/16 | | | Preamplifier, 26.5 GHz | Agilent / HP | 8449B | C01052 | 10/22/15 | | | Spectrum Analyzer, 44 GHz | Agilent / HP | E4446A | C01069 | 12/20/15 | | | CBT Bluetooth Tester | R & S | CBT | None | 07/12/15 | | | Peak Power Meter | Agilent / HP | E4416A | C00963 | 12/13/15 | | | Peak / Average Power Sensor | Agilent / HP | E9327A | C00964 | 12/13/15 | | | LISN, 30 MHz | FCC | 50/250-25-2 | C00626 | 01/14/16 | | | Reject Filter, 2.4GHz | Micro-Tronics | BRM50702 | N02684 | CNR | | | ESA-E Spectrum Analyzer, 9kHz-26.5 | Agilent / HP | E4407B | C01098 | 04/04/15 | | | GHz | | | | | | | Antenna, Loop, 30 MHz | EMCO | 6502 | C00593 | 02/20/15 | | # 7. ANTENNA PORT TEST RESULTS #### 20 dB AND 99% BW 7.1. #### **LIMITS** #### FCC §15.231 (c) The bandwidth of the emission shall be no wider than 0.25% of the center frequency for devices operating above 70 MHz and below 900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. Bandwidth is determined at the points 20 dB down from the modulated carrier. #### IC A1.1.3 For the purpose of Section A1.1, the 99% Bandwidth shall be no wider than 0.25% of the center frequency for devices operating between 70-900 MHz. For devices operating above 900 MHz, the emission shall be no wider than 0.5% of the center frequency. #### **TEST PROCEDURE** #### ANSI C63.4 The transmitter output is connected to the spectrum analyzer. 20dB Bandwidth: The RBW is set to 100 KHz. The VBW is set to 300 KHz. The sweep time is coupled. Bandwidth is determined at the points 20 dB down from the modulated carrier. 99% Bandwidth: The RBW is set to 1% to 3% of the 99 % bandwidth. The VBW is set to 3 times the RBW. The sweep time is coupled. The spectrum analyzer internal 99% bandwidth function is utilized. # **RESULTS** No non-compliance noted: ## 20dB Bandwidth | Frequency | 20dB Bandwidth | Limit | Margin | |-----------|----------------|--------|---------| | (MHz) | (kHz) | (kHz) | (kHz) | | 319.5 | 618 | 798.75 | -180.75 | ## 99% Bandwidth | Frequency | 99% Bandwidth | Limit | Margin | |-----------|---------------|--------|---------| | (MHz) | (kHz) | (kHz) | (kHz) | | 319.5 | 416.8 | 798.75 | -381.95 | ## **20dB BANDWIDTH** ## 99% BANDWIDTH #### 7.2. DUTY CYCLE #### **LIMITS** ## FCC §15.35 (c) The measurement field strength shall be determined by averaging over one complete pulse train, including blanking intervals, as long as the pulse train does not exceed 0.1 seconds. As an alternative (provided the transmitter operates for longer than 0.1 seconds) or in cases where the pulse train exceeds 0.1 seconds, the measured field strength shall be determined from the average absolute voltage during a 0.1 second interval during which the field strength is at its maximum value. The exact method of calculating the average field strength shall be submitted with any application for certification or shall be retained in the measurement data file for equipment subject to notification or verification. ## **TEST PROCEDURE** The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is coupled and the span is set to 0 Hz. The number of pulses is measured and calculated in a 100 ms scan. ## **CALCULATION** Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is (# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T #### **RESULTS** No non-compliance noted: | One | Pulse | # of | Duty | 20*Log | |--------|-------|--------|-------|------------| | Period | Width | | Cycle | Duty Cycle | | | | | | | | (ms) | (ms) | Pulses | | (dB) | ## **ONE PERIOD** # **PULSE WIDTH** # **NUMBER PULSES** #### 7.3. TRANSMISSION TIME #### **LIMITS** FCC §15.231 (a) (2) IC A1.1.1 (b) A transmitter activated automatically shall cease transmission within 5 seconds after activation. #### **TEST PROCEDURE** The transmitter output is connected to a spectrum analyzer or radiated field strength. The RBW is set to 100 kHz and the VBW is set to 100 kHz. The sweep time is set to 10 seconds and the span is set to 0 Hz. #### **RESULTS** No non-compliance noted: # 8. RADIATED EMISSION TEST RESULTS #### 8.1. TX RADIATED SPURIOUS EMISSION # **LIMITS** FCC §15.231 (b) IC A1.1.2 In addition to the provisions of § 15.205, the field strength of emissions from Intentional radiators operated under this section shall not exceed the following: | Fundamental | Field Strength of | Field Strength of | |-------------|-----------------------|--------------------| | Frequency | Fundamental Frequency | Spurious Emissions | | (MHz) | (microvolts/meter) | (microvolts/meter) | | Fundamental frequency (MHz) | Field strength of fundamental (microvolts/meter) | Field strength of spurious emissions (microvolts/meter) | |-----------------------------|--|---| | 40.66-40.70 | 2,250 | 225 | | 70-130 | 1,250 | 125 | | 130-174 | ¹ 1,250 to 3,750 | ¹ 125 to 375 | | 174-260 | 3,750 | 375 | | 260-470 | ¹ 3,750 to 12,500 | ¹ 375 to 1,250 | | Above 470 | 12,500 | 1,250 | ¹Linear interpolation §15.205 (a) Except as shown in paragraph (d) of this section, only spurious emissions are permitted in any of the frequency bands listed below: | MHz | MHz | MHz | GHz | |--|--|---|---| | MHz 0.090 - 0.110 10.495 - 0.505 2.1735 - 2.1905 4.125 - 4.128 4.17725 - 4.17775 4.20725 - 4.20775 6.215 - 6.218 6.26775 - 6.26825 6.31175 - 6.31225 8.291 - 8.294 8.362 - 8.366 8.37625 - 8.38675 | MHz 16.42 - 16.423 16.69475 - 16.69525 16.80425 - 16.80475 25.5 - 25.67 37.5 - 38.25 73 - 74.6 74.8 - 75.2 108 - 121.94 123 - 138 149.9 - 150.05 156.52475 - 156.52525 | MHz 399.9 - 410 608 - 614 960 - 1240 1300 - 1427 1435 - 1626.5 1645.5 - 1646.5 1660 - 1710 1718.8 - 1722.2 2200 - 2300 2310 - 2390 2483.5 - 2500 2655 - 2900 | GHz 4.5 - 5.15 5.35 - 5.46 7.25 - 7.75 8.025 - 8.5 9.0 - 9.2 9.3 - 9.5 10.6 - 12.7 13.25 - 13.4 14.47 - 14.5 15.35 - 16.2 17.7 - 21.4 22.01 - 23.12 | | 8.41425 - 8.41475
12.29 - 12.293
12.51975 - 12.52025
12.57675 - 12.57725
13.36 - 13.41 | 156.7 - 156.9
162.0125 - 167.17
167.72 - 173.2
240 - 285
322 - 335.4 | 3260 - 3267
3332 - 3339
3345.8 - 3358
3600 - 4400 | 23.6 - 24.0
31.2 - 31.8
36.43 - 36.5
(²) | Page 20 of 40 1 Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz. 2 Above 38.6 §15.205 (b) Except as provided in paragraphs (d) and (e), the field strength of emissions appearing within these frequency bands shall not exceed the limits shown in Section 15.209. At frequencies equal to or less than 1000 MHz, compliance with the limits in Section 15.209 shall be demonstrated using measurement instrumentation employing a CISPR quasi peak detector. Above 1000 MHz, compliance with the emission limits in Section 15.209 shall be demonstrated based on the average value of the measured emissions. The provisions in Section 15.35 apply to these measurements. §15.209 (a) Except as provided elsewhere in this Subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table: | quency (MHz) | Field strength (microvolts/meter) | Measurement distance (meters) | |--------------|-----------------------------------|-------------------------------| | 0.009-0.490 | 2400/F(kHz) | 300 | | 0.490-1.705 | 24000/F(kHz) | 30 | | 1.705-30.0 | 30 | 30 | | 30-88 | 100** | 3 | | 88-216 | 150** | 3 | | 216-960 | 200** | 3 | | Above 960 | 500 | 3 | ^{**} Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this Section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this Part, e.g., Sections 15.231 and 15.241. §15.209 (b) In the emission table above, the tighter limit applies at the band edges. #### **TEST PROCEDURE** The EUT is placed on a non-conducting table 80 cm above the ground plane. The antenna to EUT distance is 3 meters. The EUT is configured in accordance with ANSI C63.4. The EUT is set to transmit in a continuous mode. For measurements below 1 GHz the resolution bandwidth is set to 100 kHz for peak detection measurements or 120 kHz for quasi-peak detection measurements. Peak detection is used unless otherwise noted as quasi-peak. For measurements above 1 GHz the resolution bandwidth is set to 1 MHz, then the video bandwidth is set to 3 MHz for peak measurements and apply DCCF for average measurements. The frequency range of interest is monitored at a fixed antenna height and EUT azimuth. The EUT is rotated through 360 degrees to maximize emissions received. The antenna is scanned from 1 to 4 meters above the ground plane to further maximize the emission. Measurements are made with the antenna polarized in both the vertical and the horizontal positions. #### **RESULTS** No non-compliance noted: # FUNDAMENTAL, HARMONICS AND TX SPURIOUS EMISSION (30 - 1000 MHz) #### Radiated Emissions # **Trace Markers** | Marker | Frequency | Meter | Det | AF T185 | Amp/Cbl | Corrected | Limit | Margin | Azimuth | Height | Polarity | |--------|-----------|---------|-----|---------|---------|-----------|----------|--------|---------|--------|----------| | | (MHz) | Reading | | (dB/m) | (dB/m) | Reading | (dBuV/m) | (dB) | (Degs) | (cm) | | | | | (dBuV) | | | | (dBuV/m) | | | | | | | 1 | 56.4775 | 59.31 | PK | 6.8 | -27.3 | 38.81 | 40 | -1.19 | 0-360 | 100 | V | | 3 | 319.5 | 105.79 | PK | 13.9 | -25.2 | 94.49 | | | 0-360 | 100 | Н | | 2 | 319.5 | 97.43 | PK | 13.9 | -25.2 | 86.13 | | | 0-360 | 200 | V | | 4 | 639 | 58.52 | PK | 19.7 | -25.6 | 52.62 | | | 0-360 | 100 | Н | | 5 | 639 | 49.93 | PK | 19.7 | -25.6 | 44.03 | 46.02 | -1.99 | 0-360 | 100 | V | | 6 | 958.5 | 45.06 | PK | 22.7 | -23.6 | 44.16 | 46.02 | -1.86 | 0-360 | 100 | Н | | 7 | 958.5 | 42.4 | PK | 22.7 | -23.6 | 41.5 | 46.02 | -4.52 | 0-360 | 100 | V | ## **Radiated Emissions** | Frequency | Meter | Det | AF T185 | Amp/Cbl | Corrected | Limit | Margin | Azimuth | Height | Polarity | |-----------|---------|-----|---------|---------|-----------|----------|--------|---------|--------|----------| | (MHz) | Reading | | (dB/m) | (dB/m) | Reading | (dBuV/m) | (dB) | (Degs) | (cm) | | | | (dBuV) | | | | (dBuV/m) | | | | | | | 319.51 | 97.99 | PK | 13.9 | -25.2 | 86.69 | 95.89 | -9.2 | 312 | 176 | V | | 319.51 | | Av | | | 66.58 | 75.89 | -9.31 | 312 | 176 | V | | 319.534 | 105.66 | PK | 13.9 | -25.2 | 94.36 | 95.89 | -1.53 | 165 | 115 | Н | | 319.534 | | Av | | | 74.25 | 75.89 | -1.64 | 165 | 115 | Н | | 639.0177 | 55.78 | PK | 19.7 | -25.6 | 49.88 | 75.89 | -26.01 | 232 | 138 | V | | 639.0177 | | Av | | | 29.77 | 55.89 | -26.12 | 232 | 138 | V | | 639.02 | 58.82 | PK | 19.7 | -25.6 | 52.92 | 75.89 | -22.97 | 151 | 103 | Н | | 639.052 | | Av | | | 32.81 | 55.89 | -23.08 | 151 | 103 | Н | | 958.5293 | 46.73 | PK | 22.7 | -23.6 | 45.83 | 75.89 | -30.06 | 165 | 115 | Н | | 958.5293 | | Av | | | 25.72 | 55.89 | -30.17 | 165 | 115 | Н | | 958.5325 | 43.35 | PK | 22.7 | -23.6 | 42.45 | 75.89 | -33.44 | 122 | 104 | V | | 958.5325 | | Av | | | 22.34 | 55.89 | -33.55 | 122 | 104 | V | Note: average reading = peak reading + DCCF #### **HARMONICS AND TX SPURIOUS EMISSIONS ABOVE 1GHz** ## Pre-scan | Marker | Frequency | Meter | Det | AF T119 | Amp/Cbl | Corrected | Class B | Margin | Class B Pk | PK Margin | Azimuth | Height | Polarity | |--------|-----------|-------------------|-----|---------|---------|---------------------|-----------------------|--------|-------------------|-----------|---------|--------|----------| | | (GHz) | Reading
(dBuV) | | (dB/m) | (dB) | Reading
(dBuV/m) | Avg Limit
(dBuV/m) | (dB) | Limit
(dBuV/m) | (dB) | (Degs) | (cm) | | | | | (ubuv) | | | | (ubuv/III) | (ubuv/III) | | (ubuv/III) | | | | | | 1 | 1.598 | 55.91 | PK | 28 | -33.3 | 50.61 | - | - | 74 | -23.39 | 0-360 | 200 | Н | | 2 | 1.917 | 60.14 | PK | 31.2 | -33.1 | 58.24 | - | - | 74 | -15.76 | 0-360 | 200 | Н | | 6 | 1.917 | 56.5 | PK | 31.2 | -33.1 | 54.6 | 54 | .6 | 74 | -19.4 | 0-360 | 100 | V | | 3 | 2.237 | 54.24 | PK | 31.5 | -32.9 | 52.84 | - | - | 74 | -21.16 | 0-360 | 200 | Н | | 4 | 3.195 | 56.26 | PK | 32.6 | -32.2 | 56.66 | - | - | 74 | -17.34 | 0-360 | 100 | Н | | 7 | 3.195 | 54.44 | PK | 32.6 | -32.2 | 54.84 | 54 | .84 | 74 | -19.16 | 0-360 | 100 | V | | 8 | 3.514 | 53.72 | PK | 32.8 | -32.1 | 54.42 | - | - | 74 | -19.58 | 0-360 | 200 | Н | | 5 | 3.514 | 56.18 | PK | 32.8 | -32.1 | 56.88 | 54 | 2.88 | 74 | -17.12 | 0-360 | 200 | V | | 9 | 4.154 | 51.27 | PK | 33.3 | -31.9 | 52.67 | 54 | -1.33 | 74 | -21.33 | 0-360 | 200 | V | | 10 | 4.473 | 49.63 | PK | 33.7 | -31.7 | 51.63 | 54 | -2.37 | 74 | -22.37 | 0-360 | 100 | V | Note: Above plots is from pre-scan, for final measurement please refer to data table. #### Final-scan | Frequency
(GHz) | Meter
Reading
(dBuV) | Det | AF T119
(dB/m) | Amp/Cbl
(dB) | Corrected Avg Reading (dBuV/m) | Class B Avg
Limit
(dBuV/m) | Av(CIS
PR)Mar
gin
(dB) | Corrected
PK Reading
(dBuV/m) | Class B Pk
Limit
(dBuV/m) | PK Margin
(dB) | Azimuth
(Degs) | Height
(cm) | Polarity | |--------------------|----------------------------|-----|-------------------|-----------------|--------------------------------|----------------------------------|---------------------------------|-------------------------------------|---------------------------------|-------------------|-------------------|----------------|----------| | 1.598 | 57.78 | PK | 28 | -33.3 | 32.37 | 54 | -21.63 | 52.48 | 74 | -21.52 | 60 | 276 | Н | | 1.917 | 63.38 | PK | 31.2 | -33.1 | 41.37 | 54 | -12.63 | 61.48 | 74 | -12.52 | 74 | 210 | Н | | 1.917 | 61.24 | PK | 31.2 | -33.1 | 39.23 | 54 | -14.77 | 59.34 | 74 | -14.66 | 180 | 158 | V | | 2.237 | 56.19 | PK | 31.5 | -32.9 | 34.68 | 54 | -19.32 | 54.79 | 74 | -19.21 | 322 | 167 | Н | | 3.195 | 57.83 | PK | 32.6 | -32.2 | 38.12 | 54 | -15.88 | 58.23 | 74 | -15.77 | 231 | 100 | V | | 3.196 | 57.67 | PK | 32.6 | -32.2 | 37.96 | 54 | -16.04 | 58.07 | 74 | -15.93 | 174 | 198 | Н | | 3.514 | 57.75 | PK | 32.8 | -32.1 | 38.34 | 54 | -15.66 | 58.45 | 74 | -15.55 | 107 | 344 | Н | | 3.515 | 59.98 | PK | 32.8 | -32.1 | 40.57 | 54 | -13.43 | 60.68 | 74 | -13.32 | 248 | 254 | V | | 4.154 | 55.46 | PK | 33.3 | -31.9 | 36.75 | 54 | -17.25 | 56.86 | 74 | -17.14 | 128 | 323 | V | | 4.473 | 54.54 | PK | 33.7 | -31.7 | 36.43 | 54 | -17.57 | 56.54 | 74 | -17.46 | 159 | 150 | V | PK - Peak detector Note: Average reading = Peak reading + DCCF (-20.11dB) * Average Reading = Peak Reading (dBuV/m) + 20log (Duty Cycle), Where Duty Cycle is (# of long pulses * long pulse width) + (# of short pulses * short pulse width) / 100 or T ## **BELOW 30MHz** FCC Part 15, Subpart B & C 3 Meter Distance Measurement At Open Field Company: Ecolink Project #: 14U19726 EUT configuration #: EUT ONLY Cont. TX. Mode of operation: 9KHz-30MHz Tester: R. Alegre Date: 2/17/15 | Frequency | PK | QP | AV | AF | Distance | Distance | PK Corrected | AV Corrected | | | | AV Margin | Notes | |-------------|----------|---------|--------|-------|----------|-----------------|------------------|------------------|----------|----------|-------|-----------|-------| | (MHz) | (dBu/V) | (dBu/V) | (dBuV) | dB/m | (m) | Correction (dB) | Reading (dBuV/m) | Reading (dBuV/m) | (dBuV/m) | (dBuV/m) | (dB) | (dB) | | | | | | | | | | | | | | | | | | Loop Antenn | a Face O | n: | | | | | | | | | | | | | 0.03 | 62.82 | | 57.59 | 12.97 | 3 | -80.00 | -4.21 | -9.44 | 58.06 | 38.06 | -62.3 | -47.5 | | | 0.05 | 59.28 | | 57.3 | 11.3 | 3 | -80.00 | -9.42 | -11.40 | 53.62 | 33.62 | -63.0 | -45.0 | | | 0.22 | 60.76 | | 52.56 | 10.8 | 3 | -80.00 | -8.44 | -16.64 | 40.76 | 20.76 | -49.2 | -37.4 | | | 1.05 | 55.64 | 48.64 | | 10.71 | 3 | -40.00 | 19.35 | | 27.18 | | -7.8 | | | | 7.21 | 59.45 | 52.33 | | 10.86 | 3 | -40.00 | 23.19 | | 29.54 | | -6.4 | | | | 15.45 | 60.18 | 53.33 | | 10.56 | 3 | -40.00 | 23.89 | | 29.54 | | -5.7 | | | | | | | | | | | | | | | | | | | Loop Antenn | a Face O | ff: | | | | | | | | | | | | | 0.03 | 61.45 | | 59.42 | 12.97 | 3 | -80.00 | -5.58 | -7.61 | 58.06 | 38.06 | -63.6 | -45.7 | | | 0.05 | 57.8 | | 55.32 | 11.3 | 3 | -80.00 | -10.90 | -13.38 | 53.62 | 33.62 | -64.5 | -47.0 | | | 0.22 | 59.21 | | 57.62 | 10.8 | 3 | -80.00 | -9.99 | -11.58 | 40.76 | 20.76 | -50.7 | -32.3 | | | 1.05 | 53.25 | 44.2 | | 10.71 | 3 | -40.00 | 14.91 | | 27.18 | | -12.3 | | | | 7.21 | 57.8 | 51.38 | | 10.86 | 3 | -40.00 | 22.24 | | 29.54 | | -7.3 | | | | 15.45 | 58.03 | 52.09 | | 10.56 | 3 | -40.00 | 22.65 | | 29.54 | | -6.9 | | | ^{*} No more emissions were found up to 30MHz Note: The emission limits are based on measurements employing a CISPR quasi-peak detector except for the frequency bands 9–90 kHz, 110–490 kHz and above 10000Mhz. Radiated emission limits in these three bands are based on measurements employing an average detector. P.K. = Peak Q.P. = Quasi Peak Readings Below 150kHz => RBW=VBW=200 or 300Hz A.F. = Antenna factor Above 150kHz =>RBW=VBW=9 or 10kHz (Average => VBW=10Hz) Rev. 060314 # 9. AC POWER LINE CONDUCTED EMISSIONS #### **LIMITS** FCC §15.207 (a) | Frequency of Emission (MHz) | Conducted 1 | Limit (dBuV) | |-----------------------------|-------------|--------------| | | Quasi-peak | Average | | 0.15-0.5 | 66 to 56 * | 56 to 46 * | | 0.5-5 | 56 | 46 | | 5-30 | 60 | 50 | Decreases with the logarithm of the frequency. ## **TEST PROCEDURE** The EUT is placed on a non-conducting table 40 cm from the vertical ground plane and 80 cm above the horizontal ground plane. The EUT is configured in accordance with ANSI C63.4. The receiver is set to a resolution bandwidth of 9 kHz. Peak detection is used unless otherwise noted as quasi-peak or average. Line conducted data is recorded for both NEUTRAL and HOT lines. #### **RESULTS** ## **6 WORST EMISSIONS** ## **LINE 1 PLOT** Line-L1 .15 - 30MHz | Trace | Trace Markers | | | | | | | | | | | | | | |--------|--------------------|----------------------------|-----|-------------------|-----------------------|------------------------------|------------------------|-------------------------|-------------------------|-------------------------|--|--|--|--| | Marker | Frequency
(MHz) | Meter
Reading
(dBuV) | Det | T24 IL L1
(dB) | LC Cables
1&3 (dB) | Corrected
Reading
dBuV | CISPR 22
Class B QP | Margin to
Limit (dB) | CISPR 22
Class B Avg | Margin to
Limit (dB) | | | | | | 1 | .1815 | 39.56 | PK | 1.1 | 0 | 40.66 | 64.4 | -23.74 | - | - | | | | | | 2 | .1815 | 16.67 | Av | 1.1 | 0 | 17.77 | - | - | 54.4 | -36.63 | | | | | | 3 | .4515 | 37.92 | PK | .4 | 0 | 38.32 | 56.8 | -18.48 | - | - | | | | | | 4 | .4515 | 20.44 | Av | .4 | 0 | 20.84 | - | - | 46.8 | -25.96 | | | | | | 5 | .8835 | 32.62 | PK | .3 | 0 | 32.92 | 56 | -23.08 | - | - | | | | | | 6 | .8835 | 6.94 | Av | .3 | 0 | 7.24 | - | - | 46 | -38.76 | | | | | | 7 | 3.6285 | 43.24 | PK | .2 | .1 | 43.54 | 56 | -12.46 | - | - | | | | | | 8 | 3.6285 | 25.28 | Av | .2 | .1 | 25.58 | - | - | 46 | -20.42 | | | | | | 9 | 21.984 | 31.25 | PK | .3 | .2 | 31.75 | 60 | -28.25 | - | - | | | | | | 10 | 21.984 | 8.19 | Av | .3 | .2 | 8.69 | - | - | 50 | -41.31 | | | | | # **LINE 2 PLOT** Line-L2 .15 - 30MHz | Trace | Trace Markers | | | | | | | | | | | | | | |--------|--------------------|----------------------------|-----|-------------------|-----------------------|------------------------------|------------------------|-------------------------|-------------------------|-------------------------|--|--|--|--| | Marker | Frequency
(MHz) | Meter
Reading
(dBuV) | Det | T24 IL L2
(dB) | LC Cables
2&3 (dB) | Corrected
Reading
dBuV | CISPR 22
Class B QP | Margin to
Limit (dB) | CISPR 22
Class B Avg | Margin to
Limit (dB) | | | | | | 11 | .1635 | 41.03 | PK | 1.3 | 0 | 42.33 | 65.3 | -22.97 | - | - | | | | | | 12 | .1635 | 19.01 | Av | 1.3 | 0 | 20.31 | - | - | 55.3 | -34.99 | | | | | | 13 | .4335 | 40.85 | PK | .4 | 0 | 41.25 | 57.2 | -15.95 | - | - | | | | | | 14 | .4335 | 28.4 | Av | .4 | 0 | 28.8 | - | - | 47.2 | -18.4 | | | | | | 15 | .897 | 35.75 | PK | .3 | 0 | 36.05 | 56 | -19.95 | - | - | | | | | | 16 | .897 | 11.69 | Av | .3 | 0 | 11.99 | - | - | 46 | -34.01 | | | | | | 17 | 3.381 | 42.9 | PK | .2 | .1 | 43.2 | 56 | -12.8 | - | - | | | | | | 18 | 3.381 | 24.3 | Av | .2 | .1 | 24.6 | - | - | 46 | -21.4 | | | | | | 19 | 20.8815 | 30.96 | PK | .3 | .2 | 31.46 | 60 | -28.54 | - | - | | | | | | 20 | 20.8815 | 4.28 | Av | .3 | .2 | 4.78 | - | - | 50 | -45.22 | | | | | PK - Peak detector Av - average detection DATE: MARCH 19, 2015 IC: 9863B-SS319