

Ref Leve	20.00 dBm	Offset 1	LO.77 dB 👄	RBW 100 k	Hz				
Att	20 dE	SWT	30.1 ms 👄	VBW 300 k	Hz Mode	Auto Swee	D		
1Pk View	10								
					N	11[1]		57	-57.89 dBn
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	D1 -15.230	dBm							
-30 dBm									
-40 dBm									
-50 dBm					MI				
-60 dBm	TRANSPORT OF THE	- Anthe Loopathing	THE TRAVISION AND P	and with a put of p	name in the second		uther and the state	allas addisor	
70 dBm-	entipatènnes failus.	riphicerisional actions in the	Allenne antinet e du plate	n flembrudthide	unde planten ag kontraljan	A Line 2 grand of Low Line	ala bahana ana ana ana	a contrained alo-	A Mail Manufacture and A
Start 30.0	MHz	I		3000	1 pts			Sto	00 1.0 GHz

Fig.51 Conducted Spurious Emission (CH0, Center Frequency), LE Coded S=8

Fig.52 Conducted Spurious Emission (CH0, 30MHz -1GHz), LE Coded S=8

Fig.53 Conducted Spurious Emission (CH0, 1GHz-26.5GHz), LE Coded S=8

Fig.54 Conducted Spurious Emission (CH19, Center Frequency), LE Coded S=8

Ref Leve	el 20.00 dBm	Offset	10.59 dB 👄	RBW 100 k	Hz				
Att	20 dB	SWT	30.1 ms 👄	VBW 300 k	Hz Mode	Auto Swee	р		
1Pk View	10								
					M	1[1]		72	-57.62 dBm 4.9660 MHz
10 dBm									
0 dBm	-								
-10 dBm									
-20 dBm	D1 -15.400	dBm	-						
-30 dBm									
-40 dBm—									
-50 dBm							M1		
-60 dBm		all work must yet a	and an entry of the	and the space of the second	and the states of the states o	an manadan man	Hanna	and the second	alling's minimariants
-70 dBm—	and a static	noveli in provingen el	an a fan de la general fan a	and the second secon	Hallon Orden and de	a ago da sera a	and the second second	and a second	a anna fitainn aird
Start 30.0	MHz			3000	1 nts			St	nn 1.0 GHz

Fig.57 Conducted Spurious Emission (CH39, Center Frequency), LE Coded S=8

Fig.58 Conducted Spurious Emission (CH39, 30MHz -1GHz), LE Coded S=8

Fig.59 Conducted Spurious Emission (CH39, 1GHz-26.5GHz), LE Coded S=8

Fig.60 Conducted Spurious Emission (CH0, Center Frequency), LE Coded S=2

Att	20 dB	SWT	30.1 ms 👄	VBW 300 k	Hz Mode	Auto Swee	5		
Count 10/	10								
IFK VIEW					M	11[1]		74	-58.10 dBn
10 dBm									
0 dBm									
-10 dBm									
-20 dBm	D1 -14.960	dBm							
-30 dBm—								-	
-40 dBm—									
-50 dBm—							M1		
160 dBm	and treasing participations	ter and the second	and the stands	and a design of the	and all and a second of	a state in the second of the	Launderhand	and the later of	in a lata luna
-70 dBm	(¹ 11) ₁ 011-1010-1010-1010-0	1949 and a start and a start and a start a star	alijang ng n	and an all of the second of	New Academic State	i na	an and a start of the	g saladan bahada.	and and a second se
Start 30.0	MHz		<u> </u>	3000	1 pts			Ste	pp 1.0 GHz

Fig.61 Conducted Spurious Emission (CH0, 30MHz -1GHz), LE Coded S=2

Fig.62 Conducted Spurious Emission (CH0, 1GHz-26.5GHz), LE Coded S=2

Fig.63 Conducted Spurious Emission (CH19, Center Frequency), LE Coded S=2

Fig.64 Conducted Spurious Emission (CH19, 30MHz -1GHz), LE Coded S=2

Fig.65 Conducted Spurious Emission (CH19, 1GHz-26.5GHz), LE Coded S=2

Ref Leve	20.00 dBm 20 dB	SWT	10.77 dB 👄	NBW 300 L	HZ HZ Mode	Auto Swoe	20		
Count 10/:	10	J	50.1 m5 🖶	1011 300 1	anz moue	Auto Swee	sh		
1Pk View									
					M	1[1]		600	57.99 dBm
10 dBm			-	o			-	02:	00000 MH2
0 dBm							×		
-10 dBm									
-20 dBm	D1 -14.560	dBm					2		
-30 dBm									
-40 dBm—									
-50 dBm						141			
-60 dBminn	-	"BUTTING SHOLE	-	and the state	and the property of the state		hi Diadahati	teres, elleptication	na pir the stude of the
-70 dBm	ilistere en districe.	<u>difi panana kapatan</u>	ale pitter dig ting fint, dente y be	a bren en antier en	ana inan' na mananitra n	solution and the second	a state producer of the	an a	
Start 30.0	MHz			3000	1 nts			Str	n 1.0 GHz

A.6 Transmitter Spurious Emission - Radiated

Measurement Limit:

Standard	Limit
FCC 47 CFR Part 15.247, 15.205, 15.209	20dB below peak output power

In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a) (see § 15.205(c)).

Limit in restricted band:

Frequency of emission (MHz)	Field strength(µV/m)	Measurement distance(meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100	3
88-216	150	3
216-960	200	3
Above 960	500	3

Test Condition:

The EUT was placed on a non-conductive table. The measurement antenna was placed at a distance of 3 meters from the EUT. During the tests, the antenna height and the EUT azimuth were varied in order to identify the maximum level of emissions from the EUT. This maximization process was repeated with the EUT positioned in each of its three orthogonal orientations.

Frequency of emission (MHz)	RBW/VBW	Sweep Time(s)
30-1000	120kHz/300kHz	5
1000-4000	1MHz/3MHz	15
4000-18000	1MHz/3MHz	40
18000-26500	1MHz/3MHz	20

Note: According to the performance evaluation, the radiated emission margin of EUT is over 20dB in the band from 9kHz to 30MHz.Therefore, the measurement starts from 30MHz to tenth harmonic. The measurement results include the horizontal polarization and vertical polarization measurements.

Measurement Results:

Mode	Channel	Frequency Range	Test Results	Conclusion
	0	1 GHz ~18 GHz	Fig.69	Р
	19	1 GHz ~18 GHz	Fig.70	Р
	39	1 GHz ~18 GHz	Fig.71	Р
	Restricted Band(CH0)	2.38 GHz ~ 2.45 GHz	Fig.72	Р
	Restricted Band(CH39)	2.45 GHz ~ 2.5 GHz	Fig.73	Р
		9 kHz ~30 MHz	Fig.74	Р
	All channels	30 MHz ~1 GHz	Fig.75	Р
		18 GHz ~ 26.5 GHz	Fig.76	Р
	0	1 GHz ~18 GHz	Fig.77	Р
	19	1 GHz ~18 GHz	Fig.78	Р
	39	1 GHz ~18 GHz	Fig.79	Р
	Restricted Band(CH0)	2.38 GHz ~ 2.45 GHz	Fig.80	Р
	Restricted Band(CH39)	2.45 GHz ~ 2.5 GHz	Fig.81	Р
		9 kHz ~30 MHz	Fig.82	Р
	All channels	30 MHz ~1 GHz	Fig.83	Р
		18 GHz ~ 26.5 GHz	GHz ~ 26.5 GHz Fig.84	
	0	1 GHz ~18 GHz	Fig.85	Р
	19	1 GHz ~18 GHz	Fig.86	Р
	39	1 GHz ~18 GHz	Fig.87	Р
LE	Restricted Band(CH0)	2.38 GHz ~ 2.45 GHz	Fig.88	Р
	Restricted Band(CH39)	2.45 GHz ~ 2.5 GHz	Fig.89	Р
3=0		9 kHz ~30 MHz	Fig.90	Р
	All channels	30 MHz ~1 GHz	Fig.91	Р
		18 GHz ~ 26.5 GHz	Fig.92	Р
	0	1 GHz ~18 GHz	Fig.93	Р
	19	1 GHz ~18 GHz	Fig.94	Р
	39	1 GHz ~18 GHz	Fig.95	Р
	Restricted Band(CH0)	2.38 GHz ~ 2.45 GHz	Fig.96	Р
Coded	Restricted Band(CH39)	2.45 GHz ~ 2.5 GHz	Fig.97	Р
3=2		9 kHz ~30 MHz	Fig.98	Р
	All channels	30 MHz ~1 GHz	Fig.99	Р
		18 GHz ~ 26.5 GHz	Fig.100	Р

Worst Case Result LE 1M CH19 (1-18GHz)

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
4880.400000	48.23	74.00	25.77	Н	3.7
11222.142857	47.84	74.00	26.16	V	9.7
14835.000000	51.31	74.00	22.69	Н	12.9
15860.571429	53.57	74.00	20.43	V	14.0
17059.285714	55.12	74.00	18.88	V	18.5
17919.857143	55.41	74.00	18.59	Н	18.9

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
4880.400000	37.31	54.00	16.69	Н	3.7
11222.142857	35.75	54.00	18.25	V	9.7
14835.000000	39.20	54.00	14.80	Н	12.9
15860.571429	40.69	54.00	13.31	V	14.0
17059.285714	42.46	54.00	11.54	V	18.5
17919.857143	43.31	54.00	10.69	Н	18.9

LE 2M CH19 (1-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	FOI	(dB/m)
4879.500000	48.48	74.00	25.52	Н	3.7
11044.285714	49.03	74.00	24.97	V	9.8
14899.285714	51.24	74.00	22.76	Н	13.0
15894.000000	53.16	74.00	20.84	Н	14.0
16890.000000	54.62	74.00	19.38	V	18.0
17979.857143	54.99	74.00	19.01	V	19.1

Frequency	Average	Limit	Margin	Dol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	FOI	(dB/m)
4879.500000	36.60	54.00	17.40	Н	3.7
11044.285714	36.02	54.00	17.98	V	9.8
14899.285714	39.18	54.00	14.82	Н	13.0
15894.000000	40.37	54.00	13.63	Н	14.0
16890.000000	42.37	54.00	11.63	V	18.0
17979.857143	42.73	54.00	11.27	V	19.1

LE Coded S=8 CH19 (1-18GHz)

Frequency	MaxPeak	Limit	Margin	Pol	Corr.
	(ασμν/៣)	(ασμν/៣)	(ab)		(ab/m)
4879.800000	49.18	74.00	24.82	Н	3.7
5920.200000	47.93	74.00	26.07	Н	4.6
8253.428572	45.99	74.00	28.01	Н	5.9
11135.571429	47.99	74.00	26.01	Н	9.7
15944.142857	51.95	74.00	22.05	Н	14.1
16905.857143	55.47	74.00	18.53	Н	18.1

Frequency	Average	Limit	Margin	Pol	Corr.
(MHz)	(dBµV/m)	(dBµV/m)	(dB)	FUI	(dB/m)
4879.800000	38.26	54.00	15.74	Н	3.7
5920.200000	35.91	54.00	18.09	Н	4.6
8253.428572	34.05	54.00	19.95	Н	5.9
11135.571429	35.72	54.00	18.28	Н	9.7
15944.142857	39.85	54.00	14.15	Н	14.1
16905.857143	42.48	54.00	11.52	Н	18.1

LE Coded S=2 CH19 (1-18GHz)

Frequency (MHz)	MaxPeak (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
4879.800000	48.30	74.00	25.70	Н	3.7
11185.285714	47.52	74.00	26.48	Н	9.7
12417.428572	48.72	74.00	25.28	Н	11.4
14895.857143	51.83	74.00	22.17	Н	13.0
15934.714286	52.45	74.00	21.55	Н	14.1
17054.142857	55.31	74.00	18.69	Н	18.5

Frequency (MHz)	Average (dBµV/m)	Limit (dBµV/m)	Margin (dB)	Pol	Corr. (dB/m)
4879.800000	38.02	54.00	15.98	Н	3.7
11185.285714	35.66	54.00	18.34	Н	9.7
12417.428572	36.69	54.00	17.31	Н	11.4
14895.857143	39.31	54.00	14.69	Н	13.0
15934.714286	40.01	54.00	13.99	Н	14.1
17054.142857	42.43	54.00	11.57	Н	18.5

Note:

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and Antenna Factor, the gain of the preamplifier, the cable loss. P_{Mea} is the field strength recorded from the instrument. The measurement results are obtained as described below:

Result= P_{Mea} +Cable Loss +Antenna Factor-Gain of the preamplifier.

See below for test graphs.

Conclusion: Pass

©Copyright. All rights reserved by SAICT.

Fig.69 Radiated Spurious Emission (GFSK, Ch0, 1 GHz ~18 GHz), LE 1M

Fig.70 Radiated Spurious Emission (GFSK, Ch19, 1 GHz ~18 GHz), LE 1M

Fig.71 Radiated Spurious Emission (GFSK, Ch39, 1 GHz ~18 GHz), LE 1M

Fig.72 Radiated Band Edges (GFSK, Ch0, 2380GHz~2450GHz), LE 1M

Fig.73 Radiated Band Edges (GFSK, Ch39, 2450GHz~2500GHz), LE 1M

Fig.74 Radiated Spurious Emission (All Channels, 9 kHz-30 MHz), LE 1M

Fig.75 Radiated Spurious Emission (All Channels, 30 MHz-1 GHz), LE 1M

Fig.76 Radiated Spurious Emission (All Channels, 18 GHz-26.5 GHz), LE 1M

Fig.77 Radiated Spurious Emission (GFSK, Ch0, 1 GHz ~18 GHz), LE 2M

Fig.78 Radiated Spurious Emission (GFSK, Ch19, 1 GHz ~18 GHz), LE 2M

Fig.79 Radiated Spurious Emission (GFSK, Ch39, 1 GHz ~18 GHz), LE 2M

Fig.80 Radiated Band Edges (GFSK, Ch0, 2380GHz~2450GHz), LE 2M

Fig.81 Radiated Band Edges (GFSK, Ch39, 2450GHz~2500GHz), LE 2M

Fig.82 Radiated Spurious Emission (All Channels, 9 kHz-30 MHz), LE 2M

Fig.83 Radiated Spurious Emission (All Channels, 30 MHz-1 GHz), LE 2M

Fig.84 Radiated Spurious Emission (All Channels, 18 GHz-26.5 GHz), LE 2M

Fig.85 Radiated Spurious Emission (GFSK, Ch0, 1 GHz ~18 GHz), LE Coded S=8

Fig.86 Radiated Spurious Emission (GFSK, Ch19, 1 GHz ~18 GHz), LE Coded S=8

Fig.87 Radiated Spurious Emission (GFSK, Ch39, 1 GHz ~18 GHz), LE Coded S=8

Fig.88 Radiated Band Edges (GFSK, Ch0, 2380GHz~2450GHz), LE Coded S=8

Fig.89 Radiated Band Edges (GFSK, Ch39, 2450GHz~2500GHz), LE Coded S=8

Fig.90 Radiated Spurious Emission (All Channels, 9 kHz-30 MHz), LE Coded S=8

Fig.91 Radiated Spurious Emission (All Channels, 30 MHz-1 GHz), LE Coded S=8

Fig.92 Radiated Spurious Emission (All Channels, 18 GHz-26.5 GHz), LE Coded S=8

Fig.93 Radiated Spurious Emission (GFSK, Ch0, 1 GHz ~18 GHz), LE Coded S=2

Fig.94 Radiated Spurious Emission (GFSK, Ch19, 1 GHz ~18 GHz), LE Coded S=2

Fig.95 Radiated Spurious Emission (GFSK, Ch39, 1 GHz ~18 GHz), LE Coded S=2

Fig.96 Radiated Band Edges (GFSK, Ch0, 2380GHz~2450GHz), LE Coded S=2

Fig.97 Radiated Band Edges (GFSK, Ch39, 2450GHz~2500GHz), LE Coded S=2

Fig.98 Radiated Spurious Emission (All Channels, 9 kHz-30 MHz), LE Coded S=2

Fig.99 Radiated Spurious Emission (All Channels, 30 MHz-1 GHz), LE Coded S=2

Fig.100 Radiated Spurious Emission (All Channels, 18 GHz-26.5 GHz), LE Coded S=2

A.7 AC Power line Conducted Emission

Test Condition:

Voltage (V)	Frequency (Hz)
120	60

Measurement Result and limit:

LE 1M-AE2, AE3

Frequency range	Quasi-peak	Average-peak	Result (dBμV)		Conclusion
(MHz)	Limit (dBµV)	Limit (dBμV)	Traffic	ldle	Conclusion
0.15 to 0.5	66 to 56	56 to 46			
0.5 to 5	56	46	Fig.101	Fig.102	Р
5 to 30	60	50			

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

LE 2M-AE2, AE3

Frequency range	Quasi-peak	Average-peak	Result (dBμV)		Conclusion	
(MHz)	Limit (dBµV)	Limit (dBμV)	Traffic	Idle	Conclusion	
0.15 to 0.5	66 to 56	56 to 46				
0.5 to 5	56	46	Fig.103	Fig.104	Р	
5 to 30	60	50				
NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15						

NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15 MHz to 0.5 MHz.

LE Coded-AE2, AE3

Frequency range	Quasi-peak	Average-peak	Result (dBμV)		Conclusion		
(MHz)	Limit (dBµV)	Limit (dBµV)	Traffic	Idle	Conclusion		
0.15 to 0.5	66 to 56	56 to 46					
0.5 to 5	56	46	Fig.105	Fig.106	Р		
5 to 30	60	50					
NOTE: The limit decreases linearly with the logarithm of the frequency in the range 0.15							
MHz to 0.5 MHz.							

Note: The measurement results include the L1 and N measurements. AE2 was the model with the worst results in the test.

See below for test graphs. Conclusion: Pass

Fig.101 AC Power line Conducted Emission (Traffic), LE 1M

Frequency	Quasi Peak	PE	Line	Corr.	Margin	Limit
(IVIHZ)	(αΒμν)			(aB)	(aB)	(αθμν)
0.430000	42.4	GND	Ν	9.7	14.9	57.3
0.482000	41.2	GND	Ν	9.7	15.1	56.3
0.538000	40.8	GND	Ν	9.7	15.2	56.0
0.630000	41.2	GND	Ν	9.6	14.8	56.0
0.698000	40.1	GND	Ν	9.6	15.9	56.0
0.750000	39.9	GND	Ν	9.6	16.1	56.0

Measurement Results: Quasi Peak

Frequency	Average	DE	Lino	Corr.	Margin	Limit
(MHz)	(dBµV)	FE	Line	(dB)	(dB)	(dBµV)
0.422000	24.0	GND	Ν	9.7	23.4	47.4
0.482000	23.8	GND	Ν	9.7	22.5	46.3
0.526000	23.5	GND	Ν	9.7	22.5	46.0
0.582000	22.1	GND	Ν	9.6	23.9	46.0
0.638000	24.7	GND	Ν	9.6	21.3	46.0
0.738000	21.0	GND	Ν	9.6	25.0	46.0

Fig.102 AC Power line Conducted Emission (Idle), LE 1M

Measurement	Results:	Quasi	Peak

Frequency	Quasi Peak	DE	Lino	Corr.	Margin	Limit
(MHz)	(dBµV)	FE	Line	(dB)	(dB)	(dBµV)
0.422000	42.2	GND	Ν	9.7	15.2	57.4
0.490000	40.0	GND	Ν	9.7	16.2	56.2
0.526000	40.7	GND	Ν	9.7	15.3	56.0
0.650000	41.5	GND	Ν	9.6	14.5	56.0
0.706000	41.1	GND	Ν	9.6	14.9	56.0
0.734000	39.3	GND	Ν	9.6	16.7	56.0

Frequency	Average	PE	Line	Corr.	Margin	Limit
(MHz)	(dBµV)		Line	(dB)	(dB)	(dBµV)
0.490000	22.2	GND	N	9.7	24.0	46.2
0.538000	22.2	GND	Ν	9.7	23.8	46.0
0.598000	22.4	GND	N	9.6	23.6	46.0
0.650000	24.8	GND	Ν	9.6	21.2	46.0
0.750000	21.4	GND	Ν	9.6	24.6	46.0
1.310000	21.2	GND	Ν	9.6	24.8	46.0

Fig.103 AC Power line Conducted Emission (Traffic), LE 2M

Frequency	Quasi Peak	DE	Lino	Corr.	Margin	Limit
(MHz)	(dBµV)	FE	Line	(dB)	(dB)	(dBµV)
0.430000	42.1	GND	Ν	9.7	15.2	57.3
0.474000	40.0	GND	Ν	9.7	16.5	56.4
0.538000	40.4	GND	Ν	9.7	15.6	56.0
0.630000	40.7	GND	Ν	9.6	15.3	56.0
0.710000	38.2	GND	Ν	9.6	17.8	56.0
0.758000	38.4	GND	Ν	9.6	17.6	56.0

Measurement Results: Quasi Peak

Frequency	Average	DE	Lino	Corr.	Margin	Limit
(MHz)	(dBµV)	FE	Line	(dB)	(dB)	(dBµV)
0.474000	22.0	GND	Ν	9.7	24.5	46.4
0.534000	22.0	GND	Ν	9.7	24.0	46.0
0.586000	22.4	GND	Ν	9.6	23.6	46.0
0.642000	24.5	GND	Ν	9.6	21.5	46.0
0.742000	21.9	GND	Ν	9.6	24.1	46.0
0.850000	21.6	GND	Ν	9.6	24.4	46.0

Fig.104 AC Power line Conducted Emission (Idle), LE 2M

Frequency	Quasi Peak	DE	Lino	Corr.	Margin	Limit
(MHz)	(dBµV)	FE	Line	(dB)	(dB)	(dBµV)
0.434000	42.2	GND	Ν	9.7	15.0	57.2
0.542000	40.9	GND	Ν	9.7	15.1	56.0
0.654000	40.2	GND	Ν	9.6	15.8	56.0
0.706000	41.1	GND	Ν	9.6	14.9	56.0
0.762000	39.4	GND	Ν	9.6	16.6	56.0
0.814000	39.0	GND	Ν	9.6	17.0	56.0

Measurement Results: Quasi Peak

Frequency	Average	PE	Lino	Corr.	Margin	Limit
(MHz)	(dBµV)		Line	(dB)	(dB)	(dBµV)
0.490000	21.9	GND	Ν	9.7	24.3	46.2
0.542000	22.3	GND	Ν	9.7	23.7	46.0
0.598000	21.5	GND	Ν	9.6	24.5	46.0
0.650000	23.6	GND	Ν	9.6	22.4	46.0
0.762000	21.5	GND	Ν	9.6	24.5	46.0
0.978000	22.6	GND	Ν	9.6	23.4	46.0

Fig.105 AC Power line Conducted Emission (Traffic), LE Coded

Frequency	Quasi Peak	PE	Lino	Corr.	Margin	Limit
(MHz)	(dBµV)		Line	(dB)	(dB)	(dBµV)
0.242000	38.84	GND	Ν	10	23.18	62.03
0.406000	40.35	GND	Ν	10	17.38	57.73
0.626000	41.83	GND	L1	10	14.17	56.00
0.738000	40.75	GND	Ν	10	15.25	56.00
1.250000	38.88	GND	L1	10	17.12	56.00
22.078000	36.33	GND	Ν	10	23.67	60.00

Measurement Results: Quasi Peak

Frequency	Average	PE	Lino	Corr.	Margin	Limit
(MHz)	(dBµV)		Line	(dB)	(dB)	(dBµV)
0.238000	23.78	GND	Ν	10	28.38	52.17
0.410000	24.83	GND	L1	10	22.82	47.65
0.610000	25.05	GND	Ν	10	20.95	46.00
0.738000	24.19	GND	L1	10	21.81	46.00
1.346000	22.63	GND	L1	10	23.37	46.00
2.294000	18.75	GND	L1	10	27.25	46.00

Fig.106 AC Power line Conducted Emission (Idle), LE Coded

Frequency	Quasi Peak	DE	Lino	Corr.	Margin	Limit
(MHz)	(dBµV)	FE	Line	(dB)	(dB)	(dBµV)
0.158000	43.97	GND	Ν	10	21.60	65.57
0.290000	40.22	GND	Ν	10	20.30	60.52
0.650000	42.24	GND	Ν	10	13.76	56.00
0.738000	42.08	GND	Ν	10	13.92	56.00
1.314000	38.87	GND	L1	10	17.13	56.00
2.538000	32.49	GND	Ν	10	23.51	56.00

Measurement Results: Quasi Peak

Measurement Results: Average

Frequency	Average	DE	Lino	Corr.	Margin	Limit
(MHz)	(dBµV)	FE	Line	(dB)	(dB)	(dBµV)
0.162000	28.52	GND	Ν	10	26.84	55.36
0.418000	25.12	GND	Ν	10	22.37	47.49
0.578000	22.36	GND	Ν	10	23.64	46.00
0.738000	26.39	GND	Ν	10	19.61	46.00
1.314000	21.58	GND	L1	10	24.42	46.00
19.122000	24.43	GND	Ν	10	25.57	50.00

END OF REPORT