

Report No.: TBR-C-202307-0111-4 Page: 1 of 42

Radio Test Report FCC ID: 2A3J2-CUL8JN

IC: 28573-CUL8JN Original Grant

		Onginal Grant
Report No.	:	TBR-C-202307-0111-4
Applicant	:	Shenzhen Alldocube Science and Technology Co., Ltd.
Equipment Under Test	(E	UT)
EUT Name	:	Pad
Model No.	:	CUL8JN
FCC Series Model No.	H	Please refer to page 5
IC Series Model No.	:	Please refer to page 5
Brand Name	:	ALLDOCUBE
Sample ID		202307-0111-3-1# & 202307-0111-3-2#
Receipt Date	:	2023-07-25
Test Date	:	2023-07-25 to 2023-08-15
Issue Date	:	2023-08-15
Standards	1	FCC Part 15 Subpart C 15.247 RSS-247 Issue 2 February 2017 RSS-Gen Issue 5 March 2019
Test Method	-	ANSI C63.10: 2013
Conclusions	÷	KDB 558074 D01 15.247 Meas Guidance v05r02 PASS In the configuration tested, the EUT complied with the standards specified above.
Witness Engineer		: Countle Li
Engineer Supervisor		: WAN SU Van Su
Engineer Manager		Tay An. E BAUBAL

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in the report.

TB-RF-074-1.0

Contents

CO	NTENTS	2
1.	GENERAL INFORMATION ABOUT EUT	5
	1.1 Client Information	5
	1.2 General Description of EUT (Equipment Under Test)	
	1.3 Block Diagram Showing the Configuration of System Tested	6
	1.4 Description of Support Units	7
	1.5 Description of Test Mode	7
	1.6 Description of Test Software Setting	8
	1.7 Measurement Uncertainty	
	1.8 Test Facility	9
2.	TEST SUMMARY	
3.	TEST SOFTWARE	
4.	TEST EQUIPMENT	
5.	CONDUCTED EMISSION	13
	5.1 Test Standard and Limit	
	5.2 Test Setup	
	5.3 Test Procedure	
	5.4 Deviation From Test Standard	
	5.5 EUT Operating Mode	
	5.6 Test Data	
6.	RADIATED AND CONDUCTED UNWANTED EMISSIONS	
	6.1 Test Standard and Limit	
	6.2 Test Setup	
	6.3 Test Procedure	
	6.4 Deviation From Test Standard	
	6.5 EUT Operating Mode	
	6.6 Test Data	
7.	RESTRICTED BANDS REQUIREMENT	19
	7.1 Test Standard and Limit	19
	7.2 Test Setup	
	7.3 Test Procedure	20
	7.4 Deviation From Test Standard	21

TOBY Part of the Category Group

7.5 EUT Operating Mode	.21
7.6 Test Data	
BANDWIDTH TEST	.22
3.1 Test Standard and Limit	.22
3.3 Test Procedure	
3.4 Deviation From Test Standard	.23
3.5 EUT Operating Mode	.23
3.6 Test Data	.23
PEAK OUTPUT POWER	.24
9.1 Test Standard and Limit	.24
9.2 Test Setup	.24
9.3 Test Procedure	.24
9.4 Deviation From Test Standard	.24
9.5 EUT Operating Mode	.24
9.6 Test Data	
POWER SPECTRAL DENSITY	.25
10.1 Test Standard and Limit	.25
10.2 Test Setup	.25
10.3 Test Procedure	.25
10.4 Deviation From Test Standard	.25
10.5 Antenna Connected Construction	.25
10.6 Test Data	.25
ANTENNA REQUIREMENT	.26
11.1 Test Standard and Limit	.26
11.2 Deviation From Test Standard	.26
11.3 Antenna Connected Construction	.26
11.4 Test Data	.26
HMENT A CONDUCTED EMISSION TEST DATA	.27
HMENT BUNWANTED EMISSIONS DATA	.29
	BANDWIDTH TEST

Revision History

Report No.	Version	Description	Issued Date
TBR-C-202307-0111-4	Rev.01	Initial issue of report	2023-08-15
A A A A A A A A A A A A A A A A A A A	TOBY	TUDE	
A LE ABI	5	Our Curry	
	OBL	The state	and l
	110	and the second	
	39	TODA TO	FER
	08		Can I
THE ME	2	RODD TO DUS	ANU
THE REAL	moBL	TUD	
EN LE MBY		TOPP - OUL	AR LE
THE REAL	10BY		
a la mai		The second second	

1. General Information about EUT

1.1 Client Information

Applicant	:	Shenzhen Alldocube Science and Technology Co., Ltd.
Address		1 Floor, A building, 3rd factory,Yujianfeng Indusrty park, 289# Huafan Road, Tongsheng community, Dalang, Longhua District, Shenzhen, China
Manufacturer	16	Shenzhen Alldocube Science and Technology Co., Ltd.
Address	15	1 Floor, A building, 3rd factory,Yujianfeng Indusrty park, 289# Huafan Road, Tongsheng community, Dalang, Longhua District, Shenzhen, China

1.2 General Description of EUT (Equipment Under Test)

EUT Name	:	Pad			
HVIN/Model		CUL8JN, T817, T812, T813, T815, T816, U807, U808, U810, U811, U812 For ISED			
Models No.		CUL8JN, T803, T806, T808, T810, T811, T812, T813, T815, T816, T817, T818, T820, T821, U807, U808, U810, U811, U812, U813, U815, U816, U817, U818, T703, T705, T706, T707, T708, U703, U705, U706, U707, U708 For FCC			
Model Difference			All these models are identical in the same PCB, layout and electrical circuit, the only difference is that model names.		
		Operation Frequency:	Bluetooth 5.0(BLE): 2402MHz~2480MHz		
		Number of Channel: Bluetooth 5.0(BLE): 40 channels			
Product	2	Antenna Gain:	0.21dBi FPC Antenna		
Description	R	Modulation Type:	GFSK		
		Bit Rate of Transmitter:	1Mbps&2Mbps		
Power Rating		Adapter (Model:AS1201A-0502000USU) Input: 100-240V~ 50/60Hz 0.35A MAX Output: 5V-2000mA			
Li-ion Polymer Battery		DC 3.8V by 4000mAh Rechargeable Li-ion battery			
Software Version	2		TODA TODA TOTAL		
Hardware Version	2				

conduction test provided by TOBY test lab.

(2) For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

(3) Antenna information provided by the applicant.

(4) Channel List:

Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
00	2402	14	2430	28	2458
01	2404	15	2432	29	2460
02	2406	16	2434	30	2462
03	2408	17	2436	31	2464
04	2410	18	2438	32	2466
05	2412	19	2440	33	2468
06	2414	20	2442	34	2470
07	2416	21	2444	35	2472
08	2418	22	2446	36	2474
09	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

1.3 Block Diagram Showing the Configuration of System Tested

Conducted Test

ated Test		EUT	ADAPTE	R	
ated Test					
EUT ADAPTER	d Test				
EUT ADAPTER					
		EL	л	ADAPTER	
				CUIN -	-

1.4 Description of Support Units

Equipment Information				
Name	Model	FCC ID/VOC	Manufacturer	Used "√"
Adapter	AS1201A-0502000USU	MO102	SHENZHEN FUSHIGANG	\checkmark
	Ca	able Information		
Number	Shielded Type	Ferrite Core	Length	Note
Cable 1			1.2m	accessory
- and	Remark: The USB Ca	ble and adapter provided	by the Applicant.	

1.5 Description of Test Mode

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned follow was evaluated respectively.

For Radiated Test				
Final Test Mode Description				
Mode 1	TX Mode			
Mode 2	TX 1Mbps Mode (Channel 00/19/39)			
Mode 3TX 2Mbps Mode (Channel 00/19/39)				

Note:

(1) For all test, we have verified the construction and function in typical operation. And all the test modes were carried out with the EUT in transmitting operation in maximum power with all kinds of data rate.

According to ANSI C63.10 standards, the measurements are performed at the highest, middle, lowest available channels, and the worst case data rate as follows:

BLE Mode: GFSK Modulation Transmitting mode.

- (2) During the testing procedure, the continuously transmitting with the maximum power mode was programmed by the customer.
- (3) The EUT is considered a portable unit; in normal use it was positioned on X-plane. The worst case was found positioned on X-plane. Therefore only the test data of this X-plane was used for radiated emission measurement test.

1.6 Description of Test Software Setting

During testing channel& Power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the firmware of the final end product power parameters of RF setting.

Test Software Version	and a	Ampak RFTest	iool
Frequency	2402 MHz	2440MHz	2480 MHz
BLE 1M	DEF	DEF	DEF
BLE 2M	DEF	DEF	DEF

1.7 Measurement Uncertainty

The reported uncertainty of measurement $y \pm U_{2}$, where expended uncertainty U is based on a standard uncertainty multiplied by a coverage factor of k=2, providing a level of confidence of approximately 95 %.

Test Item	Parameters	Expanded Uncertainty (U _{Lab})
Conducted Emission	Level Accuracy: 9kHz~150kHz 150kHz to 30MHz	±3.50 dB ±3.10 dB
Radiated Emission	Level Accuracy: 9kHz to 30 MHz	±4.60 dB
Radiated Emission	Level Accuracy: 30MHz to 1000 MHz	±4.50 dB
Radiated Emission	Level Accuracy: Above 1000MHz	±4.20 dB

Report No.: TBR-C-202307-0111-4 Page: 9 of 42

1.8 Test Facility

The testing report were performed by the Shenzhen Toby Technology Co., Ltd., in their facilities located at 1/F., Building 6, Rundongsheng Industrial Zone, Longzhu, Xixiang, Bao'an District, Shenzhen, Guangdong, China. At the time of testing, the following bodies accredited the Laboratory:

CNAS (L5813)

The Laboratory has been accredited by CNAS to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the competence in the field of testing. And the Registration No.: CNAS L5813.

A2LA Certificate No.: 4750.01

The laboratory has been accredited by American Association for Laboratory Accreditation(A2LA) to ISO/IEC 17025: 2017 General Requirements for the Competence of Testing and Calibration Laboratories for the technical competence in the field of Electrical Testing. And the A2LA Certificate No.: 4750.01.FCC Accredited Test Site Number: 854351. Designation Number: CN1223.

IC Registration No.: (11950A)

The Laboratory has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing. The site registration: Site# 11950A. CAB identifier: CN0056.

TOBY Part of the Cotterno Group

2. Test Summary

Standard Section		Toot Kom	Test Comple(s)	ludamont	D
FCC	IC	Test Item	Test Sample(s)	Judgment	Remark
FCC 15.207(a)	RSS-Gen 8.8	Conducted Emission	202307-0111-3-1#	PASS	N/A
FCC 15.209 & 15.247(d)	RSS-Gen 8.9 & RSS 247 5.5	Radiated Unwanted Emissions	202307-0111-3-1#	PASS	N/A
FCC 15.203	RSS-247 6.8	Antenna Requirement	202307-0111-3-2#	PASS	N/A
FCC 15.247(a)(2)	RSS-247 5.2(a)	6dB Bandwidth	202307-0111-3-2#	PASS	N/A
1	RSS-Gen 6.7	99% Occupied bandwidth	202307-0111-3-2#	PASS	N/A
FCC 15.247(b)(3)	RSS-247 5.4(d)	Peak Output Power and E.I.R.P	202307-0111-3-2#	PASS	N/A
FCC 15.247(e)	RSS-247 5.2(b)	Power Spectral Density	202307-0111-3-2#	PASS	N/A
FCC 15.247(d)	RSS-Gen 8.10& RSS-247 5.5	Band Edge Measurements	202307-0111-3-2#	PASS	N/A
FCC 15.247(d)	RSS-Gen 8.9 & RSS 247 5.5	Conducted Unwanted Emissions	202307-0111-3-2#	PASS	N/A
FCC 15.205 FCC 15.247(d)	RSS-Gen 8.10& RSS-247 5.5	Emissions in Restricted Bands	202307-0111-3-2#	PASS	N/A
		On Time and Duty Cycle	202307-0111-3-2#	1	N/A

is an abbreviation for Not Applicable.

3. Test Software

Test Item	Test Software	Manufacturer	Version No.
Conducted Emission	EZ-EMC	EZ	CDI-03A2
Radiation Emission	EZ-EMC	EZ	FA-03A2RE
RF Conducted Measurement	MTS-8310	MWRFtest	V2.0.0.0
RF Test System	JS1120	Tonscend	V2.6.88.0336

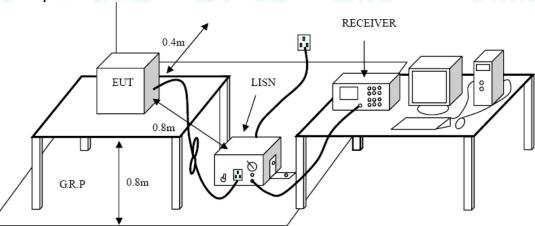
4. Test Equipment

Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
EMI Test Receiver	Rohde & Schwarz	ESCI	100321	Jun. 20, 2023	Jun. 19, 2024
RF Switching Unit	Compliance Direction Systems Inc	RSU-A4	34403	Jun. 20, 2023	Jun. 19, 2024
AMN	SCHWARZBECK	NNBL 8226-2	8226-2/164	Jun. 20, 2023	Jun. 19, 2024
LISN	Rohde & Schwarz	ENV216	101131	Jun. 20, 2023	Jun. 19, 2024
ISN	SCHWARZBECK	NTFM 8131	8131-193	Jun. 20, 2023	Jun. 19, 2024
ISN	SCHWARZBECK	CAT3 8158	cat3 5158-0094	Jun. 20, 2023	Jun. 19, 2024
ISN	SCHWARZBECK	NTFM5158	NTFM5158 0145	Jun. 20, 2023	Jun. 19, 2024
ISN	SCHWARZBECK	CAT 8158	cat5 8158-179	Jun. 20, 2023	Jun. 19, 2024
Radiation Emissio	n Test (B Site)				
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	N9020A	MY49100060	Sep.01.2022	Aug. 31, 2023
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
EMI Test Receiver	Rohde & Schwarz	ESU-8	100472/008	Feb. 23, 2023	Feb. 22, 2024
Bilog Antenna	SCHWARZBECK	VULB 9168	1225	Dec. 05, 2021	Dec. 04, 2023
Horn Antenna	SCHWARZBECK	BBHA 9120 D	2463	Feb. 26, 2022	Feb.25, 2024
Horn Antenna	SCHWARZBECK	BBHA 9170	1118	Jun. 26, 2022	Jun.25, 2024
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-059	Jun. 26, 2022	Jun.25, 2024
HF Amplifier	Tonscend	TAP9E6343	AP21C806117	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP051845	AP21C806141	Sep.01.2022	Aug. 31, 2023
HF Amplifier	Tonscend	TAP0184050	AP21C806129	Sep.01.2022	Aug. 31, 2023
Highpass Filter	CD	HPM-6.4/18G		N/A	N/A
Highpass Filter	CD	HPM-2.8/18G		N/A	N/A
Highpass Filter	XINBO	XBLBQ-HTA67(8-25G)	22052702-1	N/A	N/A
Antenna Conducte	d Emission	•			·
Equipment	Manufacturer	Model No.	Serial No.	Last Cal.	Cal. Due Date
Spectrum Analyzer	Agilent	E4407B	MY45106456	Jun. 20, 2023	Jun. 19, 2024
Spectrum Analyzer	Rohde & Schwarz	FSV40-N	102197	Jun. 20, 2023	Jun. 19, 2024
MXA Signal Analyzer	KEYSIGHT	N9020B	MY60110172	Sep.01.2022	Aug. 31, 2023
MXA Signal Analyzer	Agilent	N9020A	MY47380425	Sep.01.2022	Aug. 31, 2023
Vector Signal Generator	Agilent	N5182A	MY50141294	Sep.01.2022	Aug. 31, 2023
Analog Signal Generator	Agilent	N5181A	MY48180463	Sep.01.2022	Aug. 31, 2023
Vector Signal Generator	KEYSIGHT	N5182B	MY59101429	Sep.01.2022	Aug. 31, 2023
Analog Signal Generator	KEYSIGHT	N5173B	MY61252685	Sep.01.2022	Aug. 31, 2023
RF Power Sensor	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO26	Sep.01.2022	Aug. 31, 2023

Report No.: TBR-C-202307-0111-4 Page: 12 of 42

	DARE!! Instruments	RadiPowerRPR3006W	17I00015SNO29	Sep.01.2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO31	Sep.01.2022	Aug. 31, 2023
	DARE!! Instruments	RadiPowerRPR3006W	17100015SNO33	Sep.01.2022	Aug. 31, 2023
RF Control Unit	Tonsced	JS0806-1	21C8060380	N/A	N/A
RF Control Unit	Tonsced	JS0806-2	21F8060439	Sep.01.2022	Aug. 31, 2023
Band Reject Filter Group	Tonsced	JS0806-F	21D8060414	Jun. 20, 2023	Jun. 19, 2024
Power Control Box	Tonsced	JS0806-4ADC	21C8060387	N/A	N/A
Wideband Radio Comunication Tester	Rohde & Schwarz	CMW500	144382	Sep.01.2022	Aug. 31, 2023
Universal Radio Communication Tester	Rohde&Schwarz	CMW500	168796	Feb. 23, 2023	Feb.22, 2024
Temperature and Humidity Chamber	ZhengHang	ZH-QTH-1500	ZH2107264	Jun. 20, 2023	Jun. 19, 2024

5. Conducted Emission


- 5.1 Test Standard and Limit
 - 5.1.1 Test Standard RSS-Gen 8.8 FCC Part 15.207
 - 5.1.2 Test Limit

F	Maximum RF Line	Voltage (dBµV)
Frequency	Quasi-peak Level	Average Level
150kHz~500kHz	66 ~ 56 *	56 ~ 46 *
500kHz~5MHz	56	46
5MHz~30MHz	60	50

Notes:

- (1) *Decreasing linearly with logarithm of the frequency.
- (2) The lower limit shall apply at the transition frequencies.
- (3) The limit decrease in line with the logarithm of the frequency in the range of 0.15 to 0.50MHz.

5.2 Test Setup

5.3 Test Procedure

● The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.

●Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.

●I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.

●LISN at least 80 cm from nearest part of EUT chassis.

●The bandwidth of EMI test receiver is set at 9 kHz, and the test frequency band is from 0.15MHz to 30MHz.

- 5.4 Deviation From Test Standard No deviation
- 5.5 EUT Operating Mode

Please refer to the description of test mode.

Report No.: TBR-C-202307-0111-4 Page: 14 of 42

5.6 Test Data

Please refer to the Attachment A inside test report.

6. Radiated and Conducted Unwanted Emissions

- 6.1 Test Standard and Limit
 - 6.1.1 Test Standard RSS-Gen 8.9 & RSS 247 5.5 FCC Part 15.209 & FCC Part 15.247(d)
 - 6.1.2 Test Limit

Genera	al field strength limits	at frequencies Below	30MHz
Frequency (MHz)	Field Strength (µA/m)*	Field Strength (microvolt/meter)**	Measurement Distance (meters)
0.009~0.490	6.37/F (F in kHz)	2400/F(KHz)	300
0.490~1.705	63.7/F (F in kHz)	24000/F(KHz)	30
1.705~30.0	0.08	30	30

Note: 1, The emission limits for the ranges 9-90 kHz and 110-490 kHz are based on measurements employing a linear average detector.

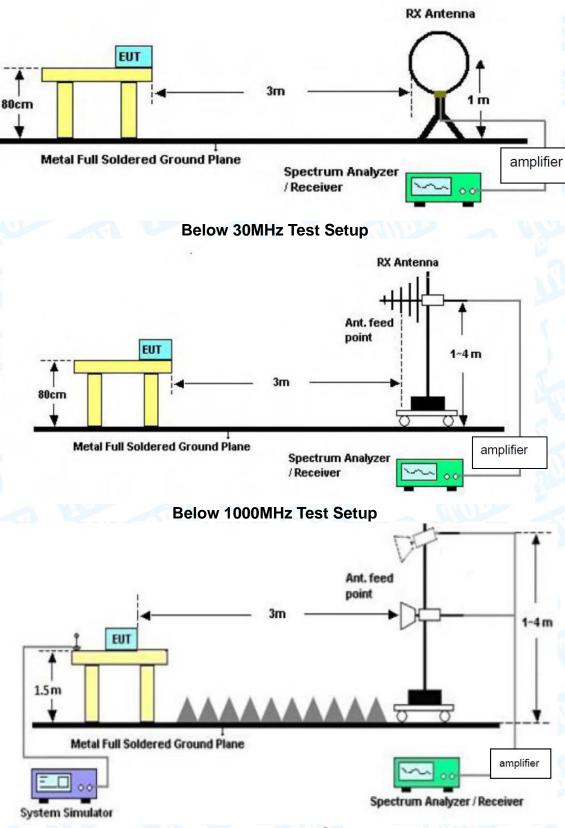
2, *is for RSS Standard, **is for FCC Standard.

General field strength limits at frequencies above 30 MHz		
Frequency (MHz)	Field strength (μV/m at 3 m)	Measurement Distance (meters)
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

General field strength limits at frequencies Above 1000MHz			
Frequency	Distance of 3m (dBuV/m)		
(MHz)	Peak	Average	
Above 1000	74	54	

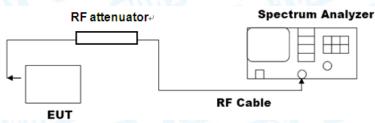
Note:

(1) The tighter limit applies at the band edges.


(2) Emission Level(dBuV/m)=20log Emission Level(uV/m)

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated device is operating, the RF power that is produced shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided that the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of root-mean-square averaging over a time interval, as permitted under section 5.4(d), the attenuation required shall be 30 dB instead of 20 dB. Attenuation below the general field strength limits specified in RSS-Gen is not required.

6.2 Test Setup


Radiated measurement

Above 1GHz Test Setup Conducted measurement

6.3 Test Procedure

---Radiated measurement

● The measuring distance of 3m shall be used for measurements at frequency up to 1GHz and above 1 GHz. The EUT was placed on a rotating 0.8m high above ground, the table was rotated 360 degrees to determine the position of the highest radiation.

• Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

• The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

• The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

● If the Peak Mode measured value compliance with and lower than Quasi Peak Mode Limit Below 1 GHz, the EUT shall be deemed to meet QP Limits and then no additional QP Mode measurement performed. But the Peak Value and average value both need to comply with applicable limit above 1 GHz.

● Testing frequency range 30MHz-1GHz the measuring instrument use VBW=120 kHz with Quasi-peak detection. Testing frequency range 9KHz-150Hz the measuring instrument use VBW=200Hz with Quasi-peak detection. Testing frequency range 9KHz-30MHz the measuring instrument use VBW=9kHz with Quasi-peak detection.

● Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

• For the actual test configuration, please see the test setup photo.

--- Conducted measurement

• Reference level measurement

- Establish a reference level by using the following procedure:
- a) Set instrument center frequency to DTS channel center frequency.
- b) Set the span to≥1.5 times the DTS bandwidth.
- c) Set the RBW = 100 kHz.
- d) Set the VBW≥[3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.
- i) Use the peak marker function to determine the maximum PSD level.

Note that the channel found to contain the maximum PSD level can be used to establish the reference level.

Emission level measurement

Establish an emission level by using the following procedure:

a) Set the center frequency and span to encompass frequency range to be measured.

- b) Set the RBW = 100 kHz.
- c) Set the VBW≥[3*RBW].
- d) Detector = peak.
- e) Sweep time = auto couple.
- f) Trace mode = max hold.
- g) Allow trace to fully stabilize.

h) Use the peak marker function to determine the maximum amplitude level. Ensure that the amplitude of all unwanted emissions outside of the authorized frequency band (excluding restricted frequency bands) is attenuated by at least the minimum requirements specified in 11.11. Report the three highest emissions relative to the limit.

6.4 Deviation From Test Standard

No deviation

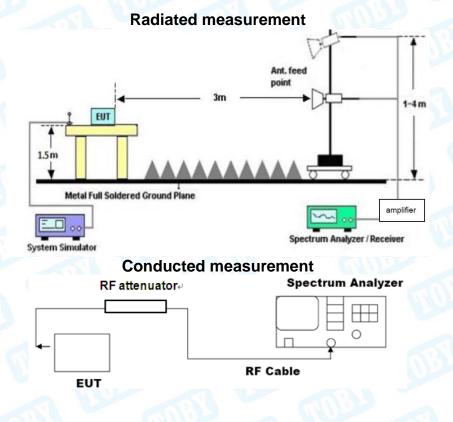
6.5 EUT Operating Mode

Please refer to the description of test mode.

6.6 Test Data

Radiated measurement please refer to the Attachment B inside test report. Conducted measurement please refer to the Appendix A.

7. Restricted Bands Requirement


7.1 Test Standard and Limit

- 7.1.1 Test Standard RSS-Gen 8.10 & RSS 247 5.5 FCC Part 15.205 & FCC Part 15.247(d)
- 7.1.2 Test Limit

Restricted Frequency	Distance Meters(at 3m)		
Band (MHz)	Peak (dBuV/m)	Average (dBuV/m)	
2310 ~2390	74	54	
2483.5 ~2500	74	54	
	Peak (dBm)see 7.3 e)	Average (dBm) see 7.3 e)	
2310 ~2390	-41.20	-21.20	
2483.5 ~2500	-41.20	-21.20	

Note: According the ANSI C63.10 11.12.2 antenna-port conducted measurements may also be used as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements. If conducted measurements are performed, then proper impedance matching must be ensured and an additional radiated test forcabinet/case emissions is required.

7.2 Test Setup

7.3 Test Procedure

---Radiated measurement

• Measurements at frequency above 1GHz. The EUT was placed on a rotating 1.5m high above the ground. RF absorbers covered the ground plane with a minimum area of 3.0m by 3.0m between the EUT and measurement receiver antenna. The RF absorber shall not exceed 30cm in high above the conducting floor. The table was rotated 360 degrees to determine the position of the highest radiation.

• The Test antenna shall vary between 1m and 4m, Both Horizontal and Vertical antenna are set to make measurement.

• The initial step in collecting conducted emission data is a spectrum analyzer peak detector mode pre-scanning the measurement frequency range. Significant peaks are then marked and then Quasi Peak detector mode re-measured.

• The Peak Value and average value both need to comply with applicable limit above 1 GHz.

● Testing frequency range above 1GHz the measuring instrument use RBW=1 MHz and VBW=3 MHz with Peak Detector for Peak Values, and use RBW=1 MHz and VBW=10 Hz with Peak Detector for Average Values.

• For the actual test configuration, please see the test setup photo.

--- Conducted measurement

a) Measure the conducted output power (in dBm) using the detector specified by the appropriate regulatory agency (see 11.12.2.3 through 11.12.2.5 for guidance regarding measurement procedures for determining quasi-peak, peak, and average conducted output power, respectively).

b) Add the maximum transmit antenna gain (in dBi) to the measured output power level to determine the EIRP (see 11.12.2.6 for guidance on determining the applicable antenna gain).

c) Add the appropriate maximum ground reflection factor to the EIRP (6 dB for frequencies \leq 30 MHz; 4.7 dB for frequencies between 30 MHz and 1000 MHz, inclusive; and 0 dB for frequencies > 1000 MHz).

d) For MIMO devices, measure the power of each chain and sum the EIRP of all chains in linear terms (i.e., watts and mW).

e) Convert the resultant EIRP to an equivalent electric field strength using the following relationship:

 $E = EIRP-20 \log d + 104.8$

where

E is the electric field strength in dBuV/m

EIRP is the equivalent isotropically radiated power in dBm

d is the specified measurement distance in m

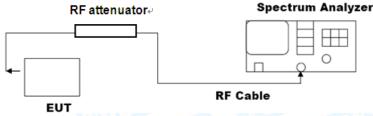
f) Compare the resultant electric field strength level with the applicable regulatory limit.

g) Perform the radiated spurious emission test.

- 7.4 Deviation From Test Standard No deviation
- 7.5 EUT Operating Mode
 - Please refer to the description of test mode.
- 7.6 Test Data

Remark: The test uses antenna-port conducted measurements as an alternative to radiated measurements for determining compliance in the restricted frequency bands requirements.

Please refer to the Appendix A.


8. Bandwidth Test

8.1 Test Standard and Limit

- 8.1.1 Test Standard RSS-Gen 6.7 & RSS 247 5.2(a) FCC Part 15.205 & FCC Part 15.247(d)
- 8.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
-6dB bandwidth (DTS bandwidth)	>=500 KHz	2400~2483.5
99% occupied bandwidth		2400~2483.5

8.2 Test Setup

8.3 Test Procedure

---DTS bandwidth

• The steps for the first option are as follows:

- a) Set RBW = 100 kHz.
- b) Set the VBW≥[3*RBW].
- c) Detector = peak.
- d) Trace mode = max hold.
- e) Sweep = auto couple.

f) Allow the trace to stabilize.

g) Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 6 dB relative to the maximum level measured in the fundamental emission.

---occupied bandwidth

● The occupied bandwidth is the frequency bandwidth such that, below its lower and above its upper frequency limits, the mean powers are each equal to 0.5% of the total mean power of the given emission. The following procedure shall be used for measuring 99% power bandwidth:

a) The instrument center frequency is set to the nominal EUT channel center frequency. The frequency span for the spectrum analyzer shall be between 1.5 times and 5.0 times the OBW.

b) The nominal IF filter bandwidth (3 dB RBW) shall be in the range of 1% to 5% of the OBW, and VBW shall be approximately three times the RBW, unless otherwise specified by the applicable requirement.

c) Set the reference level of the instrument as required, keeping the signal from exceeding the maximum input mixer level for linear operation. In general, the peak of the spectral envelope shall be more than [10 log (OBW/RBW)] below the reference level. Specific guidance is given in 4.1.5.2.

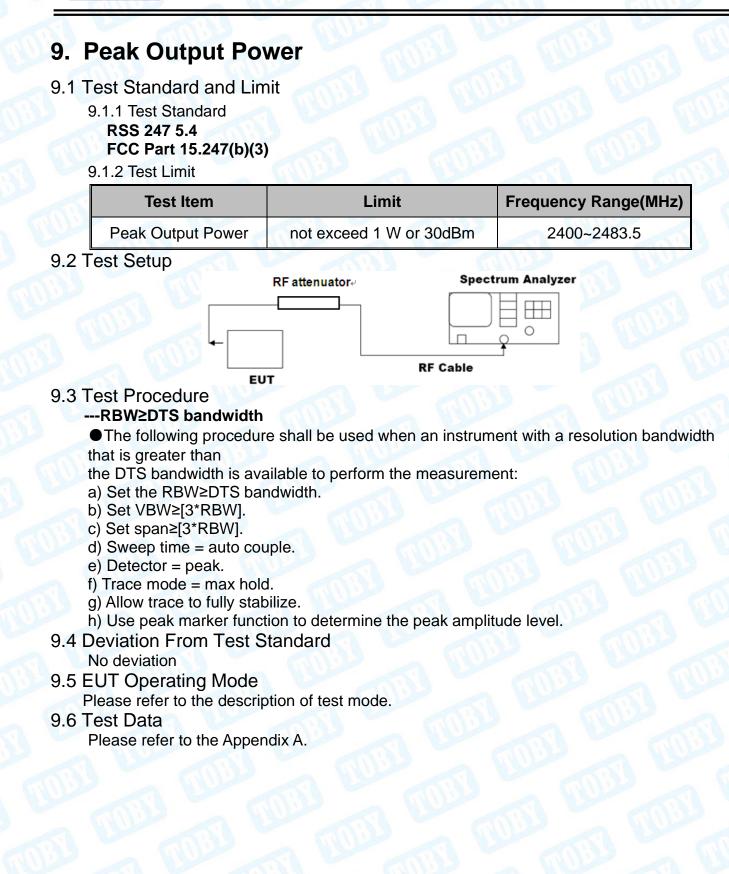
d) Step a) through step c) might require iteration to adjust within the specified range.

e) Video averaging is not permitted. Where practical, a sample detection and single sweep

mode shall be used. Otherwise, peak detection and max hold mode (until the trace stabilizes) shall be used.

f) Use the 99% power bandwidth function of the instrument (if available) and report the measured bandwidth.

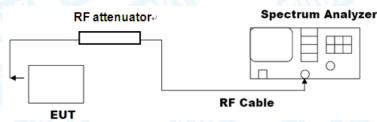
g) If the instrument does not have a 99% power bandwidth function, then the trace data points are recovered and directly summed in linear power terms. The recovered amplitude data points, beginning at the lowest frequency, are placed in a running sum until 0.5% of the total is reached; that frequency is recorded as the lower frequency. The process is repeated until 99.5% of the total is reached; that frequency is recorded as the upper frequency. The 99% power bandwidth is the difference between these two frequencies. h) The occupied bandwidth shall be reported by providing plot(s) of the measuring instrument display; the plot axes and the scale units per division shall be clearly labeled. Tabular data may be reported in addition to the plot(s).


- 8.4 Deviation From Test Standard No deviation
- 8.5 EUT Operating Mode

Please refer to the description of test mode.

8.6 Test Data

Please refer to the Appendix A.



10. Power Spectral Density

- 10.1 Test Standard and Limit
 - 10.1.1 Test Standard
 - RSS 247 5.2(b)
 - FCC Part 15.247(e)
 - 10.1.2 Test Limit

Test Item	Limit	Frequency Range(MHz)
Power Spectral Density	8dBm(in any 3 kHz)	2400~2483.5

10.2 Test Setup

10.3 Test Procedure

• The following procedure shall be used if maximum peak conducted output power was used to determine compliance, and it is optional if the maximum conducted (average) output power was used to determine compliance:

- a) Set analyzer center frequency to DTS channel center frequency.
- b) Set the span to 1.5 times the DTS bandwidth.
- c) Set the RBW to 3 kHz≤RBW≤100 kHz.
- d) Set the VBW \geq [3*RBW].
- e) Detector = peak.
- f) Sweep time = auto couple.
- g) Trace mode = max hold.
- h) Allow trace to fully stabilize.

i) Use the peak marker function to determine the maximum amplitude level within the RBW.

j) If measured value exceeds requirement, then reduce RBW (but no less than 3 kHz) and repeat.

- 10.4 Deviation From Test Standard No deviation
- 10.5 Antenna Connected Construction

Please refer to the description of test mode.

10.6 Test Data

Please refer to the Appendix A.

11. Antenna Requirement

11.1 Test Standard and Limit

- 11.1.1 Test Standard RSS 247 6.8 FCC Part 15.203
- 11.1.2 Requirement

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this Section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

11.2 Deviation From Test Standard

No deviation

11.3 Antenna Connected Construction

The gains of the antenna used for transmitting is 0.21dBi, and the antenna de-signed with permanent attachment and no consideration of replacement. Please see the EUT photo for details.

11.4 Test Data

The EUT antenna is a FPC Antenna. It complies with the standard requirement.

Antenna Type
Permanent attached antenna
Unique connector antenna
Professional installation antenna

Attachment A-- Conducted Emission Test Data

	GHIL	b j			200	N.	
Temperature:	23.6 ℃	an B	Re	elative Hum	nidity:	47%	
Test Voltage:	AC 120	√/60Hz	-			191	
Terminal:	Line		MAR				
Test Mode:	Mode 1			6117	2_		The second secon
Remark:	Only wo	orse case is re	eported.		65		
80.0 dBuV							
70				+			
60						ART 15 class B	
50					(CE)FCC P	ART 15 class B	_AVG
40	MAN BO	5				,	And H
30	AM And	S.M. Manananan	Marker Million	the Brown war	the second second	Mary Mary	12 M
20	WWWWWW	A Margarhowshines	Annumphanishinte	the stranger	Hule Lahrmannungary	- Human for	AVG
10							
0							
-10						L	
-20							
0.150	0.500		(MHz)	5.000			30.000
No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1 *	0.1700	40.24	11.06	51.30		-13.66	QP
2	0.1700	24.61	11.06	35.67		-19.29	AVG
3	0.2100	32.58	10.99	43.57	63.21		QP
4	0.2100	17.08	10.99	28.07	53.21	-25.14	AVG
5	0.6540	26.49	10.90	37.39	56.00	-18.61	QP
6	0.6540	15.45	10.90	26.35		-19.65	AVG
7	3.5140	16.59	10.14	26.73		-29.27	QP
8	3.5140	9.79	10.14	19.93	46.00	-26.07	AVG
9	19.1980	22.90	10.67	33.57	60.00	-26.43	QP
10	19.1980	13.39	10.67	24.06	50.00	-25.94	AVG
11	23.3100	27.24	10.79	38.03	60.00	-21.97	QP
12	23.3100	18.04	10.79	28.83	50.00	-21.17	AVG
Remark:							

Remark: 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB) 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

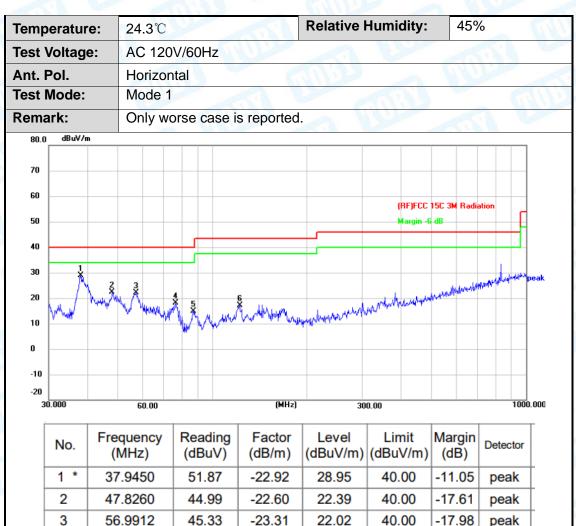
TOBY Part of the Cotecna Group

Temperature:	23.6 ℃	Relative Humidity	: 47%
Test Voltage:	AC 120V/60Hz	CUID-	~ ~
Terminal:	Neutral	0	CBD C
Test Mode:	Mode 1		
Remark:	Only worse case is re	ported.	A TUP
80.0 dBuV			
70			
60		(CE)FCC P	ART 15 class B_QP
50		(CE)FCC P	ART 15 class B_AVG
40 300	5.		111
30	man Man Andread	While her ample where where we want	munument 22mg
	man and the manufacture		per
20	Kowa ral hard warman and	worth the the property of the state of the s	when the way way and
10			
0			
-10			
-20			
0.150	0.500	(MHz) 5.000	30.000

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Over	
	MHz		dB	dBuV	dBuV	dB	Detector
1	0.1740	38.70	11.05	49.75	64.77	-15.02	QP
2	0.1740	22.78	11.05	33.83	54.77	-20.94	AVG
3	0.2660	27.46	11.02	38.48	61.24	-22.76	QP
4	0.2660	12.73	11.02	23.75	51.24	-27.49	AVG
5 *	0.6500	30.81	10.88	41.69	56.00	-14.31	QP
6	0.6500	12.91	10.88	23.79	46.00	-22.21	AVG
7	2.3940	15.90	10.40	26.30	56.00	-29.70	QP
8	2.3940	7.36	10.40	17.76	46.00	-28.24	AVG
9	3.6900	18.89	10.14	29.03	56.00	-26.97	QP
10	3.6900	8.09	10.14	18.23	46.00	-27.77	AVG
11	23.3100	30.40	10.81	41.21	60.00	-18.79	QP
12	23.3100	19.94	10.81	30.75	50.00	-19.25	AVG

Remark: 1. Corr. Factor (dB) = LISN Factor (dB) + Cable Loss (dB) 2. Margin (dB) =QuasiPeak/Average (dBuV)-Limit (dBuV)

Attachment B--Unwanted Emissions Data


---Radiated Unwanted Emissions

9 KHz~30 MHz

From 9 KHz to 30 MHz: Conclusion: PASS

Note: The amplitude of spurious emissions which are attenuated by more than 20dB Below the permissible value has no need to be reported.

30MHz~1GHz

5	86.8068	41.57	-26.76	14.81
6	121.9755	40.79	-23.69	17.10
-				

44.10

-26.00

18.10

40.00

40.00

43.50

-21.90

-25.19

-26.40

peak

peak

peak

*:Maximum data x:Over limit !:over margin

76.2442

Remark:

4

- 1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
- 2. QuasiPeak (dBµV/m)= Corr. (dB/m)+ Read Level (dBµV)
- 3. Margin (dB) = QuasiPeak (dBµV/m)-Limit QPK(dBµV/m)

TOBY Part of the Cotocon Group

Tempera	ature:	24.3°C	2	R	elative Hun	nidity:	45%	
Fest Vol	tage:	AC 12	20V/60Hz			DP .	-	010
Ant. Pol		Vertic	al		a v		RU	
Test Mo	de:	Mode	1	GIU	20	2 15		1200
Remark	:	Only	worse case	is reported.	inna	2		N.S.
80.0 dBu	i¥/m							
70 60 50 40 30				. 5		Margin ~6-dl		
20 4444 10		Andan	A Company	un the	hadaan waxaa ka k	Mar and Market	And a low second	(month) pea
20 WANNA 10		50.00					alter alter and a second	
20 WAMA 10 0	Frequ		Reading (dBuV)	(MHz) Factor (dB/m)	300. Level		Margin	1000.0
20 10 0 -10 -20 30.000		iency Hz)	Reading	(MHz) Factor	300. Level	00 Limit	Margin	1000.00
20 10 0 -10 -20 30.000 NO.	(Mł	iency Hz) 1991	Reading (dBuV)	(MHz) Factor (dB/m)	300. Level (dBuV/m)	00 Limit (dBuV/m)	Margin (dB)	1000.0 Detector
20 10 -10 -20 30.000 No. 1	(MH 39.2	iency Hz) 991 089	Reading (dBuV) 47.89	(MHz) Factor (dB/m) -22.92	300. Level (dBuV/m) 24.97	00 Limit (dBuV/m) 40.00	Margin (dB) -15.03	1000.00 Detector peak
20 10 0 -10 -20 30.000 No. 1 2 *	(MH 39.2 50.4	iency Hz) 1991 089 1955	Reading (dBuV) 47.89 47.82	(мн ₂) Factor (dB/m) -22.92 -22.56	300. Level (dBuV/m) 24.97 25.26	00 Limit (dBuV/m) 40.00 40.00	Margin (dB) -15.03 -14.74	1000.0 Detector peak peak
20 10 0 -10 -20 30.000 No. 1 2 * 3	(MH 39.2 50.4 74.3	iency Hz) 991 089 955 0108	Reading (dBuV) 47.89 47.82 48.49	(мн ₂) Factor (dB/m) -22.92 -22.56 -25.53	300. Level (dBuV/m) 24.97 25.26 22.96	00 Limit (dBuV/m) 40.00 40.00 40.00	Margin (dB) -15.03 -14.74 -17.04	1000.0 Detector peak peak peak

*:Maximum data x:Over limit !:over margin

Remark:

Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
QuasiPeak (dBμV/m)= Corr. (dB/m)+ Read Level (dBμV)
Margin (dB) = QuasiPeak (dBμV/m)-Limit QPK(dBμV/m)

Above 1-25GHz

23 ℃	Relative Humidity:	51%					
DC 3.8V	0						
Horizontal							
BLE(1Mbps) Mode TX 240	2 MHz	i dina					
No report for the emission prescribed limit.	which more than 10 dB	more than 10 dB below the					
	(BF) FCC F	PART 15C (PEAK)					
	(RF) FCC F	PART 15C (AVG)					
1	and an and an and the second and and and and and and and and and a	With an in white which white pea					
I where the way the way and a second where the second	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	- management - poo					
whenew"							
	DC 3.8V Horizontal BLE(1Mbps) Mode TX 240 No report for the emission prescribed limit.	DC 3.8V Horizontal BLE(1Mbps) Mode TX 2402 MHz No report for the emission which more than 10 dB prescribed limit.					

No).	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1		10996.000	44.61	0.18	44.79	74.00	-29.21	peak
2	*	13240.000	43.75	1.80	45.55	74.00	-28.45	peak

Remark:

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m) = Corr. (dB/m) + Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dBµV/m)-Limit PK/AVG (dBµV/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperatur	e:	23 ℃			Relati	ve Hum	idity:	51%				
Test Voltag	e:	DC 3.8V	300			CAN Y		-	(H)			
Ant. Pol.		Vertical	ALC: N		5.1	C.S.S.	A	217				
Test Mode:		BLE(1M	bps) Mod	le TX 240	2 MHz				- CON			
Remark:		No repor prescribe		emission	which n	nore tha	n 10 dB	B below the				
90.0 dBuV/m												
80							(RF) FCC	PART 15C (F	EAK)			
70												
60							(RF) FCC	PART 15C (A	VG)			
50			ţ		Ş	J.M. Marsh	Munim Mul	When man M	water and a second			
40		un alum	and program with the state	Maren All Mark	where we want	down		" when when the	W. Marin Second			
30 20	weight whether the	tout and the second										
10												
0												
-10												

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1	10817.500	44.50	-0.17	44.33	74.00	-29.67	peak
2 *	14795.500	42.11	2.58	44.69	74.00	-29.31	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m) = Corr. (dB/m) + Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG (dB μ V/m) 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Ten	nperature:	23 ℃			Relative H	lumidity:	51%	
Tes	t Voltage:	DC 3.8V	and i					and a
Ant	. Pol.	Horizont	al			-0	245	
Tes	t Mode:	BLE(1M	bps) Moc	le TX 2440	MHz	2 15		
90.0	dBuV/m							
80								
70						(RF) FCC P/	ART 15C (PEA	ι Κ)
60								
						(RF) FCC P/	ART 15C (AVG	0
50				2	Monde	understand producers and	han an a	Man pe
40		the work of the second	an althe Mult w	Kerner Marine . Address			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
30	and we see the second of	Manufactor						
20								
10								
0 -10								
	00.000 3550.00	6100.00 865	50.00 112	DO.OO (MHz)	16300.00	18850.00 21400	.00 23950.	.00 26500.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	10792.000	45.37	-0.31	45.06	74.00	-28.94	peak
2	13265.500	42.72	1.80	44.52	74.00	-29.48	peak

Corr. = Antenna Factor (dB/m) + Cable Loss (dB)
Peak/AVG (dBμV/m) = Corr. (dB/m) + Read Level (dBμV)
Margin (dB) = Peak/AVG (dBμV/m)-Limit PK/AVG (dBμV/m)

4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. 5. No report for the emission which more than 20dB below the prescribed limit.

Tem	perature:	23 ℃			Relative H	lumidity:	51%	
Test	t Voltage:	DC 3.8V	ane.			02	-	AIG
Ant.	. Pol.	Vertical	A ROAD		A V		24	
Test	t Mode:	BLE(1Mb	ps) Moc	le TX 2440) MHz	2 1	1	1200
90.0	dBu∀/m							
80								
70						(RF) FCC	Part 15C (P	EAK)
60								
						(RF) FCC	PART 15C (A	VG)
50		folder have been and		2 Republic	way way	the water and the second the strength and	"With a start of the start of t	Manhampe
40			a water and a	at the state of the second	hur		- the industry	N
30	Wang and the set and and	Condition of the second se						
20								
10								
0								
-10	00.000 3550.00	6100.00 865	0.00 112	00.00 (MHz)	16300.00	18850.00 2140	0.00 239	50.00 26500

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10996.000	44.34	0.18	44.52	74.00	-29.48	peak
2 *	13469.500	42.68	2.13	44.81	74.00	-29.19	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m) = Corr. (dB/m) + Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG (dB μ V/m) 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.6. The average measurement was not performed when the peak measured data under the limit of average detection.

Ten	nperature:	23 ℃			Relati	ive Humidity:	51%	
Tes	st Voltage:	DC 3.8\	/			1002	2	NUE
Ant	t. Pol.	Horizon	tal		1.2			
Tes	t Mode:	BLE(1N	lbps) Mo	de TX 248	0 MHz			51
90.0	dBu¥/m							_
80								
70						(RF) FCC I	PART 15C (PEAK)	
60						(RF) FCC I	PART 15C (AVG)	
50				1 2 X X				head a
40	Vale when the grade with	h anno was the start	maplestance	Mundulahun	Man how when the	Ma	mother advanter mother	pea
30 20	and another and the	fallender and a						
10								
0								
-10	000.000 3550.00	6100.00 86	50.00 112	200.00 (MHz)	16300.	00 18850.00 2140	0.00 23950.00	26500.

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1 *	11353.000	44.09	0.92	45.01	74.00	-28.99	peak
2	13163.500	43.06	1.81	44.87	74.00	-29.13	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m) = Corr. (dB/m) + Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG (dB μ V/m) 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.6. The average measurement was not performed when the peak measured data under the limit of average detection.

Ten	nperature:	23 ℃		Relativ	e Humidity:	51%
Tes	st Voltage:	DC 3.8V		6		A 1105
Ant	t. Pol.	Vertical				
Tes	st Mode:	BLE(1M	bps) Mode TX	2480 MHz	AV	
90.0	dBuV/m					
80					(05) 505 1	
70						PART 15C (PEAK)
60					(RF) FCC F	PART 15C (AVG)
50			. 1	2	specification of a specific and the spec	What when when when the second
40		waterson	are only and a conserved	man for		The way way and the an
30 20	my all some may and	politica and a second	a mantheman			
10						
0						
-10						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	11302.000	43.42	0.85	44.27	74.00	-29.73	peak
2 *	14362.000	42.14	2.73	44.87	74.00	-29.13	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m) = Corr. (dB/m) + Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG (dB μ V/m) 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Cemperature:	23 ℃		Relative Humidity:	51%
Test Voltage:	DC 3.8V			
Ant. Pol.	Horizontal			
est Mode:	BLE(2Mbps) Mode TX 240	2 MHz	
90.0 dBu∀/m				
80				
			(RF) FC	C PART 15C (PEAK)
70				
60			(RF) FC	C PART 15C (AVG)
50		1	and another the and the	human when a when the pe
40	a water ranning and forgoth	an wat Persident and Market		the market of the second of the
	hand a second and a second as			
20				
10				
-10				

N	lo.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	1	11378.500	43.41	0.95	44.36	74.00	-29.64	peak
2	2 *	14846.500	42.17	2.93	45.10	74.00	-28.90	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m) = Corr. (dB/m) + Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG (dB μ V/m) 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

				tive Hum	iaity.	51%	
DC 3.8V				(117)			ALA
Vertical	A Do		6	Cores	-	0.437	
BLE(2M	bps) Mo	de TX 24	02 MHz	z		-	
					(RF) FCC	PART 15C (P	'EAK)
					(RF) FCC	PART 15C (A	VG)
			2	Mar Martinetone	mad your white day	Hudram to 1	Mit mall pe
1 martin and	a further war a	and the second	an and the second				рит — рес.
Mh. John .							
	BLE(2M	BLE(2Mbps) Mo	BLE(2Mbps) Mode TX 24	BLE(2Mbps) Mode TX 2402 MHz			

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11786.500	43.79	1.04	44.83	74.00	-29.17	peak
2	14107.000	42.27	2.16	44.43	74.00	-29.57	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dB μ V/m) = Corr. (dB/m) + Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG (dB μ V/m) 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

emperature:	23 ℃		Relative Humidity:	51%
est Voltage:	DC 3.8V	AN I	1000 P	~ 100
nt. Pol.	Horizontal			212
est Mode:	BLE(2Mbps)	Mode TX 2440	0 MHz	
0.0 dBuV/m				
:0				
0			(RF) FCC P/	ART 15C (PEAK)
0			(BE) FCC P/	ART 15C (AVG)
0		1 2	man and apply house	
0		mannahar	en annound and and	when the strategy of the strat
	helphoto and a			
0				
10				

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	11786.500	43.48	1.04	44.52	74.00	-29.48	peak
2	13444.000	42.29	2.15	44.44	74.00	-29.56	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m) = Corr. (dB/m) + Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG (dB μ V/m) 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Ten	perature:	23 ℃			Rel	ative Hu	imidity:	51%	
Tes	t Voltage:	DC 3.8V				GIU	0	-	din
Ant	. Pol.	Vertical	ALC:		1.		-1	RA D	
Tes	t Mode:	BLE(2M	ops) Mo	de TX 244	10 MHz	2		1	AN'
90.0	dBu¥/m								
80									
70							(RF) FCC I	PART 15C (F	'EAK)
60							(BE) ECC I	PART 15C (A	Vel
50			1		Ş	Marthant	nthe planter with the		
40		. Marine Marine	marthurit	Newhaten skir have been	Surry have	Julian .		- and the second with	AMANA
30 20	nay been some the server of th	no Mana Anna Channa C							
10									
0									
-10	00.000 3550.00	6100.00 865	0.00 112	200.00 (MHz		300.00 188	50.00 2140		50.00 2650

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	10868.500	44.90	0.07	44.97	74.00	-29.03	peak
2	14336.500	42.01	2.55	44.56	74.00	-29.44	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dB μ V/m) = Corr. (dB/m) + Read Level (dB μ V) 3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG (dB μ V/m) 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.

Temperature:	23 ℃		Relative H	lumidity:	51%						
Test Voltage:	DC 3.8V	DC 3.8V Horizontal									
Ant. Pol.	Horizonta										
Fest Mode:	BLE(2Mb	BLE(2Mbps) Mode TX 2480 MHz									
90.0 dBuV/m						_					
80											
70				(RF) FCC F	PART 15C (PEAK)	-					
60				(05) 500 5		_					
50		ub	Z. Jugeta		PART 15C (AVG)						
40	1 HUNNAMENTER	workson and a stranger of the	women and the second		thankfor your many stranger and	- Pee					
30 yolaway permanen with the served to the	Alexen and a										
20											
10						-					
-10						-					

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector
1 *	12067.000	44.32	1.32	45.64	74.00	-28.36	peak
2	14107.000	42.60	2.16	44.76	74.00	-29.24	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB)

2. Peak/AVG (dBµV/m) = Corr. (dB/m) + Read Level (dBµV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG (dB μ V/m) 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency.

5. No report for the emission which more than 20dB below the prescribed limit.6. The average measurement was not performed when the peak measured data under the limit of average detection.

Temperature:		23 ℃	23 ℃			umidity:	51%				
Tes	t Voltage:	DC 3.8V	DC 3.8V								
Ant	. Pol.	Vertical	Vertical								
Tes	t Mode:	BLE(2M	ops) Mod	le TX 2480	MHz						
90.0	dBuV/m						1				
80											
70						(RF) FCC F	ART 15C (PEAI	<u>()</u>			
10											
60						(RF) FCC F	ART 15C (AVG)				
50		Human	1	2	when some freeforded	whether whether the property	that the short have the	y-14-19/may-pei			
40		Mun Martin	Negerlal your of the of	an fa Padata - Pada	the former		. Honglowed Ude.				
30	when we want a start water										
20											
10											
0											
-10					16300.00 1						

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB/m)	Level (dBuV/m)		Margin (dB)	Detector
1	10919.500	44.44	0.21	44.65	74.00	-29.35	peak
2 *	14362.000	42.03	2.73	44.76	74.00	-29.24	peak

1. Corr. = Antenna Factor (dB/m) + Cable Loss (dB) 2. Peak/AVG (dBμV/m) = Corr. (dB/m) + Read Level (dBμV)

3. Margin (dB) = Peak/AVG (dB μ V/m)-Limit PK/AVG (dB μ V/m) 4. The tests evaluated1-26.5GHz, The testing has been conformed to the 10th harmonic of the highest fundamental frequency. 5. No report for the emission which more than 20dB below the prescribed limit.

6. The average measurement was not performed when the peak measured data under the limit of average detection.

END OF REPORT-----