

Page: 2/49

Report Number	MLT2403P15001A2
Applicant	VAXEE Corporation
Product	Mouse
Sample Received Date	2024/03/21
Sample Tested Date	2024/03/21- 2024/09/05

Report Prepared By	Jesse Tien
Signature	Jesse Tien
Date Prepared	2024/09/09

Report Authorized By	Roger Chen
Signature	Roger Chan
Date Authorized	2024/09/09

Test By

Max Light Technology Co., Ltd. No.74-4, Shibachong Xi, Shiding Dist., New Taipei City 223, Taiwan R.O.C. Office : Tel: 886-2-2363-2447 FXE-S: 886-2-2363-2597 Lab. : Tel: 886-2-2663-3486 FXE-S: 886-2-2663-3582

It may be duplicated completely for legal use with the allowance of the applicant. It shall not be reproduced except in full, without the written approval of our laboratory. This test report not include the evaluation of MU. The test results only relate to the submitted test sample.

Page: 3/49

Table of Contents

History of Test Report	5
1. General Information	6
2. Report of Measurements and Examinations	7
2.1 List of Measurements and Examinations	8
3. Test Configuration of Equipment under Test	9
3.1 Carrier Frequency of Channels	9
3.2 Test Mode and Test Software	9
3.3 TEST Methodology & General Test Procedures	11
3.4 Measurement Uncertainty	12
3.5 Description of the Support Equipments	12
4. Test and measurement equipment	13
4.1 Calibration	
4.2 Equipment	13
5. Antenna Requirements	15
5.1 Standard Applicable	15
5.2 Antenna Construction and Directional Gain	
6. Test of Conducted Emission	16
6.1 Test Limit 6.2 Test Procedures	16
6.3 Typical Test Setup	17
6.4 Test Result and Data	18
7. Test of Radiated Emission	19
7.1 Test Limit	19
7.2 Test Procedures	20
7.3 Typical Test Setup	20
7.4 Test Result and Data (Fundamental)	22
7.5 Test Result and Data (9kHz ~ 30MHz)	31
7.6 Test Result and Data (30MHz ~ 1GHz, worst emissions found)	31
7.7 Test Result and Data (Above 1GHz)	
7.8 Test Result and Data (Band Edge)	42
8.20dB Bandwidth Measurement	43
8.1 Test Setup	46
	r

Page: 4/49

8.2 Test Limit	46
8.3 Test Procedures	46
8.4 Test Data	46
9. Restricted Bands of Operation	49
9.1 Labeling Requirement	49

Page: 5/49

History of Test Report

Original Report Issue Date: 2024/04/23 No additional attachment Additional attachments were issued as in the following record:

	Attachment No.	Issue Date	Description		
X	MLT2403P15001	2024/04/23	Original Report		
	MLT2403P15001A1	2024/08/05	Second Issue Add the model : XE-S G Wireless, XE-S R Wireless, XE-S PL Wireless, XE-S-L W Wireless, XE-S-L B Wireless, XE-S-L O Wireless. All covered models have the same electrical characteristics, circuitry and material. The differences between the models are different sizes and appearance colors in order to adapt to different market sales. After engineering evaluation, the output power/ radiated field strength is within 1.5dB lower than the main test model, and the radiation spurious emissions is lower than the main test model too. The radiation spurious emissions is presented in the worst mode state, and the test data shall be referred to at the report Page. 24, 25, 26, 28, 33&37.		
	MLT2403P15001A2	2024/09/09	Third Issue Add the model : Sora Wireless, Sora W Wireless, Sora P Wireless, Sora B Wireless, Sora O Wireless, Sora R Wireless, Sora G Wireless. All covered models have the same electrical characteristics, circuitry and material. The differences between the models are different sizes and appearance colors in order to adapt to different market sales. After engineering evaluation, the output power/ radiated field strength is within 1.5dB lower than the main test model, and the radiation spurious emissions is lower than the main test model too. The radiation spurious emissions is presented in the worst mode state, and the test data shall be referred to at the report Page. 28, 29, 30, 33, 40&45.		

Page: 6/49

1. General Information

1.1 Introduction

The following measurement report is submitted on behalf of VAXEE Corporation In support of a Class B Digital Device certification in accordance with Part2 Subpart J and Part 15 Subpart C of the Commission's and Regulations.

1.2 Customer Details

Applicant Name VAXEE Corporation			
Applicant Address	No. 61-3, Sec. 2, Jiayuan Rd., Shulin Dist., New Taipei City		
Applicant Address	23804 , Taiwan		
Manufacturer Name	VAXEE Corporation		
Manufacturer Address	No. 61-3, Sec. 2, Jiayuan Rd., Shulin Dist., New Taipei City		
	23804 , Taiwan		

Page: 7/49

1.3 Technical data of EUT

Equipment	Mouse			
Model No	XE-S Wireless, XE-S W Wireless, XE-S P Wireless, XE-S Y Wireless, XE-S B Wireless, XE-S O Wireless, XE-S G Wireless, XE-S R Wireless, XE-S PL Wireless, XE-S-L W Wireless, XE-S-L B Wireless, XE-S-L O Wireless, Sora Wireless, Sora W Wireless, Sora P Wireless, Sora B Wireless, Sora O Wireless, Sora R Wireless, Sora G Wireless			
Model Difference	The difference among of models XE-S W Wireless, XE-S P Wireless, XE-S Y Wireless, XE-S B Wireless, XE-S O Wireless, XE-S G Wireless, XE-S R Wireless, XE-S PL Wireless, XE-S-L W Wireless, XE-S-L B Wireless, XE-S-L O Wireless, Sora Wireless, Sora W Wireless, Sora P Wireless, Sora B Wireless, Sora O Wireless, Sora R Wireless, Sora G Wireless is different appearance colour. All covered models have electrically identical on the circuitry to each other, within the model designations for sales purposes only.			
FCC ID	2A9L8-XESWL			
Power Type	 DC 5V Form PC DC 3.7V From Battery 			
Type of Modulation	2402~2480 MHz			
Transfer rate	GFSK			
Type of Antenna	PCB Antenna			
Frequency of Channel	40			

During testing the EUT was operated at Tx or Rx mode for each emission measured. This was done in order to ensure that maximum emission levels were attained.

2. Report of Measurements and Examinations

2.1 List of Measurements and Examinations

FCC Rule	Description of Test	Result
15.249(a)	. Field Strength of Fundamental Emissions	Pass
15.249(d)	. Band Edge Emissions	Pass
15.249(a)(d)	. Radiated Emissions	Pass
15.207	. Conducted Emissions	Pass
15.215(c)	. 20dB Bandwidth	Pass
15.203	. Antenna Requirements	Pass

Page: 9/49

3. Test Configuration of Equipment under Test

3.1 Carrier Frequency of Channels

Channel	Freq.(MHz)	Channel	Freq.(MHz)	Channel	Freq.(MHz)
0	2402	14	2430	28	2458
1	2404	15	2432	29	2460
2	2406	16	2434	30	2462
3	2408	17	2436	31	2464
4	2410	18	2438	32	2466
5	2412	19	2440	33	2468
6	2414	20	2442	34	2470
7	2416	21	2444	35	2472
8	2418	22	2446	36	2474
9	2420	23	2448	37	2476
10	2422	24	2450	38	2478
11	2424	25	2452	39	2480
12	2426	26	2454		
13	2428	27	2456		

Page: 10/49

3.2 Test Mode and Test Software

- a. During testing, the interface cables and equipment positions were varied according to ANSI C63.10.
- b. The complete test system included PC and EUT for RF test.
- c. An executive "Engineering mode" was executed to keep transmitting and receiving data via Wireless.
- d. After the Mouse is connected to the USB cable, it will automatically switch to wired
 mode and charging function, and there is no radio feature, so only use the battery test.
- e. New battery was used for all testing and the worst radiated emission.
- f. The following test modes were performed for test:GFSK: CH 00: 2402MHz, CH 19: 2440MHz, CH 39: 2480MHz.

Page: 11/49

3.3 TEST Methodology & General Test Procedures

All testing as described bellowed were performed in accordance ANSI C63.4:2014, C63.10:2013 and FCC CFR 47 Part 15 Subpart C.

Conducted Emissions

The EUT is placed on a wood table, which is at 0.8 m above ground plane acceding to clause 15.207 and requirements of ANSI C63.4 and C63.10. Conducted emissions from the EUT measured in the frequency range between 0.15 MHz and 30MHz are using CISPR Quasi-Peak / Average detectors. The resolution bandwidth of test receiver/spectrum analyzer is 9 KHz and video bandwidth is 120 KHz.

Radiated Emissions

The EUT is a placed on a turn table, which is 0.8 m (1.5 m for above 1 GHz) above ground plane. The turntable was rotated through 360 degrees to determine the position of maximum emission level. The EUT is placed at 3m away from the receiving antenna, which varied from 1m to 4m to find out the highest emission. Each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.

- 1) Putting the EUT on the platform and turning on the EUT (on/off button on the bottom of the EUT).
- 2) Setting test channel described as "Channel setting and operating condition", and testing channel by channel.
- 3) For the spurious emission test based on ANSI C63.4 and C63.10, the resolution bandwidth of test receiver/spectrum analyzer is 120 KHz and video bandwidth is 300 KHz for Quasi-peak detection at frequency 30 MHz~1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3 MHz for Peak detection at frequency above 1GHz. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3MHz RMS detector for Average Value at frequency above 1GHz.

3.4 Measurement Uncertainty

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Parameter	MU
Radio Frequency	±22.4 Hz
Total RF power (conducted)	±3.63 dB
RF power density (conducted)	±3.62 dB
Spurious emissions (conducted)	±3.62 dB
All emissions (radiated)	±3.95 dB

3.5 Description of the Support Equipments

Setup Diagram

See test photographs attached in appendix 1 for the actual connections between EUT and support equipment.

Page: 13/49

4. Test and measurement equipment

4.1 Calibration

The measuring equipment utilized to perform the tests documented in the report has been calibrated once a year or in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2 Equipment

The following list contains measurement equipment used for testing. The equipment conforms to the requirement of CISPR 16-1, ANSI C63.2 and. Other required standards.

Calibration of all test and measurement, including any accessories that may effect such calibration, is checked frequently to ensure the accuracy. Adjustments are made and correction factors are applied in accordance with the instructions contained in the respective.

Page: 14/49

3.3 Test Equipment List:

ltem	Instrument	Mfr/Brand	Model No.	Serial No	Calibrated Date	Next Cal. Date
1.	Receiver	R&S	ESPI	100085	2024/03/12	2025/03/12
2.	Pre Amplifier	MLT	PREAMP6G- 01	20110209	2024/03/12	2025/03/12
3.	Pre Amplifier	MLT	PREAMP6G- 02	20110301	2024/03/12	2025/03/12
4.	Biconilog Antenna	EMCO	3142C	00044568	2023/09/21	2024/09/21
5.	LISN	EMCO	3825/2	2654	2023/12/14	2024/12/14
6.	LISN	R&S	ESH2-Z5	893406/007	2023/12/14	2024/12/14
7.	Spectrum Analyzer	Agilent	E7403A	US40240137	2024/01/12	2025/01/12
8.	Spectrum Analyzer	Agilent	E4446A	US44300422	2024/03/12	2025/03/12
9.	Home Antenna	SCHWARZBECK	BBHA 9120D	304	2024/02/16	2025/02/16
10.	Home Antenna	SCHWARZBECK	BBHA 9170	9170181	2023/11/27	2024/11/27
11.	Pre Amplifier	MLT	0.10~19.1GH z 60dBm	RF-01	2024/03/12	2025/03/12
12.	Pre Amplifier	Herotek	A402-417	306090	2023/11/27	2024/11/27
13.	Spectrum Analyzer	Agilent	N9020A	MY46471764	2023/12/22	2024/12/22
14.	Loop Antenna	EMCO	6570	1493	2024/02/06	2025/02/06
[1	1	1	1		

Page: 15/49

5. Antenna Requirements

5.1 Standard Applicable

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section. The manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

The device meets the requirements because it uses a fixed antenna and is not user replaceable.

5.2 Antenna Construction and Directional Gain

Antenna Type: PCB Antenna Antenna Gain: 5.3 dBi (Manufacturer Provide)

Page: 16/49

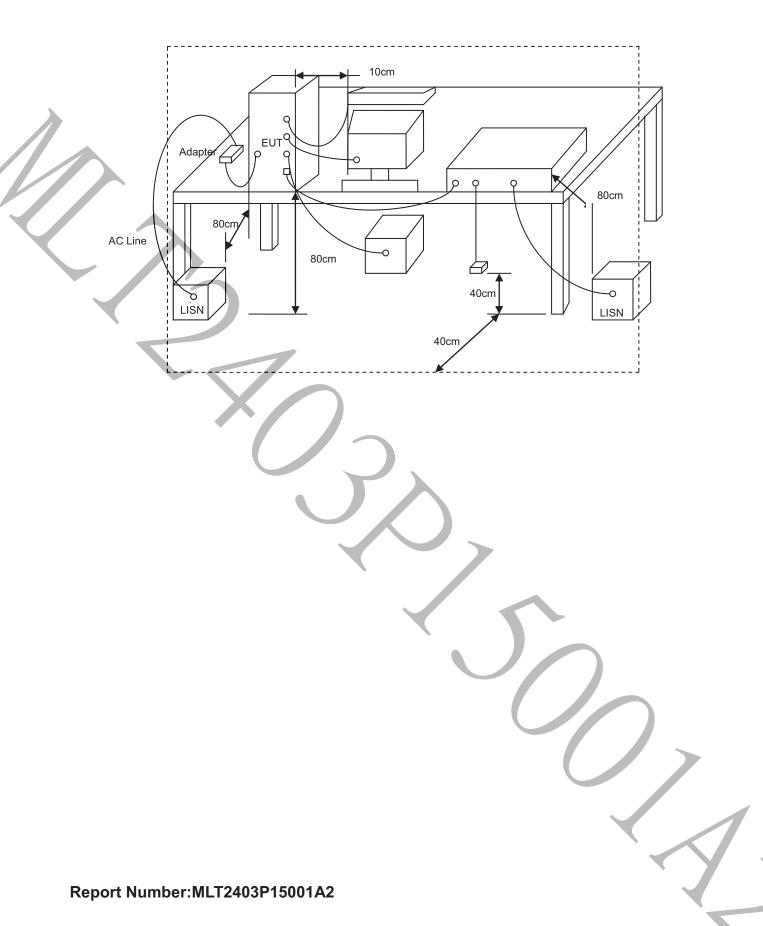
6. Test of Conducted Emission

6.1 Test Limit

Conducted Emissions were measured from 150 kHz to 30 MHz with a bandwidth of 9 KHz on the 120 VAC power and return leads of the EUT according to the methods defined in ANSI C63.4-2014. The EUT was placed on a nonmetallic stand in a shielded room 0.8 meters above the ground plane. The interface cables and equipment positioning were varied within limits of reasonable applications to determine the position produced mXE-Simum conducted emissions.

Frequency (MHz)	Quasi Peak (dB µ V)	Average (dB µ V)		
0.15 – 0.5	66-56*	56-46*		
0.5 – 5.0	56	46		
5.0 - 30.0	60	50		

*Decreases with the logarithm of the frequency.


6.2 Test Procedures

- a. The EUT was placed 0.4 meter from the conducting wall of the shielding room was kept at least 80 centimeters from any other grounded conducting surface.
- b. Connect EUT to the power mains through a line impedance stabilization network (LISN).
- c. All the support units are connecting to the other LISN.
- d. The LISN provides 50 ohm coupling impedance for the measuring instrument.
- e. The FCC states that a 50 ohm, 50 micro-Henry LISN should be used.
- f. Both sides of AC line were checked for maximum conducted interference.
- g. The frequency range from 150 kHz to 30 MHz was searched.
- h. Set the test-receiver system to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.

6.3 Typical Test Setup

Page: 17/49

6.4 Test Result and Data

The following table shows a summary of the highest emissions of power line conducted emissions to the HOT and NEUTRAL conductor of the EUT power.

			Con	ducted E	missions	s (Class I	3)			
	_	Pood(Limits		Amplitude		Margin	
Test Por	t Freq	Read(ubuv)	Factor	(dB	uV)	(dB	uV)	(dBuV)	
	(MHz)	QP	AV		QP	AV	QP	AV	QP	AV
	0.1500	53.48		0.08	66.00	56.00	53.56		-12.44	
	0.1799	47.89		0.07	64.49	54.49	47.96		-16.53	
	0.1998	45.98		0.06	63.62	53.62	46.04		-17.58	
L1	0.3988	45.55		0.03	57.88	47.88	45.58		-12.30	
	0.4386	41.94		0.03	57.09	47.09	41.97		-15.12	
	1.1850	37.08	-	0.02	56.00	46.00	37.10		-18.90	
	13.4930	38.38		0.34	60.00	50.00	38.72		-21.28	
	0.1600	50.34		0.08	65.47	55.47	50.42		-15.05	
	0.1898	48.32		0.07	64.05	54.05	48.39		-15.66	
	0.2495	44.28	-	0.05	61.77	51.77	44.33		-17.44	
L2	0.2794	42.39	-	0.05	60.84	50.84	42.44		-18.40	
	0.3988	45.71		0.04	57.88	47.88	45.75		-12.13	
	0.7669	37.56		0.03	56.00	46.00	37.59		-18.41	
	13.4930	37.95		0.40	60.00	50.00	38.35		-21.65	

Test Mode : Charge

Notes: 1. L1: One end & Ground L2: The other end & Ground

- 2. Height of table on which the EUT was placed : 0.8 m.
- 3. The Quasi-Peak Value have already met the Average Value Limit showed on above limits.
- 4. The above test results are obtained under the normal condition.
- 5. Amplitude = Read + Factor

Page: 19/49

7. Test of Radiated Emission

7.1 Test Limit

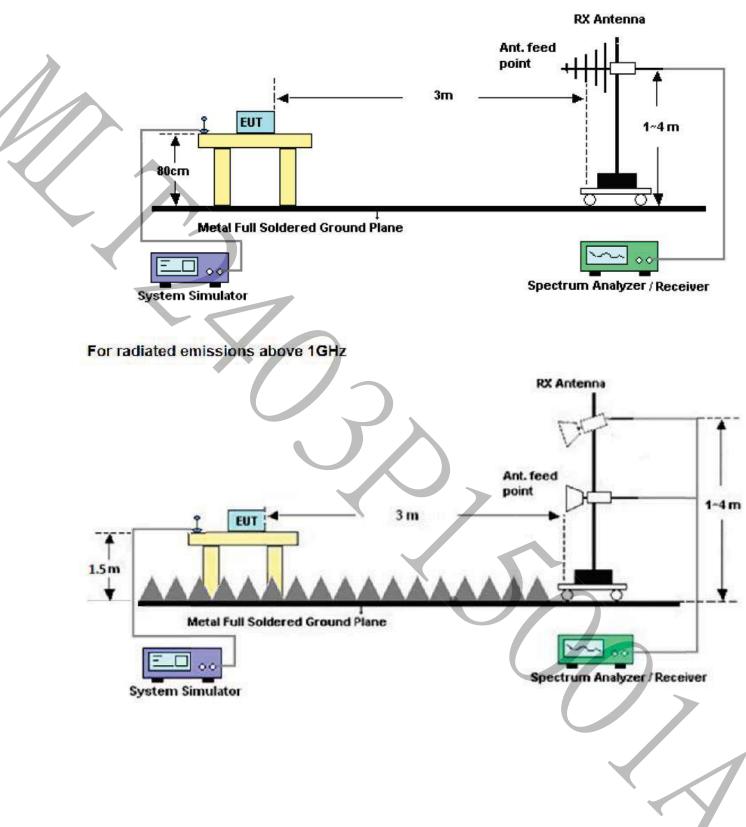
Radiated Emissions were measured from 9 KHz to 25 GHz and return leads of the EUT according to the methods defined in ANSI C63.4-2014 and C63.10-2013. In any 100kHz bandwidth. Field strength limits are specified at a distance of 3 meters. Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emis-sion limits in §15.209, whichever is the lesser attenuation. for frequencies above 1000 MHz, the field strength limits in paragraphs of this section are based on average limits. the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. For point-to-point operation under 24.05–24.25 GHz band subject to the following condition. The peak field strength shall not exceed 2500 millivolts/m at 3 meters .

Frequency (MHz)	Field Strength (microvolt/meter)	Measurement Distance (meters)
0.009 ~ 0.490	2400/F(kHz)	300
0.490 ~ 1.705	24000/F(kHz)	30
1.705 ~ 30.0	30	30
30 ~ 88	-100	3
88 ~ 216	150	3
216 ~ 960	200	3
Above 960	500	3

Fundamental Frequency (MHz)	•	of fundamental V/m)	Field strength of harmonics (dBuV/m)		
Detector	Peak Average		Peak	Average	
902 - 928					
2400 – 2483	114	94	74	54	
5725 - 5875					
24.0 - 24.25	128	108	88	68	

Page: 20/49

7.2 Test Procedures


- a. The EUT was placed on a rotatable table top 0.8 meter above ground (30 MHz to 1 GHz).
- b. The EUT was placed on a rotatable table top 1.5 meter above ground (above 1 GHz).
- c. The EUT was set 3 meters from the interference receiving antenna which was mounted on the top of a variable height antenna tower.
- d. The table was rotated 360 degrees to determine the position of the highest radiation.
- e. The antenna is a broadband antenna and its height is varied between one meter and four meters above ground to find the maximum value of the field strength both horizontal polarization and vertical polarization of the antenna are set to make the measurement.
- f. For each suspected emission the EUT was arranged to its worst case and then tune the antenna tower (from 1 M to 4 M) and turn table (from 0 degree to 360 degrees) to find the maximum reading.
- g. Set the test-receiver system to Peak or CISPR quasi-peak Detect Function and specified bandwidth with Maximum Hold Mode.
- h. If the emission level of the EUT in peak mode was 3 dB lower than the limit specified, then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions which do not have 3 dB margin will be repeated one by one using the quasi-peak method and reported.
- i. For testing above 1GHz, the emission level of the EUT in peak mode was 20dB lower than average limit (that means the emission level in peak mode also complies with the limit in average mode), then testing will be stopped and peak values of EUT will be reported, otherwise, the emissions will be measured in average mode again and reported.
- j. Since the transmitter is considered a portable unit, it was pre-tested on the positioned in each of 3 axis. It was found that the X Axis was the worst. It was the worst. It was taken as the representative condition for testing and its data are recorded in the present document.

ſ				
C		\mathbf{r}		
	C			
			S	
			7	

7.3 Typical Test Setup

For radiated emissions from 30MHz to 1GHz

Page: 22/49

7.4 Test Result and Data (Fundamental)

Power	:	DC 3.7V		
Test Mode	:	CH0	Temperature :	25 °C
Test Date	:	APR. 12, 2024	Humidity :	70%
Memo	:			

	Radiated Emissions (VERTICAL)									
Eroquana	Read			Ampl	Amplitude		Limits		Margin	
Frequency (MHz)	(dBuV)		Factor	(dBuV/m)		(dBuV/m)		(dB)		
	PK	AV		PK	AV	PK	AV	PK	AV	
2401.79	109.77		-22.08	87.69		114	94	-26.31		

Radiated Emissions (HORIZONTAL)									
Frequency (MHz)		Read (dBuV)		Amplitude (dBuV/m)		Limits (dBuV/m)		Margin (dB)	
	PK	AV		PK	AV	PK	AV	PK	AV
2401.79	108.06	-	-22.08	85.98		114	94	-28.02	

- 2. Factor = Antenna Factor + Cable Loss Amplifier Gain
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3 MHz for Peak detection at frequency above 1GHz.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3 MHz RMS detector for Average Value at frequency above 1GHz
- 5. The Peak Value have already met the Average Value Limit showed on above limits.
- 6. Margin<0 is Pass , Margin \geq 0 is Fail.

Page: 23/49

Power :	DC 3.7V		
Test Mode :	CH19	Temperature :	25 °C
Test Date :	APR. 12, 2024	Humidity :	70%
Memo :			

		Radiated Emissions (VERTICAL)									
	Frequency (MHz)	Re	ad		Amplitude		Limits		Margin		
		(dBuV)		Factor	(dBuV/m)		(dBuV/m)		(dB)		
		PK	AV		PK	AV	PK	AV	PK	AV	
	2440.21	108.15		-22.08	86.07		114	94	-27.93		

	Radiated Emissions (HORIZONTAL)								
Frequency	Read			Amplitude		Limits		Margin	
(MHz)	(dB	uV)	Factor	(dBuV/m)		(dBuV/m)		(dB)	
(11112)	РК	AV		PK	AV	PK	AV	PK	AV
2439.79	107.77		-22.07	85.70		114	94	-28.30	

- 2. Factor = Antenna Factor + Cable Loss Amplifier Gain
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3 MHz for Peak detection at frequency above 1GHz.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3 MHz RMS detector for Average Value at frequency above 1GHz
- 5. The Peak Value have already met the Average Value Limit showed on above limits.
- 6. Margin<0 is Pass , Margin \ge 0 is Fail.

Page: 24/49

Power	DC 3.7V		
Test Mode	CH39	Temperature :	25 °C
Test Date	APR. 12, 2024	Humidity :	70%
Memo			

		Radiated Emissions (VERTICAL)									
	Frequency (MHz)	Read (dBuV)		Factor	Amplitude (dBuV/m)		Limits (dBuV/m)		Margin (dB)		
		PK	AV		PK	AV	PK	AV	PK	AV	
	2479.83	107.96		-22.55	85.41		114	94	-28.59		

	Radiated Emissions (HORIZONTAL)										
Frequency	Read (dBuV)		Factor	Amplitude (dBuV/m)		Limits (dBuV/m)		Margin (dB)			
(MHz)	РК	AV		PK	AV	PK	AV	PK	AV		
2479.57	107.28		-22.55	84.73		114	94	-29.27			

- 2. Factor = Antenna Factor + Cable Loss Amplifier Gain
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3 MHz for Peak detection at frequency above 1GHz.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3 MHz RMS detector for Average Value at frequency above 1GHz
- 5. The Peak Value have already met the Average Value Limit showed on above limits.
- 6. Margin<0 is Pass , Margin \ge 0 is Fail.

Page: 25/49

Power :	DC 3.7V		
Test Mode :	CH0	Temperature :	29 °C
Test Date :	July 22, 2024	Humidity :	61%
Memo :	XE-S G Wireless		

		Radiated Emissions (VERTICAL)									
	Frequency (MHz)	Read (dBuV)		Factor	Amplitude (dBuV/m)		Limits (dBuV/m)		Margin (dB)		
		PK	AV		PK	AV	PK	AV	PK	AV	
	2401.97	109.07		-22.07	87.00		114	94	-27.00		

	Radiated Emissions (HORIZONTAL)									
Frequency	Read (dBuV)		Factor	Amplitude (dBuV/m)		Limits (dBuV/m)		Margin (dB)		
(MHz)	РК	AV		PK	AV	РК	AV	PK	AV	
2401.99	107.41		-22.07	85.34		114	94	-28.66		

- 2. Factor = Antenna Factor + Cable Loss Amplifier Gain
- 3. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and video bandwidth is 3 MHz for Peak detection at frequency above 1GHz.
- 4. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and video bandwidth is 3 MHz RMS detector for Average Value at frequency above 1GHz
- 5. The Peak Value have already met the Average Value Limit showed on above limits.
- 6. Margin<0 is Pass , Margin \ge 0 is Fail.