

#### Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao'an District, Shenzhen, China

# FCC PART 15 SUBPART C TEST REPORT

**FCC PART 15.247** 

Report Reference No..... CTA21122201101 FCC ID.....:: **2AML6BB991E** 

Compiled by

( position+printed name+signature)..: File administrators Kevin Liu

Supervised by

( position+printed name+signature)..: Project Engineer Kevin Liu

Approved by

( position+printed name+signature)... RF Manager Eric Wang

Date of issue....: Dec. 23, 2021

Testing Laboratory Name ..... Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community,

Fuhai Street, Bao'an District, Shenzhen, China

Applicant's name..... KINGRAY ELECTRONICS Co., LTD

3F, Building 13th, Xingwei the third Industrial Park, Fenghuang Address .....

Village, Fuyong town, Baoan District, Shenzhen, Guangdong,

CTATESTIN

Test specification .....:

FCC Part 15.247 Standard .....:

#### Shenzhen CTA Testing Technology Co., Ltd. All rights reserved.

This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen CTA Testing Technology Co., Ltd. is acknowledged as copyright owner and source of the material. Shenzhen CTA Testing Technology Co., Ltd. takes no responsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context.

Test item description ...... Wireless Headphones

Trade Mark ....: Billboard

Manufacturer .....: KINGRAY ELECTRONICS Co., LTD

Model/Type reference....: **BB991** 

Listed Models .....:

Modulation Type ...... GFSK,Π/4DQPSK, 8DPSK

Operation Frequency...... From 2402MHz to 2480MHz

Rating .....: DC3.7V from battery

Result.....:

Page 2 of 47 Report No.: CTA21122201101

# TEST REPORT

**Equipment under Test** Wireless Headphones

Model /Type **BB991** 

Listed Models N/A

**Applicant** KINGRAY ELECTRONICS Co., LTD

3F, Building 13th, Xingwei the third Industrial Park, Fenghuang Address

Village, Fuyong town, Baoan District, Shenzhen, Guangdong,

CTA TESTING

CTATE

CTA TESTING

**Manufacturer** KINGRAY ELECTRONICS Co., LTD

3F, Building 13th, Xingwei the third Industrial Park, Fenghuang Address

Village, Fuyong town, Baoan District, Shenzhen, Guangdong,

| GTING       | China  | aoan District, Sherizhen, Guangdong, |
|-------------|--------|--------------------------------------|
| CTATES      | CTING  |                                      |
| Test Result | CTATES | PASS                                 |

The test report merely corresponds to the test sample.

CTA TESTING

It is not permitted to copy extracts of these test result without the written permission of the test laboratory. CTATESTING

ETA CTATESTING

Page 3 of 47 Report No.: CTA21122201101

# **Contents**

|       |            | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 1          | TEST STANDARDS4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | CAC        | -cTIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | 12.0       | CHMMADY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | <u>Z</u>   | SUMMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |            | General Remarks 5 Product Description 5 Equipment Under Test 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | 2.1        | General Remarks 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 2.2        | Product Description 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | 2.3        | Equipment Under Test 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       | 2.4        | Short description of the Equipment under Test (EUT) 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | 2.5        | EUT operation mode 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | 2.6        | Block Diagram of Test Setup 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | 2.7        | Related Submittal(s) / Grant (s) 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| CAL   | 2.8        | Modifications 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |            | TES!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7     | <u>3</u>   | TEST ENVIRONMENT 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       | <u>~</u>   | / 48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |            | Address of the test laboratory 7 Test Facility 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | 3.1        | Address of the test laboratory 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | 3.2        | Test Facility 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | 3.3        | Address of the test laboratory  Test Facility  Environmental conditions  Summary of measurement results  Statement of the measurement uncertainty  8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | 3.4        | Summary of measurement results 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | 3.5        | Statement of the measurement uncertainty 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       | 3.6        | Equipments Used during the Test 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       | <u>4</u>   | TEST CONDITIONS AND RESULTS 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | <u> </u>   | CATE IG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | CC         | The critical control of the cr |
|       | 4.1        | AC Power Conducted Emission 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | 4.2        | Radiated Emission 13 Maximum Peak Output Power 19 20dB Bandwidth 20 Frequency Separation 24 Number of hopping frequency 26 Time of Occupancy (Dwell Time) 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | 4.3        | Maximum Peak Output Power 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       | 4.4        | 20dB Bandwidth 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | 4.5        | Frequency Separation 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | 4.6        | Number of hopping frequency 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | 4.7        | Timo of Goodpanoy (Biron Timo)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       | 4.8<br>4.9 | Out-of-band Emissions Pseudorandom Frequency Hopping Sequence 41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       | 4.9        | Pseudorandom Frequency Hopping Sequence 41 Antenna Requirement 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| CTATE | 4.10       | Antenna Requirement 42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| CTA   |            | -ING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       | <u>5</u>   | TEST SETUP PHOTOS OF THE EUT 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |            | TA IL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       | c          | DUOTOS OF THE EUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|       | <u>6</u>   | PHOTOS OF THE EUT 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |            | CTA TESTIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |            | (CIP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       |            | A CTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|       |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

CTATESTING

Report No.: CTA21122201101 Page 4 of 47

# 1 TEST STANDARDS

CTA TESTING

The tests were performed according to following standards:

<u>FCC Rules Part 15.247</u>: Frequency Hopping, Direct Spread Spectrum and Hybrid Systems that are in operation within the bands of 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz. <u>ANSI C63.10-2013</u>: American National Standard for Testing Unlicensed Wireless Devices

CTA TESTING

CTATE

CTATE

CTATESTING

CTATESTING

Page 5 of 47 Report No.: CTA21122201101

CTA TESTING

# SUMMARY

#### General Remarks

| Date of receipt of test sample | :        | Dec. 19, 2021 |
|--------------------------------|----------|---------------|
|                                | 1        | CAL           |
| Testing commenced on           | C.T.     | Dec. 20, 2021 |
|                                | O market |               |
| Testing concluded on           | :        | Dec. 22, 2021 |

# **Product Description**

|             |                                                                                                                                                | The state of the s |                                                                                                                                                                                                                                                                                          |
|-------------|------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| :           | Dec. 22, 2021                                                                                                                                  | (ETA)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |
| tion        |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GOT CIT                                                                                                                                                                                                                                                                                  |
| Wireless H  | eadphones                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                          |
| BB991       | G                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                          |
| DC3.7V fro  | om battery                                                                                                                                     | -16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                          |
| JY-109-696  | 69A_V11                                                                                                                                        | TESTING                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                          |
| V1.0        | CCC                                                                                                                                            | (br)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -STING                                                                                                                                                                                                                                                                                   |
| Input:AC 10 | 00-240V 50/60Hz                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CTATES                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                          |
|             |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                          |
| Bluetooth E | 3R/EDR                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                          |
| GFSK, π/4   | DQPSK, 8DPSK                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TING                                                                                                                                                                                                                                                                                     |
| 2402MHz~    | 2480MHz                                                                                                                                        | TATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1,77                                                                                                                                                                                                                                                                                     |
| 79          |                                                                                                                                                | Carlo City                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                          |
| 1MHz        |                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CCTP                                                                                                                                                                                                                                                                                     |
| PCB anten   | na                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6                                                                                                                                                                                                                                                                                        |
| 0.00 dBi    | G.                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                          |
|             | Wireless H BB991 DC3.7V fro JY-109-696 V1.0 Model: EP-Input:AC 16 Output:DC CTA21122 CTA21122 Bluetooth E GFSK, π/4 2402MHz~ 79 1MHz PCB anten | Wireless Headphones  BB991  DC3.7V from battery  JY-109-6969A_V11  V1.0  Model: EP-TA20CBC Input:AC 100-240V 50/60Hz Output:DC 5V 2A  CTA211222011-1# (Engineer scale) CTA211222011-2# (Normal sand)  Bluetooth BR/EDR  GFSK, \pi/4DQPSK, 8DPSK  2402MHz~2480MHz  79  1MHz  PCB antenna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Wireless Headphones  BB991  DC3.7V from battery  JY-109-6969A_V11  V1.0  Model: EP-TA20CBC Input:AC 100-240V 50/60Hz Output:DC 5V 2A  CTA211222011-1# (Engineer sample) CTA211222011-2# (Normal sample)  Bluetooth BR/EDR  GFSK, π/4DQPSK, 8DPSK  2402MHz~2480MHz  79  1MHz  PCB antenna |

Note: Antenna gain is provide by the manufacturer.

# 2.3 Equipment Under Test

| 2.3 Equipment Under    | Test   |              |                         | TING      |             |
|------------------------|--------|--------------|-------------------------|-----------|-------------|
| Power supply system ut | ilised | 0            | 000)//50 []             | 5         | 4007//001   |
| Power supply voltage   | :      | $\circ$      | 230V / 50 Hz            | C         | 120V / 60Hz |
|                        |        | 0            | 12 V DC                 | С         | 24 V DC     |
|                        |        | lacktriangle | Other (specified in bla | ınk below | y) GV       |

# DC 3.7V From battery

# Short description of the Equipment under Test (EUT)

This is a Wireless Headphones.

For more details, refer to the user's manual of the EUT.

#### 2.5 **EUT** operation mode

The Applicant provides communication tools software (FCC assist 1.0.2.2) to control the EUT for staying in continuous transmitting (Duty Cycle more than 98%) and receiving mode for testing .There are 79 channels

Page 6 of 47 Report No.: CTA21122201101

Operation Frequency:

| -0  | Channel | Frequency (MHz) |
|-----|---------|-----------------|
|     | 00      | 2402            |
| CIT | 01      | 2403            |
|     | A       | TES             |
|     | 38      | 2440            |
|     | 39      | 2441            |
|     | 40      | 2442            |
|     | i       |                 |
| 2   | 77      | 2479            |
|     | 78      | 2480            |

#### 2.6 **Block Diagram of Test Setup**



CTATE

CTA TESTING

#### Submittal(s) / Grant (s) 2.7

This submittal(s) (test report) is intended for the device filing to comply with Section 15.247 of the FCC Part 15, Subpart C Rules.

#### 2.8 **Modifications**

CTATESTING

No modifications were implemented to meet testing criteria.

CTA TESTING

Page 7 of 47 Report No.: CTA21122201101

# TEST ENVIRONMENT

# 3.1 Address of the test laboratory

Shenzhen CTA Testing Technology Co., Ltd.

Room 106, Building 1, Yibaolai Industrial Park, Qiaotou Community, Fuhai Street, Bao 'an District, Shenzhen, China

CTATE

CTATE

CTA TESTING

#### 3.2 **Test Facility**

The test facility is recognized, certified, or accredited by the following organizations:

FCC-Registration No.: 517856 Designation Number: CN1318

Shenzhen CTA Testing Technology Co., Ltd. has been listed on the US Federal Communications Commission list of test facilities recognized to perform electromagnetic emissions measurements.

A2LA-Lab Cert. No.: 6534.01

Shenzhen CTA Testing Technology Co., Ltd. has been listed by American Association for Laboratory Accreditation to perform electromagnetic emission measurement

The 3m-Semi anechoic test site fulfils CISPR 16-1-4 according to ANSI C63.10 and CISPR 16-1-4:2010.

#### **Environmental conditions** 3.3

During the measurement the environmental conditions were within the listed ranges: Radiated Emission:

| adiated Efficient.    |              |
|-----------------------|--------------|
| Temperature:          | 24 ° C       |
|                       | CTA.         |
| Humidity:             | 46 %         |
| ,                     |              |
| Atmospheric pressure: | 950-1050mbar |

#### AC Power Conducted Emission:

| o i ottor Goridadioa Erinogiorii |              |
|----------------------------------|--------------|
| Temperature:                     | 25 ° C       |
| IN-                              |              |
| Humidity:                        | 47 %         |
| 711                              | 10           |
| Atmospheric pressure:            | 950-1050mbar |

#### Conducted testing:

CTA TESTING

| Jildacted testing.    |              |
|-----------------------|--------------|
| Temperature:          | 24 ° C       |
|                       |              |
| Humidity:             | 46 %         |
|                       |              |
| Atmospheric pressure: | 950-1050mbar |

CTA TESTING

ATESTING

Report No.: CTA21122201101 Page 8 of 47

# 3.4 Summary of measurement results

| Test<br>Specification<br>clause | Test case                                                    | Test Sample         | Test<br>Mode              | Test<br>Channel                                               |                           | orded<br>eport                                                | Test result |
|---------------------------------|--------------------------------------------------------------|---------------------|---------------------------|---------------------------------------------------------------|---------------------------|---------------------------------------------------------------|-------------|
| §15.247(a)(1)                   | Carrier<br>Frequency<br>separation                           | CTA21122201<br>1-1# | GFSK<br>П/4DQPSK<br>8DPSK | <ul><li> Lowest</li><li> Middle</li><li> Highest</li></ul>    | GFSK<br>П/4DQPSK<br>8DPSK | ⊠ Middle                                                      | Compliant   |
| §15.247(a)(1)                   | Number of<br>Hopping<br>channels                             | CTA21122201<br>1-1# | GFSK<br>П/4DQPSK<br>8DPSK | ⊠ Full                                                        | GFSK<br>8DPSK             | ⊠ Full                                                        | Compliant   |
| §15.247(a)(1)                   | Time of<br>Occupancy<br>(dwell time)                         | CTA21122201<br>1-1# | GFSK<br>П/4DQPSK<br>8DPSK | <ul><li>☑ Lowest</li><li>☑ Middle</li><li>☑ Highest</li></ul> | GFSK<br>П/4DQPSK<br>8DPSK | ⊠ Middle                                                      | Compliant   |
| §15.247(a)(1)                   | Spectrumba<br>ndwidth of<br>aFHSS<br>system20dB<br>bandwidth | CTA21122201<br>1-1# | GFSK<br>П/4DQPSK<br>8DPSK | <ul><li>☑ Lowest</li><li>☑ Middle</li><li>☑ Highest</li></ul> | GFSK<br>П/4DQPSK<br>8DPSK | □ Lowest     □ Middle     □ Highest                           | Compliant   |
| §15.247(b)(1)                   | Maximum outputpower                                          | CTA21122201<br>1-1# | GFSK<br>П/4DQPSK<br>8DPSK | <ul><li>☑ Lowest</li><li>☑ Middle</li><li>☑ Highest</li></ul> | GFSK<br>П/4DQPSK<br>8DPSK | <ul><li>☑ Lowest</li><li>☑ Middle</li><li>☑ Highest</li></ul> | Compliant   |
| §15.247(d)                      | Band<br>edgecomplia<br>nce<br>conducted                      | CTA21122201<br>1-1# | GFSK<br>П/4DQPSK<br>8DPSK | <ul><li>☑ Lowest</li><li>☑ Highest</li></ul>                  | GFSK<br>П/4DQPSK<br>8DPSK | <ul><li>☑ Lowest</li><li>☑ Highest</li></ul>                  | Compliant   |
| §15.205                         | Band<br>edgecomplia<br>nce<br>radiated                       | CTA21122201<br>1-1# | GFSK<br>П/4DQPSK<br>8DPSK | <ul><li>☑ Lowest</li><li>☑ Highest</li></ul>                  | GFSK                      | <ul><li>☑ Lowest</li><li>☑ Highest</li></ul>                  | Compliant   |
| §15.247(d)                      | TX<br>spuriousemi<br>ssions<br>conducted                     | CTA21122201<br>1-1# | GFSK<br>П/4DQPSK<br>8DPSK | <ul><li></li></ul>                                            | GFSK<br>П/4DQPSK<br>8DPSK | <ul><li></li></ul>                                            | Compliant   |
| §15.209(a)                      | TX<br>spuriousemi<br>ssions<br>Radiated<br>above 1GHz        | CTA21122201<br>1-1# | GFSK<br>П/4DQPSK<br>8DPSK |                                                               | GFSK                      |                                                               | Compliant   |
| §15.209(a)                      | TX spurious<br>Emissions<br>radiated<br>Below 1GHz           | CTA21122201<br>1-2# | GFSK<br>П/4DQPSK<br>8DPSK | <ul><li></li></ul>                                            | GFSK                      | ⊠ Middle                                                      | Compliant   |
| §15.107(a)<br>§15.207           | Conducted<br>Emissions<br>9KHz-30<br>MHz                     | CTA21122201<br>1-2# | GFSK<br>П/4DQPSK<br>8DPSK | <ul><li></li></ul>                                            | GFSK                      | ⊠ Middle                                                      | Compliant   |

#### Remark:

- 1. The measurement uncertainty is not included in the test result.
- 2. We tested all test mode and recorded worst case in report

#### 3.5 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to TR-100028-01" Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 1" and TR-100028-02 "Electromagnetic compatibility and Radio spectrum Matters (ERM);Uncertainties in the measurement of mobile radio equipment characteristics; Part 2 " and is documented in the Shenzhen CTA Testing Technology Co., Ltd. quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

Hereafter the best measurement capability for Shenzhen CTA Testing Technology Co., Ltd.:

| 27                | ,          | 0,                         |       |
|-------------------|------------|----------------------------|-------|
| Test              | Range      | Measurement<br>Uncertainty | Notes |
| Radiated Emission | 30~1000MHz | 4.06 dB                    | (1)   |
| Radiated Emission | 1~18GHz    | 5.14 dB                    | (1)   |

Report No.: CTA21122201101 Page 9 of 47

| Radiated Emission     | 18-40GHz   | 5.38 dB | (1) |
|-----------------------|------------|---------|-----|
| Conducted Disturbance | 0.15~30MHz | 2.14 dB | (1) |

<sup>(1)</sup> This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

# **Equipments Used during the Test**

|                                  | (6.)                      |             | Equipment        | Calibratian         | Calib |
|----------------------------------|---------------------------|-------------|------------------|---------------------|-------|
| Test Equipment                   | Manufacturer              | Model No.   | Equipment<br>No. | Calibration<br>Date | Due   |
| LISN                             | R&S                       | ENV216      | CTA-308          | 2021/08/06          | 2022  |
| LISN                             | R&S                       | ENV216      | CTA-314          | 2021/08/06          | 2022  |
| LISN EMI Test Receiver           | R&S                       | ESPI        | CTA-307          | 2021/08/06          | 2022  |
| EMI Test Receiver                | R&S                       | ESCI        | CTA-306          | 2021/08/06          | 2022  |
| Spectrum Analyzer                | Agilent                   | N9020A      | CTA-301          | 2021/08/06          | 2022  |
| Spectrum Analyzer                | R&S                       | FSP         | CTA-337          | 2021/08/06          | 2022  |
| Vector Signal generator          | Agilent                   | N5182A      | CTA-305          | 2021/08/06          | 2022  |
| Analog Signal<br>Generator       | R&S                       | SML03       | CTA-304          | 2021/08/06          | 2022  |
| Universal Radio<br>Communication | CMW500                    | R&S         | CTA-302          | 2021/08/06          | 2022  |
| Temperature and humidity meter   | Chigo                     | ZG-7020     | CTA-326          | 2021/08/06          | 2022  |
| Ultra-Broadband<br>Antenna       | Schwarzbeck               | VULB9163    | CTA-310          | 2021/08/07          | 2022  |
| Horn Antenna                     | Schwarzbeck               | BBHA 9120D  | CTA-309          | 2021/08/07          | 2022  |
| Loop Antenna                     | Zhinan                    | ZN30900C    | CTA-311          | 2021/08/07          | 2022  |
| Horn Antenna                     | Beijing Hangwei<br>Dayang | OBH100400   | CTA-336          | 2021/08/06          | 2022  |
| Amplifier                        | Schwarzbeck               | BBV 9745    | CTA-312          | 2021/08/06          | 2022  |
| Amplifier                        | Taiwan chengyi            | EMC051845B  | CTA-313          | 2021/08/06          | 2022  |
| Directional coupler              | NARDA                     | 4226-10     | CTA-303          | 2021/08/06          | 2022  |
| High-Pass Filter                 | XingBo                    | XBLBQ-GTA18 | CTA-402          | 2021/08/06          | 2022  |
| High-Pass Filter                 | XingBo                    | XBLBQ-GTA27 | CTA-403          | 2021/08/06          | 2022  |
| Automated filter bank            | Tonscend                  | JS0806-F    | CTA-404          | 2021/08/06          | 2022  |
| Power Sensor                     | Agilent                   | U2021XA     | CTA-405          | 2021/08/06          | 2022  |
| Amplifier                        | Schwarzbeck               | BBV9719     | CTA-406          | 2021/08/06          | 2022  |

Page 10 of 47 Report No.: CTA21122201101

CTATE

CTATESTING

# TEST CONDITIONS AND RESULTS

#### AC Power Conducted Emission

#### **TEST CONFIGURATION**



#### **TEST PROCEDURE**

- 1 The equipment was set up as per the test configuration to simulate typical actual usage per the user's manual. The EUT is a tabletop system, a wooden table with a height of 0.8 meters is used and is placed on the ground plane as per ANSI C63.10-2013.
- 2 Support equipment, if needed, was placed as per ANSI C63.10-2013
- 3 All I/O cables were positioned to simulate typical actual usage as per ANSI C63.10-2013
- 4 The EUT received power from adapter, the adapter received AC120V/60Hz and AC 240V/60Hz power through a Line Impedance Stabilization Network (LISN) which supplied power source and was grounded to the ground plane.
- 5 All support equipments received AC power from a second LISN, if any.
- 6 The EUT test program was started. Emissions were measured on each current carrying line of the EUT using a spectrum Analyzer / Receiver connected to the LISN powering the EUT. The LISN has two monitoring points: Line 1 (Hot Side) and Line 2 (Neutral Side). Two scans were taken: one with Line 1 connected to Analyzer / Receiver and Line 2 connected to a 50 ohm load: the second scan had Line 1 connected to a 50 ohm load and Line 2 connected to the Analyzer / Receiver.
- 7 Analyzer / Receiver scanned from 150 KHz to 30MHz for emissions in each of the test modes.
- 8 During the above scans, the emissions were maximized by cable manipulation.

#### **AC Power Conducted Emission Limit**

For intentional device, according to § 15.207(a) AC Power Conducted Emission Limits is as following:

| Frequency range (MHz)                    | Limit (dBuV) |           |  |  |  |
|------------------------------------------|--------------|-----------|--|--|--|
| Frequency range (Miriz)                  | Quasi-peak   | Average   |  |  |  |
| 0.15-0.5                                 | 66 to 56*    | 56 to 46* |  |  |  |
| 0.5-5                                    | 56           | 46        |  |  |  |
| 5-30                                     | 60           | 50        |  |  |  |
| Decreases with the logarithm of the freq | uency.       |           |  |  |  |
| Com Co                                   | ATES         | ATESTING  |  |  |  |

Page 11 of 47 Report No.: CTA21122201101

# **TEST RESULTS**

#### Remark:

CTATES

1. All modes of GFSK, Π/4 DQPSK and 8DPSK were test at Low, Middle, and High channel; only the worst result of GFSK Middle Channel was reported as below:

2. Both 120 VAC, 50/60 Hz and 240 VAC, 50/60 Hz power supply have been tested, only the worst result of 120 VAC, 60 Hz was reported as below:



| NO. | Freq.<br>[MHz] | Reading [dBµV] | Level<br>[dBµV] | Factor<br>[dB] | Limit<br>[dBµ∨] | Margin<br>[dB] | Detector | Туре | Verdict |
|-----|----------------|----------------|-----------------|----------------|-----------------|----------------|----------|------|---------|
| 1   | 0.195          | 28.26          | 38.76           | 10.50          | 63.82           | 25.06          | PK       | L1   | PASS    |
| 2   | 0.1995         | 14.70          | 25.20           | 10.50          | 53.63           | 28.43          | AV       | L1   | PASS    |
| 3   | 0.6765         | 31.06          | 41.56           | 10.50          | 56.00           | 14.44          | PK       | L1   | PASS    |
| 4   | 0.6765         | 14.91          | 25.41           | 10.50          | 46.00           | 20.59          | AV       | L1   | PASS    |
| 5   | 1.4685         | 12.29          | 22.79           | 10.50          | 46.00           | 23.21          | AV       | L1   | PASS    |
| 6   | 1.4865         | 25.65          | 36.15           | 10.50          | 56.00           | 19.85          | PK       | L1   | PASS    |
| 7   | 2.751          | 4.83           | 15.33           | 10.50          | 46.00           | 30.67          | AV       | L1   | PASS    |
| 8   | 2.751          | 20.18          | 30.68           | 10.50          | 56.00           | 25.32          | PK       | L1   | PASS    |
| 9   | 8.2725         | 24.73          | 35.23           | 10.50          | 60.00           | 24.77          | PK       | L1   | PASS    |
| 10  | 8.421          | 6.34           | 16.84           | 10.50          | 50.00           | 33.16          | AV       | L1   | PASS    |

Note:1).Level(dB $\mu$ V)= Reading (dB $\mu$ V)+ Factor (dB)

- 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)
- 3). Margin(dB) =Limit (dBµV) -Level(dBµV)

CTATES

Report No.: CTA21122201101 Page 12 of 47



| Suspected List |                |                |                 |                |                 |                |          |      |         |  |
|----------------|----------------|----------------|-----------------|----------------|-----------------|----------------|----------|------|---------|--|
| NO.            | Freq.<br>[MHz] | Reading [dBµV] | Level<br>[dBµV] | Factor<br>[dB] | Limit<br>[dBµV] | Margin<br>[dB] | Detector | Туре | Verdict |  |
| 1              | 0.2895         | 14.24          | 24.74           | 10.50          | 50.54           | 25.80          | AV       | N    | PASS    |  |
| 2              | 0.294          | 30.43          | 40.93           | 10.50          | 60.41           | 19.48          | PK       | N    | PASS    |  |
| 3              | 0.717          | 12.48          | 22.98           | 10.50          | 46.00           | 23.02          | AV       | N    | PASS    |  |
| 4              | 0.7215         | 29.30          | 39.80           | 10.50          | 56.00           | 16.20          | PK       | N    | PASS    |  |
| 5              | 1.4685         | 26.44          | 36.94           | 10.50          | 56.00           | 19.06          | PK       | N    | PASS    |  |
| 6              | 1.482          | 11.55          | 22.05           | 10.50          | 46.00           | 23.95          | AV       | N    | PASS    |  |
| 7              | 4.344          | 3.88           | 14.38           | 10.50          | 46.00           | 31.62          | AV       | N    | PASS    |  |
| 8              | 4.344          | 18.46          | 28.96           | 10.50          | 56.00           | 27.04          | PK       | N    | PASS    |  |
| 9              | 10.4145        | 3.33           | 13.83           | 10.50          | 50.00           | 36.17          | AV       | N    | PASS    |  |
| 10             | 10.455         | 17.17          | 27.67           | 10.50          | 60.00           | 32.33          | PK       | N    | PASS    |  |

Note:1).Level( $dB\mu V$ )= Reading ( $dB\mu V$ )+ Factor (dB)

CTATESTING 2). Factor (dB)=insertion loss of LISN (dB) + Cable loss (dB)

3). Margin(dB) =Limit (dBµV) -Level(dBµV)

CTA TESTING

CTATES

CTA TESTING

Page 13 of 47 Report No.: CTA21122201101

# 4.2 Radiated Emission

## **TEST CONFIGURATION**

Frequency range 9 KHz – 30MHz



Frequency range 30MHz - 1000MHz



CTATE

Frequency range above 1GHz-25GHz



# **TEST PROCEDURE**

Page 14 of 47 Report No.: CTA21122201101

- 1. The EUT was placed on a turn table which is 0.8m above ground plane when testing frequency range 9 KHz -1GHz; the EUT was placed on a turn table which is 1.5m above ground plane when testing frequency range 1GHz – 25GHz.
- 2. Maximum procedure was performed by raising the receiving antenna from 1m to 4m and rotating the turn table from 0° to 360° to acquire the highest emissions from EUT.
- 3. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- Repeat above procedures until all frequency measurements have been completed.
- Radiated emission test frequency band from 9KHz to 25GHz.
- The distance between test antenna and EUT as following table states:

| Test Frequency range | Test Antenna Type          | Test Distance |
|----------------------|----------------------------|---------------|
| 9KHz-30MHz           | Active Loop Antenna        | 3             |
| 30MHz-1GHz           | Ultra-Broadband Antenna    | 3             |
| 1GHz-18GHz           | Double Ridged Horn Antenna | 3             |
| 18GHz-25GHz          | Horn Anternna              | 1             |

Setting test receiver/spectrum as following table states:

| Test Frequency | Test Receiver/Spectrum Setting                                                                            | Detector |
|----------------|-----------------------------------------------------------------------------------------------------------|----------|
| range          | TING                                                                                                      |          |
| 9KHz-150KHz    | RBW=200Hz/VBW=3KHz,Sweep time=Auto                                                                        | QP       |
| 150KHz-30MHz   | RBW=9KHz/VBW=100KHz,Sweep time=Auto                                                                       | QP       |
| 30MHz-1GHz     | RBW=120KHz/VBW=1000KHz,Sweep time=Auto                                                                    | QP       |
| 1GHz-40GHz     | Peak Value: RBW=1MHz/VBW=3MHz,<br>Sweep time=Auto<br>Average Value: RBW=1MHz/VBW=10Hz,<br>Sweep time=Auto | Peak     |

#### Field Strength Calculation

The field strength is calculated by adding the Antenna Factor and Cable Factor and subtracting the Amplifier Gain and Duty Cycle Correction Factor(if any) from the measured reading. The basic equation with a sample calculation is as follows:

#### FS = RA + AF + CL - AG

| sample calculation is as follows: | NG                                         |
|-----------------------------------|--------------------------------------------|
| FS = RA + AF + CL - AG            | TATESTING                                  |
| Where FS = Field Strength         | CL = Cable Attenuation Factor (Cable Loss) |
| RA = Reading Amplitude            | AG = Amplifier Gain                        |
| AF = Antenna Factor               | C                                          |

Transd=AF +CL-AG

#### RADIATION LIMIT

For intentional device, according to § 15.209(a), the general requirement of field strength of radiated emission from intentional radiators at a distance of 3 meters shall not exceed the following table. According to § 15.247(d), in any 100kHz bandwidth outside the frequency band in which the EUT is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the100kHz bandwidth within the band that contains the highest level of desired power.

The pre-test have done for the EUT in three axes and found the worst emission at position shown in test setup photos.

| Frequency (MHz) | Distance<br>(Meters) | Radiated (dBμV/m)                | Radiated (µV/m) |
|-----------------|----------------------|----------------------------------|-----------------|
| 0.009-0.49      | 3                    | 20log(2400/F(KHz))+40log(300/3)  | 2400/F(KHz)     |
| 0.49-1.705      | 3                    | 20log(24000/F(KHz))+ 40log(30/3) | 24000/F(KHz)    |
| 1.705-30        | 3                    | 20log(30)+ 40log(30/3)           | 30              |
| 30-88           | 3                    | 40.0                             | 100             |
| 88-216          | 3                    | 43.5                             | 150             |
| 216-960         | 3                    | 46.0                             | 200             |
| Above 960       | 3                    | 54.0                             | 500             |

#### **TEST RESULTS**

Page 15 of 47 Report No.: CTA21122201101

#### Remark:

- This test was performed with EUT in X, Y, Z position and the worse case was found when EUT in X
- We measured Radiated Emission at GFSK,π/4 DQPSK and 8DPSK mode from 9 KHz to 25GHz and recorded worst case at GFSK DH5 mode.
- For below 1GHz testing recorded worst at GFSK DH5 middle channel.
- Radiated emission test from 9 KHz to 10th harmonic of fundamental was verified, and no emission found except system noise floor in 9 KHz to 30MHz and not recorded in this report.

#### For 30MHz-1GHz

CTATESTING



| Suspected Data List |                |                  |                   |                |                   |                |             |           |            |  |
|---------------------|----------------|------------------|-------------------|----------------|-------------------|----------------|-------------|-----------|------------|--|
| NO.                 | Freq.<br>[MHz] | Reading [dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height [cm] | Angle [°] | Polarity   |  |
| 1                   | 40.7912        | 28.02            | 10.98             | -17.04         | 40.00             | 29.02          | 100         | 241       | Horizontal |  |
| 2                   | 57.2812        | 29.16            | 11.53             | -17.63         | 40.00             | 28.47          | 100         | 96        | Horizontal |  |
| 3                   | 147.37         | 42.04            | 20.28             | -21.76         | 43.50             | 23.22          | 100         | 132       | Horizontal |  |
| 4                   | 257.95         | 34.91            | 17.11             | -17.80         | 46.00             | 28.89          | 100         | 360       | Horizontal |  |
| 5                   | 554.77         | 28.48            | 14.97             | -13.51         | 46.00             | 31.03          | 100         | 293       | Horizontal |  |
| 6                   | 979.872        | 29.94            | 21.33             | -8.61          | 54.00             | 32.67          | 100         | 288       | Horizontal |  |

CTATE

CTA TESTING

Note:1).Level ( $dB\mu V/m$ )= Reading ( $dB\mu V/m$ )+ Factor (dB/m)

2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) - Pre Amplifier gain (dB)

CTA TESTING

3). Margin(dB) = Limit (dB $\mu$ V/m) - Level (dB $\mu$ V/m)

Report No.: CTA21122201101 Page 16 of 47



| Suspected Data List |                |                  |                   |                |                   |                |             |           |          |  |
|---------------------|----------------|------------------|-------------------|----------------|-------------------|----------------|-------------|-----------|----------|--|
| NO.                 | Freq.<br>[MHz] | Reading [dBµV/m] | Level<br>[dBµV/m] | Factor<br>[dB] | Limit<br>[dBµV/m] | Margin<br>[dB] | Height [cm] | Angle [°] | Polarity |  |
| 1                   | 52.9162        | 33.88            | 17.19             | -16.69         | 40.00             | 22.81          | 100         | 21        | Vertical |  |
| 2                   | 58.7362        | 39.62            | 21.68             | -17.94         | 40.00             | 18.32          | 100         | 72        | Vertical |  |
| 3                   | 148.461        | 44.41            | 22.65             | -21.76         | 43.50             | 20.85          | 100         | 331       | Vertical |  |
| 4                   | 229.82         | 39.42            | 20.94             | -18.48         | 46.00             | 25.06          | 100         | 140       | Vertical |  |
| 5                   | 553.921        | 31.01            | 17.47             | -13.54         | 46.00             | 28.53          | 100         | 72        | Vertical |  |
| 6                   | 943.133        | 30.51            | 21.53             | -8.98          | 46.00             | 24.47          | 100         | 31        | Vertical |  |

CTATE

CTATESTING

Note:1).Level ( $dB\mu V/m$ )= Reading ( $dB\mu V/m$ )+ Factor (dB/m)

- 2). Factor(dB/m)=Antenna Factor (dB/m) + Cable loss (dB) Pre Amplifier gain (dB)
- 3). Margin(dB) = Limit (dB $\mu$ V/m) Level (dB $\mu$ V/m)

CTA TESTING

CTA TESTING

Report No.: CTA21122201101 Page 17 of 47

## For 1GHz to 25GHz

Note: GFSK ,  $\pi/4$  DQPSK and 8DPSK all have been tested, only worse case GFSK is reported. GFSK (above 1GHz)

| Frequency(MHz):    |       |                      | 24                | 02             | Pola                   | arity:                      | HORIZONTAL              |                           |                                |
|--------------------|-------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Le    | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4804.00            | 55.17 | PK                   | 74.00             | 18.83          | 59.44                  | 32.33                       | 5.12                    | 41.72                     | -4.27                          |
| 4804.00            | 46.22 | AV                   | 54.00             | 7.78           | 50.49                  | 32.33                       | 5.12                    | 41.72                     | -4.27                          |
| 7206.00            | 51.12 | PK                   | 74.00             | 22.88          | 51.64                  | 36.60                       | 6.49                    | 43.61                     | -0.52                          |
| 7206.00            |       | AV                   | 54.00             |                |                        |                             |                         |                           | C VI                           |

| Frequency(MHz):    |                     |    | 2402              |                | Polarity:              |                             | VERTICAL                |                           |                                |
|--------------------|---------------------|----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Emis<br>Lev<br>(dBu |    | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4804.00            | 55.87               | PK | 74.00             | 18.13          | 60.14                  | 32.33                       | 5.12                    | 41.72                     | -4.27                          |
| 4804.00            | 46.72               | AV | 54.00             | 7.28           | 50.99                  | 32.33                       | 5.12                    | 41.72                     | -4.27                          |
| 7206.00            | 52.02               | PK | 74.00             | 21.98          | 52.54                  | 36.60                       | 6.49                    | 43.61                     | -0.52                          |
| 7206.00            |                     | ΑV | 54.00             | -4(-6.77)      | -                      |                             |                         | -TE                       | 5 '                            |

| Freque             | ncy(MHz)           | :   | 24                | 41             | Pola                   | arity:                      | Н                       | ORIZONTA                  | <b>\L</b>                      |
|--------------------|--------------------|-----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Emis<br>Le<br>(dBu | vel | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4882.00            | 55.37              | PK  | 74.00             | 18.63          | 59.25                  | 32.60                       | 5.34                    | 41.82                     | -3.88                          |
| 4882.00            | 45.80              | ΑV  | 54.00             | 8.20           | 49.68                  | 32.60                       | 5.34                    | 41.82                     | -3.88                          |
| 7323.00            | 51.35              | PK  | 74.00             | 22.65          | 51.46                  | 36.80                       | 6.81                    | 43.72                     | -0.11                          |
| 7323.00            |                    | AV  | 54.00             | VI-            |                        |                             |                         | G                         |                                |

|                    |          |                      | II 34000          |                |                        |                             | and the same of th |                           |                                |
|--------------------|----------|----------------------|-------------------|----------------|------------------------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--------------------------------|
| Freque             | ncy(MHz) | ):                   | 24                | 41             | Pola                   | arity:                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VERTICAL                  | -                              |
| Frequency<br>(MHz) | Le       | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4882.00            | 56.47    | PK                   | 74.00             | 17.53          | 60.35                  | 32.60                       | 5.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41.82                     | -3.88                          |
| 4882.00            | 46.40    | AV                   | 54.00             | 7.60           | 50.28                  | 32.60                       | 5.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 41.82                     | -3.88                          |
| 7323.00            | 52.75    | PK                   | 74.00             | 21.25          | 52.86                  | 36.80                       | 6.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 43.72                     | -0.11                          |
| 7323.00            |          | AV                   | 54.00             |                |                        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                           |                                |

| Freque             | ncy(MHz)            | :   | 24                | 80             | Pola                   | rity:                       | ŀ                       | IORIZONTA                 | <b>NL</b>                      |
|--------------------|---------------------|-----|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Emis<br>Lev<br>(dBu | vel | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4960.00            | 55.40               | PK  | 74.00             | 18.60          | 58.48                  | 32.73                       | 5.66                    | 41.47                     | -3.08                          |
| 4960.00            | 46.76               | ΑV  | 54.00             | 7.24           | 49.84                  | 32.73                       | 5.66                    | 41.47                     | -3.08                          |
| 7440.00            | 52.22               | PK  | 74.00             | 21.78          | 51.77                  | 37.04                       | 7.25                    | 43.84                     | 0.45                           |
| 7440.00            |                     | AV  | 54.00             |                |                        |                             |                         |                           |                                |

|                    | 4.9      | 11/2                 |                   |                |                        |                             |                         |                           |                                |
|--------------------|----------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Freque             | ncy(MHz) | ):                   | 24                | 80             | Pola                   | arity:                      |                         | VERTICAL                  | -                              |
| Frequency<br>(MHz) | Le       | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 4960.00            | 56.30    | PK                   | 74.00             | 17.70          | 59.38                  | 32.73                       | 5.66                    | 41.47                     | -3.08                          |
| 4960.00            | 47.36    | AV                   | 54.00             | 6.64           | 50.44                  | 32.73                       | 5.66                    | 41.47                     | -3.08                          |
| 7440.00            | 53.72    | PK                   | 74.00             | 20.28          | 53.27                  | 37.04                       | 7.25                    | 43.84                     | 0.45                           |
| 7440.00            |          | AV                   | 54.00             |                | (                      | CAUS-                       |                         |                           |                                |

Report No.: CTA21122201101 Page 18 of 47

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit.

# Results of Band Edges Test (Radiated)

Note: GFSK, Pi/4 DQPSK and 8DPSK all have been tested, only worse case GFSK is reported.

### GFSK

| Freque             | ncy(MHz) | ):                   | 24                | 02             | Pola                   | arity:                      | H                       | IORIZONTA                 | <b>L</b>                       |
|--------------------|----------|----------------------|-------------------|----------------|------------------------|-----------------------------|-------------------------|---------------------------|--------------------------------|
| Frequency<br>(MHz) | Le       | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2390.00            | 46.89    | PK                   | 74.00             | 27.11          | 57.31                  | 27.42                       | 4.31                    | 42.15                     | -10.42                         |
| 2390.00            |          | AV                   | 54.00             |                |                        |                             |                         |                           |                                |
| Freque             | ncy(MHz) | ):                   | 24                | 02             | Pola                   | arity:                      | VERTICAL                |                           |                                |
| Frequency<br>(MHz) | Le       | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2390.00            | 48.09    | PK                   | 74.00             | 25.91          | 58.51                  | 27.42                       | 4.31                    | 42.15                     | -10.42                         |
| 2390.00            |          | AV                   | 54.00             | -              |                        |                             |                         | TATE                      |                                |
| Freque             | ncy(MHz) | ):                   | 24                | 80             | Pola                   | arity:                      | HORIZONTAL              |                           | <b>L</b>                       |
| Frequency<br>(MHz) | Le       | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2483.50            | 45.08    | PK                   | 74.00             | 28.92          | 55.19                  | 27.70                       | 4.47                    | 42.28                     | -10.11                         |
| 2483.50            | 150      | AV                   | 54.00             | 1              | e                      |                             |                         |                           |                                |
| Freque             | ncy(MHz) | ):                   | 24                | 80             | Pola                   | arity:                      |                         | VERTICAL                  |                                |
| Frequency<br>(MHz) | Le       | ssion<br>vel<br>V/m) | Limit<br>(dBuV/m) | Margin<br>(dB) | Raw<br>Value<br>(dBuV) | Antenna<br>Factor<br>(dB/m) | Cable<br>Factor<br>(dB) | Pre-<br>amplifier<br>(dB) | Correction<br>Factor<br>(dB/m) |
| 2483.50            | 47.38    | PK                   | 74.00             | 26.62          | 57.49                  | 27.70                       | 4.47                    | 42.28                     | -10.11                         |
| 2483.50            |          | AV                   | 54.00             |                |                        | C. The                      |                         |                           |                                |

#### REMARKS:

CTA TESTING

- 1. Emission level (dBuV/m) =Raw Value (dBuV)+Correction Factor (dB/m)
- 2. Correction Factor (dB/m) = Antenna Factor (dB/m)+Cable Factor (dB)- Pre-amplifier
- 3. Margin value = Limit value- Emission level.
- 4. -- Mean the PK detector measured value is below average limit.
- 5. The other emission levels were very low against the limit. ETA CTATESTING

CTATESTING

Page 19 of 47 Report No.: CTA21122201101

# 4.3 Maximum Peak Output Power

# Limit

The Maximum Peak Output Power Measurement is 125mW (20.97).

# **Test Procedure**

Remove the antenna from the EUT and then connect a low loss RF cable from the antenna port to the power sensor. CTATE

# **Test Configuration**

CTA TESTING



# CTATESTING **Test Results**

| GFSK     39     -0.24     20.97     Pass       78     -0.29       00     0.05       π/4DQPSK     39     0.49     20.97     Pass       78     0.43       8DPSK     39     0.88     20.97     Pass | GFSK 39 -0 78 -0 00 0.0                           | .76<br>24<br>29 |       | <b>Result</b> Pass |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------|-------|--------------------|
| GFSK     39     -0.24     20.97     Pass       78     -0.29       00     0.05       π/4DQPSK     39     0.49     20.97     Pass       78     0.43       8DPSK     39     0.88     20.97     Pass | GFSK 39 -0.3<br>78 -0.3<br>00 0.0                 | 24 29           | 0.97  | Pass               |
| 78 -0.29  00 0.05  π/4DQPSK 39 0.49 20.97 Pass 78 0.43  00 0.43  8DPSK 39 0.88 20.97 Pass                                                                                                        | 78 -0.0<br>00 0.0                                 | 29              | 0.97  | Pass               |
| π/4DQPSK     39     0.49     20.97     Pass       78     0.43       8DPSK     39     0.88     20.97     Pass                                                                                     | 00 0.0                                            |                 | EW C. |                    |
| π/4DQPSK     39     0.49     20.97     Pass       78     0.43       00     0.43       8DPSK     39     0.88     20.97     Pass                                                                   |                                                   | 05              |       |                    |
| 78 0.43 00 0.43 8DPSK 39 0.88 20.97 Pass                                                                                                                                                         | π/4DQPSK 39 0.4                                   |                 |       |                    |
| 00         0.43           8DPSK         39         0.88         20.97         Pass                                                                                                               |                                                   | 49 29           | 0.97  | Pass               |
| 8DPSK 39 0.88 20.97 Pass                                                                                                                                                                         | 78 0.4                                            | 43              |       |                    |
| -cTII"                                                                                                                                                                                           | 00 0.4                                            | 43              |       |                    |
| -51                                                                                                                                                                                              | 8DPSK 39 0.8                                      | 88 29           | 0.97  | Pass               |
| 78 0.76                                                                                                                                                                                          | 78 0.7                                            | 76              | TEST  |                    |
| lote: 1.The test results including the cable lose.                                                                                                                                               | ote: 1.The test results including the cable lose. | GON CIT         | ·     | (FIF               |

CTA TESTING

CTA TESTING

Page 20 of 47 Report No.: CTA21122201101

#### 20dB Bandwidth

#### Limit

For frequency hopping systems operating in the 2400MHz-2483.5MHz no limit for 20dB bandwidth.

#### **Test Procedure**

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the fundamental frequency was measured by spectrum analyzer with 30 KHz RBW and 100 KHz VBW.

The 20dB bandwidth is defined as the total spectrum the power of which is higher than peak power minus 20dB.

# **Test Configuration**



#### **Test Results**

| <u>Results</u> |         |                      | CTATESTING |
|----------------|---------|----------------------|------------|
| Modulation     | Channel | 20dB bandwidth (MHz) | Result     |
|                | CH00    | 0.957                |            |
| GFSK           | CH39    | 0.960                |            |
| TEST           | CH78    | 0.960                |            |
| CTA            | CH00    | 1.305                |            |
| π/4DQPSK       | CH39    | 1.311                | Pass       |
|                | CH78    | 1.314                | STING      |
|                | CH00    | 1.302                |            |
| 8DPSK          | CH39    | 1.305                |            |
|                | CH78    | 1.305                | CC         |

CTA TESTING

CTATESTING

CTA TESTING



Page 22 of 47 Report No.: CTA21122201101



Report No.: CTA21122201101 Page 23 of 47



Page 24 of 47 Report No.: CTA21122201101

# 4.5 Frequency Separation

### **LIMIT**

According to 15.247(a)(1), frequency hopping systems shall have hopping channel carrier frequencies separated by minimum of 25KHz or the 2/3\*20dB bandwidth of the hopping channel, whichever is greater.

#### **TEST PROCEDURE**

The transmitter output was connected to the spectrum analyzer through an attenuator. The bandwidth of the CTATE fundamental frequency was measured by spectrum analyzer with 100 KHz RBW and 300 KHz VBW.

# **TEST CONFIGURATION**



#### **TEST RESULTS**

| Court      |         |                             |                   |        |
|------------|---------|-----------------------------|-------------------|--------|
| Modulation | Channel | Channel Separation<br>(MHz) | Limit(MHz)        | Result |
| GFSK       | CH38    | 1.000                       | 25KHz or 2/3*20dB | Pass   |
| GFSK       | CH39    | 1.000                       | bandwidth         | Fass   |
| π/4DQPSK   | CH38    | 1.006                       | 25KHz or 2/3*20dB | Pass   |
| II/4DQF3K  | CH39    | 1.000                       | bandwidth         | Fass   |
| 8DPSK      | CH38    | 1.000                       | 25KHz or 2/3*20dB | Pass   |
| ODPSK      | CH39    | TES 1.000                   | bandwidth         | rass   |

CTATE

CTATESTING

Note:

We have tested all mode at high, middle and low channel, and recorded worst case at middle

#### Test plot as follows:

CTA TESTING

CTA TESTING

Page 25 of 47 Report No.: CTA21122201101



Page 26 of 47 Report No.: CTA21122201101

# Number of hopping frequency

#### Limit

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

#### **Test Procedure**

The transmitter output was connected to the spectrum analyzer through an attenuator. Set spectrum analyzer CTATE start 2400MHz to 2483.5MHz with 100 KHz RBW and 300 KHz VBW.

# **Test Configuration**



# **Test Results**

| Test Results | TATES                     | STING |        |
|--------------|---------------------------|-------|--------|
| Modulation   | Number of Hopping Channel | Limit | Result |
| GFSK         | 79                        |       | TATES  |
| π/4DQPSK     | 79                        | ≥15   | Pass   |
| 8DPSK        | 79                        |       |        |

CTATE

CTATESTING

# Test plot as follows:

CTA TESTING

CTA TESTING

Page 27 of 47 Report No.: CTA21122201101



Page 28 of 47 Report No.: CTA21122201101

# Time of Occupancy (Dwell Time)

#### Limit

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

#### **Test Procedure**

CTATE The transmitter output was connected to the spectrum analyzer through an attenuator. Set center frequency of spectrum analyzer=operating frequency with 1MHz RBW and 1MHz VBW, Span 0Hz.

# **Test Configuration**



#### **Test Results**

|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TATE                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| na Channel | BurstWidth [ms]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | TotalHops<br>[Num]                                                                                                                                                                                            | Result[s]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Limit[s]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Verdict                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Нор        | 0.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 320                                                                                                                                                                                                           | 0.118                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ≤0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Нор        | 1.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 170                                                                                                                                                                                                           | 0.277                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ≤0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | 2.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90                                                                                                                                                                                                            | 0.259                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ≤0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Нор        | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 330                                                                                                                                                                                                           | 0.127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ≤0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Нор        | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 160                                                                                                                                                                                                           | 0.262                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ≤0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Нор        | 2.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 110                                                                                                                                                                                                           | 0.317                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ≤0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Нор        | 0.39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 330                                                                                                                                                                                                           | 0.127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ≤0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Нор        | 1.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120                                                                                                                                                                                                           | 0.196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ≤0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Нор        | 2.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120                                                                                                                                                                                                           | 0.346                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ≤0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PASS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|            | CTA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                               | CTATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | UNG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|            | Hop   Hop | Hop         [ms]           Hop         0.37           Hop         1.63           Hop         2.88           Hop         0.38           Hop         1.64           Hop         0.39           Hop         1.64 | Image: | Hop   0.37   320   0.118   Hop   1.63   170   0.277   Hop   2.88   90   0.259   Hop   1.64   160   0.262   Hop   2.89   110   0.317   Hop   0.39   330   0.127   Hop   0.39   330   0.127   Hop   1.64   120   0.196   Hop   2.89   120   0.346   Hop   2.89   Hop   2.89 | Image: |

CTATE

CTATESTING

CTA TESTING

CTA TESTING



Page 30 of 47 Report No.: CTA21122201101





Report No.: CTA21122201101 Page 32 of 47

## **Out-of-band Emissions**

#### Limit

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF con-ducted or a radiated measurement, pro-vided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter com-plies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required.

## **Test Procedure**

Connect the transmitter output to spectrum analyzer using a low loss RF cable, and set the spectrum analyzer to RBW=100 kHz, VBW= 300 kHz, peak detector, and max hold. Measurements utilizing these setting are made of the in-band reference level, bandedge and out-of-band emissions. CTA TESTING

#### **Test Configuration**



# Test Results

Remark: The measurement frequency range is from 30MHz to the 10th harmonic of the fundamental frequency. The lowest, middle and highest channels are tested to verify the spurious emissions and bandage measurement data.

CTATE

CTA TESTING

We measured all conditions (DH1, DH3, DH5) and recorded worst case at DH5

Test plot as follows:

CTA TESTING

CTATESTING









Page 37 of 47 Report No.: CTA21122201101



CTA TESTING

CTATESTING

CTA TESTING

Page 38 of 47 Report No.: CTA21122201101

Band-edge Measurements for RF Conducted Emissions: **GFSK** enter Freq 2.352500000 GHz #Avg Type: RMS AvgiHold: 1405/1500 #Avg Type: RMS AvgiHold: 1500/1500 Center Freq 2.510000000 GHz Auto Tur Auto Tu Ref Offset 1 dB Ref 20.00 dBm Ref Offset 1 dB Ref 20.00 dBn Center Fre Start Fre CF Ster 8.000000 MH Mr Stop 2.55000 GHz reep 7.667 ms (1001 pts) Right Band edge hoping off Left Band edge hoping off nter Freq 2.510000000 GHz Trig: Free Run Auto Tun Ref Offset 1 dB Ref 20.00 dBn Center Free Center Fre Start Fre Stop Fre 2.405000000 GH Stop 2.40500 GHz Stop 2.55000 GHz ep 7.667 ms (1001 pts Freq Offs Scale Typ Scale Type Left Band edge hoping on Right Band edge hoping on

CTA TESTING

CTATESTING

CTA TESTING

Report No.: CTA21122201101 Page 39 of 47



CTA TESTING

CTATESTING

CTA TESTING

Report No.: CTA21122201101 Page 40 of 47



CTA TESTING

CTATESTING

CTA TESTING

Page 41 of 47 Report No.: CTA21122201101

# 4.9 Pseudorandom Frequency Hopping Sequence

# **TEST APPLICABLE**

# For 47 CFR Part 15C section 15.247 (a) (1) requirement:

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hop-ping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW. The system shall hop to channel frequencies that are selected at the system hopping rate from a pseudo randomly ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hop-ping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

# **EUT Pseudorandom Frequency Hopping Sequence Requirement**

The pseudorandom frequency hopping sequence may be generated in a nice-stage shift register whose 5<sup>th</sup> and 9<sup>th</sup> stage outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first one of 9 consecutive ones, for example: the shift register is initialized with nine ones.

- Number of shift register stages:9
- Length of pseudo-random sequence:29-1=511 bits
- Longest sequence of zeros:8(non-inverted signal)



Linear Feedback Shift Register for Generation of the PRBS sequence

An example of pseudorandom frequency hopping sequence as follows:



Each frequency used equally one the average by each transmitter.

The system receiver have input bandwidths that match the hopping channel bandwidths of their corresponding transmitter and shift frequencies in synchronization with the transmitted signals. CTA TESTING

Page 42 of 47 Report No.: CTA21122201101

# 4.10 Antenna Requirement

# **Standard Applicable**

For intentional device, according to FCC 47 CFR Section 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

And according to FCC 47 CFR Section 15.247 (c), if transmitting antennas of directional gain CTATE greater than 6dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6dBi.

# Refer to statement below for compliance

The manufacturer may design the unit so that the user can replace a broken antenna, but the use of a standard antenna jack or electrical connector is prohibited. Further, this requirement does not CTA TESTING apply to intentional radiators that must be professionally installed.

CTA TESTING

CTATESTING

CTATE

# **Antenna Connected Construction**

CTA TESTING

CTA TESTING

The maximum gain of antenna was 0.00 dBi.

CTA TESTING

Report No.: CTA21122201101 Page 43 of 47

# Test Setup Photos of the EUT



CTATE





Report No.: CTA21122201101 Page 44 of 47

# Photos of the EUT CTATES

**External photos** 



CTATE





Report No.: CTA21122201101 Page 45 of 47



CTATE





Page 46 of 47 Report No.: CTA21122201101



CTATE





Page 47 of 47 Report No.: CTA21122201101



CTATE

CTATE

CTATESTING

CTA TESTING

CTATESTING

CTA TESTING