	0	Report No.: DACE250214001RF001
DAG	RF TEST RE	PORT
6	For	
OPRO	eijing Kegong Techno	
	Product Name: Exer	
	Test Model(s): `	TK10
Report Reference No.	: DACE250214001RF001	
FCC ID	: 2BE9Q-YK10	
	. 2023@-11(10	
Applicant's Name	: Beijing Kegong Technology	
Address		ilding 10, Baigiang Avenue, Fengtai District
Testing Laboratory	: Shenzhen DACE Testing Te	echnology Co., Ltd. uilding H, Hongfa Science & Technology Park,
Address		n Subdistrict, Bao'an District, Shenzhen,
Test Specification Standa	rd : 47 CFR Part 15.247	
Date of Receipt	: February 14, 2025	
Date of Test	: February 14, 2025 to March	h 11, 2025
Data of Issue	: March 11, 2025	
Result	: Pass	
Testing Technology Co., Ltd	. This document may be altered or re d shall be noted in the revision section	he written approval of Shenzhen DACE evised by Shenzhen DACE Testing Technology on of the document. The test results in the
102, Building H1, & 1/F., Building H, Hongf	a Science & Technology Park, Tangtou Community, Shiy	van Subdistrict, Bao'an District, Shenzhen, Guangdong, China

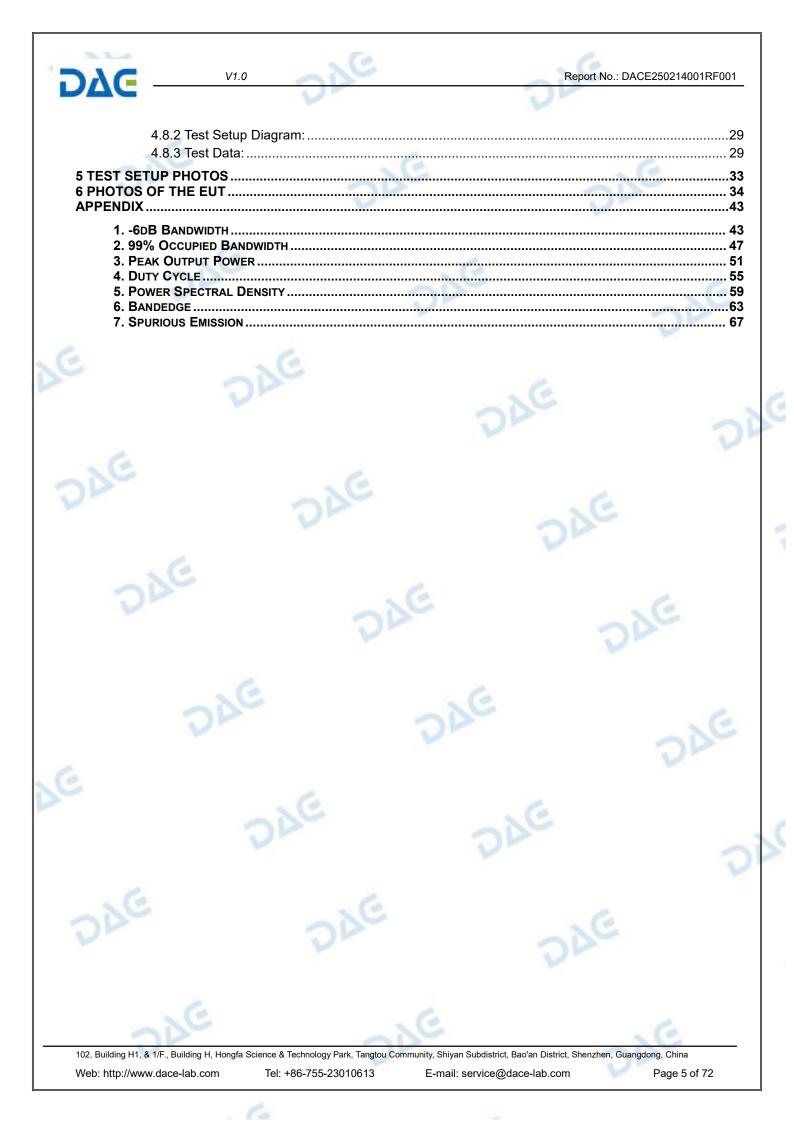
e

<u>Δ</u> -	V1.0	DAC	Report No.: DACE250214001RF00
	C Rev	vision History Of Repo	ort DDE
Version V1.0	Description Original	REPORT No. DACE250214001RF001	Issue Date March 11, 2025
2	DE	ONE	1E

1.

1.

DΔC


2

1

CONTENTS

C

	CONTENTS		
1 TEST SUMMARY			6
		22	
2.8 ANNOUNCEMENT	<u> </u>		10
3 EVALUATION RESULTS (EVALUA	ATION)		11
		<u> </u>	
3.1.1 Conclusion:			11
		<u></u>	
4.2 6dB BANDWIDTH			13
4.2.1 E.U.T. Operation: .			13
4.2.3 Test Data:			14
4.3 MAXIMUM CONDUCTED OUT	PUT POWER	<u></u>	15
4.3.1 E.U.T. Operation: .			15
4.3 EMISSIONS IN NON-RESTRIC			
4.5.1 E.U.I. Operation: .	<u> </u>		
-	•		
4.7.1 E.U.T. Operation: .	<u> </u>	25	25
-			
102, Building H1, & 1/F., Building H, Hongfa Science & T			
Web: http://www.dace-lab.com Tel: +	86-755-23010613 E-mail: serv	vice@dace-lab.com Page 4 o	of 72

NE

V1.0

TEST SUMMARY 1

1.1 Test Standards

NE

DAG

The tests were performed according to following standards:

47 CFR Part 15.247: Operation within the bands 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz

1.2 Summary of Test Result

Item	Method	Requirement	Result
Antenna requirement	1	47 CFR 15.203	Pass
Conducted Emission at AC power line	ANSI C63.10-2020 section 6.2	47 CFR 15.207(a)	N/A
6dB Bandwidth	ANSI C63.10-2020, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(a)(2)	Pass
Maximum Conducted Output Power	ANSI C63.10-2020 section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(b)(3)	Pass
Power Spectral Density	ANSI C63.10-2020, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(e)	Pass
Emissions in non-restricted frequency bands	ANSI C63.10-2020 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Band edge emissions (Radiated)	ANSI C63.10-2020 section 6.10 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (below 1GHz)	ANSI C63.10-2020 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass
Emissions in frequency bands (above 1GHz)	ANSI C63.10-2020 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02	47 CFR 15.247(d), 15.209, 15.205	Pass

4

C

Ne

Note: 1.N/A -this device(EUT) is not applicable to this testing item

Ne

2. RF-conducted test results including cable loss.

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Ne

Page 6 of 72

E

2 GENERAL INFORMATION

2.1 Client Information

DVG

Applicant's Name	Beijing Kegong Technology Co., Ltd	
Address	Unit 313-155, 3rd Floor, Building 10, Baigiang Avenue, Fengtai District Beijing 100070 China (Peoples Republic Of)	t
Manufacturer	Beijing Kegong Technology Co., Ltd	
Address	Unit 313-155, 3rd Floor, Building 10, Baigiang Avenue, Fengtai District	

Beijing 100070 China (Peoples Republic Of)

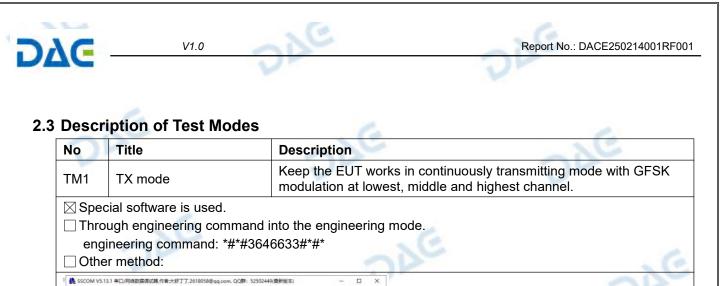
2.2 Description of Device (EUT)

Product Name:	Exercise Bike
Model/Type reference:	YK10
Trade Mark:	YAMO
Product Description:	Exercise Bike
Power Supply:	DC3.0V from battery
Operation Frequency:	2402MHz to 2480MHz
Number of Channels:	40
Modulation Type:	GFSK
Antenna Type:	PCB ANTENNA
Antenna Gain:	-0.06dBi
Hardware Version:	V1.0
Software Version:	V5.13.1

Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
			. ,				
1	2402MHz	11	2422MHz	21	2442MHz	31	2462MHz
2	2404MHz	12	2424MHz	22	2444MHz	32	2464MHz
3	2406MHz	13	2426MHz	23	2446MHz	33	2466MHz
4	2408MHz	14	2428MHz	24	2448MHz	34	2468MHz
5	2410MHz	15	2430MHz	25	2450MHz	35	2470MHz
6	2412MHz	16	2432MHz	26	2452MHz	36	2472MHz
7	2414MHz	17	2434MHz	27	2454MHz	37	2474MHz
8	2416MHz	18	2436MHz	28	2456MHz	38	2476MHz
9	2418MHz	19	2438MHz	29	2458MHz	39	2478MHz
10	2420MHz	20	2440MHz	30	2460MHz	40	2480MHz

Note: In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Test channel	Frequency (MHz)
Lowest channel	2402MHz
Middle channel	2440MHz
Highest channel	2480MHz


E-mail: service@dace-lab.com

Page 7 of 72

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23010613

Web: http://www.dace-lab.com

×

AC

● 关阔串口 🖒		加封面觀和分包显示。 細 封固: 20 ms 第1 字节 至 末尾 • 加校验	vone •
RTS I DTR 液特溶	110200		^
为了更好地发展SSCON软件 新生活册基立自同结定客户			~
40群满员了,没有第二个	群.★合宙高性价比	G模块★BI-Thread中国人的开源免费操作系统★★BBB运距离MiFi可自领	啊
www.daxia.com \$:29	R:12	COM3 日打开 115200bps,8,1,None,None	CTS=0

2.4 Description of Support Units

通用端口 半口设置 显示发送 多字符串 小工具 帮助 联系作者 大虾电子用

10:52:25.969]发→◇AT#TC 10:62:25.973]\$t+ +OK [10:52:31.377]发→◇AT#TA00_00_15 [10:52:31.380]₩t+◆OK 10 53 05.705]发→◇AT#TC :53:05.708]₩+++08

The EUT was tested as an independent device.

2.5 Equipments Used During The Test

Conducted Emission	at AC power line		6		
Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
Cable	SCHWARZ BECK	1	/	2024-05-20	2025-05-19
Pulse Limiter	SCHWARZ BECK	VTSD 9561-F Pulse limiter 10dB Attenuation	561-G071	2024-12-06	2025-12-05
50ΩCoaxial Switch	Anritsu	MP59B	M20531	/	/
Test Receiver	Rohde & Schwarz	ESPI TEST RECEIVER	ID:1164.6607K0 3-102109-MH	2024-06-12	2025-06-11
L.I.S.N	R&S	ESH3-Z5	831.5518.52	2023-12-12	2025-12-11
L.I.S.N	SCHWARZ BECK	NSLK 8126	05055	2024-06-14	2025-06-13
Pulse Limiter	CYBERTEK	EM5010A	/	2024-09-27	2025-09-26
EMI test software	EZ -EMC	EZ	V1.1.42	1	/

6dB Bandwidth
Maximum Conducted Output Power

Power Spectral Density

Emissions in non-restricted frequency bands

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date
RF Test Software	Tachoy Information Technology(she nzhen) Co.,Ltd.	RTS-01	V1.0.0	/	1
RF Sensor Unit	Tachoy Information Technology(she nzhen) Co.,Ltd.	TR1029-2	000001	/	DAL
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11
Vector Signal Generator	Keysight	N5181A	MY50143455	2024-12-06	2025-12-05
Signal Generator	Keysight	N5182A	MY48180415	2024-12-06	2025-12-05
Spectrum Analyzer	Keysight	N9020A	MY53420323	2024-12-06	2025-12-05

Band edge emissions (Radiated) Emissions in frequency bands (below 1GHz) Emissions in frequency bands (above 1GHz)

Equipment	Manufacturer	Model No	Inventory No	Cal Date	Cal Due Date	
EMI Test software	Farad	EZ -EMC	V1.1.42		/	
Positioning Controller	MF	MF-7802	/	1	/	
Amplifier(18-40G)	COM-POWER	AH-1840	10100008-1	2023-05-19	2025-05-18	
Horn antenna	COM-POWER	AH-1840 (18-40G)	10100008	2023-05-19	2025-05-18	
Loop antenna	ZHINAN	ZN30900C	ZN30900C	2024-06-14	2026-06-13	
Cable(LF)#2	Schwarzbeck	1 🕖	/	2024-12-19	2025-12-18	
Cable(LF)#1	Schwarzbeck	/	/	2024-12-19	2025-12-18	
Cable(HF)#2	Schwarzbeck	AK9515E	96250	2024-05-20	2025-05-19	
Cable(HF)#1	Schwarzbeck	SYV-50-3-1	1	2024-05-20	2025-05-19	
Power amplifier(LF)	Schwarzbeck	BBV9743	9743-151	2024-06-12	2025-06-11	
Power amplifier(HF)	Schwarzbeck	BBV9718	9718-282	2024-06-12	2025-06-11	
Wideband radio communication tester	R&S	CMW500	113410	2024-06-12	2025-06-11	
Spectrum Analyzer	R&S	FSP30	1321.3008K40- 101729-jR	2024-06-12	2025-06-11	
Test Receiver	R&S	ESCI 3	1166.5950K03- 101431-Jq	2024-06-13	2025-06-12	
Horn Antenna	Sunol Sciences	DRH-118	A091114	2023-05-13	2025-05-12	
Broadband Antenna	Sunol Sciences	JB6 Antenna	A090414	2024-09-28	2026-09-27	

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Page 9 of 72

2.6 Statement Of The Measurement Uncertainty

Test Item	Measurement Uncertainty			
Conducted Disturbance (0.15~30MHz)	±3.41dB			
Occupied Bandwidth	VE	±3.63%		
RF conducted power	±0.733dB			
RF power density	±0.234%			
Conducted Spurious emissions	±1.98dB			
Radiated Emission (Above 1GHz)	±5.46dB	6		
Radiated Emission (Below 1GHz)	±5.79dB	1		

Note: (1) This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

2.7 Authorizations

DVC

Company Name:	Shenzhen DACE Testing Technology Co., Ltd.			
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China			
Phone Number:	+86-13267178997			
Fax Number:	86-755-29113252			
Identification of the Responsi	ble Testing Location			
Company Name:	Shenzhen DACE Testing Technology Co., Ltd.			
Address:	101-102 Building H5 & 1/F., Building H, Hongfa Science & Technology Park, Tangtou, Shiyan, Bao'an District, Shenzhen, Guangdong, China			
Phone Number:	+86-13267178997			
Fax Number:	86-755-29113252			
FCC Registration Number:	0032847402			
Designation Number:	CN1342			
Test Firm Registration No.:	778666			
A2LA Certificate Number:	6270.01			

2.8 Announcement

(1) The test report reference to the report template version v0.

(2) The test report is invalid if not marked with the signatures of the persons responsible for preparing, reviewing and approving the test report.

(3) The test report is invalid if there is any evidence and/or falsification.

(4) This document may not be altered or revised in any way unless done so by DACE and all revisions are duly noted in the revisions section.

(5) Content of the test report, in part or in full, cannot be used for publicity and/or promotional purposes without prior written approval from the laboratory.

(6) We hereby declare that the laboratory is only responsible for the data released by the laboratory, except for the part provided by the applicant. the laboratory is not responsible for the accuracy of the information provided by the client(item 2.2). When the information provided by the customer may affect the effectiveness of the results, the responsibility lies with the customer, and the laboratory does not assume any responsibility.

Tel: +86-755-23010613

DAG

4

Evaluation Results (Evaluation) 3

DAG

NE

3.1 Antenna requirement

Test Requirement:	Refer to 47 CFR Part 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.
-------------------	---

3.1.1 Conclusion:

DAG

DAG

AG

DAG

DAG

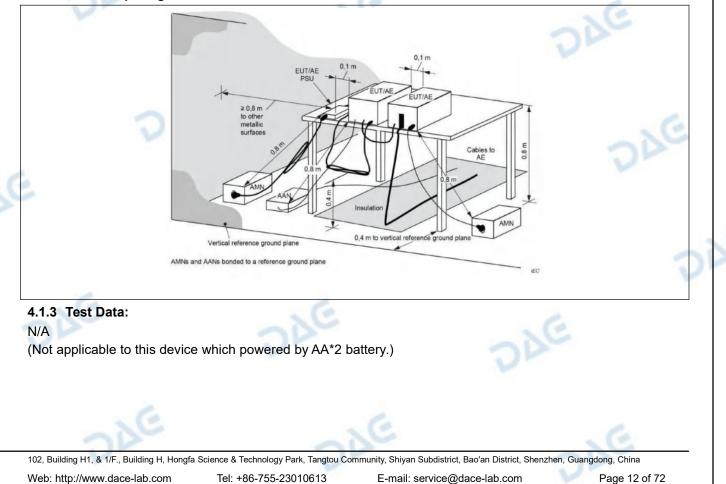
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 E-mail: service@dace-lab.com Page 11 of 72 Web: http://www.dace-lab.com

DAG

4 Radio Spectrum Matter Test Results (RF)

4.1 Conducted Emission at AC power line

Test Requirement:	Refer to 47 CFR 15.207(a), Except section, for an intentional radiator utility (AC) power line, the radio free AC power line on any frequency of MHz, shall not exceed the limits in μ H/50 ohms line impedance stability	that is designed to be equency voltage that is r frequencies, within th the following table, as	connected to the public conducted back onto the le band 150 kHz to 30 measured using a 50			
Test Limit:	Frequency of emission (MHz)	Conducted limit (dl	BµV)			
	V	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	*Decreases with the logarithm of t	he frequency.				
Test Method:	ANSI C63.10-2020 section 6.2					
Procedure:	Refer to ANSI C63.10-2020 section 6.2, standard test method for ac power-line conducted emissions from unlicensed wireless devices					


ø

4.1.1 E.U.T. Operation:

DAG

Operating Environment:						
Temperature:	22 °C		Humidity:	54 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1			V	
Final test mode:	6	TM1				

4.1.2 Test Setup Diagram:

Report No.: DACE250214001RF001

4.2 6dB Bandwidth

DAG

Test Requirement:	47 CFR 15.247(a)(2)
Test Limit:	Refer to 47 CFR 15.247(a)(2), Systems using digital modulation techniques may operate in the 902-928 MHz, and 2400-2483.5 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.
Test Method:	ANSI C63.10-2020, section 11.8 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	 11.8.1 Option 1 The steps for the first option are as follows: a) Set RBW = shall be in the range of 1% to 5% of the OBW but not less than 100 kHz. b) Set the VBW ≥ [3 × RBW]. c) Detector = peak. d) Trace mode = max-hold. e) Sweep = No faster than coupled (auto) time. f) Allow the trace to stabilize. g) Measure the maximum width of the emission by placing two markers, one at the lowest frequency and the other at the highest frequency of the envelope of the spectral display, such that each marker is at or slightly below the "-6 dB down amplitude". If a marker is below this "-6 dB down amplitude" value, then it shall be as close as possible to this value. 11.8.2 Option 2 The automatic bandwidth measurement capability of an instrument may be employed using the X dB bandwidth mode with X set to 6 dB, if the functionality described in 11.8.1 (i.e., RBW = 100 kHz, VBW ≥ 3 × RBW, and peak detector with maximum hold) is implemented by the instrumentation function. When using this capability, care shall be taken so that the bandwidth measurement is not influenced by any intermediate power nulls in the fundamental emission that might be ≥ 6 dB.
4.2.1 E.U.T. Operation	

2

E.U.T. Operation:

Operating Envir	onment:					
Temperature:	22 °C	1	Humidity:	54 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1			. 6	
Final test mode		TM1			200	- 6-
4.2.2 Test Setu	up Diagra	m:			V	

NC

De

am:

NE

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 Page 13 of 72 Web: http://www.dace-lab.com E-mail: service@dace-lab.com

AC

DAG

4.3 Maximum Conducted Output Power

Test Requirement:	47 CFR 15.247(b)(3)
Test Limit:	Refer to 47 CFR 15.247(b)(3), For systems using digital modulation in the 902-928 MHz, 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt. As an alternative to a peak power measurement, compliance with the one Watt limit can be based on a measurement of the maximum conducted output power. Maximum Conducted Output Power is defined as the total transmit power delivered to all antennas and antenna elements averaged across all symbols in the signaling alphabet when the transmitter is operating at its maximum power control level. Power must be summed across all antennas and antenna elements. The average must not include any time intervals during which the transmitter is off or is transmitting at a reduced power level. If multiple modes of operation are possible (e.g., alternative modulation methods), the maximum conducted output power is the highest total transmit power occurring in any mode.
Test Method:	ANSI C63.10-2020 section 11.9.1 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.9.1 Maximum peak conducted output power Note: Per ANSI C63.10-2013, if there are two or more antnnas, the conducted powers at Core 0, Core 1,, Core i were first measured separately, as shown in the section above(this product olny have one antenna). The measured values were then summed in linear power units then converted back to dBm. Per ANSI C63.10-2013 Section 14.4.3.2.3, the directional gain is calculated using the following formula, where GN is the gain of the nth antenna and NANT, the total number of antennas used. For correlated unequal antenna gain Directional gain = 10*log[(10G1/20 + 10G2/20 + + 10GN/20)2 / NANT] dBi For completely uncorrelated unequal antenna gain Directional gain = 10*log[(10G1/10 + 10G2/10 + + 10GN/10)/ NANT] dBi Sample Multiple antennas Calculation: Core 0 + Core 1 +Core i. = MIMO/CDD (i is the number of antennas) (#VALUE! mW + mW) = #VALUE! mW = dBm Sample e.i.r.p. Calculation: e.i.r.p. (dBm) = Conducted Power (dBm) + Ant gain (dBi)

4.3.1 E.U.T. Operation:

Operating Envir	onment:	>			200			6
Temperature:	22 °C		Humidity:	54 %	Atmospheric Pressure:	102 kPa	0	26
Pretest mode:		TM1					V	
Final test mode:		TM1					25	

4.3.2 Test Setup Diagram:

6

 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613
 E-mail: service@dace-lab.com
 Page 15 of 72

Report No.: DACE250214001RF001

4.4 Power Spectral Density

DγG

Test Requirement:	47 CFR 15.247(e)
Test Limit:	Refer to 47 CFR 15.247(e), For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.
Test Method:	ANSI C63.10-2020, section 11.10 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020, section 11.10, Maximum power spectral density level in the fundamental emission

9

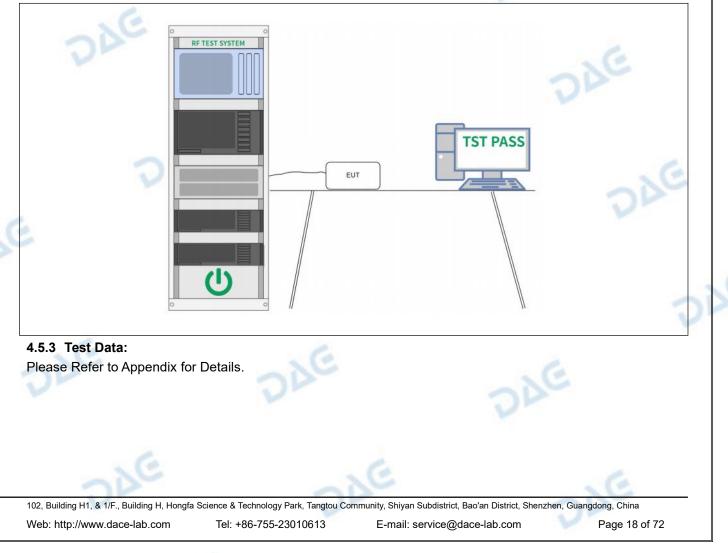
4.4.1 E.U.T. Operation:

Operating Envir	onment:	\sim	20				
Temperature:	22 °C	2	Humidity:	54 %	Atmospheric Pressure:	102 kPa	
Pretest mode:		TM1			2M		2
Final test mode:		TM1					Y

4.4.2 Test Setup Diagram:

	RF TEST SYSTEM	E
DAC		TST PASS
	U U	DIC
4.4.3 Test Data: Please Refer to Appendix	for Details.	DIC

4.5 Emissions in non-restricted frequency bands

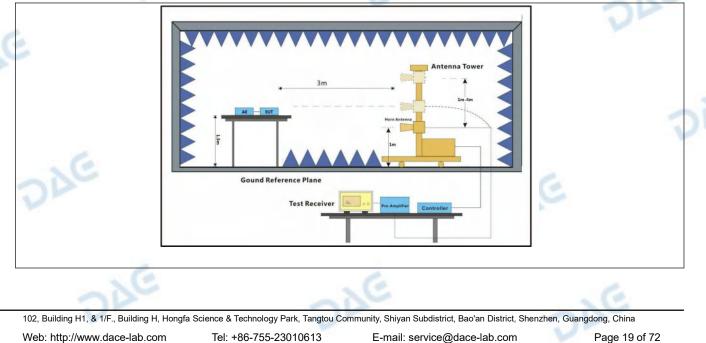

Test Requirement:	47 CFR 15.247(d), 15.209, 15.205
Test Limit:	Refer to 47 CFR 15.247(d), In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in § 15.209(a) is not required.
Test Method:	ANSI C63.10-2020 section 11.11 KDB 558074 D01 15.247 Meas Guidance v05r02
Procedure:	ANSI C63.10-2020 Section 11.11.1, Section 11.11.2, Section 11.11.3

4.5.1 E.U.T. Operation:

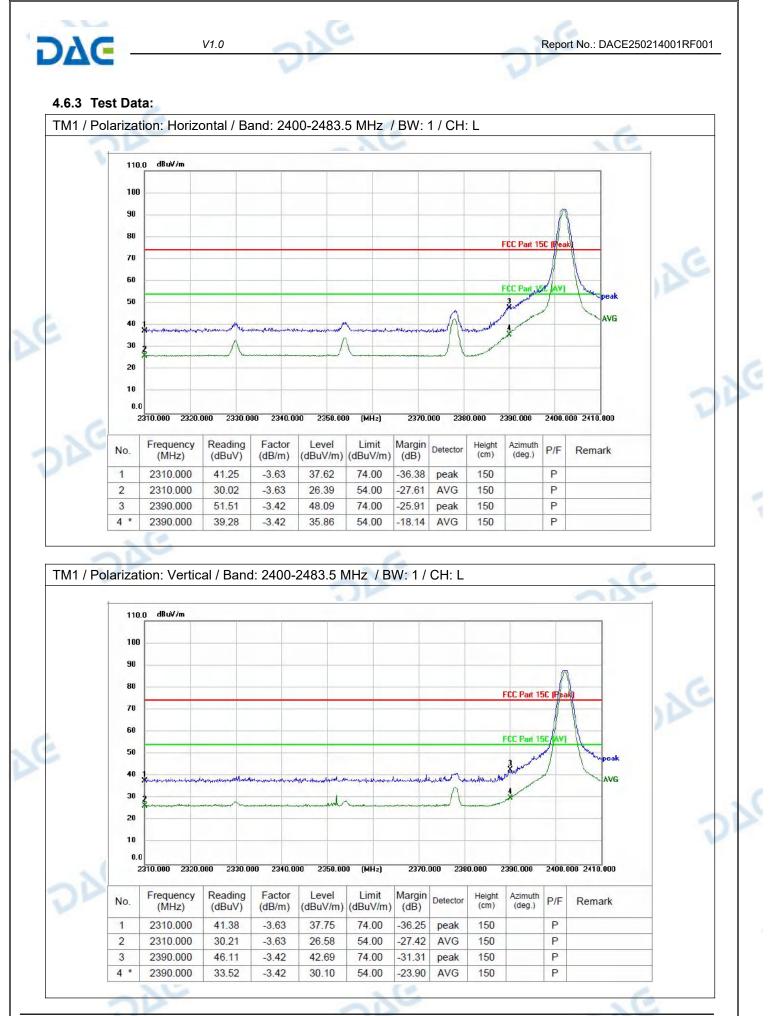
DAG

Operating Envir	onment:					
Temperature:	22 °C		Humidity:	54 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1	2	C		6
Final test mode:		TM1	V		20	

4.5.2 Test Setup Diagram:


4.6 Band edge emissions (Radiated)

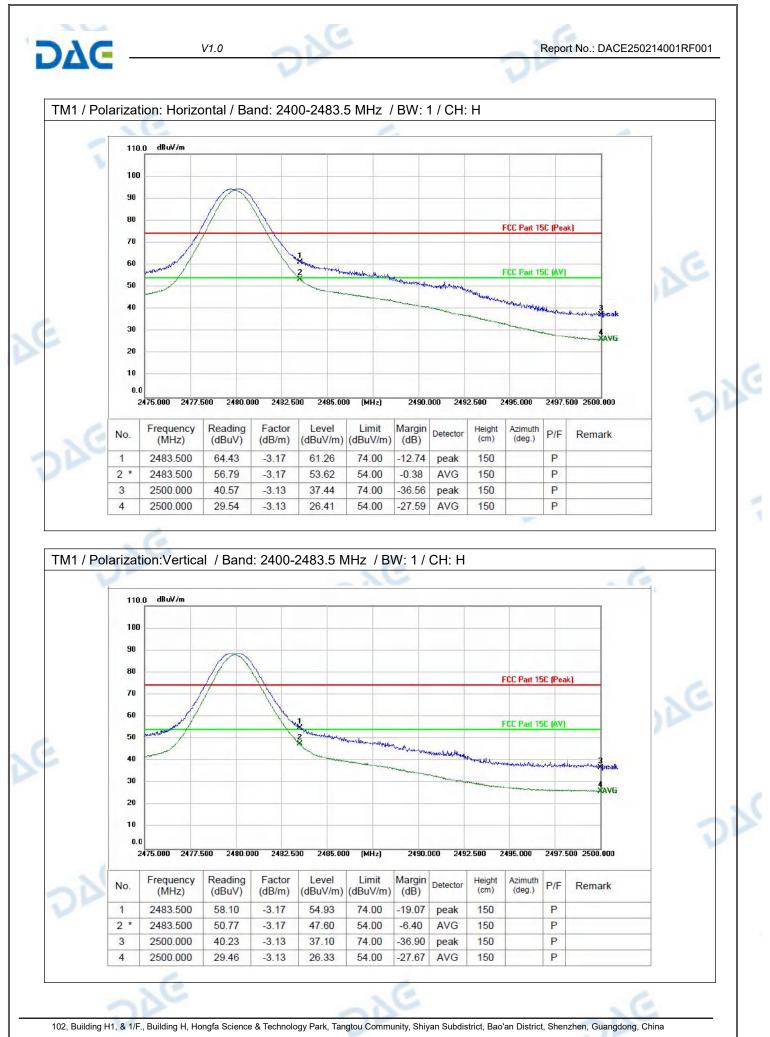
Test Requirement:	restricted bands, as defi	(d), In addition, radiated emi ned in § 15.205(a), must als in § 15.209(a)(see § 15.205	o comply with the radiated
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
	0.009-0.490	2400/F(kHz)	300
20	0.490-1.705	24000/F(kHz)	30
UP	1.705-30.0	30	30
	30-88	100 **	3
	88-216	150 **	3
	216-960	200 **	3
	Above 960	500	3
DAG	radiators operating under 54-72 MHz, 76-88 MHz, these frequency bands in and 15.241. In the emission table ab The emission limits show employing a CISPR quar 110–490 kHz and above	174-216 MHz or 470-806 M s permitted under other sect ove, the tighter limit applies wn in the above table are bas si-peak detector except for t	cated in the frequency bands Hz. However, operation within ions of this part, e.g., §§ 15.231 at the band edges. sed on measurements he frequency bands 9–90 kHz, ion limits in these three bands
Test Method:	ANSI C63.10-2020 sect KDB 558074 D01 15.24	ion 6.10 7 Meas Guidance v05r02	
Procedure:	ANSI C63.10-2020 sect	ion 6.10.5.2	e.


4.6.1 E.U.T. Operation:

Operating Envir	onment:			Y		VE
Temperature:	22 °C		Humidity:	54 %	Atmospheric Pressure:	102 kPa
Pretest mode:		TM1				
Final test mode	\sim	TM1			LC	1.00
				-		6

4.6.2 Test Setup Diagram:

DVG

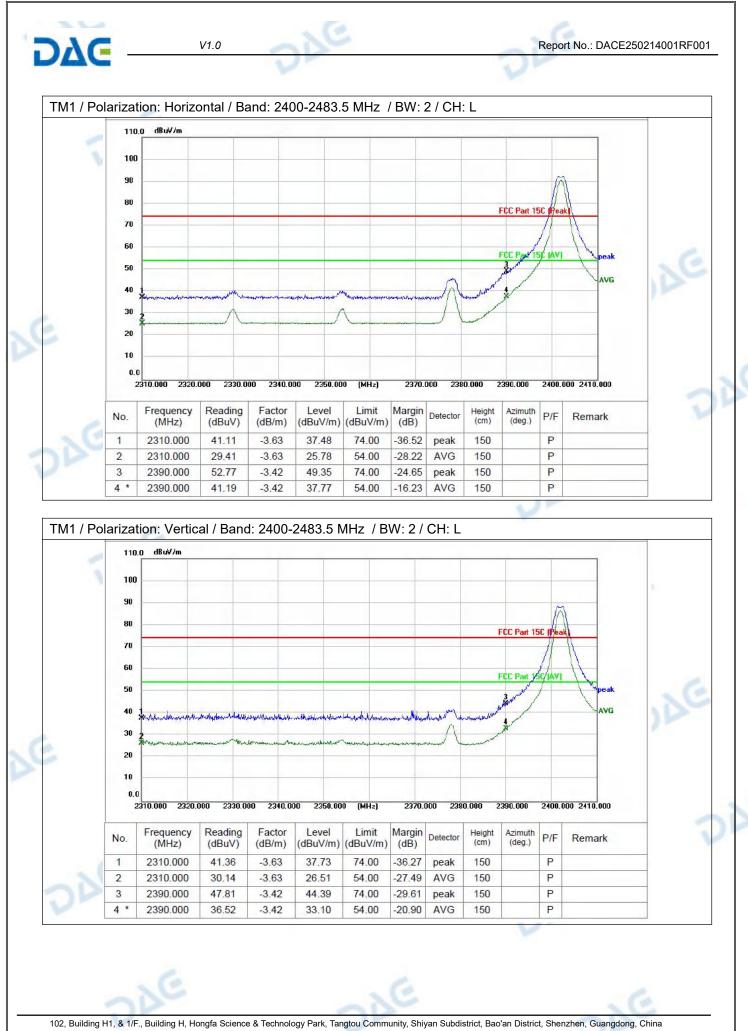

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23010613

Web: http://www.dace-lab.com

E-mail: service@dace-lab.com

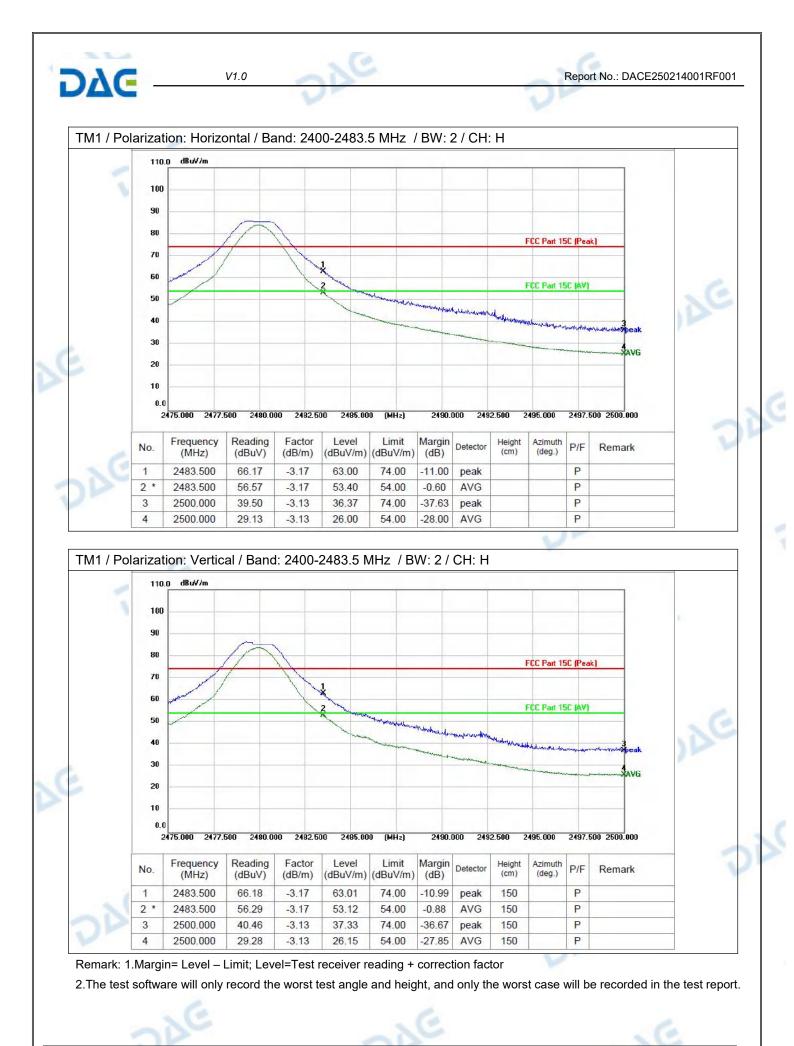
Page 20 of 72



Web: http://www.dace-lab.com

Tel: +86-755-23010613

E-mail: service@dace-lab.com


Page 21 of 72

Web: http://www.dace-lab.com Tel: +86-755-23010613

E-mail: service@dace-lab.com Pa

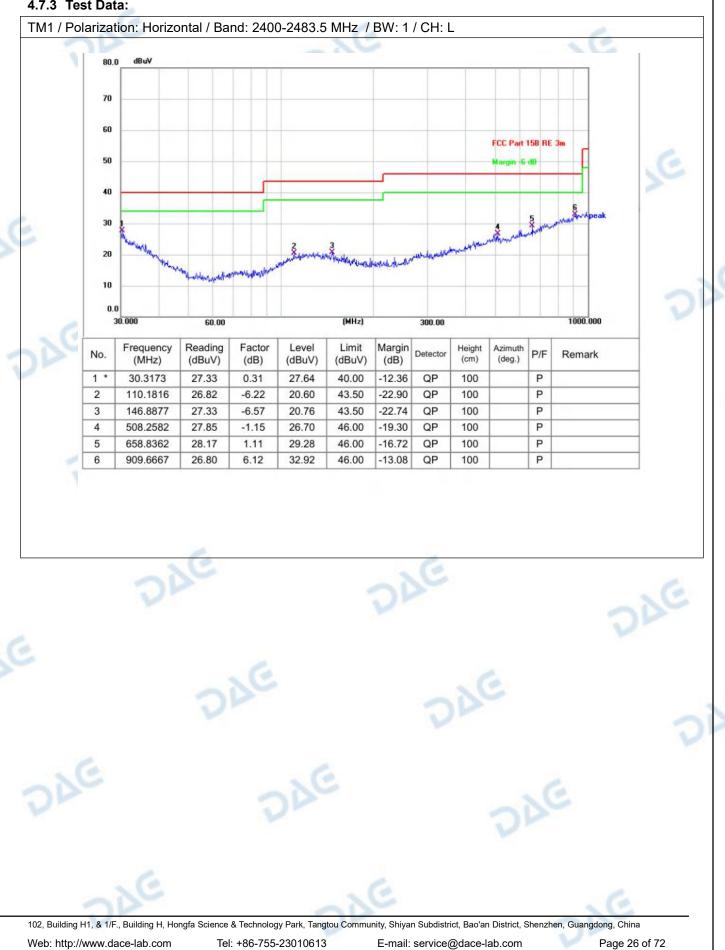
Page 22 of 72

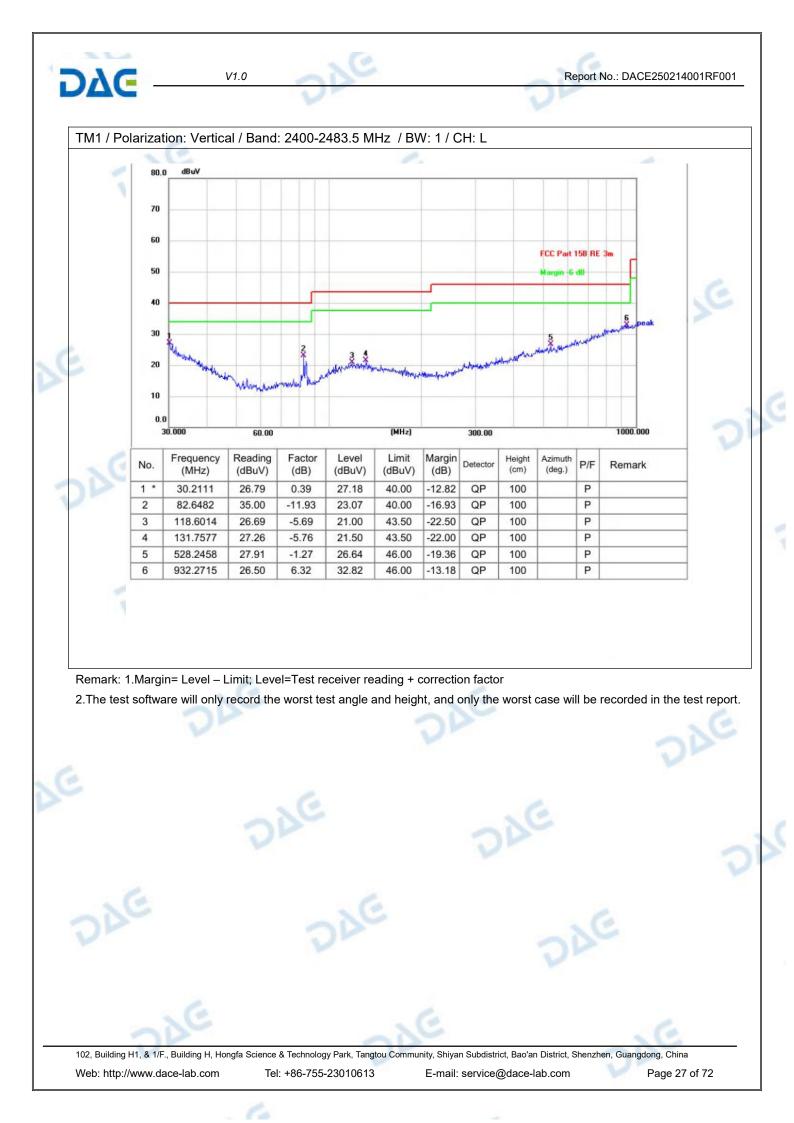
102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Page 23 of 72

DΛC

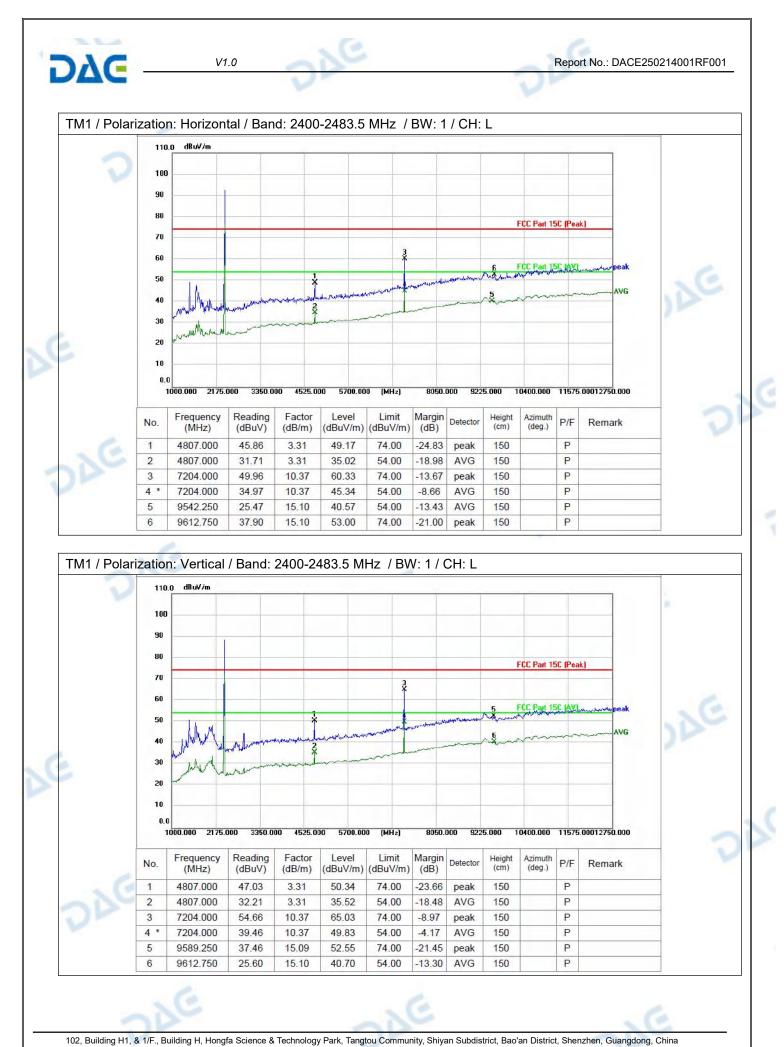
4.7 Emissions in frequency bands (below 1GHz)


loot Roquitorilerit.	Requirement: Refer to 47 CFR 15.247(d), In addition, radiated emissions which fall in the restricted bands, as defined in § 15.205(a), must also comply with the radiated emission limits specified in § 15.209(a)(see § 15.205(c)).					
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)			
	0.009-0.490	2400/F(kHz)	300			
	0.490-1.705	24000/F(kHz)	30			
	1.705-30.0	30	30			
	30-88	100 **	3			
	88-216	150 **	3			
	216-960	200 **	3			
	Above 960	500	3			
	54-72 MHz, 76-88 MHz these frequency bands and 15.241. In the emission table ab The emission limits sho employing a CISPR qua 110–490 kHz and above	, 174-216 MHz or 470-806 M is permitted under other sec pove, the tighter limit applies wn in the above table are ba asi-peak detector except for	ased on measurements the frequency bands 9–90 kHz sion limits in these three bands			
Test Method:	ANSI C63.10-2020 sect					
	above the ground at a 3 360 degrees to determine b. For above 1GHz, the above the ground at a 3 degrees to determine the c. The EUT was set 3 of which was mounted on d. The antenna height is determine the maximum polarizations of the anter e. For each suspected of the antenna was tuned below 30MHz, the anter was turned from 0 degree f. The test-receiver syste Bandwidth with Maximum	or 10 meter semi-anechoic ne the position of the highes EUT was placed on the top meter fully-anechoic cham he position of the highest rac r 10 meters away from the in the top of a variable-height s varied from one meter to for n value of the field strength. The emission, the EUT was arran to heights from 1 meter to 4 na was tuned to heights 1 meters to 360 degrees to find the mem was set to Peak Detect im Hold Mode.	o of a rotating table 1.5 meters ber. The table was rotated 360 diation. nterference-receiving antenna, antenna tower. our meters above the ground to Both horizontal and vertical easurement. nged to its worst case and then meters (for the test frequency meter) and the rotatable table he maximum reading. Function and Specified			
	g. If the emission level of specified, then testing of reported. Otherwise the tested one by one using reported in a data sheet	of the EUT in peak mode wa ould be stopped and the pe emissions that did not have peak, quasi-peak or average t. owest channel, the middle cl	ak values of the EUT would be = 10dB margin would be re- ge method as specified and the hannel, the Highest channel.			


E-mail: service@dace-lab.com

DAG -	V1.0			Report No.: DACE25021	4001RF001
DAC -		VE	1		
DA	Prea Fina Prea 3) S was four spu the	amplifier. The basic equ al Test Level =Receiver amplifier Factor can from 9kHz to 25GF very low. The points m ad when testing, so only rious emissions from the	ation with a sample calc Reading + Antenna Fact Iz, the disturbance abov arked on above plots are above points had been e radiator which are atte ed. Fundamental freque		30MHz could be e of below
4.7.1 E.U.T. Op	eration:		SP		SC
Operating Envir	onment:		V-	1	
Temperature:	22 °C	Humidity: 54 %	Atmospheric Pr	essure: 102 kPa	
Pretest mode:	TM	C			
Final test mode:	TM			1	
4.7.2 Test Setu	p Diagram:		2		3
DA		Sround	I Plane	DAC	
E		AE EUT (Turntable) Ground Refe	Antenna Tower		AC T
DAG		Test Receiver	Pre- Controllen	DDE	
0					
102, Building H1, & 1/F., Web: http://www.da		ence & Technology Park, Tangtou C Tel: +86-755-23010613	ommunity, Shiyan Subdistrict, Bao'an E-mail: service@dace-la	District, Shenzhen, Guangdong, Chir ab.com Page 2	

4.7.3 Test Data:

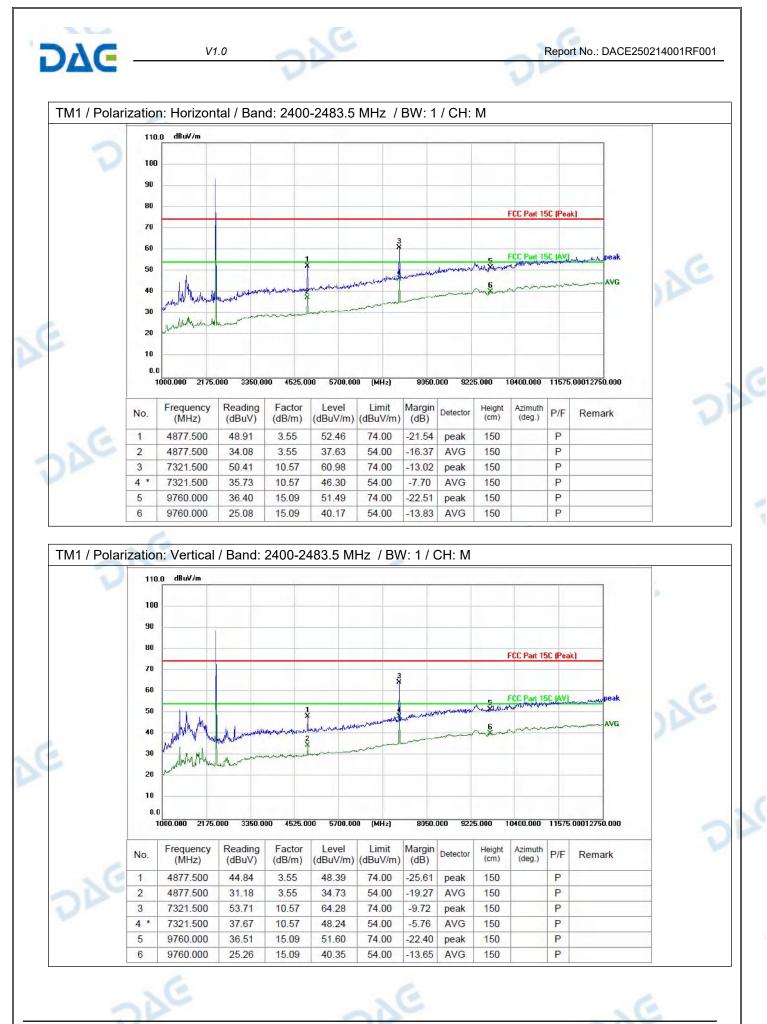

DγG

4.8 Emissions in frequency bands (above 1GHz)

Test Requirement:	In addition, radiated emissions which fall in the restricted bands, as defir 15.205(a), must also comply with the radiated emission limits specified in 15.209(a)(see § 15.205(c)).							
Test Limit:	Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)					
	0.009-0.490	2400/F(kHz)	300					
	0.490-1.705	24000/F(kHz)	30					
	1.705-30.0	30	30					
	30-88	100 **	3					
	88-216	150 **	3					
	216-960	200 **	3					
	Above 960	500	3					
	radiators operating unde 54-72 MHz, 76-88 MHz, these frequency bands is and 15.241. In the emission table abo The emission limits show employing a CISPR quas	r this section shall not be 174-216 MHz or 470-806 s permitted under other se ove, the tighter limit applie <i>n</i> in the above table are to si-peak detector except fo	pased on measurements In the frequency bands 9–90 kHz					
		110–490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.						
Test Method:	ANSI C63.10-2020 section	ANSI C63.10-2020 section 6.6.4 KDB 558074 D01 15.247 Meas Guidance v05r02						
	360 degrees to determin b. For above 1GHz, the I above the ground at a 3 degrees to determine the c. The EUT was set 3 or which was mounted on th d. The antenna height is determine the maximum polarizations of the anter e. For each suspected et the antenna was tuned to below 30MHz, the anten was turned from 0 degre f. The test-receiver syste Bandwidth with Maximur g. If the emission level of specified, then testing co reported. Otherwise the tested one by one using reported in a data sheet. h. Test the EUT in the low i. The radiation measure Transmitting mode, and j. Repeat above procedu Remark:	e the position of the higher EUT was placed on the to meter fully-anechoic chan e position of the highest ra 10 meters away from the he top of a variable-heigh varied from one meter to value of the field strength nna are set to make the m mission, the EUT was arra to heights from 1 meter to na was tuned to heights 1 es to 360 degrees to find m was set to Peak Detect n Hold Mode. If the EUT in peak mode w build be stopped and the p emissions that did not hav peak, quasi-peak or avera- west channel, the middle of ments are performed in X found the X axis positionin res until all frequencies m	p of a rotating table 1.5 meters nber. The table was rotated 360 adiation. interference-receiving antenna, t antenna tower. four meters above the ground to be both horizontal and vertical neasurement. anged to its worst case and ther 4 meters (for the test frequency meter) and the rotatable table the maximum reading. t Function and Specified vas 10dB lower than the limit eak values of the EUT would be ve 10dB margin would be re- age method as specified and the channel, the Highest channel. , Y, Z axis positioning for ng which it is the worst case. neasured was complete.					
	channel. Only the worst		und the worst case is the lowest					

Δ Ε ——	V1.0	1c	-	Report No.: DACE2502140	01RF001
DAG	Preamplifier. The Final Test Level Preamplifier Fac 3) Scan from 9kł was very low. Th found when testi spurious emissio the limit need no spurious emissio	e basic equation w =Receiver Reading tor Hz to 25GHz, the c e points marked o ng, so only above ons from the radiate t be reported. Fun	th a sample calcula g + Antenna Factor listurbance above 12 n above plots are th points had been dis or which are attenua		MHz uld be of elow
4.8.1 E.U.T. Operation		0			Ce
Operating Environment:				2	
Temperature: 22 °C		54 %	Atmospheric Press	ure: 102 kPa	
Pretest mode:	TM1				
Final test mode:	TM1		- C		
4.8.2 Test Setup Diag	ram:		200	4	
DAG	Gound Refe	3m erence Plane Test Receiver	Im-Amgioffer Controller	e de	
4.8.3 Test Data:	AG	5	AG	2	A.C.

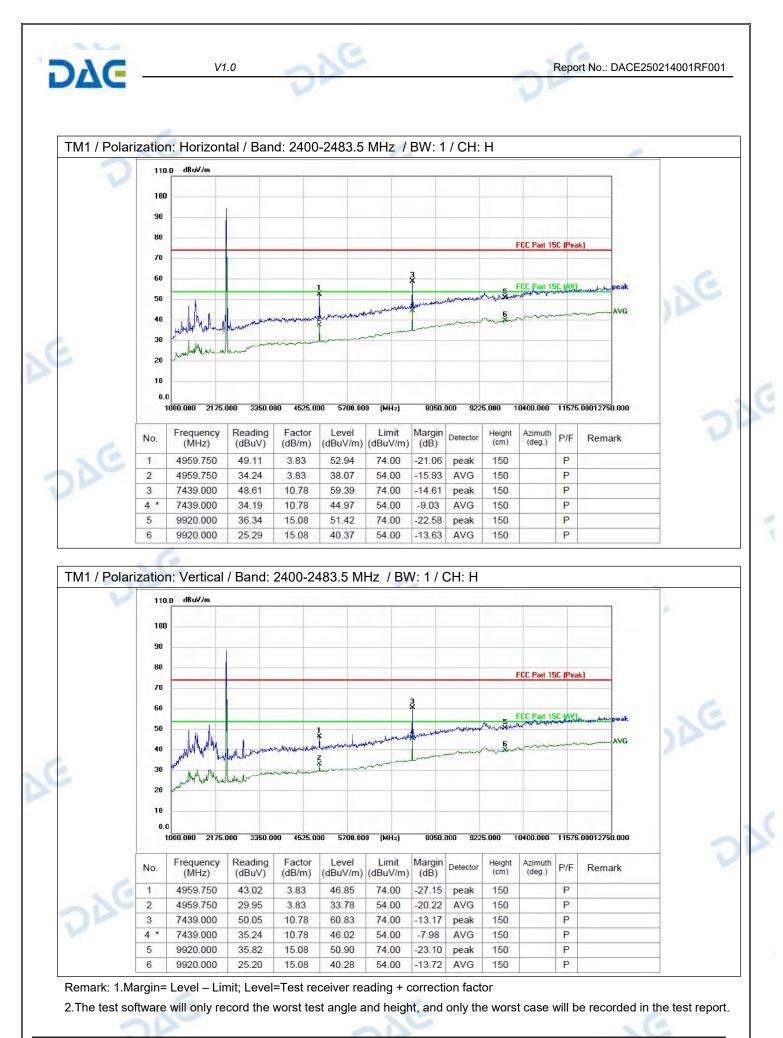
1.



Web: http://www.dace-lab.com

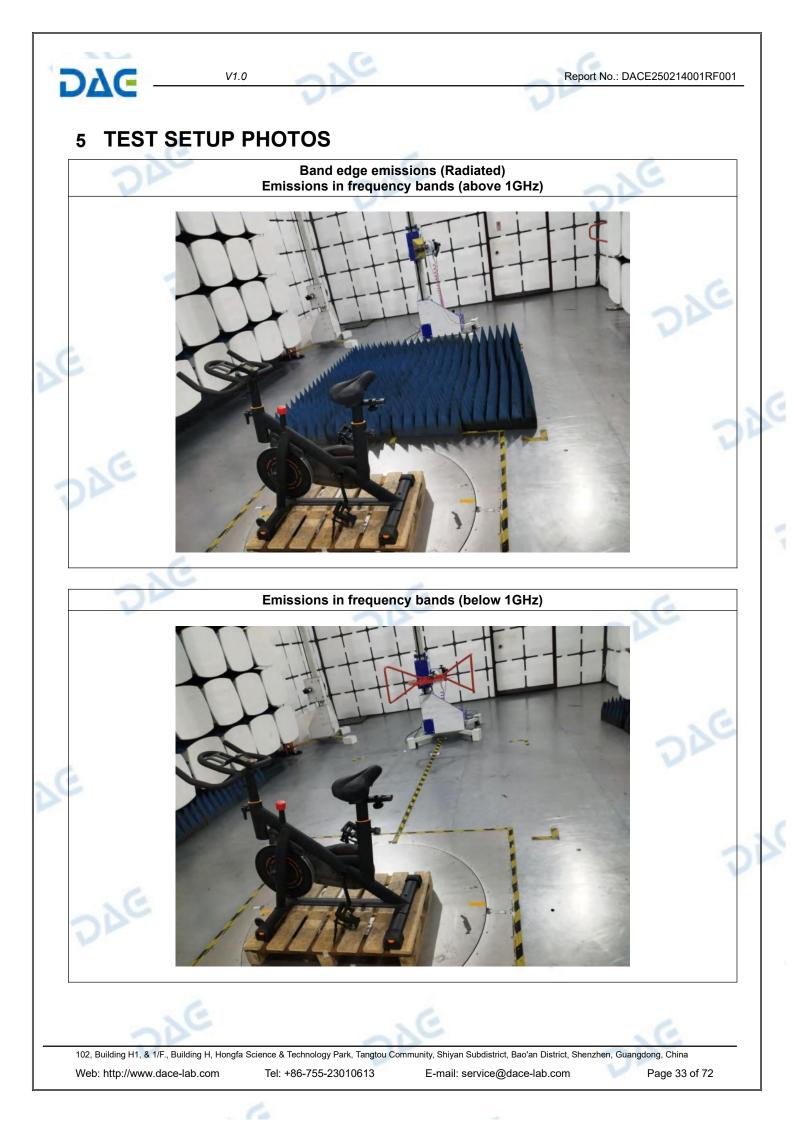
Tel: +86-755-23010613

E-mail: service@dace-lab.com


Page 30 of 72

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755-23010613 E-mail: service@dace-lab.com

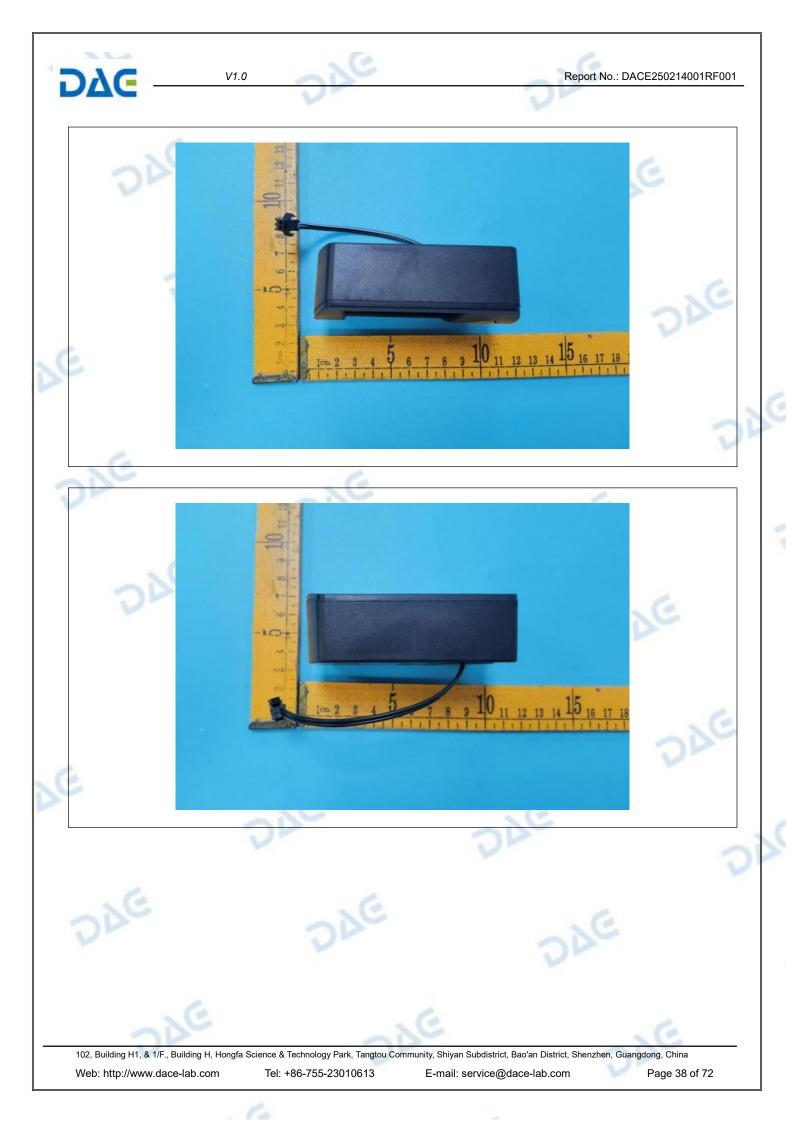
Page 31 of 72

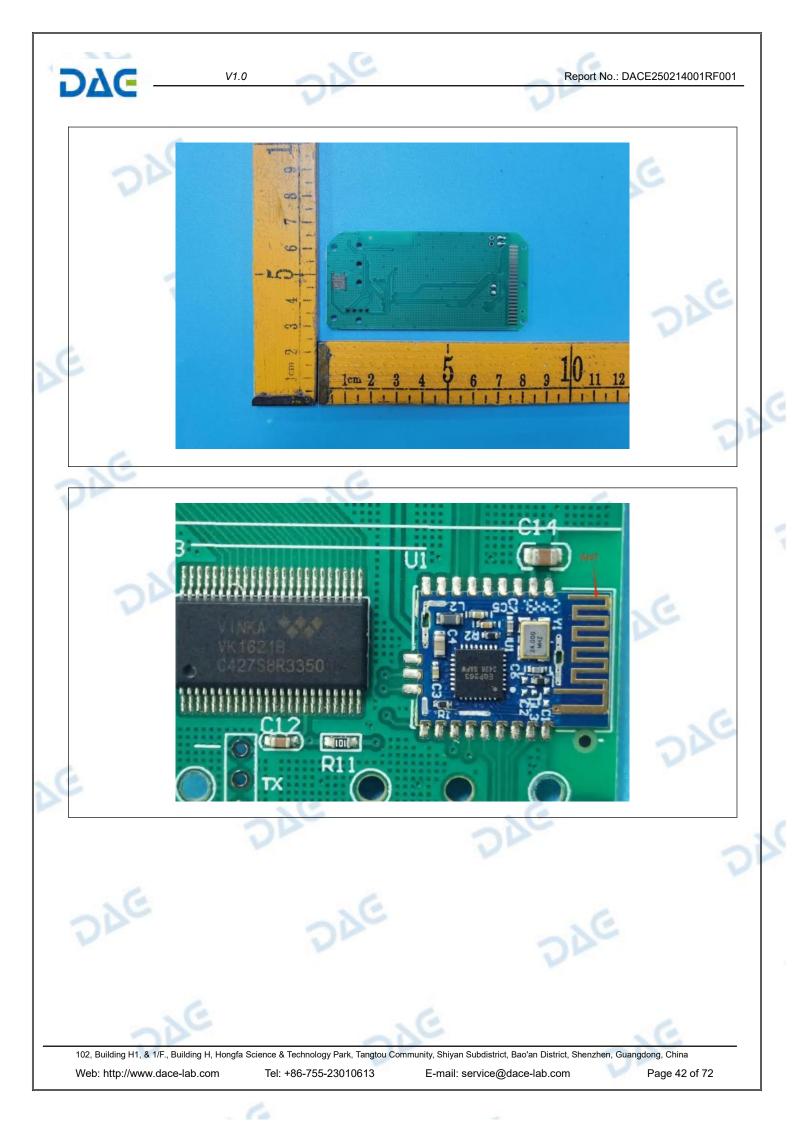

Web: http://www.dace-lab.com

 102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China

 Web: http://www.dace-lab.com
 Tel: +86-755-23010613

 E-mail: service@dace-lab.com
 Page 32 of 72





4

Appendix

1. -6dB Bandwidth

DΔC

AG

DAG

2

			Аррспал				
1.	-6dB Ban	dwidth					
	Condition	Antenna	Rate	Frequency (MHz)	-6dB BW(kHz)	limit(kHz)	Result
	NVNT	ANT1	1Mbps	2402.00	672.97	500	Pass
	NVNT	ANT1	1Mbps	2440.00	678.07	500	Pass
	NVNT	ANT1	1Mbps	2480.00	679.88	500	Pass
	NVNT	ANT1	2Mbps	2402.00	1342.34	500	Pass
	NVNT	ANT1	2Mbps	2440.00	1359.73	500	Pass
	NVNT	ANT1	2Mbps	2480.00	1493.26	500	Pass

DAG

DAG

102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

DAG

AC

Page 43 of 72

		V	
	-6dB_Bandwidth_NVNT_A psight Spectrum Analyzer - Occupied BW RL RF 50 Ω AC SENSE:INT		E
Ce	nter Freq 2.480000000 GHz #FGain:Low #Atten: 30 dB	GHz Radio Std: None Frequency g Hold: 10/10 Radio Device: BTS	
10 Log 4 7	Ref Offset 3.85 dB JB/div Ref 14.70 dBm	Center Freq	
-5.3		2.480000000 GHz	
-25.1			
-65. -65.			
Ce #R	nter 2.48 GHz es BW 100 kHz #VBW 300 kHz	Span 5 MHz Sweep 1 ms 500,000 kHz	
	Dccupied Bandwidth Total Powe 3.0113 MHz		
	Transmit Freq Error 30.057 kHz % of OBW dB Bandwidth 1.493 MHz x dB		
DE			
MSG	34	С <mark>б^{ататис} ⊗</mark> RF Alignment Failure	

1.

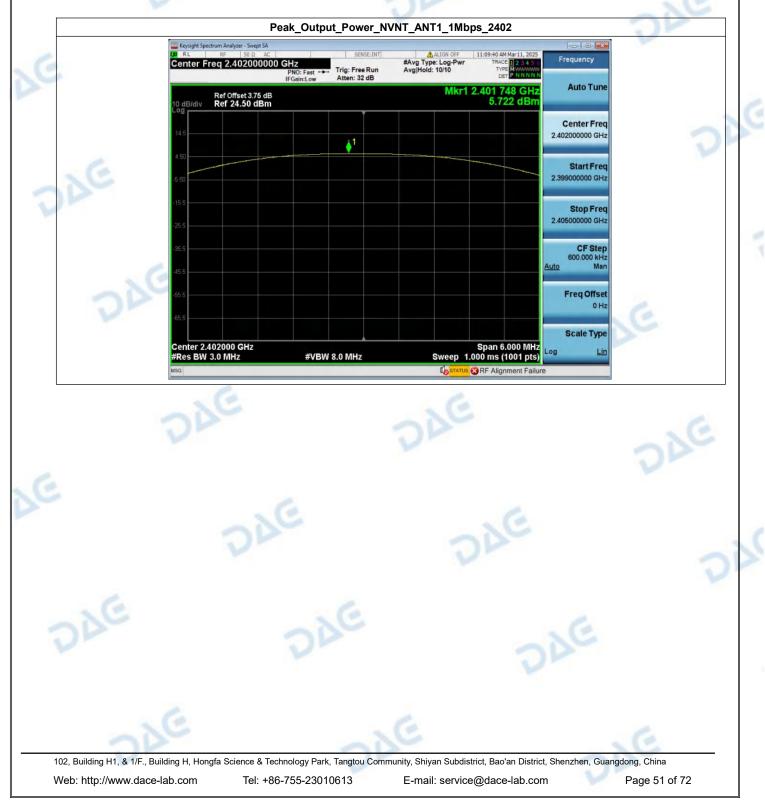
Report No.: DACE250214001RF001

V1.0

2. 99% Occupied Bandwidth

Condition	Antenna	Rate	Frequency (MHz)	99%%BW(MHz)
NVNT	ANT1	1Mbps	2402.00	1.066
NVNT	ANT1	1Mbps	2440.00	1.080
NVNT	ANT1	1Mbps	2480.00	1.092
NVNT	ANT1	2Mbps	2402.00	2.789
NVNT	ANT1	2Mbps	2440.00	2.882
NVNT	ANT1	2Mbps	2480.00	3.089

	99%_Occupied_Bandwidth_NVNT	
Ce	Ref Orfset 3.85 dB Ref Orfset 3.85 dB Center Freq: 2.48000000 GHz Center Freq: 2.48000000 GH #IFGain:Low Trig: Free Run Avg H	z Radio Std: None Radio Device: BTS
#R.	nter 2.48 GHz es BW 30 kHz #VBW 100 kHz Dccupied Bandwidth Total Power 3.0894 MHz	Span 5 MHz Sweep 5.333 ms 9.40 dBm
	Fransmit Freq Error 48.167 kHz % of OBW Po c dB Bandwidth 4.977 MHz x dB	ver 99.00 % 0 Hz -26.00 dB


-

Report No.: DACE250214001RF001

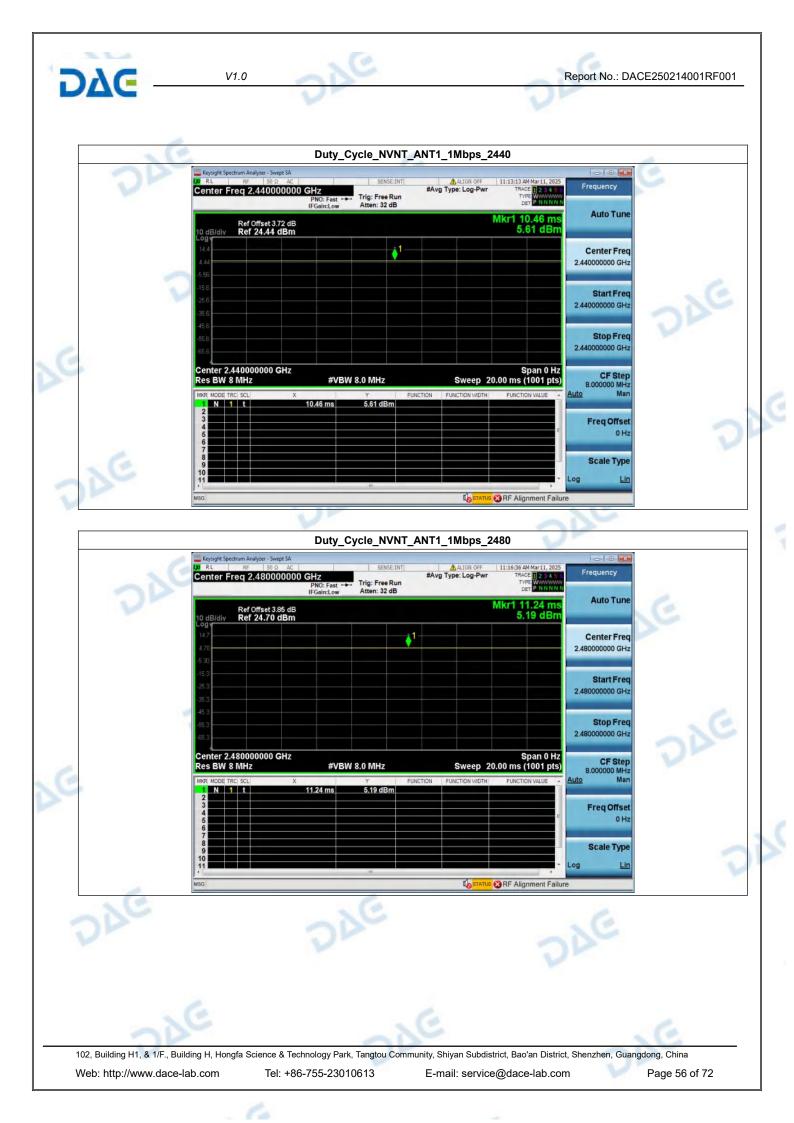
V1.0

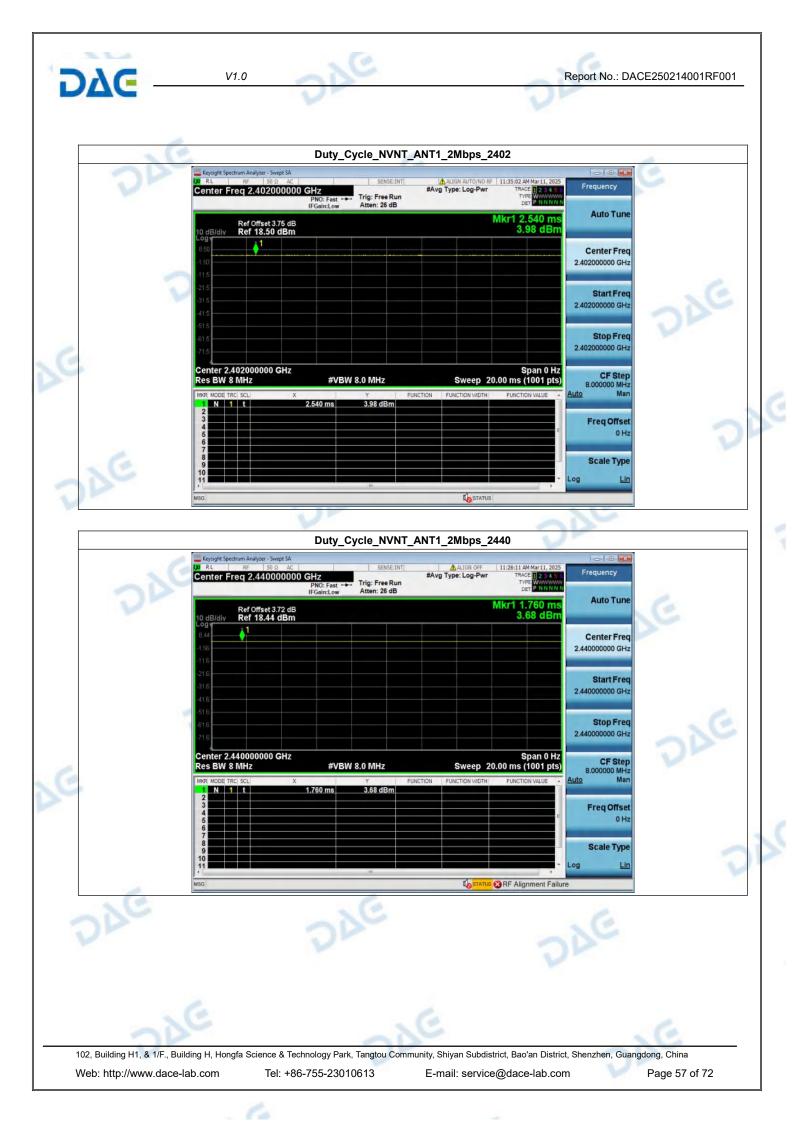
3. Peak Output Power

Condition	Antenna	Rate	Frequency (MHz)	Max. Conducted Power(dBm)	Max. Conducted Power(mW)	Limit(mW)	Result
NVNT	ANT1	1Mbps	2402.00	5.72	3.73	1000	Pass
NVNT	ANT1	1Mbps	2440.00	5.53	3.57	1000	Pass
NVNT	ANT1	1Mbps	2480.00	5.12	3.25	1000	Pass
NVNT	ANT1	2Mbps	2402.00	3.56	2.27	1000	Pass
NVNT	ANT1	2Mbps	2440.00	3.67	2.33	1000	Pass
NVNT	ANT1	2Mbps	2480.00	3.28	2.13	1000	Pass

DAC -	V1.0	DAG	Repo	t No.: DACE250214001RF001
		Peak_Output_Power_NVNT_AN	NT1 2Mbps 2480	
OP	Keysight Spectrum Analyzer - Swept SA RL RF 50 Ω AC Center Freq 2.48000000	SENSE:INT	A ALIGN DEE 11-20-43 AM Mar 11 2025	quency
		PNO: Fast +++ Trig: Free Run Avg Ho IFGain:Low Atten: 30 dB	Id: 10/10 TYPE MWWWWW DET P N N N N N	Auto Tune
	Ref Offset 3.85 dB 10 dB/div Ref 22.70 dBm		3.284 dBm	
	127	<u></u> ≰1		enter Freq 000000 GHz
	2.70			Start Freq
	-7.30			00000 5H2
6	-27.3			Stop Freq 000000 GHz
C.	-37,3			CF Step 300.000 kHz
	-47.9		Auto	Man
	-57.3		F	0 Hz
- 6-	-67.3		s	scale Type
DAG	Center 2.480000 GHz #Res BW 3.0 MHz	#VBW 8.0 MHz	Span 8.000 MHz Sweep 1.000 ms (1001 pts)	Lin
V	MSG	JF -		5

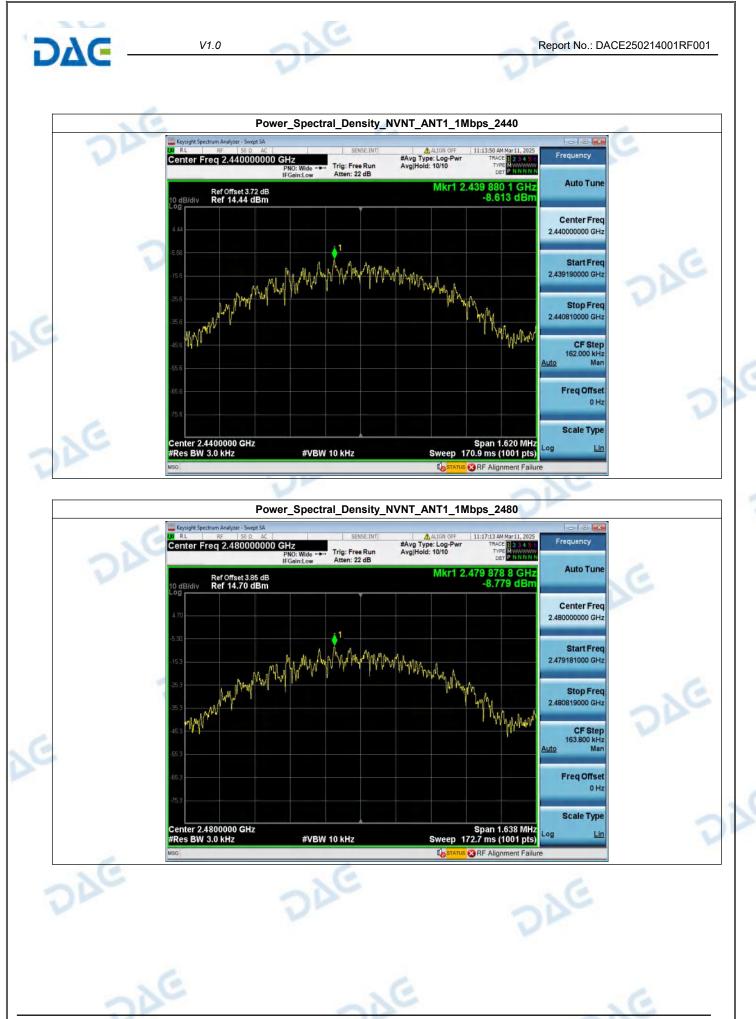
1.




Report No.: DACE250214001RF001

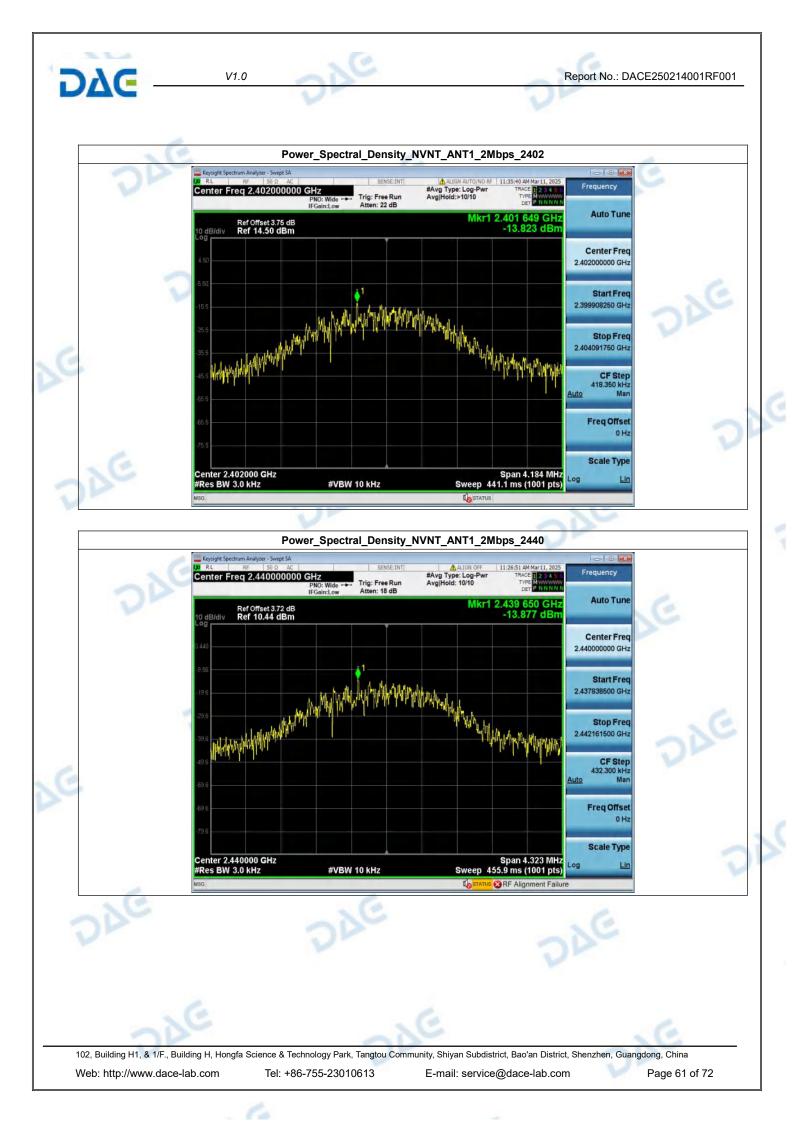
4. Duty Cycle

Condition	Antenna	Rate	Frequency (MHz)	Dutycycle(%)	Duty_factor
NVNT	ANT1	1Mbps	2402.00	100	0.00
NVNT	ANT1	1Mbps	2440.00	100	0.00
NVNT	ANT1	1Mbps	2480.00	100	0.00
NVNT	ANT1	2Mbps	2402.00	100	0.00
NVNT	ANT1	2Mbps	2440.00	100	0.00
NVNT	ANT1	2Mbps	2480.00	100	0.00

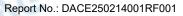


200	Duty_Cycle_NVNT_A		
VE	Center Freq 2.480000000 GHz PN0: Fast ↔ IFGaint.cow Atten: 30 dB	ALIGN OFF 11:29:23 AM Mar11, 2025 #Avg Type: Log-Pwr TRACE 2 3 4 3 Type: WANNAWA DET P NNNNN	Jency
	Ref Offset 3.85 dB		uto Tune
	10 dB/div Ref 22.70 dBm	Ce	nter Freq
2	7.30	2.48000	0000 GHz
V	37.3		tart Freq 0000 GHz
	47.3		topFreq
3	673 Center 2.480000000 GHz	2.48000 Span 0 Hz	0000 GHz
< 1	Res BW 8 MHz #VBW 8.0 MHz MKR. MODE TRC; SCL X Y FUNC	Sugar 20.00 ma (1001 sta)	CF Step 0000 MHz Man
	1 N 1 t 19.82 ms 3.65 dBm	Fr	eq Offset
-			0 Hz
DAG		Log	ale Type Lin
JE .	MSG	ि <mark>इाताण्ड</mark> छ RF Alignment Failure	

5. Power Spectral Density


Condition	Antenna	Rate	Frequency (MHz)	Power Spectral Density(dBm/3kHz)	Limit(dBm/3kHz)	Result
NVNT	ANT1	1Mbps	2402.00	-8.42	8	Pass
NVNT	ANT1	1Mbps	2440.00	-8.61	8	Pass
NVNT	ANT1	1Mbps	2480.00	-8.78	8	Pass
NVNT	ANT1	2Mbps	2402.00	-13.82	8	Pass
NVNT	ANT1	2Mbps	2440.00	-13.88	8	Pass
NVNT	ANT1	2Mbps	2480.00	-14.86	8	Pass





102, Building H1, & 1/F., Building H, Hongfa Science & Technology Park, Tangtou Community, Shiyan Subdistrict, Bao'an District, Shenzhen, Guangdong, China Web: http://www.dace-lab.com Tel: +86-755-23010613 E-mail: service@dace-lab.com

Page 60 of 72

Bandedge

V1.0

DΔC

6.

Condition	Antenna	Modulation	TX_Frequency (MHz)	Max. Mark_freq(MHz)	Ref_level(dBm)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	1Mbps	2402.00	2399.775	4.871	-38.161	-15.129	Pass
NVNT	ANT1	1Mbps	2480.00	2483.600	3.860	-38.259	-16.140	Pass
NVNT	ANT1	2Mbps	2402.00	2399.490	1.126	-24.131	-18.874	Pass
NVNT	ANT1	2Mbps	2480.00	2483.575	0.258	-30.543	-19.742	Pass


V1.0

Report No.: DACE250214001RF001

7. **Spurious Emission**

DAG

Condition	Antenna	Modulation	TX_Frequency (MHz)	Ref_level(dBm)	Spurious level(dBm)	limit(dBm)	Result
NVNT	ANT1	1Mbps	2402.00	4.871	-41.875	-15.129	Pass
NVNT	ANT1	1Mbps	2440.00	3.896	-44.482	-16.104	Pass
NVNT	ANT1	1Mbps	2480.00	3.860	-45.994	-16.140	Pass
NVNT	ANT1	2Mbps	2402.00	1.126	-43.020	-18.874	Pass
NVNT	ANT1	2Mbps	2440.00	0.648	-44.967	-19.352	Pass
NVNT	ANT1	2Mbps	2480.00	0.258	-45.722	-19.742	Pass

Web: http://www.dace-lab.com

