Report No.: LCSA02054009E # **SAR Test Report** Report No.: LCSA02054009E Issued for Topdon Technology Co., Ltd Unit 2005 20/F, Qianhai Shimao Tower, Qianhai Shenzhen-Hong kong Cooperation Zone, Shenzhen, China, 518052 Product Name: THINKTOOL PROS+, Smart Automotive Diagnostic System **Brand Name:** **TOPDON** Model Name: TKT04 Series Model(s): Phoenix Lite 3, Phoenix Lite 2 ANSI/IEEE Std. C95.1 Test Standard: FCC 47 CFR Part 2 (2.1093) IEEE 1528: 2013 Max. SAR (1g) Body: 0.733 W/kg This publication may be reproduced in whole or in part for non-commercial purposes as long as the Shenzhen LCS Compliance Testing Laboratory Ltd. is acknowledged as copyright owner and source of the material. Shenzhen LCS Compliance Testing Laboratory Ltd. takes noresponsibility for and will not assume liability for damages resulting from the reader's interpretation of the reproduced material due to its placement and context. Page 2 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E #### **Test Report Certification** Applicant's name Topdon Technology Co,.Ltd Unit 2005 20/F, Qianhai Shimao Tower, Qianhai Shenzhen-Hong Address: kong Cooperation Zone, Shenzhen, China, 518052 Manufacture's Name: Topdon Technology Co,.Ltd Unit 2005 20/F, Qianhai Shimao Tower, Qianhai Shenzhen-Hong Address: kong Cooperation Zone, Shenzhen, China, 518052 **Product description** Product name THINKTOOL PROS+, Smart Automotive Diagnostic System Brand name TOPDON Model name: TKT04 Series Model...... Phoenix Lite 3, Phoenix Lite 2 ANSI/IEEE Std. C95.1-1992 FCC 47 CFR Part 2 (2.1093) IEEE 1528: 2013 Standards: The device was tested by Shenzhen STS Test Services Co., Ltd. in accordance with the measurement methods and procedures specified in KDB 865664 The test results in this report apply only to the tested sample of the stated device/equipment. Other similar device/equipment will not necessarily produce the same results due to production tolerance and measurement uncertainties. #### **Date of Test** Date of Issue: 04 Feb 2024 Test Result....: **Pass** > Compiled by: Supervised by: Approved by: Jay Zhan / File administrators Cary Luo / Technique principal Gavin Liang/ Manager Page 3 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E # **Table of Contents** | 1. General Information | 5 | |---|----| | 1.1 EUT Description | 5 | | 1.2 Test Environment | 6 | | 1.3 Test Factory | 6 | | 2. Test Standards and Limits | 7 | | 3. SAR Measurement System | 8 | | 3.1 Definition of Specific Absorption Rate (SAR) | 8 | | 3.2 SAR System | 8 | | 4. Tissue Simulating Liquids | 11 | | 4.1 Simulating Liquids Parameter Check | 11 | | 5. SAR System Validation | 13 | | 5.1 Validation System | 13 | | 5.2 Validation Result | 13 | | 6. SAR Evaluation Procedures | 14 | | 7. EUT Antenna Location Sketch | 15 | | 7.1 SAR test exclusion consider table | 16 | | 8. EUT Test Position | 19 | | 8.1 Body-worn Position Conditions | 19 | | 9. Measurement Uncertainty | 20 | | 10. Conducted Power Measurement | 21 | | 10.1 Test Result | 21 | | 11. EUT And Test Setup Photo | 24 | | 11.1 EUT Photo | 24 | | 11.2 Setup Photo | 25 | | 12. SAR Result Summary | 27 | | 12.1 Body-worn SAR | 27 | | 13. Equipment List | 29 | | Appendix A. System Validation Plots | 30 | | Appendix B. SAR Test Plots | 36 | | Appendix C. Probe Calibration And Dipole Calibration Report | 40 | Page 4 of 40 FCC ID: 2AVYW-PHLITE2 ### **Revision History** Report No.: LCSA02054009E | Rev. | Issue Date | Report No. | Effect Page | Contents | |------|--------------|---------------|-------------|--| | 00 | 15 June 2022 | STS2206010H02 | ALL | Initial Issue | | 01 | 04 Feb 2024 | LCSA02054009E | ALL | Updated Series Model, EUT
Photo and Setup Photo | | | | | | | Page 5 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E #### 1. General Information Environmental evaluation measurements of specific absorption rate (SAR) distributions in emulated human head and body tissues exposed to radio frequency (RF) radiation from wireless portable devices for compliance with the rules and regulations of the U.S. Federal Communications Commission (FCC). 1.1 EUT Description | i.i Lo i Description | | | | | | | | | |----------------------------|---|---|---|--|--|--|--|--| | Product Name | THINKT | OOL PROS+, Smart Auto | omotive Diagnostic System | | | | | | | Brand Name | TOPDO | N | | | | | | | | Model Name | TKT04 | | | | | | | | | Series Model | | Phoenix Lite 3,Phoenix Lite 2 | | | | | | | | Model Difference | Their ele | ectrical circuit design, layo
tical, only the model is di | out, components used and internal wiring fferent. | | | | | | | Battery | | oltage:DC7.6V
r: 6300mAh | | | | | | | | Device Category | Portable | | | | | | | | | Product stage | Production | on unit | | | | | | | | RF Exposure
Environment | General | Population / Uncontrolled | d | | | | | | | Hardware Version | N/A | | | | | | | | | Software Version | N/A | | | | | | | | | Frequency Range | WLAN 802.11b/g/n20: 2412 MHz ~ 2462 MHz
WLAN 802.11n40: 2422 MHz ~ 2452 MHz
WLAN 802.11a/n20/n40/ac20/ac40/ac80: 5150 ~ 5250 MHz
WLAN 802.11a/n20/n40/ac20/ac40/ac80: 5725 ~ 5850 MHz
Bluetooth: 2402 MHz to 2480 MHz | | | | | | | | | | Band | Mode | Body Worn and Hotspot(W/kg) | | | | | | | Max. Reported | DTS | 2.4GHz WLAN | 0.733 | | | | | | | SAR(1g): | DTS | BT | 0.375 | | | | | | | (Limit:1.6W/kg) | NII | 5.2GHz WLAN | 0.259 | | | | | | | | NII | 5.8GHz WLAN | 0.635 | | | | | | | | The high | est simultaneous SAR v | alue is 1.368 W/kg | | | | | | | FCC Equipment Class | Digital Ti
Unlicens | Spread Spectrum Transn
ransmission System (DT
ed National Information | S)
Infrastructure TX(NII) | | | | | | | Operating Mode | WLAN: 802.11b(DSSS):CCK,DQPSK,DBPSK
802.11g/a/n(OFDM):BPSK,QPSK,16-QAM,64-QAM
802.11ac(OFDM):BPSK,QPSK,16-QAM,64-QAM,256-QAM
Bluetooth: 5.0(GFSK +π/4DQPSK+8DPSK)
BLE: GFSK | | | | | | | | | Antenna Specification | PIFA An | tenna | | | | | | | | Hotspot Mode | Support | | | | | | | | | DTM Mode | Not Sup | port | | | | | | | | Note: | | | | | | | | | #### Note: - 1. Estimated exemption for Bluetooth, - 2. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power - 3. The Bluetooth and WLAN can't simultaneous transmission at the same time. Page 6 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E #### 1.2 Test Environment Ambient conditions in the SAR laboratory: | Items | Required | |------------------|----------| | Temperature (°ℂ) | 18-25 | | Humidity (%RH) | 30-70 | #### 1.3 Test Factory Shenzhen LCS Compliance Testing Laboratory Ltd.. 101, 201 BldgA & 301 Bldg C, Juji Industrial Park Yabianxueziwei, Shajing Street, Baoan District, Shenzhen, 518000, China FCC test Firm Registration No.: 625569 NVLAP Accreditation Code is 600167-0. FCC Designation Number is CN5024. CAB identifier is CN0071. CNAS Registration Number is L4595. ISED Designation Number is 9642A Page 7 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E #### 2. Test Standards and Limits | No. | Identity | Document Title | |-----|--|--| | 1 | 47 CFR Part 2 | Frequency Allocations and Radio Treaty Matters; General Rules and Regulations | | 2 | ANSI/IEEE Std. C95.1-1992 | IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz | | 3 | IEEE Std. 1528-2013 | Recommended Practice for Determining the Peak
Spatial-Average Specific Absorption Rate (SAR) in the
Human Head from Wireless Communications Devices:
Measurement Techniques | | 4 | FCC KDB 447498 D04 v01 | RF Exposure Procedures and Equipment Authorization Policies for Mobile and Portable Devices | | 5 | FCC KDB 865664 D01 v01r04 | SAR Measurement 100 MHz to 6 GHz | | 6 | FCC KDB 865664 D02 v01r02 | RF Exposure Reporting | | 7 | FCC KDB 648474 D04 v01r03 | SAR Evaluation Considerations for Wireless Handsets | | 8 | FCC KDB 248227 D01 Wi-Fi
SAR v02r02 | SAR Considerations for 802.11 Devices | (A). Limits for Occupational/Controlled Exposure (W/kg) Whole-Body Partial-Body Hands, Wrists, Feet and Ankles 0.4 8.0 20.0 (B). Limits for General Population/Uncontrolled Exposure (W/kg) Whole-Body Partial-Body Hands, Wrists, Feet and Ankles 0.08 1.6 4.0 NOTE: Whole-Body SAR is averaged over the entire body, partial-body SAR is averaged over any 1 gram of tissue defined as a tissue volume in the shape of a cube. SAR for hands, wrists, feet and ankles is averaged over any 10 grams of tissue defined as a tissue volume in the shape of a cube. #### **Population/Uncontrolled Environments:** Are defined as locations where there is the exposure of individuals who have no knowledge or control of their exposure. #### **Occupational/Controlled Environments:** Are defined as locations where there is exposure that may be incurred by people who are aware of the potential for exposure, (i.e. as a result of employment or occupation). # NOTE GENERAL POPULATION/UNCONTROLLED EXPOSURE PARTIAL BODY LIMIT 1.6 W/kg Report No.: LCSA02054009E #### 3. SAR Measurement System #### 3.1 Definition of Specific Absorption Rate (SAR) SAR is related to the rate at which energy is absorbed per unit mass in an object exposed to a radio field. The SAR distribution in a biological body is complicated and is usually carried out by experimental techniques or numerical modeling. The standard recommends limits for two tiers of groups, occupational/controlled and general population/uncontrolled, based on a person's awareness and ability to exercise control over his or her exposure. In general, occupational/controlled exposure limits are higher than the limits for general population/uncontrolled. The SAR definition is the time derivative (rate) of the incremental energy (dW) absorbed by (dissipated in) an incremental mass (dm) contained in a volume element (dv) of a given density (ρ). The equation description is as below: $$SAR = \frac{d}{dt} \left(\frac{dW}{dm} \right) = \frac{d}{dt} \left(\frac{dW}{\rho dv} \right)$$ SAR is expressed in units of Watts per kilogram (W/kg) SAR measurement can be related to the electrical field in the tissue by $$SAR = \frac{\sigma E^2}{\rho}$$ Where: σ is the conductivity of the tissue, $\boldsymbol{\rho}$ is the mass density of the tissue and E is the RMS electrical field strength. #### 3.2 SAR System MVG SAR System Diagram: COMOSAR is a system that is able to determine the SAR distribution inside a phantom of human being according to different standards. The COMOSAR system consists of the following items: - Main computer to control all the system - 6 axis robot - Data acquisition system - Miniature E-field probe - Phone holder - Head simulating tissue Page 9 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E The following figure shows the system. The EUT under test operating at the maximum power level is placed in the phone holder, under the phantom, which is filled with head simulating liquid. The E-Field probe measures the electric field inside the phantom. The Open SAR software computes the results to give a SAR value in a 1g or 10g mass. #### 3.2.1 Probe For the measurements the Specific Dosimetric E-Field Probe SN 07/21 EPGO352 with following specifications is used - Probe Length: 330 mm - Length of Individual Dipoles: 2 mm - Maximum external diameter: 8 mm - Probe Tip External Diameter: 2.5 mm - Distance between dipole/probe extremity: 1 mm - Dynamic range: 0.01-100 W/kg - Probe linearity: 3% - Axial Isotropy: < 0.10 dB - Spherical Isotropy: < 0.10 dB - Calibration range: 150 MHz to 6 GHz for head & body simulating liquid. - Angle between probe axis (evaluation axis) and surface normal line: less than 30° Figure 1-MVG COMOSAR Dosimetric E field Dipole Page 10 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E #### 3.2.2 Phantom For the measurements the Specific Anthropomorphic Mannequin (SAM) defined by the IEEE SCC-34/SC2 group is used. The phantom is a polyurethane shell integrated in a wooden table. The thickness of the phantom amounts to 2mm +/- 0.2mm. It enables the dosimetric evaluation of left and right phone usage and includes an additional flat phantom part for the simplified performance check. The phantom set-up includes a cover, which prevents the evaporation of the liquid. Figure-SN 32/14 SAM115 Figure-SN 32/14 SAM116 #### 3.2.3 Device Holder The SAR in the phantom is approximately inversely proportional to the square of the distance between the source and the liquid surface. For a source at 5 mm distance, a positioning uncertainty of ± 0.5 mm would produce a SAR uncertainty of ± 20 %. Accurate device positioning is therefore crucial for accurate and repeatable measurements. The positions in which the devices must be measured are defined by the standards. Page 11 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E #### 4. Tissue Simulating Liquids #### 4.1 Simulating Liquids Parameter Check The head tissue dielectric parameters recommended by the IEEE SCC-34/SC-2 in P1528 have been incorporated in the following table. These head parameters are derived from planar layer models simulating the highest expected SAR for the dielectric properties and tissue thickness variations in a human head. Other head and body tissue parameters that have not been specified in P1528 are derived from the tissue dielectric parameters computed from the 4-Cole-Cole equations described in Reference [12] and extrapolated according to the head parameters specified in P1528. **Head Tissue** | Frequency | cellulose | DGBE | HEC | NaCl | Preventol | Sugar | X100 | Water | Conductivity | Permittivity | |-----------|-----------|------|-----|------|-----------|-------|-------|-------|--------------|--------------| | (MHz) | % | % | % | % | % | % | % | % | σ | εr | | 750 | 0.2 | 1 | 1 | 1.4 | 0.2 | 57.0 | 1 | 41.1 | 0.89 | 41.9 | | 835 | 0.2 | / | 1 | 1.4 | 0.2 | 57.9 | 1 | 40.3 | 0.90 | 41.5 | | 900 | 0.2 | / | 1 | 1.4 | 0.2 | 57.9 | 1 | 40.3 | 0.97 | 41.5 | | 1800 | 1 | 44.5 | 1 | 0.3 | 1 | 1 | 30.45 | 55.2 | 1.4 | 40.0 | | 1900 | 1 | 44.5 | 1 | 0.3 | 1 | 1 | 30.45 | 55.2 | 1.4 | 40.0 | | 2000 | 1 | 44.5 | 1 | 0.3 | 1 | 1 | / | 55.2 | 1.4 | 40.0 | | 2450 | 1 | 44.9 | 1 | 0.1 | 1 | 1 | 1 | 55.0 | 1.80 | 39.2 | | 2600 | 1 | 45.0 | 1 | 0.1 | 1 | 1 | 1 | 54.9 | 1.96 | 39.0 | **Body Tissue** | Frequency | cellulose | DGBE | HEC | NaCl | Preventol | Sugar | X100 | Water | Conductivity | Permittivity | |-----------|-----------|------|-----|------|-----------|-------|-------|-------|--------------|--------------| | (MHz) | % | % | % | % | % | % | % | % | σ | εr | | 750 | 0.2 | / | 1 | 0.9 | 0.1 | 47.2 | 1 | 51.7 | 0.96 | 55.5 | | 835 | 0.2 | / | 1 | 0.9 | 0.1 | 48.2 | 1 | 50.8 | 0.97 | 55.2 | | 900 | 0.2 | / | 1 | 0.9 | 0.1 | 48.2 | / | 50.8 | 1.05 | 55.0 | | 1800 | 1 | 29.4 | 1 | 0.4 | 1 | 1 | 30.45 | 70.2 | 1.52 | 53.3 | | 1900 | 1 | 29.4 | 1 | 0.4 | 1 | 1 | 30.45 | 70.2 | 1.52 | 53.3 | | 2000 | 1 | 29.4 | 1 | 0.4 | 1 | 1 | 1 | 70.2 | 1.52 | 53.3 | | 2450 | 1 | 31.3 | / | 0.1 | 1 | 1 | 1 | 68.6 | 1.95 | 52.7 | | 2600 | 1 | 31.7 | 1 | 0.1 | 1 | 1 | 1 | 68.2 | 2.16 | 52.3 | | Tissue dielectric parameters for head and body phantoms | | | | | | | | | | |---|------|------|------|----------|--|--|--|--|--| | Frequency | | εr | | σ
S/m | | | | | | | | Head | Body | Head | Body | | | | | | | 300 | 45.3 | 58.2 | 0.87 | 0.92 | | | | | | | 450 | 43.5 | 56.7 | 0.87 | 0.94 | | | | | | | 900 | 41.5 | 55.0 | 0.97 | 1.05 | | | | | | | 1450 | 40.5 | 54.0 | 1.20 | 1.30 | | | | | | | 1800 | 40.0 | 53.3 | 1.40 | 1.52 | | | | | | | 2450 | 39.2 | 52.7 | 1.80 | 1.95 | | | | | | | 3000 | 38.5 | 52.0 | 2.40 | 2.73 | | | | | | | 5800 | 35.3 | 48.2 | 5.27 | 6.00 | | | | | | Page 12 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E #### **LIQUID MEASUREMENT RESULTS** | Date | Ambient | | Simulating | Simulating Liquid | | Torget | Measured | Deviation | Limited | |------------|---------------|---------------|------------|-------------------|--------------|--------|------------|-----------|---------| | Date | Temp.
[°C] | Humidity
% | Frequency | Temp.
[°C] | Parameters | Target | ivieasureu | % | % | | 2022-06-12 | 22.2 | 60 | 2412 | 24.0 | Permittivity | 39.27 | 39.71 | 1.12 | ±5 | | 2022-00-12 | 22.2 | 60 | 2412 | 21.9 | Conductivity | 1.77 | 1.79 | 1.13 | ±5 | | 2022 06 42 | 22.7 | F F | 0407 | 22.4 | Permittivity | 39.22 | 39.62 | 1.02 | ±5 | | 2022-06-12 | 22.7 | 55 | 2437 | 2437 22.4 | Conductivity | 1.79 | 1.83 | 2.23 | ±5 | | 2022-06-12 | 22.0 | 54 | 2450 | 21.7 | Permittivity | 39.20 | 39.91 | 1.81 | ±5 | | 2022-00-12 | 22.0 | 54 | 2450 21.7 | Conductivity | 1.80 | 1.79 | -0.56 | ±5 | | | 2022 06 42 | 22.2 | FG | 2462 21.9 | Permittivity | 39.18 | 39.68 | 1.28 | ±5 | | | 2022-06-12 | 22.2 | 56 | | Conductivity | 1.81 | 1.80 | -0.55 | ±5 | | | 2022-06-12 | 22.2 | 56 | 2480 | 21.8 | Permittivity | 39.15 | 39.95 | 2.05 | ±5 | | 2022-00-12 | 22.2 | 50 | 2400 | 21.0 | Conductivity | 1.83 | 1.89 | 3.47 | ±5 | | 2022-06-13 | 23.5 | 57 | 5200 | 23.2 | Permittivity | 36.00 | 36.69 | 1.92 | ±5 | | 2022-00-13 | 23.5 | 37 | 5200 | 23.2 | Conductivity | 4.66 | 4.71 | 1.07 | ±5 | | 2022-06-13 | 23.4 | 52 | 5240 | 23.2 | Permittivity | 35.96 | 36.78 | 2.28 | ±5 | | 2022-00-13 | 23.4 | 52 | 5240 | 23.2 | Conductivity | 4.70 | 4.68 | -0.43 | ±5 | | 2022 06 42 | 22.5 | E1 | E70E | 22.2 | Permittivity | 35.32 | 35.28 | -0.11 | ±5 | | 2022-06-13 | 22.5 | 51 | 5785 | | Conductivity | 5.25 | 5.27 | 0.38 | ±5 | | 2022 06 42 | 22.0 | 57 | 5900 | 22.6 | Permittivity | 35.30 | 35.26 | -0.11 | ±5 | | 2022-06-13 | 22.9 | 57 | 5800 | 22.6 | Conductivity | 5.27 | 5.35 | 1.52 | ±5 | Page 13 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E #### 5. SAR System Validation #### 5.1 Validation System Each MVG system is equipped with one or more system validation kits. These units, together with the predefined measurement procedures within the MVG software, enable the user to conduct the system performance check and system validation. System kit includes a dipole, and dipole device holder. The system check verifies that the system operates within its specifications. It's performed daily or before every SAR measurement. The system check uses normal SAR measurement in the flat section of the phantom with a matched dipole at a specified distance. The system validation setup is shown as below. #### 5.2 Validation Result Comparing to the original SAR value provided by MVG, the validation data should be within its specification of 10 %. | Date | Freq. | Power | Tested
Value | Normalized
SAR | Target SAR | Tolerance | Limit | |------------|-------|-------|-----------------|-------------------|------------|-----------|-------| | | (MHz) | (mW) | (W/Kg) | (W/kg) | 1g(W/kg) | (%) | (%) | | 2022-06-12 | 2450 | 100 | 5.248 | 52.48 | 52.40 | 0.70 | 10 | | 2022-06-13 | 5200 | 100 | 15.899 | 158.99 | 159.00 | -0.79 | 10 | | 2022-06-13 | 5800 | 100 | 18.123 | 181.23 | 181.20 | 0.96 | 10 | #### Note: - 1. The tolerance limit of System validation ±10%. - 2. The dipole input power (forward power) was 100 mW. - 3. The results are normalized to 1 W input power. Page 14 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E #### 6. SAR Evaluation Procedures The procedure for assessing the average SAR value consists of the following steps: The following steps are used for each test position - Establish a call with the maximum output power with a base station simulator. The connection between the mobile and the base station simulator is established via air interface - Measurement of the local E-field value at a fixed location. This value serves as a reference value for calculating a possible power drift. - Measurement of the SAR distribution with a grid of 8 to 16mm * 8 to 16 mm and a constant distance to the inner surface of the phantom. Since the sensors cannot directly measure at the inner phantom surface, the values between the sensors and the inner phantom surface are extrapolated. With these values the area of the maximum SAR is calculated by an interpolation scheme. - Around this point, a cube of 30 * 30 * 30 mm or 32 * 32 * 32 mm is assessed by measuring 5 or 8 * 5 or 8*4 or 5 mm. With these data, the peak spatial-average SAR value can be calculated. #### Area Scan& Zoom Scan: First Area Scan is used to locate the approximate location(s) of the local peak SAR value(s). The measurement grid within an Area Scan is defined by the grid extent, grid step size and grid offset. Next, in order to determine the EM field distribution in a three-dimensional spatial extension, Zoom Scan is required. The Zoom Scan is performed around the highest E-field value to determine the averaged SAR -distribution over 10 g. Area scan and zoom scan resolution setting follows KDB 865664 D01v01r01 quoted below. When the 1-g SAR of the highest peak is within 2 dB of the SAR limit, additional zoom scans are required for other peaks within 2 dB of the highest peak that have not been included in any zoom scan to ensure there is no increase in SAR. Page 15 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E #### 7. EUT Antenna Location Sketch It is a THINKTOOL PROS+, Smart Automotive Diagnostic System, support WLAN/BT mode. | | Antenna Separation Distance(cm) | | | | | | | | | | | |---------|--|------|----|------|-----|-----|--|--|--|--|--| | ANT | ANT Back Side Front Side Left Side Right Side Top Side Bottom Side | | | | | | | | | | | | WLAN/BT | ≤0.5 | ≤0.5 | 22 | ≤0.5 | 5.5 | 8.5 | | | | | | Note 1: The antenna information refer the manufacturer provide report, applicable only to the tested sample identified in the report. Page 16 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E ### 7.1 SAR test exclusion consider table | The WLAN S A | R evaluation of Maximum power (dBm) s | u mming tolera | nce. | | | |--------------|---------------------------------------|----------------|--|---------|--------| | | Wireless Interface | ВТ | 2.4G | 5.2G | 5.8G | | Exposure | vviiciess interface | D1 | WLAN | WLAN | WLAN | | Position — | Calculated Frequency(GHz) | 2.48 | 2.437 | 5.24 | 5.745 | | FOSITION | Maximum Turn-up power (dBm) | 3.5 | 16.5 | 11 | 9.5 | | | Maximum rated power(mW) | 2.24 | 2.4G WLAN WLAN 2.437 5.24 16.5 11 44.67 12.59 <0.5 <0.5 2.76 1.49 YES YES 22 22 3667.83 3726.40 NO NO <0.5 <0.5 2.76 1.49 YES YES 22 122 3667.83 3726.40 NO NO <0.5 <0.5 2.76 1.49 YES YES 2.76 1.49 YES YES 5.5 5.5 262.96 212.17 NO NO 8.5 8.5 | 8.91 | | | | Separation distance (cm) | ≤0.5 | ≤0.5 | ≤0.5 | ≤0.5 | | Back Side | exclusion threshold(mW) | 2.72 | 2.76 | 1.49 | 1.39 | | | Testing required? | NO | YES | YES | YES | | | Separation distance (cm) | 22 | 22 | 22 | 22 | | Left Side | exclusion threshold(mW) | 3669.15 | 3667.83 | 3726.40 | 3733.5 | | Leit Side | Testing required? | NO | NO | NO | NO | | | Separation distance (cm) | ≤0.5 | ≤0.5 | ≤0.5 | ≤0.5 | | Right Side | exclusion threshold(mW) | 2.72 | 2.76 | 1.49 | 1.39 | | | Testing required? | NO | YES | YES | YES | | | Separation distance (cm) | 5.5 | 5.5 | 5.5 | 5.5 | | Top Side | exclusion threshold(mW) | 261.68 | 262.96 | 212.17 | 206.77 | | | Testing required? | NO | NO | NO | NO | | | Separation distance (cm) | 8.5 | 8.5 | 8.5 | 8.5 | | Bottom Side | exclusion threshold(mW) | 599.62 | 601.57 | 521.81 | 512.97 | | | Testing required? | NO | NO | NO | NO | Page 17 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E #### Note: - 1. maximum power is the source-based time-average power and represents the maximum RF output power among production units. - 2. Per KDB 447498 D04, for larger devices, the test separation distance of adjacent edge configuration is determined by the closest separation between the antenna and the user. - 3. Per KDB 447498 D04, if the maximum time-averaged power available does not exceed 1 mW. This stand-alone SAR exemption test. - 4. Per KDB 447498 D04, the available maximum time-averaged power or effective radiated power (ERP), whichever is greater, is less than or equal to the threshold Pth (mW) described in the following formula. This method shall only be used at separation distances (cm) from 0.5 centimeters to 40 centimeters and at frequencies from 0.3 GHz to 6 GHz (inclusive). Pth is given by: $$P_{th} \text{ (mW)} = \begin{cases} ERP_{20 \ cm} (d/20 \ \text{cm})^x & d \le 20 \ \text{cm} \\ ERP_{20 \ cm} & 20 \ \text{cm} < d \le 40 \ \text{cm} \end{cases}$$ Where $$x = -\log_{10}\left(\frac{60}{\mathit{ERP}_{20\;\mathit{cm}}\sqrt{f}}\right) \, \mathrm{and} \, f \, \mathrm{is \; in \; GHz};$$ and $$\mathit{ERP}_{20\;cm}\;(\mathrm{mW}) = \begin{cases} 2040f & 0.3\;\mathrm{GHz} \le f < 1.5\;\mathrm{GHz} \\ \\ 3060 & 1.5\;\mathrm{GHz} \le f \le 6\;\mathrm{GHz} \end{cases}$$ d = the separation distance (cm); Report No.: LCSA02054009E 5. Per KDB 447498 D04, An alternative to the SAR-based exemption is using below table and the minimum separation distance (R in meters) from the body of a nearby person for the frequency (f in MHz) at which the source operates, the ERP (watts) is no more than the calculated value prescribed for that frequency. For the exemption in below table to apply, R must be at least $\lambda/2\pi$, where λ is the free-space operating wavelength in meters. If the ERP of a single RF source is not easily obtained, then the available maximum time-averaged power may be used in lieu of ERP if the physical dimensions of the radiating structure(s) do not exceed the electrical length of $\lambda/4$ or if the antenna gain is less than that of a half-wave dipole (1.64 linear value). | RF Source frequency (MHz) | Threshold ERP(watts) | |---------------------------|--------------------------| | 0.3-1.34 | 1,920 R ² . | | 1.34-30 | 3,450 R²/f². | | 30-300 | 3.83 R ² . | | 300-1,500 | 0.0128 R ² f. | | 1,500-100,000 | 19.2R ² . | - 6. Per KDB 248227 D01, choose the highest output power channel to test SAR and determine further SAR exclusion 8.for each frequency band ,testing at higher data rates and higher order modulations is not required when the maximum average output power for each of each of these configurations is less than 1/4db higher than those measured at the lower data rate than 11b mode .thus the SAR can be excluded. - 7. Per KDB 616217 D04, SAR evaluation for the front surface of tablet display screens are generally not necessary. - 8. Per KDB 248227, as maximum rated power for U-NII-2A>U-NII-1, U-NII-2A was chosen for SAR evaluation. Based on the measurements obtained, SAR measurements on U-NII-1 are not required as highest reported SAR from U-NII-2A band is≤1.2W/Kg. Page 19 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E #### 8. EUT Test Position This EUT was tested in Front Face and Rear Face. #### 8.1 Body-worn Position Conditions Body-worn accessory exposure is typically related to voice mode operations when handsets are carried in body-worn accessories. The body-worn accessory procedures in KDB Publication 447498 D01 should be used to test for body-worn accessory SAR compliance, without a headset connected to it. When the same wireless transmission configuration is used for testing body-worn accessory and hotspot mode SAR, respectively, in voice and data mode, SAR results for the most conservative *test separation distance* configuration may be used to support both SAR conditions. When the *reported* SAR for a body-worn accessory, measured without a headset connected to the handset, is > 1.2 W/kg, the highest *reported* SAR configuration for that wireless mode and frequency band should be repeated for the body-worn accessory with a headset attached to the handset. Page 20 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E # 9. Measurement Uncertainty The following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in IEEE 1528: 2013. This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2. | Uncertainty Component | Tol
(+- %) | Prob.
Dist. | Div. | Ci (1g) | Ci
(10g) | 1g Ui
(+-%) | 10g Ui
(+-%) | vi | |---|---------------|----------------|------------|---------|-------------|----------------|-----------------|--------------| | Measurement System | | <u> </u> | | | | | | | | Probe calibration | 5.86 | N | 1 | 1 | 1 | 5.86 | 5.86 | ∞ | | Axial Isotropy | 0.16 | R | √3 | √0.5 | √0.5 | 0.07 | 0.07 | ∞ | | Hemispherical Isotropy | 1.06 | R | √3 | √0.5 | √0.5 | 0.43 | 0.43 | ∞ | | Boundary effect | 1 | R | √3 | 1 | 1 | 0.58 | 0.58 | ∞ | | Linearity | 1.27 | R | √3 | 1 | 1 | 0.73 | 0.73 | ∞ | | System detection limits | 1.23 | R | √3 | 1 | 1 | 0.71 | 0.71 | ∞ | | Modulation response | 3.6 | R | √3 | 1 | 1 | 3.60 | 3.60 | ∞ | | Readout Electronics | 0.28 | N | 1 | 1 | 1 | 0.28 | 0.28 | ∞ | | Response Time | 0.19 | R | $\sqrt{3}$ | 1 | 1 | 0.11 | 0.11 | ∞ | | Integration Time | 1.47 | R | √3 | 1 | 1 | 0.85 | 0.85 | ∞ | | RF ambient conditions-Noise | 3.5 | R | √3 | 1 | 1 | 2.02 | 2.02 | _∞ | | RF ambient conditions-reflections | 3.2 | R | √3 | 1 | 1 | 1.85 | 1.85 | × × | | Probe positioner mechanical tolerance | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | ∞ | | Probe positioning with respect to phantom shell | 1.4 | R | √3 | 1 | 1 | 0.81 | 0.81 | _∞ | | Post-processing | 2.3 | R | √3 | 1 | 1 | 1.33 | 1.33 | ∞ | | Test sample Related | T | 1 | | | | | 1 | | | Test sample positioning | 3.1 | N | 1 | 1 | 1 | 3.10 | 3.10 | ∞ | | Device holder uncertainty | 3.8 | N | 1 /- | 1 | 1 | 3.80 | 3.80 | ∞ | | SAR drift measurement | 4.8 | R | √3 | 1 | 1 | 2.77 | 2.77 | ∞ | | SAR scaling | 2 | R | √3 | 1 | 1 | 1.15 | 1.15 | ∞ | | Phantom and tissue parame | eters | | Τ | | | | I | | | Phantom uncertainty
(shape and thickness
uncertainty) | 4 | R | √3 | 1 | 1 | 2.31 | 2.31 | ∞ | | Uncertainty in SAR correction for deviations in permittivity and conductivity | 2 | N | 1 | 1 | 0.84 | 2.00 | 1.68 | ∞ | | Liquid conductivity (temperature uncertainty) | 2.5 | R | √3 | 0.78 | 0.71 | 1.95 | 1.78 | ∞ | | Liquid conductivity (measured) | 4 | N | 1 | 0.78 | 0.71 | 0.92 | 1.04 | М | | Liquid permittivity (temperature uncertainty) | 2.5 | R | √3 | 0.23 | 0.26 | 1.95 | 1.78 | ∞ | | Liquid permittivity (measured) | 5 | N | 1 | 0.23 | 0.26 | 1.15 | 1.30 | М | | Combined Standard
Uncertainty | | RSS | | | | 10.60 | 10.51 | | | Expanded Uncertainty (95% Confidence interval) | | K=2 | | | | 21.21 | 21.03 | | Page 21 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E # **10. Conducted Power Measurement** #### 10.1 Test Result вт | BT | | | | | | |-----------------|----------------|-----------------|---------------|--------------|--| | Mode | Channel Number | Fraguanay (MHz) | Average Power | Output Power | | | Mode | Charmer Number | Frequency (MHz) | (dBm) | (mW) | | | | 0 | 2402 | 0.06 | 1.01 | | | GFSK(1Mbps) | 39 | 2441 | 1.48 | 1.41 | | | | 78 | 2480 | 3.50 | 2.24 | | | | 0 | 2402 | 0.16 | 1.04 | | | π/4-QPSK(2Mbps) | 39 | 2441 | 1.56 | 1.43 | | | | 78 | 2480 | 2.91 | 1.95 | | | 8DPSK(3Mbps) | 0 | 2402 | 0.15 | 1.04 | | | | 39 | 2441 | 1.60 | 1.45 | | | | 78 | 2480 | 2.92 | 1.96 | | BIE | BLE | | | | | | |-------------|----------------|-----------------|---------------|--------------|--| | Mada | Channel Number | Eroguanov (MHz) | Average Power | Output Power | | | Mode | Charmer Number | Frequency (MHz) | (dBm) | (mW) | | | | 0 | 2402 | -5.55 | 0.28 | | | GFSK(1Mbps) | 19 | 2440 | -4.36 | 0.37 | | | | 39 | 2480 | -3.82 | 0.41 | | | | 0 | 2402 | -5.46 | 0.28 | | | GFSK(2Mbps) | 19 | 2440 | -4.25 | 0.38 | | | | 39 | 2480 | -3.74 | 0.42 | | Page 22 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E #### **2.4G WLAN** | 2.4GWIFI | | | | | | |---------------|----------------|-----------------|---------------------|-------------------|--| | Mode | Channel Number | Frequency (MHz) | Average Power (dBm) | Output Power (mW) | | | | 1 | 2412 | 14.72 | 29.65 | | | 802.11b | 7 | 2437 | 16.02 | 39.99 | | | | 11 | 2462 | 15.25 | 33.50 | | | | 1 | 2412 | 13.15 | 20.65 | | | 802.11g | 7 | 2437 | 13.99 | 25.06 | | | | 11 | 2462 | 13.16 | 20.70 | | | | 1 | 2412 | 13.13 | 20.56 | | | 802.11 n-HT20 | 7 | 2437 | 14.16 | 26.06 | | | | 11 | 2462 | 13.29 | 21.33 | | | | 3 | 2422 | 13.29 | 21.33 | | | 802.11 n-HT40 | 6 | 2437 | 13.39 | 21.83 | | | | 9 | 2452 | 13.01 | 20.00 | | #### **5G WLAN** | 5.2G WLAN | | | | | | |----------------|----------------|-----------------|--------------------|-------------------|--| | Mode | Channel Number | Frequency (MHz) | Output Power (dBm) | Output Power (mW) | | | | 36 | 5180 | 9.9 | 9.77 | | | 802.11a20 | 40 | 5200 | 9.98 | 9.95 | | | | 48 | 5240 | 10.68 | 11.69 | | | | 36 | 5180 | 9.72 | 9.38 | | | 802.11 n-HT20 | 40 | 5200 | 9.88 | 9.73 | | | | 48 | 5240 | 10.57 | 11.40 | | | 000 44 11740 | 38 | 5190 | 10.19 | 10.45 | | | 802.11 n-HT40 | 46 | 5230 | 10.21 | 10.50 | | | | 36 | 5180 | 9.8 | 9.55 | | | 802.11ac-VHT20 | 40 | 5200 | 9.85 | 9.66 | | | | 48 | 5240 | 10.58 | 11.43 | | | 802.11ac-VHT40 | 38 | 5190 | 10.13 | 10.30 | | | | 46 | 5230 | 10.2 | 10.47 | | | 802.11ac-VHT80 | 42 | 5210 | 10.36 | 10.86 | | Page 23 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E | | 5.8G WLAN | | | | | | |----------------|----------------|-----------------|--------------------|-------------------|--|--| | Mode | Channel Number | Frequency (MHz) | Output Power (dBm) | Output Power (mW) | | | | | 149 | 5745 | 9.03 | 8.00 | | | | 802.11a20 | 157 | 5785 | 8.43 | 6.97 | | | | | 165 | 5825 | 8.13 | 6.50 | | | | | 149 | 5745 | 8.51 | 7.10 | | | | 802.11 n-HT20 | 157 | 5785 | 8.13 | 6.50 | | | | | 165 | 5825 | 7.85 | 6.10 | | | | 000 44 11740 | 151 | 5755 | 8.53 | 7.13 | | | | 802.11 n-HT40 | 159 | 5795 | 8.82 | 7.62 | | | | | 149 | 5745 | 8.7 | 7.41 | | | | 802.11ac-VHT20 | 157 | 5785 | 8.12 | 6.49 | | | | | 165 | 5825 | 7.84 | 6.08 | | | | 802.11ac-VHT40 | 151 | 5755 | 8.53 | 7.13 | | | | | 159 | 5795 | 8.82 | 7.62 | | | | 802.11ac-VHT80 | 155 | 5775 | 8.93 | 7.82 | | | Page 24 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E # 11. EUT And Test Setup Photo #### 11.1 EUT Photo Back side ### 11.2 Setup Photo Report No.: LCSA02054009E Body Right side(separation distance is 0mm) Page 26 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E Liquid depth (15 cm) Page 27 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E #### 12. SAR Result Summary 12.1 Body-worn SAR | Band | Model | Test
Position | Freq. | SAR
(1g)
(W/kg) | Power Drift(%) | Max.Turn-up Power(dBm) | Meas.Output Power(dBm) | Scaled
SAR
(W/Kg) | Meas.No. | |--------|---------|------------------|-------|-----------------------|----------------|------------------------|------------------------|-------------------------|----------| | | | Back Side | 2437 | 0.268 | -0.08 | 16.50 | 16.02 | 0.299 | / | | 2.4GHz | 000 445 | Right Side | 2412 | 0.412 | 2.52 | 16.50 | 14.72 | 0.621 | 1 | | WLAN | 802.11b | Right Side | 2437 | 0.596 | 1.06 | 16.50 | 16.02 | 0.733 | 1 | | | | Right Side | 2462 | 0.445 | 3.51 | 16.50 | 15.25 | 0.593 | / | | 5.2GHz | 000 44- | Back Side | 5240 | 0.099 | 2.25 | 11.00 | 10.68 | 0.107 | / | | WLAN | 802.11a | Right Side | 5240 | 0.241 | -0.28 | 11.00 | 10.68 | 0.259 | 2 | | 5.8GHz | 000 445 | Back Side | 5745 | 0.169 | -3.63 | 9.50 | 9.03 | 0.188 | 1 | | WLAN | 802.11a | Right Side | 5745 | 0.295 | -1.92 | 9.50 | 9.03 | 0.635 | 3 | | DT | OFOK | Back Side | 2480 | 0.128 | -0.07 | 4.00 | 3.50 | 0.144 | 1 | | ВТ | GFSK | Right Side | 2480 | 0.334 | -0.92 | 4.00 | 3.50 | 0.375 | 4 | #### Note: - 1. The test separation of all above table is 0mm. - 2. Per KDB 447498 D01, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance. - a. Tune-up scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units. - b. For WWAN: Scaled SAR(W/kg)= Measured SAR(W/kg)*Tune-up Scaling Factor - 3. Per KDB 248227- When the highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power and the adjusted SAR is \leq 1.2 W/kg. (The highest reported SAR for DSSS is adjusted by the ratio of OFDM to DSSS specified maximum output power was **0.417** W/kg for Body) Page 28 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E #### **Simultaneous Multi-band Transmission Evaluation:** Application Simultaneous Transmission information: | Position | Simultaneous state | |----------|--------------------------| | Body | 1. BT + 5.2G WIFI | | | 2. BT + 5.8G WIFI | | | 3. 2.4G WIFI + 5.2G WIFI | | | 4. 2.4G WIFI + 5.8G WIFI | #### NOTE: - 1. For simultaneous transmission at head and body exposure position, 2 transmitters simultaneous transmission was the worst state. - 2. Bluetooth and WLAN can't simultaneous transmission at the same time. - 3. The reported SAR summation is calculated based on the same configuration and test position. | Simultaneous Mode | Position | Mode | Max. 1-g SAR | 1-g Sum SAR | |-------------------|----------|-----------|--------------|-------------| | Simultaneous Wode | Position | Mode | (W/kg) | (W/kg) | | 5.2G WIFI + BT | Dody | 5.2G WIFI | 0.259 | 0.634 | | 5.2G WIFI + B1 | Body | ВТ | 0.375 | 0.634 | | F OCMITL L DT | Dody | 5.8G WIFI | 0.635 | 1.01 | | 5.8GWIFI + BT | Body | ВТ | 0.375 | 1.01 | | 2.4G WIFI + 5.2G | Dody | 2.4G WIFI | 0.733 | 0.003 | | WIFI | Body | 5.2G WIF | 0.259 | 0.992 | | 2.4G WIFI + 5.8G | Dodu | 2.4G WIFI | 0.733 | 1 260 | | WIFI | Body | 5.8G WIF | 0.635 | 1.368 | Simultaneous transmission SAR test exclusion is determined for each operating configuration and exposure condition according to the reported standalone SAR of each applicable simultaneous transmitting antenna. Page 29 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E # 13. Equipment List | Kind of Equipment | Manufacturer | Type No. | Serial No. | Last Calibration | Calibrated Until | |------------------------------------|--------------|---------------------|-----------------------|------------------|------------------| | 2450MHzDipole | MVG | SID2450 | SN 30/14 DIP2G450-335 | 2020.07.14 | 2023.07.13 | | Waveguide | MVG | SWG5500 | SN 13/14 WGA32 | 2020.07.14 | 2023.07.13 | | E-Field Probe | MVG | SSE2 | SN 07/21 EPGO352 | 2022.02.28 | 2023.03.01 | | Dielectric Probe Kit | MVG | SCLMP | SN 32/14 OCPG67 | 2021.11.23 | 2022.11.22 | | Antenna | MVG | ANTA3 | SN 07/13 ZNTA52 | N/A | N/A | | Phantom1 | MVG | SAM | SN 32/14 SAM115 | N/A | N/A | | Phantom2 | MVG | SAM | SN 32/14 SAM116 | N/A | N/A | | Phone holder | MVG | N/A | SN 32/14 MSH97 | N/A | N/A | | Laptop holder | MVG | N/A | SN 32/14 LSH29 | N/A | N/A | | Attenuator | Agilent | 99899 | DC-18GHz | N/A | N/A | | Directional coupler | Narda | 4226-20 | 3305 | N/A | N/A | | Network Analyzer | Agilent | 8753ES | US38432810 | 2021.09.29 | 2022.09.28 | | Multi Meter | Keithley | Multi Meter
2000 | 4050073 | 2021.10.08 | 2022.10.07 | | Signal Generator | Agilent | N5182A | MY50140530 | 2021.09.30 | 2022.09.29 | | Wireless Communication Test Set | Agilent | 8960-E5515C | MY48360751 | 2021.09.30 | 2022.09.29 | | Wireless
Communication Test Set | R&S | CMW500 | 117239 | 2021.09.30 | 2022.09.29 | | Power Amplifier | DESAY | ZHL-42W | 9638 | 2021.10.09 | 2022.10.08 | | Power Meter | R&S | NRP | 100510 | 2021.09.29 | 2022.09.28 | | Power Sensor | R&S | NRP-Z11 | 101919 | 2021.09.29 | 2022.09.28 | | Temperature hygrometer | SuWei | SW-108 | N/A | 2021.10.09 | 2022.10.08 | | Thermograph | Elitech | RC-4 | S/N EF7176501537 | 2021.10.09 | 2022.10.08 | | Noto: | | | | | | #### Note: Per KDB 865664 D01, Dipole SAR Validation Verification, STS LAB has adopted 3 years calibration intervals. On annual basis, every measurement dipole has been evaluated and is in compliance with the following criteria: ^{1.} There is no physical damage on the dipole ^{2.} System validation with specific dipole is within 10% of calibrated value Return-loss in within 20% of calibrated measurement Page 30 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E # Appendix A. System Validation Plots #### **System Performance Check Data(2450MHz)** Type: Dipole measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm Date of measurement: 2022-06-12 #### **Experimental conditions.** | Device Position | Validation plane | |-----------------------|------------------| | Band | 2450 MHz | | Channels | - | | Signal | CW | | Frequency (MHz) | 2450 | | Relative permittivity | 39.91 | | Conductivity (S/m) | 1.79 | | Probe | SN 07/21 EPGO352 | | ConvF | 1.47 | | Crest factor: | 1:1 | #### Maximum location: X=7.00, Y=2.00 | SAR 10g (W/Kg) | 2.390801 | |----------------|----------| | SAR 1g (W/Kg) | 5.24777 | Page 31 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E # **Z** Axis Scan Page 32 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E #### System Performance Check Data(5200MHz) Type: Dipole measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm Date of measurement: 2022-06-13 #### **Experimental conditions.** | Device Position | Validation plane | |-----------------------|------------------| | Band | 5200 MHz | | Channels | - | | Signal | CW | | Frequency (MHz) | 5200 | | Relative permittivity | 36.69 | | Conductivity (S/m) | 4.71 | | Probe | SN 07/21 EPGO352 | | ConvF | 1.47 | | Crest factor: | 1:1 | #### Maximum location: X=7.00, Y=2.00 | SAR 10g (W/Kg) | 5.681215 | |----------------|-----------| | SAR 1g (W/Kg) | 15.898796 | Page 33 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E # **Z** Axis Scan Page 34 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E #### System Performance Check Data(5800MHz) Type: Dipole measurement (Complete) Area scan resolution: dx=8mm,dy=8mm Zoom scan resolution: dx=4mm, dy=4mm, dz=2mm Date of measurement: 2022-06-13 #### **Experimental conditions.** | Device Position | Validation plane | |-----------------------|------------------| | Band | 5800MHz | | Channels | - | | Signal | CW | | Frequency (MHz) | 5800 | | Relative permittivity | 35.26 | | Conductivity (S/m) | 5.35 | | Probe | SN 07/21 EPGO352 | | ConvF | 1.47 | | Crest factor: | 1:1 | #### Maximum location: X=7.00, Y=2.00 | SAR 10g (W/Kg) | 6.126169 | |----------------|-----------| | SAR 1g (W/Kg) | 18.122674 | Page 35 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E # **Z** Axis Scan Page 36 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E #### **Appendix B. SAR Test Plots** # Plot 1: DUT: THINKTOOL PROS+, Smart Automotive Diagnostic System; EUT Model: TKT04 | Test Date | 2022-06-12 | |-----------------------------------|---| | Probe | SN 07/21 EPGO352 | | Area Scan | dx=8mm, dy=8mm, h= 5.00 mm | | Zoom Scan | 5x5x7,dx=8mm, dy=8mm, dz=5mm,
Complete/ndx=8mm, dy=8mm, h= 5.00 mm | | Phantom | Validation plane | | Device Position | Right Side | | Band | 2.4G WLAN | | Signal | IEEE802.11b (Crest factor: 1.0) | | Frequency (MHz) | 2437 | | Relative permittivity (real part) | 39.62 | | Conductivity (S/m) | 1.83 | Maximum location: X=1.00, Y=7.00 SAR Peak: 0.96 W/kg | | - · · · J | |----------------|-----------| | SAR 10g (W/Kg) | 0.316497 | | SAR 1g (W/Kg) | 0.595686 | Page 37 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E # Plot 2: DUT: THINKTOOL PROS+, Smart Automotive Diagnostic System; EUT Model: TKT04 | Test Date | 2022-06-12 | |-----------------------------------|---| | Probe | SN 07/21 EPGO352 | | Area Scan | dx=8mm, dy=8mm, h= 5.00 mm | | Zoom Scan | 7x7x12, dx=4mm, dy=4mm, dz=2mm,
Complete/ndx=8mm, dy=8mm, h= 5.00 mm | | Phantom | Validation plane | | Device Position | Right Side | | Band | 5.2G WLAN | | Signal | IEEE802.11 n-a (Crest factor: 1.0) | | Frequency (MHz) | 5240 | | Relative permittivity (real part) | 36.78 | | Conductivity (S/m) | 4.68 | Maximum location: X=6.00, Y=16.00 SAR Peak: 0.64 W/kg | SAR 10g (W/Kg) | 0.114276 | |----------------|----------| | SAR 1g (W/Kg) | 0.241157 | Page 38 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E # Plot 3: DUT: THINKTOOL PROS+, Smart Automotive Diagnostic System; EUT Model: TKT04 | Test Date | 2022-06-13 | |-----------------------------------|---| | Probe | SN 07/21 EPGO352 | | Area Scan | dx=8mm, dy=8mm, h= 5.00 mm | | Zoom Scan | 7x7x12, dx=4mm, dy=4mm, dz=2mm,
Complete/ndx=8mm, dy=8mm, h= 5.00 mm | | Phantom | Validation plane | | Device Position | Right Side | | Band | 5.8G WLAN | | Signal | IEEE802.11 n-a (Crest factor: 1.0) | | Frequency (MHz) | 5785 | | Relative permittivity (real part) | 35.28 | | Conductivity (S/m) | 5.27 | Maximum location: X=7.00, Y=8.00 SAR Peak: 0.83 W/kg | SAR 10g (W/Kg) | 0.130647 | |----------------|----------| | SAR 1g (W/Kg) | 0.295318 | Page 39 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E # Plot 4: DUT: THINKTOOL PROS+, Smart Automotive Diagnostic System; EUT Model: TKT04 | 2022-06-12 | |---| | SN 07/21 EPGO352 | | dx=8mm, dy=8mm, h= 5.00 mm | | 7x7x12, dx=4mm, dy=4mm, dz=2mm,
Complete/ndx=8mm, dy=8mm, h= 5.00 mm | | Validation plane | | Right Side | | ВТ | | GFSK | | 2480 | | 39.95 | | 1.89 | | | Maximum location: X=-8.00, Y=0.00 SAR Peak: 0.62 W/kg | SAR 10g (W/Kg) | 0.150289 | |----------------|----------| | SAR 1g (W/Kg) | 0.334038 | Page 40 of 40 FCC ID: 2AVYW-PHLITE2 Report No.: LCSA02054009E # Appendix C. Probe Calibration And Dipole Calibration Report Refer the appendix Calibration Report. *****END OF THE REPORT***