

Report Seal

Report No.: EED32R80535202

Product : Over-Ear Bluetooth Headset

Trade mark : VOKALEN

Model/Type reference : Hyper GO

Serial Number : N/A

Report Number : EED32R80535202

FCC ID : MV3-CMT009 Date of Issue : May 14, 2025

Test Standards : 47 CFR Part 15 Subpart C

Test result : PASS

Prepared for:

Country Mate Technology Ltd 5/F, Blk E, Hing Yip Center. 31 Hing Yip Street Kwun Tong, Kln N/A Hong Kong

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:	keven Jan.	Reviewed by:	Firazer. Li	
Re INTERNATIONAL	Keven Tan		Frazer Li	
Approved by: 80	Javon Ma	Date:	May 14, 2025	
	Aaron Ma			(3

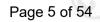
Check No.: 6808140425

Page 1 of 54

1 Contents	Page
1 CONTENTS	 2
2 VERSION	 3
3 TEST SUMMARY	 4
4 GENERAL INFORMATION	5
4.1 CLIENT INFORMATION	5
5 TEST RESULTS AND MEASUREMENT DATA	
5.1 ANTENNA REQUIREMENT	
6 APPENDIX A	
7 PHOTOGRAPHS OF TEST SETUP8 PHOTOGRAPHS OF EUT CONSTRUCTIONAL DETA	

2 Version

Version No.	Date		Description	
00	May 14, 2025		Original	/5
		(85)		


Page 4 of 54

3 Test Summary

o rest Summary		V., 1
Test Item	Test Requirement	Result
Antenna Requirement	47 CFR Part 15, Subpart C Section 15.203/15.247 (c)	PASS
AC Power Line Conducted Emission	47 CFR Part 15, Subpart C Section 15.207	PASS
Maximum Conducted Output Power	47 CFR Part 15, Subpart C Section 15.247 (b)(1)	PASS
20dB Emission Bandwidth	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Carrier Frequency Separation	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Number of Hopping Channels	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Time of Occupancy	47 CFR Part 15, Subpart C Section 15.247 (a)(1)	PASS
Pseudorandom Frequency Hopping Sequence	47 CFR Part 15, Subpart C Section 15.247(b)(4)	PASS
Band Edge Measurements	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Conducted Spurious Emissions	47 CFR Part 15, Subpart C Section 15.247(d)	PASS
Radiated Spurious emissions	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS
Restricted bands around fundamental frequency	47 CFR Part 15, Subpart C Section 15.205/15.209	PASS


4 General Information

4.1 Client Information

	Applicant:	Country Mate Technology Ltd
874	Address of Applicant:	5/F, Blk E, Hing Yip Center. 31 Hing Yip Street Kwun Tong, Kln N/A Hong Kong
9	Manufacturer:	Country Mate Technology Ltd
	Address of Manufacturer:	5/F, Blk E, Hing Yip Center. 31 Hing Yip Street Kwun Tong, Kln N/A Hong Kong

4.2 General Description of EUT

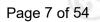
Product Name:	Over-Ear B	Bluetooth Headset	(0,1)	
Model No.:	Hyper Go			
Trade Mark:	VOKALEN			
Product Type:	☐ Mobile	□ Portable □ Fixed Location		(.)
Operation Frequency:	2402MHz-2	2480MHz		(617)
Modulation Technique:	Frequency	Hopping Spread Spectrum(FHSS)		
Modulation Type:	GFSK, π/4DQPSK, 8DPSK			
Number of Channel:	79			
Hopping Channel Type:	Adaptive Fi	requency Hopping systems		
Antenna Type:	PCB Anten	na	(0)	
Antenna Gain:	-0.38dBi			
D 0 1	Adapter:	DC 5V		
Power Supply:	Battery:	DC 3.7V		
Test Voltage:	DC 5V			(0)
Sample Received Date:	Apr. 17, 2025			
Sample tested Date:	Apr. 17, 2025 to Apr. 26, 2025			

	n Frequency each		_		_		_
Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)	Channel	Frequency (MHz)
0	2402	20	2422	40	2442	60	2462
1	2403	21	2423	41	2443	61	2463
2	2404	22	2424	42	2444	62	2464
3	2405	23	2425	43	2445	63	2465
4	2406	24	2426	44	2446	64	2466
5	2407	25	2427	45	2447	65	2467
6	2408	26	2428	46	2448	66	2468
7	2409	27	2429	47	2449	67	2469
8	2410	28	2430	48	2450	68	2470
9	2411	29	2431	49	2451	69	2471
10	2412	30	2432	50	2452	70	2472
11	2413	31	2433	51	2453	71	2473
12	2414	32	2434	52	2454	72	2474
13	2415	33	2435	53	2455	73	2475
14	2416	34	2436	54	2456	74	2476
15	2417	35	2437	55	2457	75	2477
16	2418	36	2438	56	2458	76	2478
17	2419	37	2439	57	2459	77	2479
18	2420	38	2440	58	2460	78	2480
19	2421	39	2441	59	2461	_0>	

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

A STATE OF THE STA	
Channel	Frequency(MHz)
The lowest channel (CH0)	2402
The middle channel (CH39)	2441
The highest channel (CH78)	2480



Test Configuration 4.3

EUT Test Software Settings			
Test Software:	BT_Tool		.1.1
EUT Power Grade:	Default (Power level is built-in set parameters and cannot be changed and selected)		
Use test software to set the lo transmitting of the EUT.	west frequency, the middle fr	equency and the	highest frequency keep
Mode	Channel	7000	Frequency(MHz)
	CH0		2402
DH1/DH3/DH5	CH39	(0)	2441
	CH78		2480
	CH0		2402
2DH1/2DH3/2DH5	CH39	(4	2441
	CH78		2480
	CH0		2402
3DH1/3DH3/3DH5	CH39	(*)	2441
	CH78	(6.72)	2480

Report No. : EED32R80535202 Page 8 of 54

4.4 Test Environment

Operating Environment	t:				
Radiated Spurious Emi	ssions:				
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH		100		(3)
Atmospheric Pressure:	1010mbar		(0)		(6)
Conducted Emissions:					
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH	-05		100	
Atmospheric Pressure:	1010mbar	(47)		(247)	
RF Conducted:					
Temperature:	22~25.0 °C				
Humidity:	50~55 % RH				
Atmospheric Pressure:	1010mbar		(20)		(41)

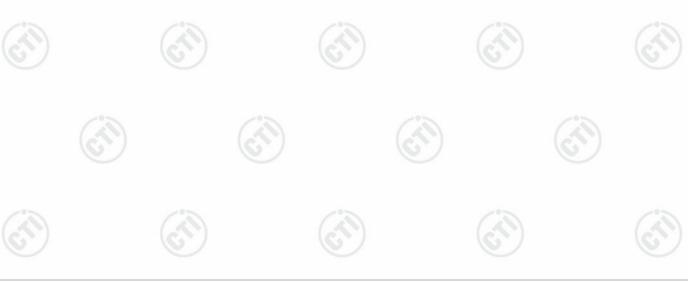
4.5 Description of Support Units

The EUT has been tested with associated equipment below.

1) Support equipment

Description	Manufacturer	Model No.	Certification	Supplied by
Netbook	Asus	FL8700JP1065-	FCC&CE	СТІ
	·	0D8GXYQ2X10		_05

4.6 Test Location


All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted. FCC Designation No.: CN1164

4.7 Measurement Uncertainty (95% confidence levels, k=2)

No.	Item	Measurement Uncertainty
1	Radio Frequency	7.9 x 10 ⁻⁸
2	DE novem conducted	0.46dB (30MHz-1GHz)
2	RF power, conducted	0.55dB (1GHz-40GHz)
		3.3dB (9kHz-30MHz)
	Dedicted Countries and advantage	4.3dB (30MHz-1GHz)
3	Radiated Spurious emission test	4.5dB (1GHz-18GHz)
(3)		3.4dB (18GHz-40GHz)
	Conduction aminaian	3.5dB (9kHz-150kHz)
4	Conduction emission	3.1dB (150kHz-30MHz)
5	Temperature test	0.64°C
6	Humidity test	3.8%
7	DC power voltages	0.026%

Report No.: EED32R80535202 Page 10 of 54

4.8 Equipment List

	RF test system							
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)			
Communication R&S		CMW500	107929	06-26-2024	06-25-2025			
Signal Generator	R&S	SMBV100A	1407.6004K02- 262149-CV	09-02-2024	09-01-2025			
Spectrum R&S Analyzer		FSV40	101200	07-18-2024	07-17-2025			
RF control unit(power unit)	MWRF-test	MW100-RFCB	MW220620CTI-42	06-25-2024	06-24-2025			
High-low temperature test chamber	Dong Guang Qin Zhuo	LK-80GA	QZ20150611879	11-30-2024	11-29-2025			
Temperature/ Humidity Indicator	biaozhi	HM10	1804186	05-29-2024	05-28-2025			
BT&WI-FI Automatic test software	MWRF-test	MTS 8310	V2.0.0.0	(Fig.	- 6			
Spectrum R&S Analyzer		FSV3044	101509	02-14-2025	02-13-2026			

Conducted disturbance Test							
Equipment	Manufacturer	Model No.	Serial Number	Cal. date	Cal. Due date (mm-dd-yyyy)		
Receiver	R&S	ESCI	100435	04-08-2025	04-07-2026		
Temperature/ Humidity Indicator	Defu	TH128	1	04-25-2024	04-24-2025		
LISN	R&S	ENV216	100098	09-19-2024	09-18-2025		
Barometer	changchun	DYM3	1188		<u></u>		
Test software	Fara	EZ-EMC	EMC-CON 3A1.1				
Capacitive voltage probe	Schwarzbeck	CVP 9222C	00124	06-18-2024	06-17-2025		
ISN	TESEQ	ISN T800	30297	12-05-2024	12-04-2025		

Page 11 of 54

			Serial	Cal. date	Cal. Due date	
Equipment	Manufacturer	Model No.	Number	(mm-dd-yyyy)	(mm-dd-yyyy)	
3M Chamber & Accessory Equipment	TDK	SAC-3		05/22/2022	05/21/2025	
Receiver	R&S	ESCI7	100938- 003	09/07/2024	09/06/2025	
Spectrum Analyzer	R&S	FSV40	101200	07/18/2024	07/17/2025	
TRILOG Broadband Antenna	schwarzbeck	VULB 9163	9163-618	05/22/2022	05/21/2025	
Loop Antenna	Schwarzbeck	FMZB 1519B	1519B-076	04/07/2025	04/06/2026	
Microwave Preamplifier	Tonscend	EMC051845SE	980380	12/05/2024	12/04/2025	
Horn Antenna	A.H.SYSTEMS	SAS-574	374	07/02/2023	07/01/2026	
Horn Antenna	ETS-LINGREN	BBHA 9120D	9120D- 1869	04/07/2025	04/06/2026	
Preamplifier	Agilent	11909A	12-1	03/03/2025	03/02/2026	
Preamplifier	CD	PAP-1840-60	6041.6042	06/19/2024	06/18/2025	
Test software	Fara	EZ-EMC	EMEC- 3A1-Pre			
Cable line	Fulai(7M)	SF106	5219/6A	/	<u> </u>	
Cable line	Fulai(6M)	SF106	5220/6A		<u></u>	
Cable line	Fulai(3M)	SF106	5216/6A			
Cable line	Fulai(3M)	SF106	5217/6A		_ 6	

Page 12 of 54

		3M full-anechoic	Chamber		
Equipment	Manufacturer	Model No.	Serial Number	Cal. Date (mm-dd-yyyy)	Cal. Due date (mm-dd-yyyy)
Fully Anechoic Chamber	TDK	FAC-3		01-09-2024	01-08-2027
Receiver	Keysight	N9038A	MY57290136	01-04-2025	01-03-2026
Spectrum Analyzer	Keysight	N9020B	MY57111112	01-14-2025	01-13-2026
Spectrum Analyzer	Keysight	N9030B	MY57140871	01-14-2025	01-13-2026
TRILOG Broadband Antenna	Schwarzbeck	VULB 9163	9163-1148	04-28-2024	04-27-2025
Horn Antenna	Schwarzbeck	BBHA 9170	9170-832	04-12-2025	04-11-2026
Horn Antenna	ETS-LINDGREN	3117	57407	07-03-2024	07-02-2025
Preamplifier	EMCI	EMC001330	980563	03-03-2025	03-02-2026
Preamplifier	Tonscend	TAP-011858	AP21B806112	07-18-2024	07-17-2025
Preamplifier	Tonscend	EMC051845SE	980380	12-05-2024	12-04-2025
Communication test set	R&S	CMW500	102898	01-04-2025	01-03-2026
Temperature/	biaozhi	GM1360	EE1186631	03-31-2025	03-30-2026
RSE Automatic test software	JS Tonscend	JS36-RSE	V4.0.0.0	<u> </u>	
Cable line	Times	SFT205-NMSM-2.50M	394812-0001		
Cable line	Times	SFT205-NMSM-2.50M	394812-0002	(6	5)
Cable line	Times	SFT205-NMSM-2.50M	394812-0003		
Cable line	Times	SFT205-NMSM-2.50M	393495-0001		- /3
Cable line	Times	EMC104-NMNM-1000	SN160710	(C)_	(C)
Cable line	Times	SFT205-NMSM-3.00M	394813-0001		
Cable line	Times	SFT205-NMNM-1.50M	381964-0001	(:a
Cable line	Times	SFT205-NMSM-7.00M	394815-0001	(6)	<u> </u>
Cable line	Times	HF160-KMKM-3.00M	393493-0001		



5 Test results and Measurement Data

5.1 Antenna Requirement

Standard requirement: 47 CFR Part 15C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

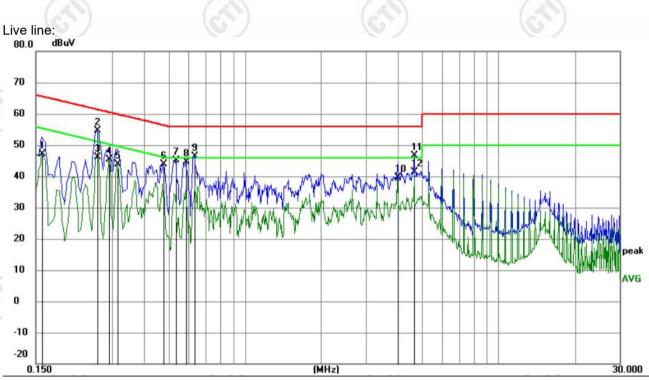
EUT Antenna: Please see Internal photos

The antenna is PCB antenna. The best case gain of the antenna is -0.38dBi.

Report No.: EED32R80535202 Page 14 of 54

5.2	AC Power Line Cor	nducted Emissions							
	Test Requirement:	47 CFR Part 15C Section 15.2	207	(62)					
	Test Method:	ANSI C63.10: 2013							
	Test Frequency Range:	150kHz to 30MHz							
(3.0)	Receiver setup:	RBW=9 kHz, VBW=30 kHz, Sweep time=auto							
1	Limit:	(1411-)	Limit (dl	BuV)					
		Frequency range (MHz)	Quasi-peak	Average					
		0.15-0.5	66 to 56*	56 to 46*					
		0.5-5	56	46					
		5-30	60	50					
		* Decreases with the logarithn	n of the frequency.	(0)					
		Shielding Room EUT AC Mains LISN1	Ground Reference Plane	Test Receiver					
	Test Procedure:	 The mains terminal disturbroom. The EUT was connected to Impedance Stabilization Not impedance. The power call connected to a second LIS reference plane in the same measured. A multiple sock power cables to a single Life exceeded. The tabletop EUT was place ground reference plane. All placed on the horizontal ground reference plane. All placed on the horizontal ground reference plane. The EUT shall be 0.4 mm vertical ground reference preference plane. The LISN unit under test and bonded mounted on top of the ground reference. 	o AC power source throetwork) which provides oles of all other units of SN 2, which was bonded as way as the LISN 1 for et outlet strip was used ISN provided the rating oced upon a non-metallic and for floor-standing arround reference plane, the a vertical ground referom the vertical ground plane was bonded to the 1 was placed 0.8 m from the a ground reference	eugh a LISN 1 (Line a 50Ω/50μH + 5Ω linear the EUT were do to the ground reconnect multiple of the LISN was not at table 0.8m above the tangement, the EUT was become plane. The rear difference plane. The ending how the boundary of the plane for LISNs					

between the closest points of the LISN 1 and the EUT. All other units of the EUT and associated equipment was at least 0.8 m from the LISN 2.


5) In order to find the maximum emission, the relative positions of

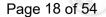
Page	15	of	54	
------	----	----	----	--

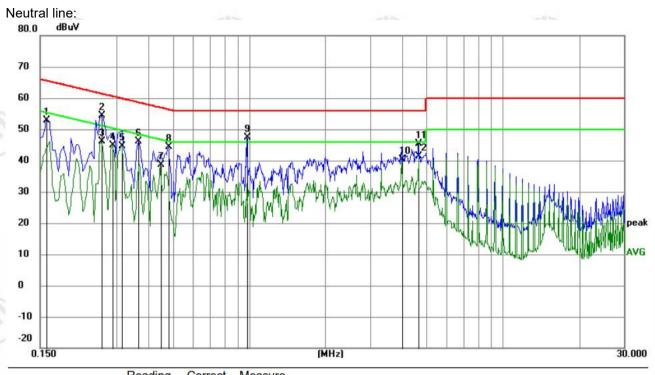
	equipment and all of the interface cables must be changed according to ANSI C63.10: 2013 on conducted measurement.
Exploratory Test N	Mode: Non-hopping transmitting mode with all kind of modulation and all kind of data type at the lowest, middle, high channel.
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation at the lowest channel is the worst case. Only the worst case is recorded in the report.
Test Results:	Pass

Measurement Data

No. Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
	MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1	0.1590	36.76	10.27	47.03	55.52	-8.49	AVG	
2	0.2625	44.58	10.16	54.74	61.35	-6.61	QP	
3	0.2625	35.92	10.16	46.08	51.35	-5.27	AVG	
4	0.2909	35.19	10.14	45.33	50.50	-5.17	AVG	
5	0.3165	33.66	10.12	43.78	49.80	-6.02	AVG	
6	0.4785	33.81	10.08	43.89	56.37	-12.48	QP	
7	0.5325	35.15	10.09	45.24	56.00	-10.76	QP	
8	0.5865	34.42	10.10	44.52	56.00	-11.48	QP	
9	0.6360	36.29	10.11	46.40	56.00	-9.60	QP	
10	3.9885	29.42	10.10	39.52	46.00	-6.48	AVG	
11	4.6545	36.62	10.07	46.69	56.00	-9.31	QP	
12 *	4.6545	31.38	10.07	41.45	46.00	-4.55	AVG	

Page 16 of 54


Page 17 of 54



- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		
		MHz	dBuV	dB	dBuV	dBuV	dB	Detector	Comment
1		0.1590	42.64	10.27	52.91	65.52	-12.61	QP	
2		0.2625	44.32	10.16	54.48	61.35	-6.87	QP	
3		0.2625	36.02	10.16	46.18	51.35	-5.17	AVG	
4		0.2895	34.65	10.14	44.79	50.54	-5.75	AVG	
5		0.3165	34.56	10.12	44.68	49.80	-5.12	AVG	
6		0.3660	35.99	10.10	46.09	58.59	-12.50	QP	
7		0.4470	28.50	10.09	38.59	46.93	-8.34	AVG	
8		0.4830	34.25	10.08	44.33	56.29	-11.96	QP	
9		0.9825	37.11	10.18	47.29	56.00	-8.71	QP	
10		3.9885	30.29	10.10	40.39	46.00	-5.61	AVG	
11		4.6545	35.35	10.07	45.42	56.00	-10.58	QP	
12	*	4.6545	31.31	10.07	41.38	46.00	-4.62	AVG	

Remark:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.
- 3. If the Peak value under Average limit, the Average value is not recorded in the report.

Report No.: EED32R80535202 Page 19 of 54

5.3 Maximum Conducted Output Power

/ 231							
Test Requirement:	47 CFR Part 15C Section 15.247 (b)(1)						
Test Method:	ANSI C63.10:2013						
Test Setup:	RF test System Instrument Remark: Offset=Cable loss+ attenuation factor. Use the following spectrum analyzer settings:						
rest riocedure.	Span = approximately 5 times the 20 dB bandwidth, centered on a hopping channel RBW > the 20 dB bandwidth of the emission being measured VBW ≥ RBW Sweep = auto Detector function = peak Trace = max hold Allow the trace to stabilize. Use the marker-to-peak function to set the marker to the						
Limit:	peak of the emission. 21dBm						
Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type						
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π /4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.						
Test Results:	Refer to Appendix A						
/							

Report No.: EED32R80535202 Page 20 of 54

5.4 20dB Emission Bandwidth

(-63)							
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)						
Test Method:	ANSI C63.10:2013						
Test Setup: Test Procedure:	RF test System Instrument Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Use the following spectrum analyzer settings for 20dB Bandwidth measurement.						
	Span = approximately 2 to 5 times the 20 dB bandwidth, centered on a hopping channel; 1%≤RBW ≤5% of the 20 dB bandwidth; VBW≥3RBW; Sweep = auto; Detector function = peak; Trace = max hold. 4. Measure and record the results in the test report.						
Limit:	NA						
Exploratory Test Mode	Non-hopping transmitting with all kind of modulation and all kind of data type						
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.						
Test Results:	Refer to Appendix A						

Report No.: EED32R80535202 Page 21 of 54

5.5 Carrier Frequency Separation

measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. Limit: Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater. Exploratory Test Mode: Hopping transmitting with all kind of modulation and all kind of data type Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π/4DQPSK		1 25 3 1	
Test Procedure: 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. Limit: Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater. Exploratory Test Mode: Hopping transmitting with all kind of modulation and all kind of data type Through Pre-scan, find the DH5 of data type is the worst case of π/4DQPSK modulation type, 2-DH5 of data type is the worst case of π/4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.		Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)
Remark: Offset=Cable loss+ attenuation factor. Test Procedure: 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. Limit: Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater. Exploratory Test Mode: Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.		Test Method:	ANSI C63.10:2013
1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. Limit: Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater. Exploratory Test Mode: Hopping transmitting with all kind of modulation and all kind of data type Through Pre-scan, find the DH5 of data type is the worst case of GFSk modulation type, 2-DH5 of data type is the worst case of 8DPSK modulation type.		Test Setup:	Control Computer Poole Power Pool Attenuator Instrument TEMPERATURE CABRIET RF test System System Instrument
cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report. Limit: Frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater. Exploratory Test Mode: Hopping transmitting with all kind of modulation and all kind of data type Through Pre-scan, find the DH5 of data type is the worst case of GFSk modulation type, 2-DH5 of data type is the worst case of π/4DQPSk modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.			Remark: Offset=Cable loss+ attenuation factor.
have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater. Exploratory Test Mode: Hopping transmitting with all kind of modulation and all kind of data type Final Test Mode: Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π/4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.			cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = wide enough to capture the peaks of two adjacent channels; RBW is set to approximately 30% of the channel spacing, adjust as necessary to best identify the center of each individual channel; VBW≥RBW; Sweep = auto; Detector function = peak; Trace = max hold. 5. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. Record the value in report.
Final Test Mode: Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of π/4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.		Limit:	two-thirds of the 20 dB bandwidth of the hopping channel, whichever is
modulation type, 2-DH5 of data type is the worst case of π/4DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.		Exploratory Test Mode:	Hopping transmitting with all kind of modulation and all kind of data type
Test Results: Refer to Appendix A		Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4$ DQPSK modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.
	Š	Test Results:	Refer to Appendix A

Report No.: EED32R80535202 Page 22 of 54

5.6 Number of Hopping Channel

1.50.70	Lennius Lenniu							
Test Requirement:	47 CFR Part 15C Section 15.247 (a)(1)							
Test Method:	ANSI C63.10:2013							
Test Setup:	RF test Control Computer Power Supply Temperature CABNET Table RF test System Instrument							
Test Procedure:	Remark: Offset=Cable loss+ attenuation factor. 1. The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. 2. Set to the maximum power setting and enable the EUT transmit continuously. 3. Enable the EUT hopping function. 4. Use the following spectrum analyzer settings: Span = the frequency band of operation; set the RBW to less than 30% of the channel spacing or the 20 dB bandwidth, whichever is smaller; VBW≥RBW; Sweep= auto; Detector function = peak; Trace = max hold. 5. The number of hopping frequency used is defined as the number of total channel.							
Limit:	Frequency hopping systems in the 2400-2483.5 MHz band shall use at least 15 channels.							
Test Mode:	Hopping transmitting with all kind of modulation							
Test Results:	Refer to Appendix A							

Report No.: EED32R80535202 Page 23 of 54

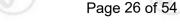
5.7 Time of Occupancy

/ 4		
Test Red	quirement:	47 CFR Part 15C Section 15.247 (a)(1)
Test Me	thod:	ANSI C63.10:2013
Test Set	rup:	Control Computer Power Poorte
		Remark: Offset=Cable loss+ attenuation factor.
Test Pro	ocedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Enable the EUT hopping function. Use the following spectrum analyzer settings: Span = zero span, centered on a hopping channel; RBW shall be ≤ channel spacing and where possible RBW should be set >> 1 / T, where T is the expected dwell time per channel; VBW≥RBW; Sweep = as necessary to capture the entire dwell time per hopping channel; Detector function = peak; Trace = max hold. Measure and record the results in the test report.
Limit:		The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.
Test Mo	de:	Hopping transmitting with all kind of modulation and all kind of data type.
Test Res	sults:	Refer to Appendix A

Report No. : EED32R80535202 Page 24 of 54

5.8 Band edge Measurements

Test Requirement:	47 CFR Part 15C Section 15.247 (d)	
Test Method:	ANSI C63.10:2013	
Test Setup:	Control Computer Power Supply Power Foot Attenuator Table RF test System System Instrument	(T)
	Remark: Offset=Cable loss+ attenuation factor.	
Test Procedure:	 Set to the maximum power setting and enable the EU continuously. Set RBW = 100 kHz, VBW = 300 kHz (≥RBW). Band edge must be at least 20 dB down from the highest emission level with the authorized band as measured with a 100kHz RBW. The a shall be 30 dB instead of 20 dB when RMS conducted out procedure is used. Enable hopping function of the EUT and then repeat step 2 and 4. Measure and record the results in the test report. 	emissions in attenuation put power
Limit:	In any 100 kHz bandwidth outside the frequency band in which spectrum intentional radiator is operating, the radio frequency po produced by the intentional radiator shall be at least 20 dB below 100 kHz bandwidth within the band that contains the highest leaders of the desired power, based on either an RF conducted or a radiated measurement.	wer that is that in the evel of the
Exploratory Test Mode:	Hopping and Non-hopping transmitting with all kind of modulation a of data type	and all kind
Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case modulation type, 2-DH5 of data type is the worst case of modulation type, 3-DH5 of data type is the worst case of 8DPSK type.	π/4DQPSK
Test Results:	Refer to Appendix A	


Report No.: EED32R80535202 Page 25 of 54

5.9 Conducted Spurious Emissions

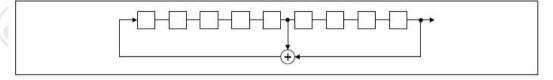
_	7 25 35 1								
	Test Requirement:	47 CFR Part 15C Section 15.247 (d)							
	Test Method:	ANSI C63.10:2013							
1000	Test Setup:	Control Congrular Power ports Power ports Table RF test System Instrument Instrument							
		Remark: Offset=Cable loss+ attenuation factor.							
	Test Procedure:	 The RF output of EUT was connected to the spectrum analyzer by RF cable and attenuator. The path loss was compensated to the results for each measurement. Set to the maximum power setting and enable the EUT transmit continuously. Set RBW = 100 kHz, VBW = 300kHz, scan up through 10th harmonic. All harmonics / spurs must be at least 20 dB down from the highest emission level within the authorized band as measured with a 100kHz RBW. Measure and record the results in the test report. The RF fundamental frequency should be excluded against the limit line in the operating frequency band. 							
	Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.							
	Exploratory Test Mode:	Non-hopping transmitting with all kind of modulation and all kind of data type							
	Final Test Mode:	Through Pre-scan, find the DH5 of data type is the worst case of GFSK modulation type, 2-DH5 of data type is the worst case of $\pi/4DQPSK$ modulation type, 3-DH5 of data type is the worst case of 8DPSK modulation type.							
1	Test Results:	Refer to Appendix A							
-	7 18:A: 7	167.7							

5.10 Pseudorandom Frequency Hopping Sequence

Test Requirement: 47 CFR Part 15C Section 15.247 (a)(1), (h) requirement:

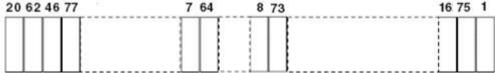
The system shall hop to channel frequencies that are selected at the system hopping rate from a Pseudorandom ordered list of hopping frequencies. Each frequency must be used equally on the average by each transmitter. The system receivers shall have input bandwidths that match the hopping channel bandwidths of their corresponding transmitters and shall shift frequencies in synchronization with the transmitted signals.

Frequency hopping spread spectrum systems are not required to employ all available hopping channels during each transmission. However, the system, consisting of both the transmitter and the receiver, must be designed to comply with all of the regulations in this section should the transmitter be presented with a continuous data (or information) stream. In addition, a system employing short transmission bursts must comply with the definition of a frequency hopping system and must distribute its transmissions over the minimum number of hopping channels specified in this section.


The incorporation of intelligence within a frequency hopping spread spectrum system that permits the system to recognize other users within the spectrum band so that it individually and independently chooses and adapts its hopsets to avoid hopping on occupied channels is permitted. The coordination of frequency hopping systems in any other manner for the express purpose of avoiding the simultaneous occupancy of individual hopping frequencies by multiple transmitters is not permitted.

Compliance for section 15.247(a)(1)

According to Bluetooth Core Specification, the pseudorandom sequence may be generated in a nine-stage shift register whose 5th and 9th stage

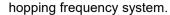

outputs are added in a modulo-two addition stage. And the result is fed back to the input of the first stage. The sequence begins with the first ONE of 9 consecutive ONEs; i.e. the shift register is initialized with nine ones.

- · Number of shift register stages: 9
- Length of pseudo-random sequence: 29 -1 = 511 bits
- Longest sequence of zeros: 8 (non-inverted signal)

Linear Feedback Shift Register for Generation of the PRBS sequence

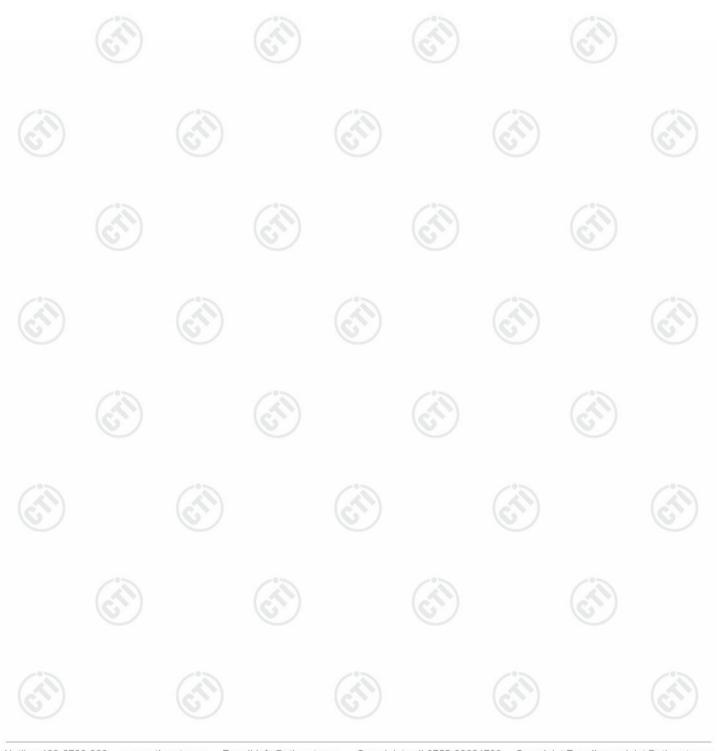
An example of Pseudorandom Frequency Hopping Sequence as follow:

Each frequency used equally on the average by each transmitter.


According to Bluetooth Core Specification, Bluetooth receivers are designed to have input and IF bandwidths that match the hopping channel bandwidths of any Bluetooth transmitters and shift frequencies in synchronization with the transmitted signals.

Compliance for section 15.247(g)

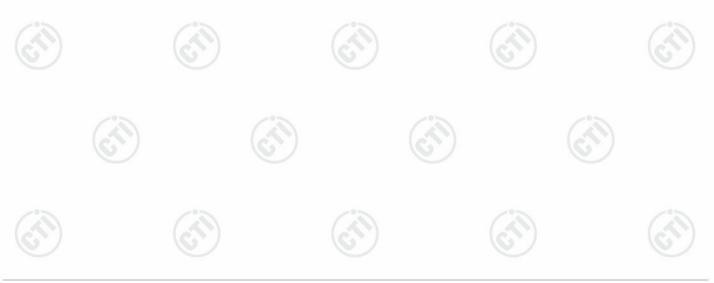
According to Bluetooth Core Specification, the Bluetooth system transmits the packet with the pseudorandom hopping frequency with a continuous data and the short burst transmission from the Bluetooth system is also transmitted under the frequency hopping system with the pseudorandom

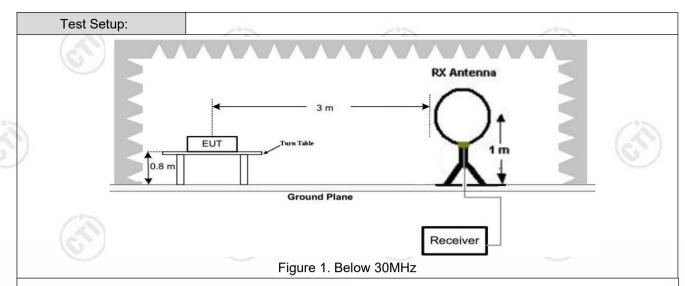


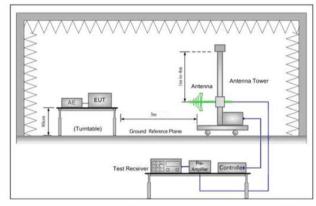
Compliance for section 15.247(h)

According to Bluetooth Core specification, the Bluetooth system incorporates with an adaptive system to detect other user within the spectrum band so that it individually and independently to avoid hopping on the occupied channels.

According to the Bluetooth Core specification, the Bluetooth system is designed not have the ability to coordinated with other FHSS System in an effort to avoid the simultaneous occupancy of individual hopping frequencies by multiple transmitter.




5.11 Radiated Spurious Emission & Restricted bands


Test Requirement:	47 CFR Part 15C Secti	on 1	5.209 and 15	.205	(0,)				
Test Method:	ANSI C63.10: 2013									
Test Site:	Measurement Distance									
Receiver Setup:	Frequency		Detector	RBW	VBW	Remark				
	0.009MHz-0.090MH	z	Peak	10kHz	30kHz	Peak				
	0.009MHz-0.090MH	z	Average	10kHz	30kHz	Average				
	0.090MHz-0.110MH	Z	Quasi-peak	10kHz	30kHz	Quasi-peak				
	0.110MHz-0.490MH	Z	Peak	10kHz	30kHz	Peak				
	0.110MHz-0.490MH	Z	Average	10kHz	30kHz	Average				
	0.490MHz -30MHz		Quasi-peak	10kHz	30kHz	Quasi-peak				
	30MHz-1GHz		Peak	100 kH	z 300kHz	Peak				
	Above 4011		Peak	1MHz	3MHz	Peak				
	Above 1GHz	10	Peak	1MHz	10kHz	Average				
Limit:	Frequency		eld strength crovolt/meter)	Limit (dBuV/m)	Remark	Measuremen				
	0.009MHz-0.490MHz	24	400/F(kHz)	-	-	300				
	0.490MHz-1.705MHz	24	1000/F(kHz)	-	-/3	30				
	1.705MHz-30MHz		30	-	(6)	30				
	30MHz-88MHz		100	40.0	Quasi-peak	3				
	88MHz-216MHz		150	43.5	Quasi-peak	3				
	216MHz-960MHz		200	46.0	Quasi-peak	3				
	960MHz-1GHz	(``)	500	54.0	Quasi-peak	3				
	Above 1GHz	Above 1GHz		54.0	Average	3				
	Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.									

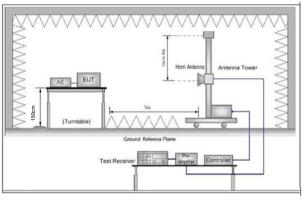


Figure 2. 30MHz to 1GHz

Figure 3. Above 1 GHz

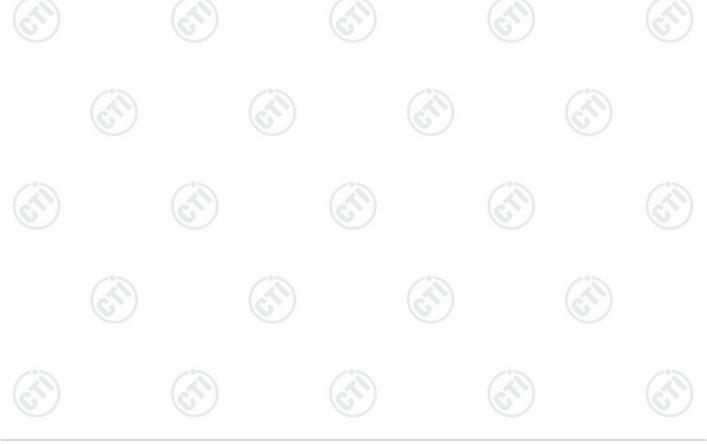
Test Procedure:

- a. 1) Below 1G: The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
 - 2) Above 1G: The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.

Note: For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the



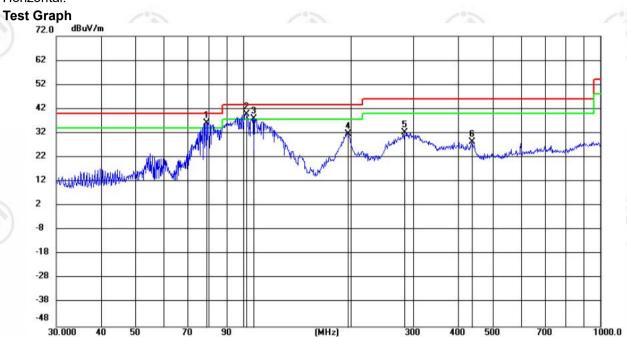
Test Results:

Report No.: EED32R80535202

	measurement.
	d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
	e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
	f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
	 g. Test the EUT in the lowest channel (2402MHz), the middle channel (2441MHz), the Highest channel (2480MHz)
	 The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is the worst case.
	i. Repeat above procedures until all frequencies measured was complete.
Exploratory Test Mode:	Non-hopping transmitting mode with all kind of modulation and all kind of data type
Final Test Mode:	Through Pre-scan, find the DH5 of data type and GFSK modulation is the worst case.
	Pretest the EUT at Transmitting mode, For below 1GHz part, through prescan, the worst case is the lowest channel.
	Only the worst case is recorded in the report.

Page 30 of 54

Pass



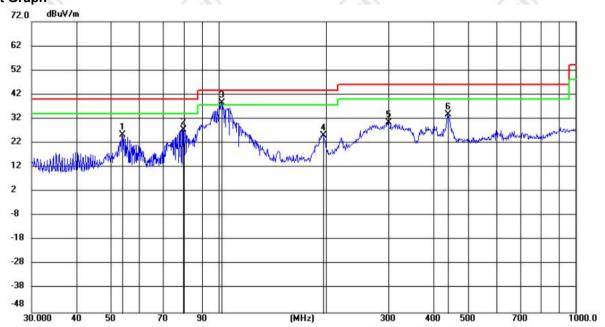
Page 31 of 54


Radiated Spurious Emission below 1GHz:

During the test, the Radiates Emission from 30MHz to 1GHz was performed in all modes, only the worst case lowest channel of DH5 for GFSK was recorded in the report.

Horizontal:

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	1	Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1	!	79.1037	26.53	9.66	36.19	40.00	-3.81	QP	199	342	
2	*	102.3058	26.36	13.43	39.79	43.50	-3.71	QP	199	352	
3	I	107.0023	24.20	13.90	38.10	43.50	-5.40	QP	199	173	
4		196.6821	18.75	12.78	31.53	43.50	-11.97	QP	199	352	
5		283.4320	16.21	15.95	32.16	46.00	-13.84	QP	100	80	
6		437.8102	8.36	20.05	28.41	46.00	-17.59	QP	199	120	



Page 32 of 54

Vertical:

Test Graph

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin		Antenna Height	Table Degree	
		MHz	dBuV	dB/m	dBuV/m	dBuV/m	dB	Detector	cm	degree	Comment
1		53.8535	11.32	14.09	25.41	40.00	-14.59	QP	100	87	
2		79.7583	17.75	9.58	27.33	40.00	-12.67	QP	100	98	
3	*	102.3238	25.26	13.44	38.70	43.50	-4.80	QP	200	291	
4		196.6132	12.27	12.78	25.05	43.50	-18.45	QP	200	238	
5		298.6344	13.83	16.52	30.35	46.00	-15.65	QP	200	142	
6		439.8106	13.79	20.08	33.87	46.00	-12.13	QP	100	161	

Radiated Spurious Emission above 1GHz:

Mode	:		GFSK Transmit	tting		Channel:		2402 MHz	
NO	Freq. [MHz]	Facto [dB]	D	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1507.2338	13.30	37.40	50.70	74.00	23.30	Pass	Н	PK
2	1996.7331	14.73	36.91	51.64	74.00	22.36	Pass	Н	PK
3	4803.8703	-8.60	53.38	44.78	74.00	29.22	Pass	Н	PK
4	6791.0527	-3.53	47.23	43.70	74.00	30.30	Pass	Н	PK
5	9608.3406	1.37	44.63	46.00	74.00	28.00	Pass	Н	PK
6	12272.2181	3.57	44.30	47.87	74.00	26.13	Pass	Н	PK
7	1263.7509	11.91	37.44	49.35	74.00	24.65	Pass	V	PK
8	1993.3996	14.67	36.67	51.34	74.00	22.66	Pass	V	PK
9	4804.5203	-8.60	62.11	53.51	74.00	20.49	Pass	V	PK
10	6112.4075	-5.12	48.26	43.14	74.00	30.86	Pass	V	PK
11	8074.2383	-1.02	45.76	44.74	74.00	29.26	Pass	V	PK
12	11956.9471	3.10	44.23	47.33	74.00	26.67	Pass	V	PK

Mode:			GFSK Transmit	ting		Channel:		2441 MHz	
NO	NO Freq. [MHz]		r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1491.7661	13.34	37.19	50.53	74.00	23.47	Pass	Н	PK
2	2071.4048	14.84	37.10	51.94	74.00	22.06	Pass	Н	PK
3	4850.6734	-8.47	50.78	42.31	74.00	31.69	Pass	Н	PK
4	6614.2409	-3.94	46.79	42.85	74.00	31.15	Pass	Н	PK
5	8906.2938	-0.05	45.68	45.63	74.00	28.37	Pass	Н	PK
6	12009.6006	3.08	44.86	47.94	74.00	26.06	Pass	Н	PK
7	1312.4208	12.20	37.91	50.11	74.00	23.89	Pass	V	PK
8	1966.5978	14.63	37.05	51.68	74.00	22.32	Pass	V	PK
9	4780.4687	-8.62	54.03	45.41	74.00	28.59	Pass	V	PK
10	6506.9838	-4.43	47.70	43.27	74.00	30.73	Pass	V	PK
11	9772.1515	1.21	44.32	45.53	74.00	28.47	Pass	V	PK
12	11738.5326	2.47	45.13	47.60	74.00	26.40	Pass	V	PK



Mode	Mode:		GFSK Transmit	tting	Channel:		2480 MHz		
NO	Freq. [MHz]	Facto [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1372.2915	12.73	36.72	49.45	74.00	24.55	Pass	Н	PK
2	1965.131	14.63	36.70	51.33	74.00	22.67	Pass	Н	PK
3	3867.8079	-12.04	52.24	40.20	74.00	33.80	Pass	Н	PK
4	4959.8807	-8.05	50.84	42.79	74.00	31.21	Pass	Н	PK
5	7032.8689	-3.35	47.64	44.29	74.00	29.71	Pass	Н	PK
6	10251.2334	1.99	44.92	46.91	74.00	27.09	Pass	Н	PK
7	1448.9633	13.08	37.15	50.23	74.00	23.77	Pass	V	PK
8	2039.936	14.74	37.58	52.32	74.00	21.68	Pass	V	PK
9	3790.4527	-12.52	2 52.37	39.85	74.00	34.15	Pass	V	PK
10	4960.5307	-8.05	57.24	49.19	74.00	24.81	Pass	V	PK
11	7187.5792	-3.35	47.09	43.74	74.00	30.26	Pass	V	PK
12	10319.488	1.87	44.41	46.28	74.00	27.72	Pass	V	PK

Mode	Mode:		т/4DQPSK Tra	nsmitting	Channel:		2402 MHz		
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1409.894	12.92	37.57	50.49	74.00	23.51	Pass	Н	PK
2	2026.0684	14.56	37.68	52.24	74.00	21.76	Pass	Н	PK
3	3263.2676	-14.11	53.31	39.20	74.00	34.80	Pass	Н	PK
4	5015.7844	-8.09	49.19	41.10	74.00	32.90	Pass	Н	PK
5	7392.3428	-3.22	47.33	44.11	74.00	29.89	Pass	Н	PK
6	9608.3406	1.37	46.16	47.53	74.00	26.47	Pass	Н	PK
7	1382.9589	12.77	37.95	50.72	74.00	23.28	Pass	V	PK
8	1937.9292	14.76	37.01	51.77	74.00	22.23	Pass	V	PK
9	4804.5203	-8.60	59.75	51.15	74.00	22.85	Pass	V	PK
10	6324.9717	-4.60	47.89	43.29	74.00	30.71	Pass	V	PK
11	9607.6905	1.37	46.57	47.94	74.00	26.06	Pass	V	PK
12	11845.1397	2.53	44.44	46.97	74.00	27.03	Pass	V	PK

Page 35 of 54	
---------------	--

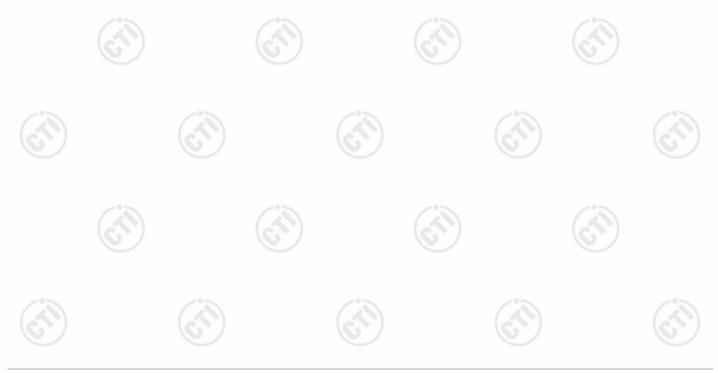
Mode	::	Т	т/4DQPSK Tra	nsmitting		Channel:		2441 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1384.0256	12.78	37.15	49.93	74.00	24.07	Pass	Н	PK
2	1921.1281	14.73	37.35	52.08	74.00	21.92	Pass	Н	PK
3	3793.7029	-12.49	52.46	39.97	74.00	34.03	Pass	Н	PK
4	5412.9609	-6.64	48.74	42.10	74.00	31.90	Pass	Н	PK
5	7732.9655	-1.52	46.55	45.03	74.00	28.97	Pass	Н	PK
6	10856.4238	1.93	44.41	46.34	74.00	27.66	Pass	Н	PK
7	1335.6224	12.38	37.10	49.48	74.00	24.52	Pass	V	PK
8	1970.598	14.63	38.07	52.70	74.00	21.30	Pass	V	PK
9	4166.8278	-10.98	50.74	39.76	74.00	34.24	Pass	V	PK
10	4881.8755	-8.36	58.36	50.00	74.00	24.00	Pass	V	PK
11	7439.796	-2.51	46.80	44.29	74.00	29.71	Pass	V	PK
12	9764.351	1.24	45.74	46.98	74.00	27.02	Pass	V	PK

Mode	:		π/4DQPSK Tra	nsmitting		Channel:		2480 MHz	<u>z</u>
NO	Freq. [MHz]	Facto [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1443.4962	13.15	36.93	50.08	74.00	23.92	Pass	Н	PK
2	1972.0648	14.61	37.74	52.35	74.00	21.65	Pass	Н	PK
3	3796.9531	-12.47	52.55	40.08	74.00	33.92	Pass	Н	PK
4	5500.7167	-6.51	48.53	42.02	74.00	31.98	Pass	Н	PK
5	8099.59	-1.07	46.06	44.99	74.00	29.01	Pass	Н	PK
6	9919.7113	1.49	44.77	46.26	74.00	27.74	Pass	Н	PK
7	1326.4218	12.27	37.33	49.60	74.00	24.40	Pass	V	PK
8	1782.9855	14.26	37.15	51.41	74.00	22.59	Pass	V	PK
9	3904.8603	-11.97	51.95	39.98	74.00	34.02	Pass	V	PK
10	4959.8807	-8.05	53.72	45.67	74.00	28.33	Pass	V	PK
11	6742.2995	-3.33	47.12	43.79	74.00	30.21	Pass	V	PK
12	9340.5227	1.01	44.50	45.51	74.00	28.49	Pass	V	PK

Page 36 of 54

Mode	:		8DPSK Transm	nitting		Channel:		2402 MHz	
NO	Freq. [MHz]	Facto [dB]	Dandina	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1347.3565	12.46	37.32	49.78	74.00	24.22	Pass	Н	PK
2	1950.73	14.81	37.12	51.93	74.00	22.07	Pass	Н	PK
3	3811.2541	-12.36	6 53.95	41.59	74.00	32.41	Pass	Н	PK
4	5500.7167	-6.51	49.31	42.80	74.00	31.20	Pass	Н	PK
5	7749.2166	-1.43	45.65	44.22	74.00	29.78	Pass	Н	PK
6	10670.5114	2.36	43.80	46.16	74.00	27.84	Pass	Н	PK
7	1407.2271	12.88	37.86	50.74	74.00	23.26	Pass	V	PK
8	1865.1243	14.52	2 37.74	52.26	74.00	21.74	Pass	V	PK
9	3198.9133	-14.46	6 57.25	42.79	74.00	31.21	Pass	V	PK
10	5050.2367	-8.10	49.60	41.50	74.00	32.50	Pass	V	PK
11	6837.2058	-3.67	46.85	43.18	74.00	30.82	Pass	V	PK
12	9926.8618	1.50	44.46	45.96	74.00	28.04	Pass	V	PK

Mode	:		8DPSK Transm	itting		Channel:		2441 MHz	
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1563.1042	13.50	37.13	50.63	74.00	23.37	Pass	Н	PK
2	1973.1315	14.60	37.22	51.82	74.00	22.18	Pass	Н	PK
3	3752.1001	-12.85	52.45	39.60	74.00	34.40	Pass	Н	PK
4	4881.8755	-8.36	50.65	42.29	74.00	31.71	Pass	Н	PK
5	7210.9807	-3.31	47.62	44.31	74.00	29.69	Pass	Н	PK
6	9764.351	1.24	44.96	46.20	74.00	27.80	Pass	Н	PK
7	1425.095	12.88	36.73	49.61	74.00	24.39	Pass	V	PK
8	1770.1847	14.40	37.04	51.44	74.00	22.56	Pass	V	PK
9	3596.0897	-13.29	53.08	39.79	74.00	34.21	Pass	V	PK
10	4881.8755	-8.36	58.01	49.65	74.00	24.35	Pass	V	PK
11	6698.7466	-3.36	47.18	43.82	74.00	30.18	Pass	V	PK
12	9764.351	1.24	46.32	47.56	74.00	26.44	Pass	V	PK

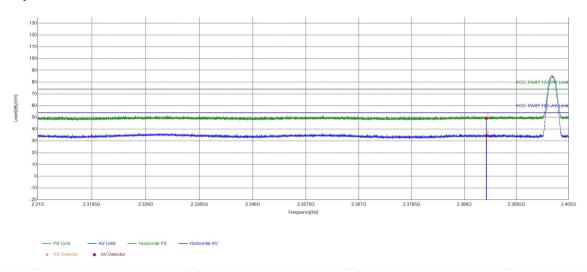


Page 37	of 54

Mode	:		8DPSK Transm	nitting		Channel:		2480 MHz	
NO	Freq. [MHz]	Facto [dB]	r Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	1449.8967	13.06	36.96	50.02	74.00	23.98	Pass	Н	PK
2	1984.4656	14.56	37.83	52.39	74.00	21.61	Pass	Н	PK
3	3890.5594	-11.99	51.98	39.99	74.00	34.01	Pass	Н	PK
4	5741.8828	-5.92	47.85	41.93	74.00	32.07	Pass	Н	PK
5	7767.4178	-1.66	46.75	45.09	74.00	28.91	Pass	Н	PK
6	10680.9121	2.40	44.13	46.53	74.00	27.47	Pass	Н	PK
7	1417.8945	12.86	38.15	51.01	74.00	22.99	Pass	V	PK
8	1892.1928	14.41	37.38	51.79	74.00	22.21	Pass	V	PK
9	3729.3486	-12.83	52.30	39.47	74.00	34.53	Pass	V	PK
10	5410.3607	-6.66	49.16	42.50	74.00	31.50	Pass	V	PK
11	7174.5783	-3.28	47.29	44.01	74.00	29.99	Pass	V	PK
12	9274.8683	0.71	44.62	45.33	74.00	28.67	Pass	V	PK

Remark:

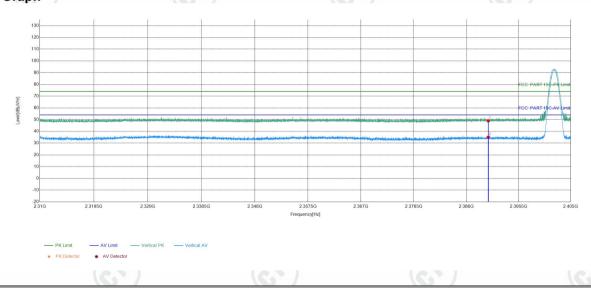
- 1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:
 - Final Test Level =Receiver Reading + Antenna Factor + Cable Factor Preamplifier Factor
- 2) Scan from 9kHz to 25GHz, the disturbance above 10GHz and below 30MHz was very low. As shown in this section, for frequencies above 1GHz, the field strength limits are based on average limits. However, the peak field strength of any emission shall not exceed the maximum permitted average limits specified above by more than 20 dB under any condition of modulation. So, only the peak measurements were shown in the report.

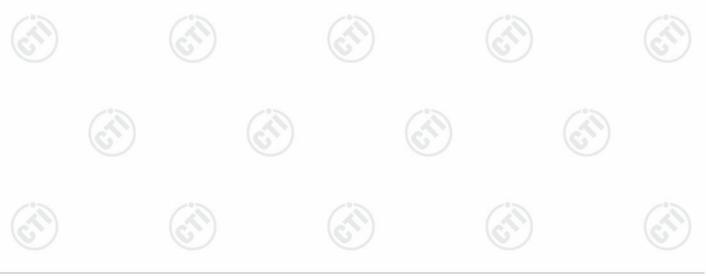


Test plot as follows:

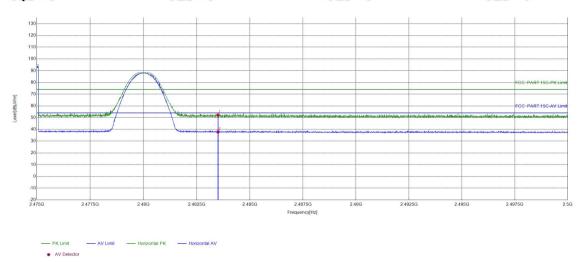
EUT_Name		Test_Model	
Test_Mode	GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	chenjun	Test_Date	2025/04/21
Remark	6	(i)	

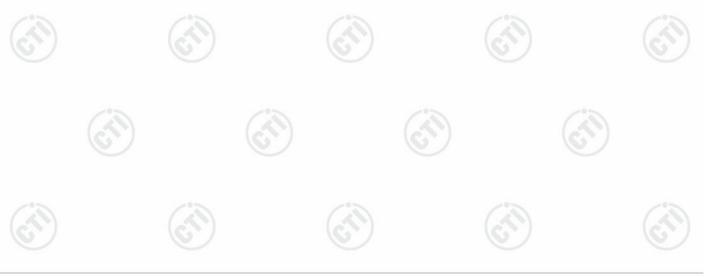
	Suspected List													
0.00	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark				
-	1	2390	15.96	33.39	49.35	74.00	24.65	PASS	Horizontal	PK				
	2	2390	15.96	18.43	34.39	54.00	19.61	PASS	Horizontal	AV				





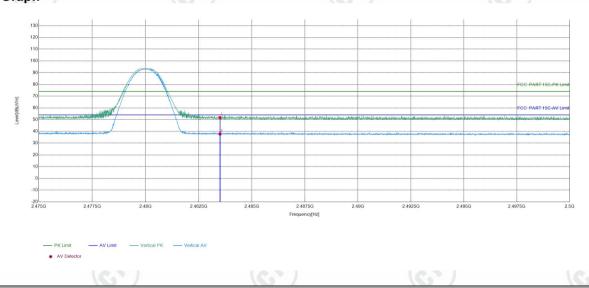
/ 231	/ 4/1/		
EUT_Name		Test_Model	
Test_Mode	GFSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	chenjun	Test_Date	2025/04/21
Remark			


Suspecte	Suspected List												
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark				
1	2390	15.96	32.95	48.91	74.00	25.09	PASS	Vertical	PK				
2	2390	15.96	19.03	34.99	54.00	19.01	PASS	Vertical	AV				

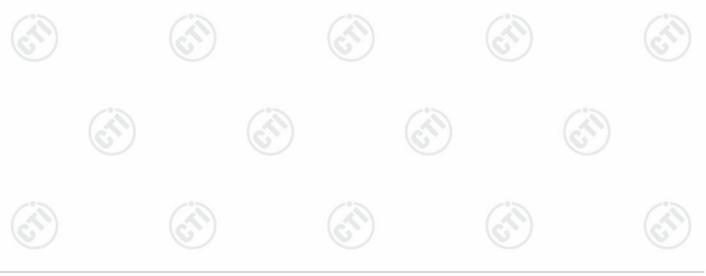


Pag	e	40	of	54
ı ay	_		\sim	0 1

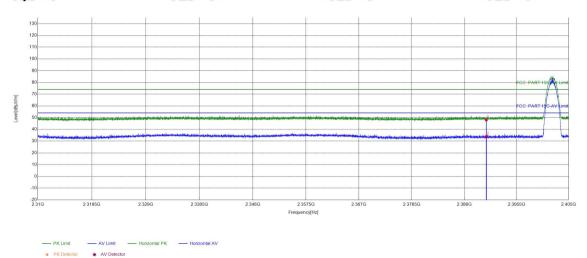
(43)			182
EUT_Name		Test_Model	(6.1)
Test_Mode	GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	chenjun	Test_Date	2025/04/22
Remark	-05	-05	

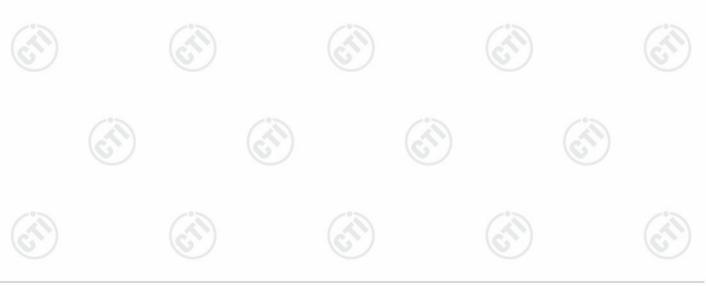


Suspecte	Suspected List												
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark				
1	2483.5	16.29	35.97	52.26	74.00	21.74	PASS	Horizontal	PK				
2	2483.5	16.29	21.57	37.86	54.00	16.14	PASS	Horizontal	AV				



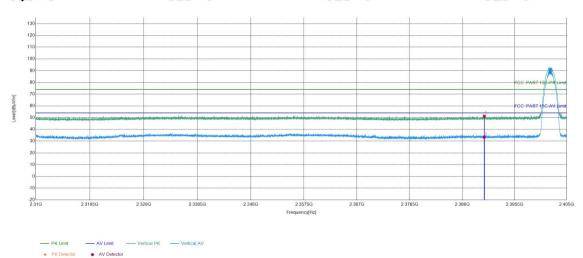
/ 231			/ / / / /
EUT_Name		Test_Model	
Test_Mode	GFSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	chenjun	Test_Date	2025/04/22
Remark	-0		

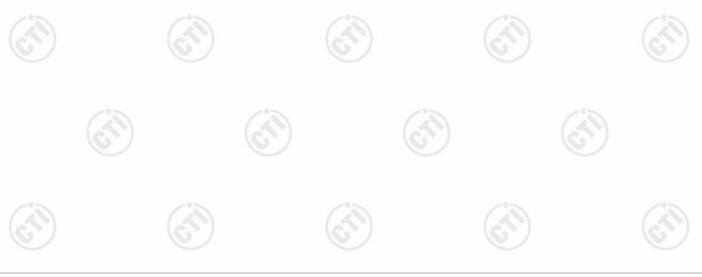

Suspecte	Suspected List												
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark				
1	2483.5	16.29	35.49	51.78	74.00	22.22	PASS	Vertical	PK				
2	2483.5	16.29	21.51	37.80	54.00	16.20	PASS	Vertical	AV				



Page	42	of	54

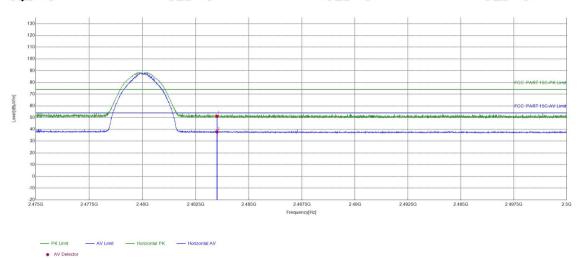
EUT_Name		Test_Model	
Test_Mode	π/4DQPSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	chenjun	Test_Date	2025/04/22
Remark		-05	


Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	15.96	32.30	48.26	74.00	25.74	PASS	Horizontal	PK
2	2390	15.96	17.79	33.75	54.00	20.25	PASS	Horizontal	AV

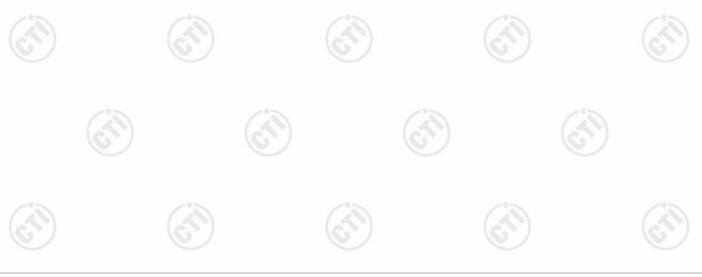


Page 43 of 54

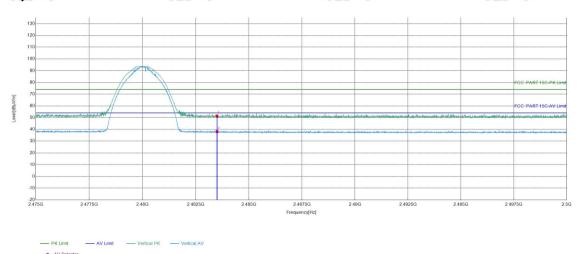
EUT_Name		Test_Model	(6,1)
Test_Mode	π/4DQPSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	chenjun	Test_Date	2025/04/22
Remark	-07	-05	



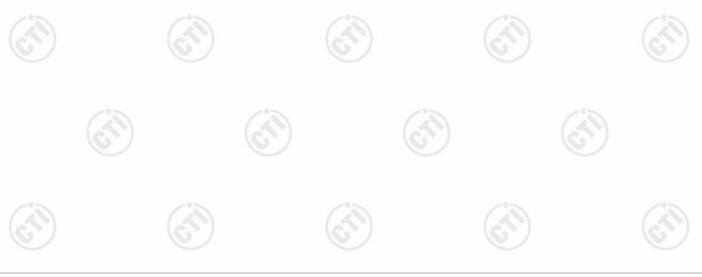
	* PK Delector	* AV Delector							
Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	15.96	35.35	51.31	74.00	22.69	PASS	Vertical	PK
2	2390	15.96	17.39	33.35	54.00	20.65	PASS	Vertical	AV



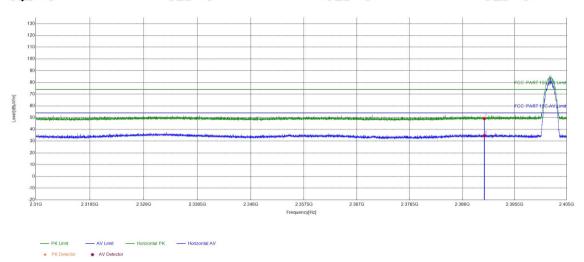
(43)			
EUT_Name		Test_Model	6.
Test_Mode	π/4DQPSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	chenjun	Test_Date	2025/04/22
Remark	-0-		

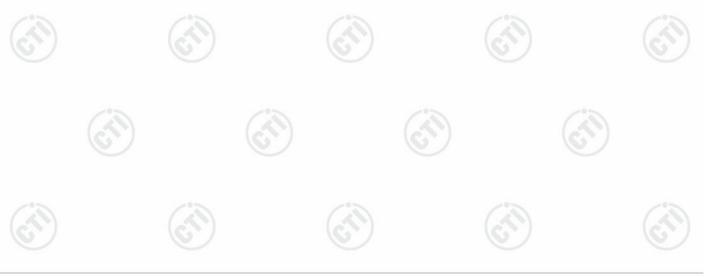


	* AV Detector								
Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	16.29	35.01	51.30	74.00	22.70	PASS	Horizontal	PK
2	2483.5	16.29	21.61	37.90	54.00	16.10	PASS	Horizontal	AV



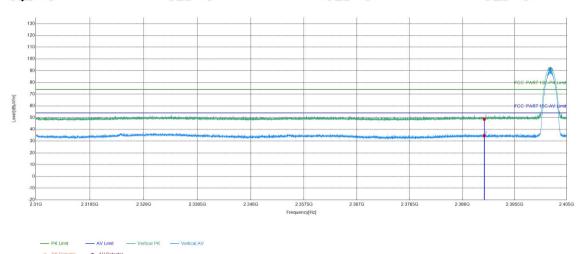
(2)			
EUT_Name		Test_Model	6,
Test_Mode	π/4DQPSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	chenjun	Test_Date	2025/04/22
Remark	-07		100

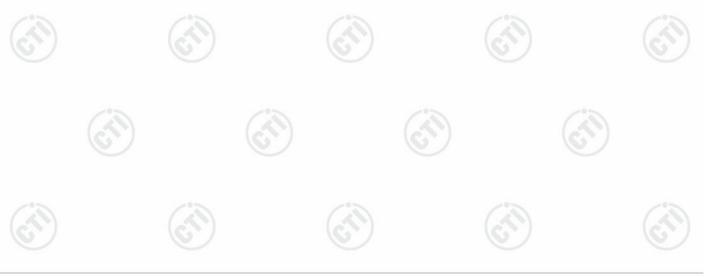

Suspecte	Suspected List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2483.5	16.29	35.17	51.46	74.00	22.54	PASS	Vertical	PK
2	2483.5	16.29	21.81	38.10	54.00	15.90	PASS	Vertical	AV



Pag	e	46	of	54
ı ay	\sim		\mathbf{v}	0 1

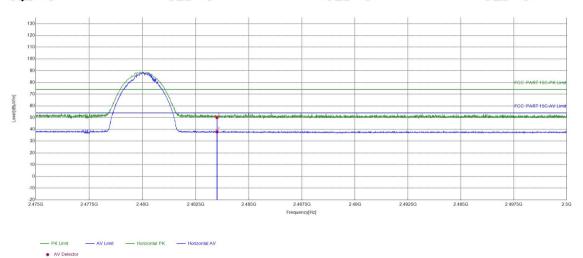
/ 43/		(4)	/ 4 1
EUT_Name		Test_Model	
Test_Mode	8DPSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	chenjun	Test_Date	2025/04/22
Remark	-07	-05	

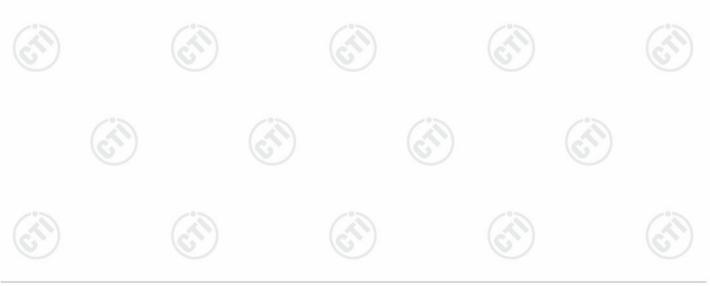

	* PK Detector	* AV Delector								
Suspecte	Suspected List									
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark	
1	2390	15.96	33.28	49.24	74.00	24.76	PASS	Horizontal	PK	
2	2390	15.96	18.64	34.60	54.00	19.40	PASS	Horizontal	AV	



Page 47 of 54	Page	47	of 54	
---------------	------	----	-------	--

(28)			
EUT_Name		Test_Model	
Test_Mode	8DPSK Transmitting	Test_Frequency	2402MHz
Tset_Engineer	chenjun	Test_Date	2025/04/22
Remark	-0-	-05	

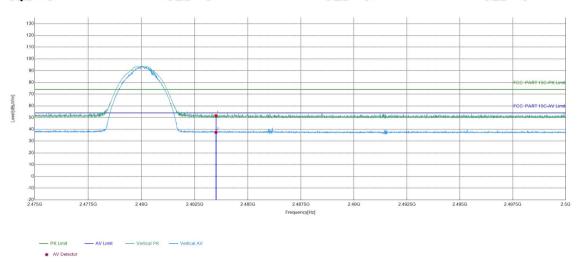

	# Trebeledor	· // Detector							
Suspecte	d List								
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
1	2390	15.96	32.70	48.66	74.00	25.34	PASS	Vertical	PK
2	2390	15.96	18.72	34.68	54.00	19.32	PASS	Vertical	AV



Page	48	of 5	54
. 494		0.	

(23)			
EUT_Name		Test_Model	
Test_Mode	8DPSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	chenjun	Test_Date	2025/04/22
Remark		-15-	

Suspecte	Suspected List											
NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark			
1	2483.5	16.29	33.79	50.08	74.00	23.92	PASS	Horizontal	PK			
2	2483.5	16.29	21.67	37.96	54.00	16.04	PASS	Horizontal	AV			



Page	49	of 54	
------	----	-------	--

EUT_Name		Test_Model	
Test_Mode	8DPSK Transmitting	Test_Frequency	2480MHz
Tset_Engineer	chenjun	Test_Date	2025/04/22
Remark		-05	-0

Test Graph

-	Suspecte	d List								
	NO	Freq. [MHz]	Factor [dB]	Reading [dBµV]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Result	Polarity	Remark
	1	2483.5	16.29	35.41	51.70	74.00	22.30	PASS	Vertical	PK
	2	2483.5	16.29	21.21	37.50	54.00	16.50	PASS	Vertical	AV

Note:

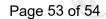
The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading - Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

6 Appendix A

Refer to Appendix: Bluetooth Classic of EED32R80535202



PHOTOGRAPHS OF EUT Constructional Details

Refer to Report No.EED32R80535201 for EUT external and internal photos.

- 1. This report is considered invalid without approved signature, special seal and the seal on the perforation;
- 2. The Company Name shown on Report and Address, the sample(s) and sample information was/were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified;
- 3. The result(s) shown in this report refer(s) only to the sample(s) tested;
- 4. Unless otherwise stated, the decision rule for conformity reporting is based on Binary Statement for Simple Acceptance Rule stated in ILAC-G8:09/2019/CNAS-GL015:2022;
- 5. Without written approval of CTI, this report can't be reproduced except in full;

