

Choose certainty. Add value.

Report On

FCC Testing of the Sharp Hep-band LTE (B1 / B3 / B5 / B13 / B17 / B26 / B38), Dual-band WCDMA (FDD I / V), Quad-band GSM (850 / 900 / 1800 / 1900) & WiMAX2+ (TDD41) multi mode Smart phone with Bluetooth, WLAN, SRD(NFC, FeliCa) and GPS in accordance with FCC 47 CFR Part 22 and FCC 47 CFR Part 2 (GSM 850)

COMMERCIAL-IN-CONFIDENCE

FCC ID: APYHRO00234

Document 75933606 Report 16 Issue 1

May 2016

Product Service

TÜV SÜD Product Service, Octagon House, Concorde Way, Segensworth North, Fareham, Hampshire, United Kingdom, PO15 5RL Tel: +44 (0) 1489 558100. Website: <u>www.tuv-sud.co.uk</u>

COMMERCIAL-IN-CONFIDENCE

REPORT ONFCC Testing of the Sharp Hep-band LTE (B1 / B3 / B5 / B13 / B17 /
B26 / B38), Dual-band WCDMA (FDD I / V), Quad-band GSM (850 /
900 / 1800 / 1900) & WiMAX2+ (TDD41) multi mode Smart phone
with Bluetooth, WLAN, SRD(NFC, FeliCa) and GPS in accordance
with FCC 47 CFR Part 22 and FCC 47 CFR Part 2 (GSM 850)

Document 75933606 Report 16 Issue 1

May 2016

PREPARED FOR

Sharp Telecommunications of Europe Ltd Inspired Easthampstead Road Bracknell Berkshire RG12 1NS

PREPARED BY

Natalie Bennett Senior Administrator, Project Support

APPROVED BY

Simon Bennett Authorised Signatory

DATED

05 May 2016

ENGINEERING STATEMENT

The measurements shown in this report were made in accordance with the procedures described on test pages. All reported testing was carried out on a sample equipment to demonstrate limited compliance with FCC 47 CFR Part 22 and FCC 47 CFR Part 2. The sample tested was found to comply with the requirements defined in the applied rules.

Test Engineer(s);

um

M Toubella

Document 75933606 Report 16 Issue 1

Page 1 of 40

COMMERCIAL-IN-CONFIDENCE

CONTENTS

Section

Page No

1	REPORT SUMMARY	. 3
1.1 1.2 1.3 1.4 1.5 1.6 1.7	Introduction Brief Summary of Results Product Technical Description Product Information Test Conditions Deviations from the Standard Modification Record	5 6 6 6
2	TEST DETAILS	
2.1 2.2 2.3 2.4 2.5 2.6 2.7	Frequency Tolerance Spurious Emissions at Band Edge Maximum Conducted Output Power Emission Limitations for Cellular Equipment Spurious Emissions at Antenna Terminals 26 dB Bandwidth Modulation Characteristics	10 13 15 22 29
3	TEST EQUIPMENT USED	35
3.1 3.2	Test Equipment Used Measurement Uncertainty	
4	ACCREDITATION, DISCLAIMERS AND COPYRIGHT	39
4.1	Accreditation, Disclaimers and Copyright	40

SECTION 1

REPORT SUMMARY

FCC Testing of the Sharp Hep-band LTE (B1 / B3 / B5 / B13 / B17 / B26 / B38), Dual-band WCDMA (FDD I / V), Quad-band GSM (850 / 900 / 1800 / 1900) & WiMAX2+ (TDD41) multi mode Smart phone with Bluetooth, WLAN, SRD(NFC, FeliCa) and GPS In accordance with FCC 47 CFR Part 22 and FCC 47 CFR Part 2 (GSM 850)

1.1 INTRODUCTION

The information contained in this report is intended to show the verification of FCC Testing of the Sharp Hep-band LTE (B1 / B3 / B5 / B13 / B17 / B26 / B38), Dual-band WCDMA (FDD I / V), Quad-band GSM (850 / 900 / 1800 / 1900) & WiMAX2+ (TDD41) multi mode Smart phone with Bluetooth, WLAN, SRD(NFC, FeliCa) and GPS to the requirements of FCC 47 CFR Part 22 and FCC 47 CFR Part 2.

Objective	To perform FCC Testing to determine the Equipment Under Test's (EUT's) compliance with the Test Specification, for the series of tests carried out.
Manufacturer	Sharp Corporation
Serial Number(s)	IMEI 004401115723286 IMEI 004401115723823
Number of Samples Tested	2
Test Specification/Issue/Date	FCC 47 CFR Part 22 (2015) FCC 47 CFR Part 2 (2015)
Disposal Reference Number Date	Held Pending Disposal Not Applicable Not Applicable
Order Number Date	10749 15 February 2016
Start of Test	23 March 2016
Finish of Test	8 April 2016
Name of Engineer(s)	M Toubella M Russell T Guy
Related Document(s)	ANSI C63.4 (2014) ANSI TIA-603-D (2010)

1.2 BRIEF SUMMARY OF RESULTS

A brief summary of the tests carried out in accordance with FCC 47 CFR Part 22 and FCC 47 CFR Part 2 (GSM 850) is shown below.

Section	Specification Clause		Test Description	Result	Comments/Base Standard
GSM 850	3SM 850				
2.1	22.355	2.1055	Frequency Tolerance	Pass	
2.2	22.905	2.1051	Spurious Emissions at Band Edge	Pass	
2.3	22.913 (a)	2.1046	Maximum Conducted Output Power	Pass	
2.4	22.917	-	Emission Limitations for Cellular Equipment	Pass	
2.5	22.917 (a)	2.1051	Spurious Emissions at Antenna Terminals	Pass	
2.6	22.917 (b)	2.1049 (h)	26 dB Bandwidth	Pass	
2.7	-	2.1047 (d)	Modulation Characteristics	-	Customer Declaration

1.3 PRODUCT TECHNICAL DESCRIPTION

Refer to Model Description APYHRO00234 Rev 4.0 document.

1.4 **PRODUCT INFORMATION**

1.4.1 Technical Description

The Equipment Under Test (EUT) was a Sharp Hep-band LTE (B1 / B3 / B5 / B13 / B17 / B26 / B38), Dual-band WCDMA (FDD I / V), Quad-band GSM (850 / 900 / 1800 / 1900) & WiMAX2+ (TDD41) multi mode Smart phone with Bluetooth, WLAN, SRD(NFC, FeliCa) and GPS. A full technical description can be found in the manufacturer's documentation.

1.5 TEST CONDITIONS

For all tests the EUT was set up in accordance with the relevant test standard and to represent typical operating conditions. Tests were applied with the EUT situated in a shielded enclosure.

The EUT was powered from a 4.0 V DC supply.

FCC Measurement Facility Registration Number 90987 Octagon House, Fareham Test Laboratory

1.6 DEVIATIONS FROM THE STANDARD

No deviations from the applicable test standard were made during testing

1.7 MODIFICATION RECORD

Modification 0 - No modifications were made to the test sample during testing.

SECTION 2

TEST DETAILS

FCC Testing of the Sharp Hep-band LTE (B1 / B3 / B5 / B13 / B17 / B26 / B38), Dual-band WCDMA (FDD I / V), Quad-band GSM (850 / 900 / 1800 / 1900) & WiMAX2+ (TDD41) multi mode Smart phone with Bluetooth, WLAN, SRD(NFC, FeliCa) and GPS In accordance with FCC 47 CFR Part 22 and FCC 47 CFR Part 2 (GSM 850)

2.1 FREQUENCY TOLERANCE

2.1.1 Specification Reference

FCC 47 CFR Part 22, Clause 22.355 FCC 47 CFR Part 2, Clause 2.1055

2.1.2 Equipment Under Test and Modification State

S/N: IMEI 004401115723286 - Modification State 0

2.1.3 Date of Test

8 April 2016

2.1.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.1.5 Test Procedure

This test was performed in accordance with FCC 47 CFR Part 2, clause 2.1055.

Remarks

A radio communications test set frequency measurement function was used to measure the frequency error. The radio communications test set was configured for an uplink frequency of 836.4 MHz and the frequency reference was set to an external 10 MHz rubidium frequency standard.

2.1.6 Environmental Conditions

Ambient Temperature	24.7 - 25.6°C
Relative Humidity	30.0 - 30.3%

2.1.7 Test Results

4.0 V DC Supply

<u>GSM 850, 836.40 MHz, Circuit-Switched (Voice), GMSK, Frequency Tolerance Under</u> <u>Temperature Variations Results</u>

Temperature	Fundamental Frequency Deviation (ppm)
-30 °C	0.024
-20 °C	0.029
-10 °C	0.036
0 °C	0.026
+10 °C	0.037
+20 °C	0.032
+30 °C	0.046
+40 °C	0.026
+50 °C	0.017

<u>GSM 850, 836.40 MHz, Circuit-Switched (Voice), GMSK, Frequency Tolerance Under Voltage</u> Variations Results

Voltage	Fundamental Frequency Deviation (ppm)
4.0 V DC	0.035
3.7 V DC	0.050

FCC 47 CFR Part 22, Limit Clause 22.355

Frequency Range (MHz)	Base, Fixed (ppm)	Mobile ≤ 3 watts (ppm)	Mobile ≤ 3 watts (ppm)
25 to 50	20	20	50
50 to 450	5	5	50
450 to 512	2.5	5	5
821 to 896	1.5	2.5	2.5
928 to 929	5.0	-	-
929 to 960	1.5	-	-
2110 to 2220	10	-	-

2.2 SPURIOUS EMISSIONS AT BAND EDGE

2.2.1 Specification Reference

FCC 47 CFR Part, Clause 22.905 FCC 47 CFR Part 2, Clause 2.1051

2.2.2 Equipment Under Test and Modification State

S/N: IMEI 004401115723286 - Modification State 0

2.2.3 Date of Test

31 March 2016

2.2.4 Test Equipment Used

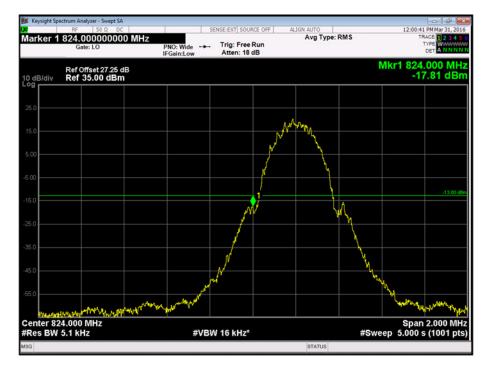
The major items of test equipment used for the above tests are identified in Section 3.1.

2.2.5 Test Procedure

The test was performed in accordance with KDB 971168 D01 v02r02, Clause 6.

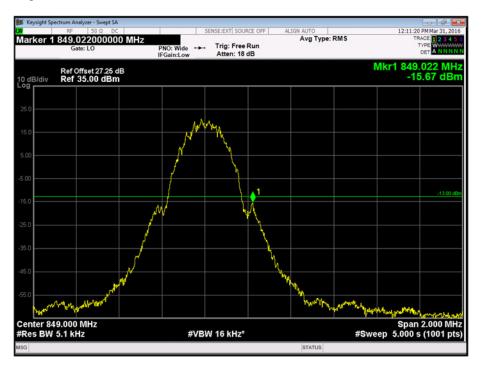
2.2.6 Environmental Conditions

Ambient Temperature21.0°CRelative Humidity33.6%


2.2.7 Test Results

4.0 V DC Supply

GSM 850, Circuit-Switched (Voice), GMSK, Spurious Emissions at Band Edge Results


Blook Edgo	Frequency Block (MHz)		
Block Edge	A :824.0 MHz – 835.0 MHz	B :846.5 MHz – 849.0 MHz	
Lower	Channel: 128 824.2 MHz	-	
Upper	-	Channel: 251 848.8 MHz	

<u>GSM 850, Circuit-Switched (Voice), GMSK, Frequency Block A, Spurious Emissions at Band</u> Edge Plot

<u>GSM 850, Circuit-Switched (Voice), GMSK, Frequency Block B, Spurious Emissions at Band</u> Edge Plot

FCC 47 CFR Part 22, Limit Clause 22.905 and 22.917

-13 dBm at block edge.

2.3 MAXIMUM CONDUCTED OUTPUT POWER

2.3.1 Specification Reference

FCC 47 CFR Part 22, Clause 22.913 (a) FCC 47 CFR Part 2, Clause 2.1046

2.3.2 Equipment Under Test and Modification State

S/N: IMEI 004401115723286 - Modification State 0

2.3.3 Date of Test

23 March 2016

2.3.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.3.5 Test Procedure

The test was performed in accordance with KDB 971168 D01 v02r02, clause 5.1.2.

Remarks

The antenna gain was declared by the manufacturer as 2.0 dBi. As per KDB 412172 D01 v01r01 results are recorded in ERP therefore reported results are calculated as per the following calculation:

ERP = Pout (dBm) + ANT Gain (dBi) - 2.15 (dB).

2.3.6 Environmental Conditions

Ambient Temperature	23.3°C
Relative Humidity	25.6%

2.3.7 Test Results

4.0 V DC Supply

GSM 850, Circuit-Switched (Voice), Maximum Conducted Output Power Results

Frequency	Conducted Power (dBm)	Antenna Gain	ERP (dBm)	EIRP (W)
824.20 MHz	32.70	2.0 dBi	32.55	1.80
836.40 MHz	32.62	2.0 dBi	32.47	1.77
848.80 MHz	32.69	2.0 dBi	32.54	1.79

FCC 47 CFR Part 22, Limit Clause 22.913 (a)(2)

Mobile Transmitters: 7 W or 38.45 dBm

2.4 EMISSION LIMITATIONS FOR CELLULAR EQUIPMENT

2.4.1 Specification Reference

FCC 47 CFR Part 22, Clause 22.917

2.4.2 Equipment Under Test and Modification State

S/N: IMEI 004401115723823 - Modification State 0

2.4.3 Date of Test

2 April 2016

2.4.4 Test Equipment Used

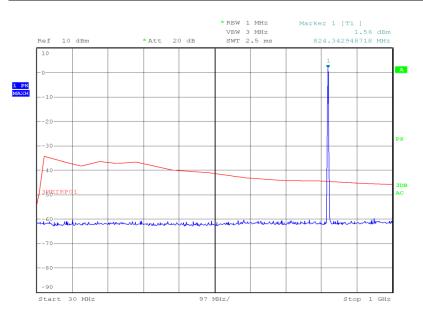
The major items of test equipment used for the above tests are identified in Section 3.1.

2.4.5 Test Procedure

The test was performed in accordance with KDB 971168 D01 v02r02, Clause 5.8 and 7 and ANSI TIA-603-D, Clause 2.2.12. The EUT was configured as defined in ANSI C63.4.

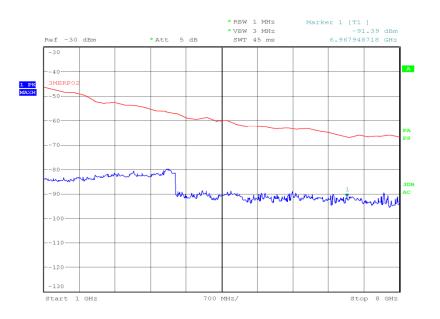
2.4.6 Environmental Conditions

Ambient Temperature19.2°CRelative Humidity33.0%


2.4.7 Test Results

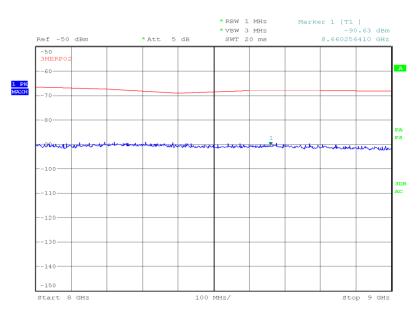
GSM 850, 824.20 MHz, Emission Limitations for Cellular Equipment Results

Frequency (MHz)	Emission Results (dBm)
*	


*No emissions were detected within 10 dB of the limit.

GSM 850, 824.20 MHz, 30 MHz to 1 GHz, Emission Limitations for Celluar Equipment Plot

Date: 1.APR.2016 20:03:01



GSM 850, 824.20 MHz, 1 GHz to 8 GHz, Emission Limitations for Celluar Equipment Plot

Date: 2.APR.2016 22:42:10

Date: 2.APR.2016 22:24:39

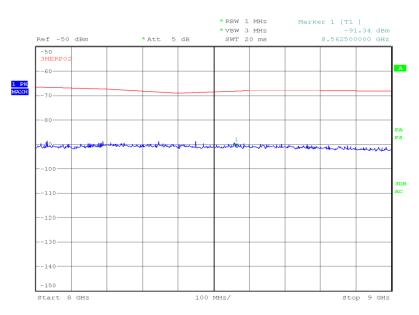
GSM 850, 836.40 MHz, Emission Limitations for Cellular Equipment Results

Frequency (MHz)	Emission Results (dBm)
*	


*No emissions were detected within 10 dB of the limit.

GSM 850, 836.40 MHz, 30 MHz to 1 GHz, Emission Limitations for Celluar Equipment Plot

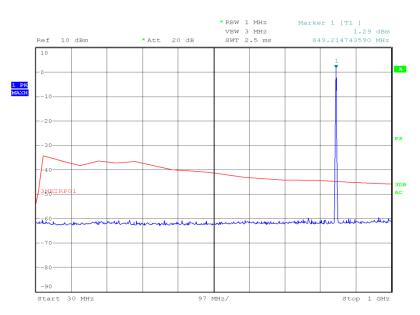
Date: 1.APR.2016 20:00:52



GSM 850, 836.40 MHz, 1 GHz to 8 GHz, Emission Limitations for Celluar Equipment Plot

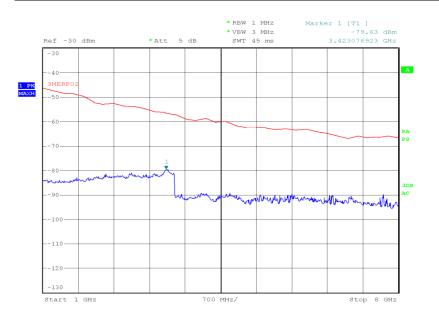
Date: 2.APR.2016 22:37:29

Date: 2.APR.2016 22:26:48



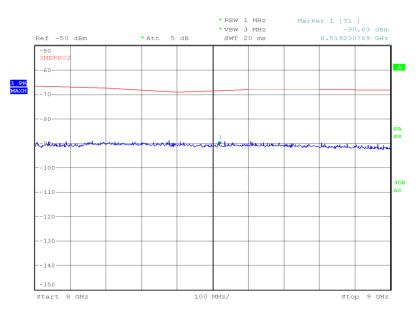
GSM 850, 848.80 MHz, Emission Limitations for Cellular Equipment Results

Frequency (MHz)	Emission Results (dBm)		
*			


*No emissions were detected within 10 dB of the limit.

GSM 850, 848.80 MHz, 30 MHz to 1 GHz, Emission Limitations for Celluar Equipment Plot

Date: 1.APR.2016 20:05:16



GSM 850, 848.80 MHz, 1 GHz to 8 GHz, Emission Limitations for Celluar Equipment Plot

Date: 2.APR.2016 22:34:04

Date: 2.APR.2016 22:30:29

FCC 47 CFR Part 22, Limit Clause 22.917 (a)

43+10log(P) or -13 dBm

2.5 SPURIOUS EMISSIONS AT ANTENNA TERMINALS

2.5.1 Specification Reference

FCC 47 CFR Part 22, Clause 22.917 (a) FCC 47 CFR Part 2, Clause 2.1051

2.5.2 Equipment Under Test and Modification State

S/N: IMEI 004401115723286 - Modification State 0

2.5.3 Date of Test

31 March 2016

2.5.4 Test Equipment Used

The major items of test equipment used for the above tests are identified in Section 3.1.

2.5.5 Test Procedure

The test was performed in accordance with KDB 971168 D01 v02r02, Clause 6.

2.5.6 Environmental Conditions

Ambient Temperature21.0°CRelative Humidity33.6%

2.5.7 Test Results

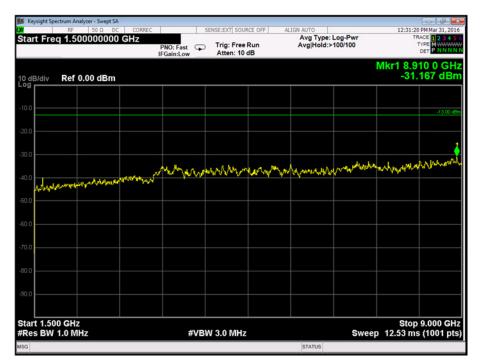
4.0 V DC Supply

GSM 850, 824.20 MHz, Spurious Emissions at Antenna Terminals Results

Frequency (MHz)	Emission Results (dBm)
*	

*No emissions were detected within 10 dB of the limit.

GSM 850, 824.20 MHz, 9 kHz to 1 GHz, Spurious Emissions at Antenna Terminals Plot


dB/div R		IFGain:Low	Atten: 24	Run	Avg Hold:>1	00/100	1	ACE 1234
	ef Offset 27.27 dB ef 40.00 dBm	Joanneon					Mkr1 84 32.	49.0 MH 815 dBr
g							• ¹	
0.0								
).0								
1.0								
00								
.0								-13.00 df
.0								
.0								
10 yeleller	a horation and an and a sign	ter my alfreshing the south	appropriate	meridigited	of the second second second	analphaparts.	ung por	Munderstein
.0								
art 0.0 MH tes BW 10			VBW 300 kH2				Stop 1 10.00 ms	.0000 GH

Keysight Sp	ectrum Analyzer - Swept SA					
	RF 50 Ω DC		SE:EXT SOURCE OFF	ALIGN AUTO	12:15:07 PM	
larker 1	1.328500000000 G Gate: LO	PNO: Fast IFGain:Low	Trig: Free Run Atten: 14 dB	Avg Type: Log-Pw Avg Hold:>100/100	TYPE	1234 M P NNNI P NNNI
0 dB/div	Ref Offset 27.27 dB Ref 30.00 dBm				Mkr1 1.328 -50.85	
0.0						
0.0						
.00						
0.0						-13.00
0.0						
0.0						
0.0						
0.0						
0.0				↓ 1		
haven	annother the second sec	REAL BURGHAMENERS	with any parametric and the space	water	r-housen-whenryh-hond	hallowlys
0.0						
	000 GHz		200 kHz		Stop 1.5	000 GI
kes BW	100 kHz	#VBW	300 kHz		Sweep 5.000 ms (1	001 p

GSM 850, 824.20 MHz, 1 GHz to 1.5 GHz, Spurious Emissions at Antenna Terminals Plot

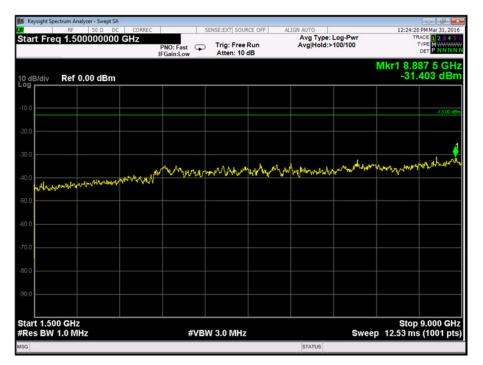
GSM 850, 824.20 MHz, 1.5 GHz to 9 GHz, Spurious Emissions at Antenna Terminals Plot

GSM 850, 836.40 MHz, Spurious Emissions at Antenna Terminals Results

Frequency (MHz)	Emission Results (dBm)		
*			

*No emissions were detected within 10 dB of the limit.

GSM 850, 836.40 MHz, 9 kHz to 1 GHz, Spurious Emissions at Antenna Terminals Plot


Keysight Spect	rum Analyzer - Swept SA					
splay Lir	RF 50 Ω DC ne -13.00 dBm	PNO: Fast G	Trig: Free Run Atten: 24 dB	ALIGN AUTO Avg Type: Log- Avg Hold:>100/1	Pwr 100	12:21:37 PM Mar 31, 2010 TRACE 2 3 4 5 TYPE M
	Ref Offset 27.27 dB Ref 40.00 dBm				М	kr1 837.0 MH 32.684 dBn
						1
).0						
.0						
.0						
00						
0.0						-13.00 dB
.0						
.0						
0.0	kaller en alerten kannen an an	magandraman	abromment Milliak word	and the second	mar and the second of the seco	radiana and the manufacture
art 0.0 M						Stop 1.0000 GH:
Res BW 1		#VBW	/ 300 kHz			267 ms (1001 pts
G				STATUS		

Keysight Sp	ectrum Analyzer - Swept SA				
	RF 50 Ω DC		ENSE:EXT SOURCE OFF	ALIGN AUTO	12:16:29 PM Mar 31, 201
larker 1	1.22450000000 Gate: LO	GHZ PNO: Fast IFGain:Low	Trig: Free Run Atten: 14 dB	Avg Type: Log-Pwr Avg Hold:>100/100	TRACE 1 2 3 4 5 TYPE MWWWW DET P NNNN
0 dB/div	Ref Offset 27.27 dB Ref 30.00 dBm				Mkr1 1.224 5 GH -49.654 dBr
° 9					
20.0					
0.0					
.00					
0.0					-13.00 c
0.0					
0.0					
0.0					
0.0			۰.		
0.0			•	have a start water	the seal of the deal of the second of
	the water and the second s	and all the second and the second second	and the second water of the	and the sector of the sector o	allenet and show the second shows
0.0					
	000 GHz				Stop 1.5000 GH
Res BW	100 kHz	#VBV	V 300 kHz	Swe	ep 5.000 ms (1001 pt
G				STATUS	

GSM 850, 836.40 MHz, 1 GHz to 1.5 GHz, Spurious Emissions at Antenna Terminals Plot

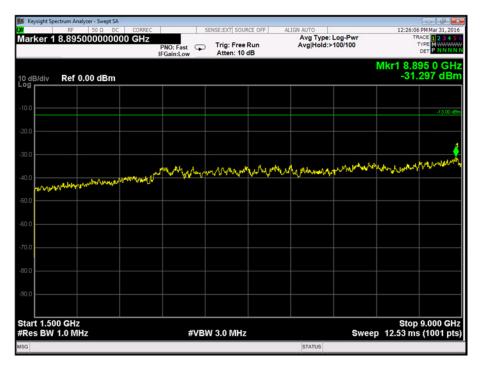
GSM 850, 836.40 MHz, 1.5 GHz to 9 GHz, Spurious Emissions at Antenna Terminals Plot

GSM 850, 848.80 MHz, Spurious Emissions at Antenna Terminals Results

Frequency (MHz)	Emission Results (dBm)			
*				

*No emissions were detected within 10 dB of the limit.

GSM 850, 848.80 MHz, 9 kHz to 1 GHz, Spurious Emissions at Antenna Terminals Plot


Keysight Spect	trum Analyzer - Swept SA RF 50 Ω DC			SENSE:EXT SOUR		IGN AUTO		12-18-0	1 PM Mar 31, 201
art Freq	9.000 kHz Gate: LO	P	NO: Fast 😱	Trig: Free Atten: 24	Run	Avg Type: Avg Hold:>			
	Ref Offset 27.27 d Ref 40.00 dBm							Mkr1 8 32	49.0 MH .796 dBr
								• ¹	
.0									
.0									
0									-13.00 d
0									
								_	
.0									a la sta susta a
a way we	ungland den globalistis	later and have a state	hellen and service the service of th	entra di andria di	l pilitan series ang series	and a state of the second s	AND CONSIGNATION	Contract Charge	and a straight difference
art 0.0 M es BW 1			#VB	W 300 kHz			Sweep	Stop 10.00 m	1.0000 GH s (1001 pt
1						STATUS			

 Krysight Spectrum Analyzer - Swept SA
 Control (1)
 Control (1)

GSM 850, 848.80 MHz, 1 GHz to 1.5 GHz, Spurious Emissions at Antenna Terminals Plot

GSM 850, 848.80 MHz, 1.5 GHz to 9 GHz, Spurious Emissions at Antenna Terminals Plot

43+10log(P) or -13 dBm

2.6 26 dB BANDWIDTH

2.6.1 Specification Reference

FCC 47 CFR Part 22, Clause 22.917 (b) FCC 47 CFR Part 2, Clause 2.1049 (h)

2.6.2 Equipment Under Test and Modification State

S/N: IMEI 004401115723286 - Modification State 0

2.6.3 Date of Test

30 March 2016

2.6.4 Test Equipment Used

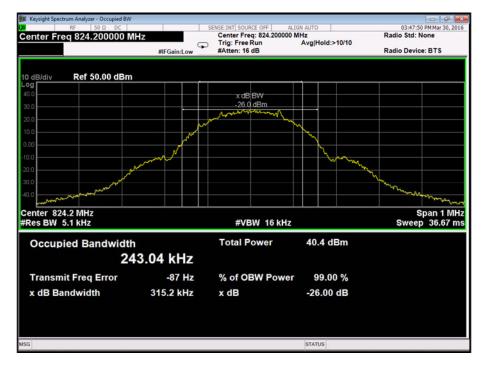
The major items of test equipment used for the above tests are identified in Section 3.1.

2.6.5 Test Procedure

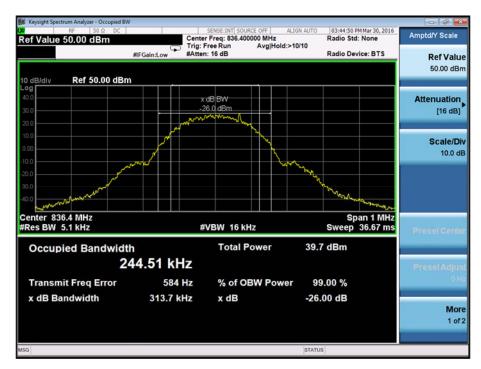
The test was performed in accordance with KDB 971168 D01 v02r02, Clause 4.1.

2.6.6 Environmental Conditions

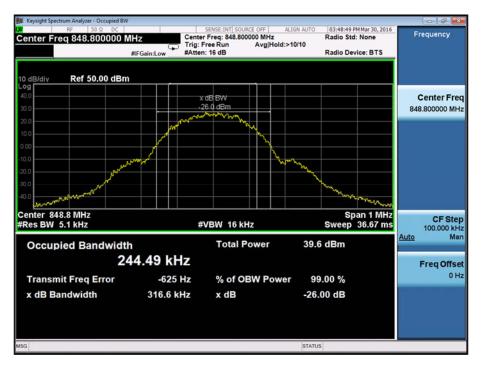
Ambient Temperature21.0°CRelative Humidity33.6%


2.6.7 Test Results

4.0 V DC Supply


GSM 850, GMSK, 26 dB Bandwidth Results

824.20 MHz	836.40 MHz	848.80 MHz
kHz	kHz	kHz
315.2	313.7	316.6



GSM 850, 836.40 MHz,GMSK, 26 dB Bandwidth Plot

GSM 850, 848.80 MHz, GMSK, 26 dB Bandwidth Plot

FCC 47 CFR Part 22, Limit Clause

None specified.

2.7 MODULATION CHARACTERISTICS

2.7.1 Specification Reference

FCC 47 CFR Part 2, Clause 2.1047 (d)

2.7.2 Test Results

GSM 850, Modulation Characteristics, Customer Description

The modulation scheme used in GSM is called Gaussian Minimum Shift Keying (GMSK). GMSK facilitates the use of narrow bandwidth and allows for both coherent and non coherent detection capabilities. It is a scheme in which the transitions from One to Zero or Zero to One do not occur quickly, but over a period of time. If pulses are transmitted quickly harmonics are transmitted. The power spectrum for a square wave is rich in harmonics, and the power within the side lobes is wasted, and can be a cause of potential interference.

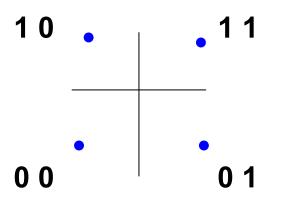
A method to reduce the harmonics is to round off the edges of the pulses thus lowering the spectral components of the signal. In GSM this is done by using a Gaussian pre-filter which typically has a bandwidth of 81.25kHz. The output from the Gaussian filter then phase modulates the carrier. As there are no dramatic phase transitions of the carrier this gives a constant envelope and low spectral component output from the transmitter.

The spectral efficiency is calculated by

bit rate / Channel bandwidth = 270.83333 kbit/s / 200 kHz = 1.354 bit/s/Hz.

The bandwidth product BT = Bandwidth x bit duration = 81.25 kHz x 3.6923 micros = 0.3

GMSK OVERVIEW


The modulation scheme used for the EUT is GMSK.

A brief overview of how GMSK works is shown below.

GMSK (Gaussian Minimum Shift Keying)

The fundamental principal behind GMSK is Phase shift keying. This splits a data stream into a series of 2-digit phase shifts, using the following phase shifts to represent data pairs.

Therefore for the BIT sequence 0 0 1 1 1 0 0 1 The corresponding phase shift will be used

BIT SEQUENCE		00	11	10	01
PHASE	225°	45°	135°	315°	

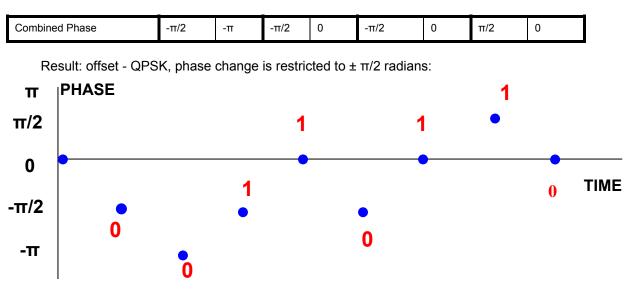
This is called QPSK (Quadratic Phase Shift Keying)

However

There is a problem with QPSK: transition from e.g. 00 to 11 gives phase shift of 180° (π radians). This has the effect of inverting the carrier waveform and this can lead to detection errors at the receiver.

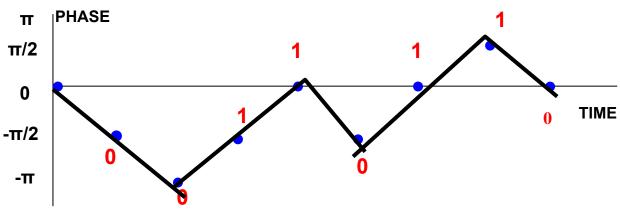
Solution: restrict phase changes to ± 90°

1. Split bitstream into 2 streams e.g.


	0 0		11		0 1		10	
I Stream	0		1		0		1	
Q stream		0		1		1		0

2. Modulate each stream with PSK (1 = 90° or $\pi/2$, 0 = -90° or - $\pi/2$ phase shift)

I Stream	0		1		0		1	
	-π/2		-π/2		-π/2		π/2	
Q stream		0		1		1		0
		-π/2		π/2		π/2		-π/2



3. Combine (add) the two PSK signals:

It would be preferable to have "gradual" changes in place between each pair of bits (Continuous-phase modulation). Replacing each "rectangular" shaped pulse (for 1 or 0) with a sinusoidal pulse can do this:

Result: Minimum Shift Keying (MSK):

Gaussian Minimum Shift Keying

MSK has high sidebands relative to the main lobes in the frequency domain - this can lead to interference with adjacent signals.

If the rectangular pulses corresponding to the bitstream are filtering using a Gaussian-shaped impulse response filter, we get Gaussian MSK (GMSK) - this has low sidelobes compared to MSK.

FCC 47 CFR Part 2, Limit Clause 2.1047 (d)

A curve or equivalent data which shows that the equipment will meet the modulation requirements of the rules under which the equipment is to be licensed.

SECTION 3

TEST EQUIPMENT USED

3.1 TEST EQUIPMENT USED

List of absolute measuring and other principal items of test equipment.

Instrument	Manufacturer	Туре No.	TE No.	Calibration Period (months)	Calibration Due
Section 2.1 - Frequency Toler	ance				
Climatic Chamber	Votsch	VT4002	161	-	O/P Mon
Attenuator 10dB/25W	Weinschel	46-10-43	400	12	18-Jun-2016
Power Supply Unit	Hewlett Packard	6253A	441	-	O/P Mon
Multimeter	Fluke	75 Mk3	455	12	10-Sep-2016
Hygrometer	Rotronic	I-1000	2882	12	4-Nov-2016
Thermocouple Thermometer	Fluke	51	3174	12	9-Dec-2016
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	2-Sep-2016
Wideband Radio Communication Tester	Rohde & Schwarz	CMW 500	4143	12	2-Sep-2016
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	7-Sep-2016
1 metre SMA Cable	Florida Labs	SMS-235SP-39.4- SMS	4513	12	16-Feb-2017
Section 2.2 - Spurious Emiss	ions at Band Edge				
Radio Communications Test Set	Rohde & Schwarz	CMU 200	39	12	10-Dec-2016
Multimeter	Fluke	75 Mk3	455	12	10-Sep-2016
Attenuator (20dB/ 2W)	Pasternack	PE7004-20	489	12	30-Oct-2016
Rubidium Standard	Rohde & Schwarz	XSRM	1316	6	3-Sep-2016
Power Supply	Iso-tech	IPS 2010	2439	-	O/P Mon
Filter	Daden Anthony Ass	MH-1500-7SS	2778	12	5-Feb-2017
Hygrometer	Rotronic	I-1000	3220	12	19-Aug-2016
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	2-Sep-2016
Combiner/Splitter	Weinschel	1506A	3878	12	2-Jun-2016
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	7-Sep-2016
Frequency Standard	Spectracom	Secure Sync 1200- 0408-0601	4393	6	3-Sep-2016
1 metre N-Type Cable	Florida Labs	NMS-235SP-39.4- NMS	4511	12	2-Mar-2017
1 metre SMA Cable	Florida Labs	SMS-235SP-39.4- SMS	4512	12	29-Jan-2017
PXA Signal Analyser	Keysight Technologies	N9030A	4654	12	8-Oct-2016
Section 2.3 - Maximum Condu		·		·	-
Radio Communications Test Set	Rohde & Schwarz	CMU 200	442	12	18-Jan-2017
Multimeter	Fluke	75 Mk3	455	12	10-Sep-2016
Attenuator (20dB/ 2W)	Pasternack	PE7004-20	489	12	30-Oct-2016
Power Supply	Iso-tech	IPS 2010	2439	-	O/P Mon
Hygrometer	Rotronic	I-1000	3220	12	19-Aug-2016
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	2-Sep-2016
Combiner/Splitter	Weinschel	1506A	3878	12	2-Jun-2016
P-Series Power Meter	Agilent Technologies	N1911A	3981	12	25-Sep-2016
50 MHz-18 GHz Wideband Power Sensor	Agilent Technologies	N1921A	3983	12	25-Sep-2016
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	7-Sep-2016
1 metre N-Type Cable	Florida Labs	NMS-235SP-39.4- NMS	4511	12	2-Mar-2017
1 metre SMA Cable	Florida Labs	SMS-235SP-39.4- SMS	4512	12	29-Jan-2017

COMMERCIAL-IN-CONFIDENCE

Product Service	Prod	uct	Ser	vice
-----------------	------	-----	-----	------

Instrument	Manufacturer	Туре No.	TE No.	Calibration Period (months)	Calibration Due
Section 2.4 - Emission Limita	tions for Cellular Equipr	nent		• • •	
Turntable Controller	Inn-Co GmbH	CO 1000	1606	-	TU
Antenna (Bilog)	Chase	CBL6143	2904	24	11-Jun-2017
Radio Communications Test Set	Rohde & Schwarz	CMU 200	3035	12	16-Nov-2016
Signal Generator (10MHz to 40GHz)	Rohde & Schwarz	SMR40	3171	12	28-Sep-2016
High Pass Filter (3GHz)	RLC Electronics	F-100-3000-5-R	3349	12	28-May-2016
EMI Test Receiver	Rohde & Schwarz	ESU40	3506	12	2-Nov-2016
Tilt Antenna Mast	maturo Gmbh	TAM 4.0-P	3916	-	TU
Mast Controller	maturo Gmbh	NCD	3917	-	TU
Double Ridged Waveguide Horn Antenna	ETS-Lindgren	3117	4722	12	29-Dec-2016
Section 2.5 - Spurious Emiss	ions at Antenna Termina	ls			
Radio Communications Test Set	Rohde & Schwarz	CMU 200	39	12	10-Dec-2016
Multimeter	Fluke	75 Mk3	455	12	10-Sep-2016
Attenuator (20dB/ 2W)	Pasternack	PE7004-20	489	12	30-Oct-2016
Rubidium Standard	Rohde & Schwarz	XSRM	1316	6	3-Sep-2016
Power Supply	Iso-tech	IPS 2010	2439	-	O/P Mon
Filter	Daden Anthony Ass	MH-1500-7SS	2778	12	5-Feb-2017
Signal Generator (10MHz to 40GHz)	Rohde & Schwarz	SMR40	3171	12	28-Sep-2016
Hygrometer	Rotronic	I-1000	3220	12	19-Aug-2016
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	2-Sep-2016
Combiner/Splitter	Weinschel	1506A	3878	12	2-Jun-2016
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	7-Sep-2016
Frequency Standard	Spectracom	Secure Sync 1200- 0408-0601	4393	6	3-Sep-2016
Suspended Substrate Highpass Filter	Advance Power Components	11SH10- 3000/X18000-O/O	4411	12	23-Mar-2017
PXA Signal Analyser	Keysight Technologies	N9030A	4654	12	8-Oct-2016
Section 2.6 - 26 dB Bandwidt	h	·		·	
Radio Communications Test Set	Rohde & Schwarz	CMU 200	39	12	10-Dec-2016
Multimeter	Fluke	75 Mk3	455	12	10-Sep-2016
Attenuator (20dB/ 2W)	Pasternack	PE7004-20	489	12	30-Oct-2016
Rubidium Standard	Rohde & Schwarz	XSRM	1316	6	3-Sep-2016
Power Supply	Iso-tech	IPS 2010	2439	-	O/P Mon
Hygrometer	Rotronic	I-1000	3220	12	19-Aug-2016
Network Analyser	Rohde & Schwarz	ZVA 40	3548	12	2-Sep-2016
Combiner/Splitter	Weinschel	1506A	3878	12	2-Jun-2016
Calibration Unit	Rohde & Schwarz	ZV-Z54	4368	12	7-Sep-2016
Frequency Standard	Spectracom	Secure Sync 1200- 0408-0601	4393	6	3-Sep-2016
1 metre N-Type Cable	Florida Labs	NMS-235SP-39.4- NMS	4511	12	2-Mar-2017
1 metre SMA Cable	Florida Labs	SMS-235SP-39.4- SMS	4512	12	29-Jan-2017
PXA Signal Analyser	Keysight Technologies	N9030A	4654	12	8-Oct-2016
1 metre SMA Cable	IW Microwave	3PS-1806LC-394- 3PS	4662	12	6-Nov-2016

TU – Traceability Unscheduled O/P MON – Output Monitored with Calibrated Equipment

3.2 MEASUREMENT UNCERTAINTY

For a 95% confidence level, the measurement uncertainties for defined systems are:-

Test Discipline	MU	
Frequency Tolerance	± 46.70 Hz	
Modulation Characteristics	-	
Maximum Conducted Output Power	± 0.70 dB	
Spurious Emissions at Antenna Terminals	± 3.454 dB	
Emission Limitations for Cellular Equipment	30 MHz to 1 GHz: ± 5.1 dB 1 GHz to 40 GHz: ± 6.3 dB	
26 dB Bandwidth	± 16.74 kHz	
Spurious Emissions at Band Edge	30 MHz to 1 GHz: ± 5.1 dB 1 GHz to 40 GHz: ± 6.3 dB	

SECTION 4

ACCREDITATION, DISCLAIMERS AND COPYRIGHT

4.1 ACCREDITATION, DISCLAIMERS AND COPYRIGHT

This report relates only to the actual item/items tested.

Our UKAS Accreditation does not cover opinions and interpretations and any expressed are outside the scope of our UKAS Accreditation.

Results of tests not covered by our UKAS Accreditation Schedule are marked NUA (Not UKAS Accredited).

This report must not be reproduced, except in its entirety, without the written permission of TÜV SÜD Product Service

© 2016 TÜV SÜD Product Service