

Report No.: EED32M80086901 Page 1 of 60



**Product** Sleep Tracker

**Trade mark** N/A

Model/Type reference : ZP100,ZP100X,X is -1,-2,-3,-4...-

20 and -A,-B,-C,-D...-Z

**Serial Number** N/A

**Report Number** : EED32M80086901

**FCC ID** : 2ADIOZP100 **Date of Issue** : Dec. 11, 2020

**Test Standards** 47 CFR Part 15 Subpart C

**Test result** : PASS

#### Prepared for:

Shenzhen Medica Technology Development Co., Ltd Floor 12, Block A, Building 7, Vanke Cloud city, XingKe 1st street, NanShan District, Shenzhen City.

Prepared by:

Centre Testing International Group Co., Ltd. Hongwei Industrial Zone, Bao'an 70 District, Shenzhen, Guangdong, China

> TEL: +86-755-3368 3668 FAX: +86-755-3368 3385

Compiled by:

Report Seal

Reviewed by:

Ware XIn

Vito he

Date:

Dec. 11, 2020

**David Wang** 

David Wang

Check No: 2252231120



















### 2 Version

| Version No. | Date         | (6   | Description | <u>S)</u> |
|-------------|--------------|------|-------------|-----------|
| 00          | Dec.11, 2020 |      | Original    |           |
| 9           |              |      |             | 7.50      |
|             |              | (25) |             |           |











































































Report No. : EED32M80086901 Page 3 of 60

### 3 Test Summary

| o root oanniary                                                   |                                                       |                  |        |
|-------------------------------------------------------------------|-------------------------------------------------------|------------------|--------|
| Test Item                                                         | Test Requirement                                      | Test method      | Result |
| Antenna Requirement                                               | 47 CFR Part 15 Subpart C Section<br>15.203/15.247 (c) | ANSI C63.10-2013 | PASS   |
| AC Power Line Conducted<br>Emission                               | 47 CFR Part 15 Subpart C Section 15.207               | ANSI C63.10-2013 | PASS   |
| Conducted Peak Output Power                                       | 47 CFR Part 15 Subpart C Section 15.247 (b)(3)        | ANSI C63.10-2013 | PASS   |
| 6dB Occupied Bandwidth                                            | 47 CFR Part 15 Subpart C Section 15.247 (a)(2)        | ANSI C63.10-2013 | PASS   |
| Power Spectral Density                                            | 47 CFR Part 15 Subpart C Section<br>15.247 (e)        | ANSI C63.10-2013 | PASS   |
| Band-edge for RF<br>Conducted Emissions                           | 47 CFR Part 15 Subpart C Section 15.247(d)            | ANSI C63.10-2013 | PASS   |
| RF Conducted Spurious Emissions                                   | 47 CFR Part 15 Subpart C Section 15.247(d)            | ANSI C63.10-2013 | PASS   |
| Radiated Spurious<br>Emissions                                    | 47 CFR Part 15 Subpart C Section<br>15.205/15.209     | ANSI C63.10-2013 | PASS   |
| Restricted bands around fundamental frequency (Radiated Emission) | 47 CFR Part 15 Subpart C Section 15.205/15.209        | ANSI C63.10-2013 | PASS   |

#### Remark:

Test according to ANSI C63.4-2014 & ANSI C63.10-2013.

Company Name and Address shown on Report, the sample(s) and sample Information was/ were provided by the applicant who should be responsible for the authenticity which CTI hasn't verified.

Model No.: ZP100,ZP100X,X is -1,-2,-3,-4...-20 and -A,-B,-C,-D...-Z

Only the model ZP100 was tested, Their electrical circuit design, layout, components used and internal wiring areidentical. These models only differ in model name. The applicant and ,the manufacturer information, the product name, are same.





Page 4 of 60 Report No.: EED32M80086901

### 4 Content

| 1 C                        | OVER PAGE                                                                                                                                                                                                                                                                                                  | •••••                                                                      |                  | ••••  | 1  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------|-------|----|
| 2 VE                       | ERSION                                                                                                                                                                                                                                                                                                     |                                                                            |                  | ••••• |    |
| 3 TE                       | EST SUMMARY                                                                                                                                                                                                                                                                                                |                                                                            |                  | ••••• |    |
| 4 C                        | ONTENT                                                                                                                                                                                                                                                                                                     |                                                                            |                  | ••••• | 2  |
| 5 TE                       | EST REQUIREMENT                                                                                                                                                                                                                                                                                            |                                                                            |                  | ••••• | 5  |
| 5                          | .1 TEST SETUP                                                                                                                                                                                                                                                                                              | st setuptest setup                                                         |                  |       |    |
| 6 G                        | ENERAL INFORMATION                                                                                                                                                                                                                                                                                         | •••••                                                                      | •••••            | ••••• |    |
| 6<br>6<br>6<br>6<br>6<br>6 | .1 CLIENT INFORMATION                                                                                                                                                                                                                                                                                      | CTIVE TO THIS STANDARD.  CONDITIONS  D BY THE CUSTOMER  CONFIDENCE LEVELS, | K=2)             |       |    |
| 7 E                        | QUIPMENT LIST                                                                                                                                                                                                                                                                                              |                                                                            |                  | ••••• | 10 |
| 8 R                        | ADIO TECHNICAL REQUIREMEI                                                                                                                                                                                                                                                                                  |                                                                            |                  |       |    |
|                            | Appendix A): 6dB Occupied Ban<br>Appendix B): Conducted Peak C<br>Appendix C): Band-edge for RF<br>Appendix D): RF Conducted Spu<br>Appendix E): Power Spectral De<br>Appendix F): Antenna Requirem<br>Appendix G): AC Power Line Co<br>Appendix H): Restricted bands a<br>Appendix I) Radiated Spurious E | Output Power                                                               | uency (Radiated) |       |    |
| PHO                        | OTOGRAPHS OF TEST SETUP                                                                                                                                                                                                                                                                                    | •••••                                                                      | •••••            | ••••• | 49 |
| PHO                        | TOGRAPHS OF EUT CONSTRU                                                                                                                                                                                                                                                                                    | ICTIONAL DETAILS                                                           |                  | ••••• | 52 |
|                            |                                                                                                                                                                                                                                                                                                            |                                                                            |                  |       |    |

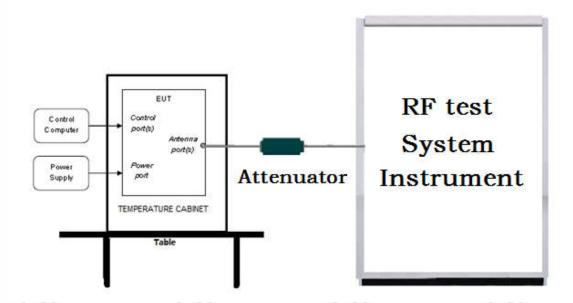













Report No.: EED32M80086901 Page 5 of 60

### 5 Test Requirement

### 5.1 Test setup

### 5.1.1 For Conducted test setup



### 5.1.2 For Radiated Emissions test setup

Radiated Emissions setup:

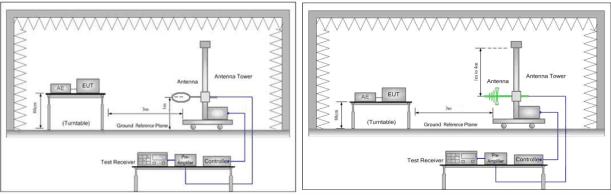
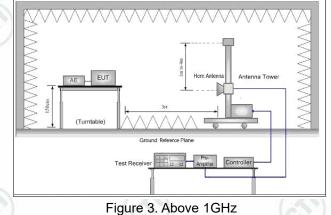
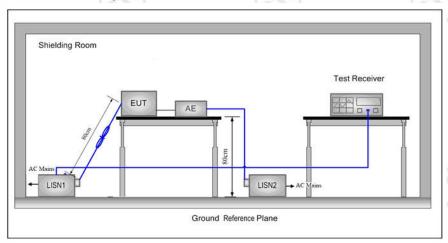




Figure 1. Below 30MHz

Figure 2. 30MHz to 1GHz



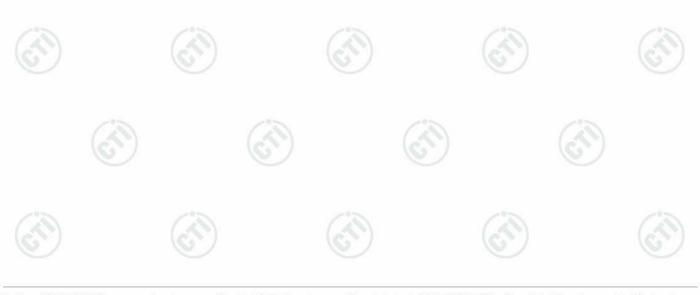

Hotline: 400-6788-333 E-mail: info@cti-cert.com www.cti-cert.com





## 5.1.3 For Conducted Emissions test setup Conducted Emissions setup




### 5.2 Test Environment

| Operating Environment: |          |     | (0) |
|------------------------|----------|-----|-----|
| Temperature:           | 24.0 °C  |     |     |
| Humidity:              | 54 % RH  | 160 |     |
| Atmospheric Pressure:  | 1010mbar |     | 0   |

### **5.3 Test Condition**

#### Test channel:

| Test Mode          | Tx/Rx                                  | RF Channel           |                 |                  |
|--------------------|----------------------------------------|----------------------|-----------------|------------------|
| Test Mode          | TX/KX                                  | Low(L)               | Middle(M)       | High(H)          |
| 05014              | 0.4001411 0.400.1411                   | Channel 0            | Channel 19      | Channel 39       |
| GFSK               | 2402MHz ~2480 MHz                      | 2402MHz              | 2440MHz         | 2480MHz          |
| Transmitting mode: | Keep the EUT in transmitting mod rate. | e with all kind of m | odulation and a | all kind of data |







### 6 General Information

### 6.1 Client Information

| Applicant:               | Shenzhen Medica Technology Development Co., Ltd                                                |    |
|--------------------------|------------------------------------------------------------------------------------------------|----|
| Address of Applicant:    | Floor 12,Block A,Building 7,Vanke Cloud city,XingKe 1st street,NanShan District,Shenzhen City. |    |
| Manufacturer:            | Shenzhen Medica Technology Development Co., Ltd                                                | 1  |
| Address of Manufacturer: | Floor 12,Block A,Building 7,Vanke Cloud city,XingKe 1st street,NanShan District,Shenzhen City. | (ف |
| Factory:                 | Shenzhen Medica Technology Development Co., Ltd                                                |    |
| Address of Factory:      | Floor 12,Block A,Building 7,Vanke Cloud city,XingKe 1st street,NanShan District,Shenzhen City. |    |

### 6.2 General Description of EUT

| Product Name:                 | Sleep Trac | cker                                            |     |  |  |
|-------------------------------|------------|-------------------------------------------------|-----|--|--|
| Model No.(EUT):               | ZP100,ZP   | P100,ZP100X,X is -1,-2,-3,-420 and -A,-B,-C,-DZ |     |  |  |
| Trade mark:                   | N/A        | V/A                                             |     |  |  |
| Frequency Range of Operation: | 2400MHz    | to 2483.5MHz                                    |     |  |  |
| Power Supply:                 | DC 5V      |                                                 |     |  |  |
|                               | Batterv    | +CLY553452 3.7V<br>-900mAh LB2JQ0-1             |     |  |  |
| Sample Received Date:         | Nov. 25, 2 | 020                                             |     |  |  |
| Sample tested Date:           | Nov. 27, 2 | 020 to Dec.02, 2020                             | -0- |  |  |

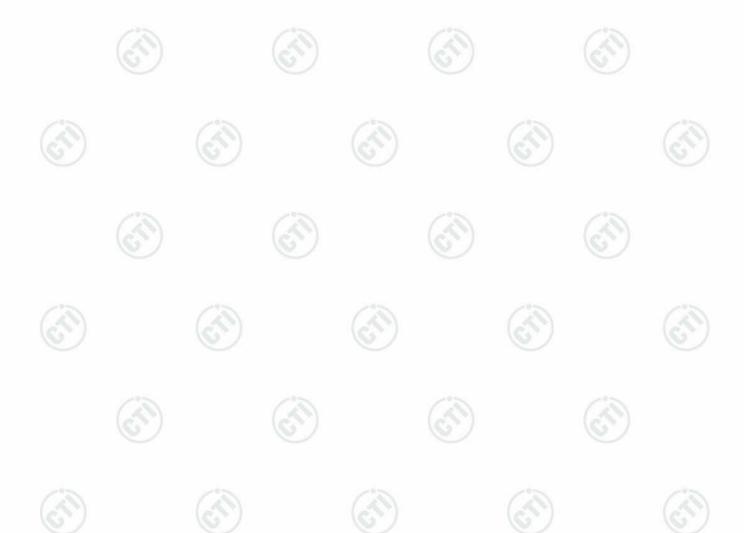
## 6.3 Product Specification subjective to this standard

| Operation Frequency:   | 2402MHz~2480MHz       |      |       |
|------------------------|-----------------------|------|-------|
| Bluetooth Version:     | 4.1 (BLE)             |      |       |
| Modulation Technique:  | DSSS                  |      | (3)   |
| Modulation Type:       | GFSK                  | (°)  | (0,1) |
| Number of Channel:     | 40                    |      |       |
| Test Power Grade:      | Default               |      |       |
| Test Software of EUT:  | nRFgo Studio          | (3)  | (2)   |
| Antenna Type and Gain: | Chip antenna; 2.5 dBi | (65) | (6,2) |
| Test Voltage:          | DC 5V                 |      |       |














| Channel | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
|---------|-----------|---------|-----------|---------|-----------|---------|-----------|
| 0       | 2402MHz   | 10      | 2422MHz   | 20      | 2442MHz   | 30      | 2462MHz   |
| 1       | 2404MHz   | 11      | 2424MHz   | 21      | 2444MHz   | 31      | 2464MHz   |
| 2       | 2406MHz   | 12      | 2426MHz   | 22      | 2446MHz   | 32      | 2466MHz   |
| 3       | 2408MHz   | 13      | 2428MHz   | 23      | 2448MHz   | 33      | 2468MHz   |
| 4       | 2410MHz   | 14      | 2430MHz   | 24      | 2450MHz   | 34      | 2470MHz   |
| 5       | 2412MHz   | 15      | 2432MHz   | 25      | 2452MHz   | 35      | 2472MHz   |
| 6       | 2414MHz   | 16      | 2434MHz   | 26      | 2454MHz   | 36      | 2474MHz   |
| 7       | 2416MHz   | 17      | 2436MHz   | 27      | 2456MHz   | 37      | 2476MHz   |
| 8       | 2418MHz   | 18      | 2438MHz   | 28      | 2458MHz   | 38      | 2478MHz   |
| 9       | 2420MHz   | 19      | 2440MHz   | 29      | 2460MHz   | 39      | 2480MHz   |





Report No. : EED32M80086901 Page 9 of 60

### 6.4 Description of Support Units

The EUT has been tested independently

#### 6.5 Test Location

All tests were performed at:

Centre Testing International Group Co., Ltd

Building C, Hongwei Industrial Park Block 70, Bao'an District, Shenzhen, China

Telephone: +86 (0) 755 33683668 Fax:+86 (0) 755 33683385

No tests were sub-contracted.

FCC Designation No.: CN1164

#### 6.6 Deviation from Standards

None.

### 6.7 Abnormalities from Standard Conditions

None.

### 6.8 Other Information Requested by the Customer

None.

### 6.9 Measurement Uncertainty (95% confidence levels, k=2)

| No.  | Item                              | Measurement Uncertainty |
|------|-----------------------------------|-------------------------|
| 1    | Radio Frequency                   | 7.9 x 10 <sup>-8</sup>  |
| 2    | RF power, conducted               | 0.46dB (30MHz-1GHz)     |
|      | AF power, conducted               | 0.55dB (1GHz-18GHz)     |
|      |                                   | 3.3dB (9kHz-30MHz)      |
| 2    | Padiated Spurious emission test   | 4.3dB (30MHz-1GHz)      |
| 3    | 3 Radiated Spurious emission test | 4.5dB (1GHz-18GHz)      |
| (0,) |                                   | 3.4dB (18GHz-40GHz)     |
| 4    | Conduction emission               | 3.5dB (9kHz to 150kHz)  |
| 4    | Conduction emission               | 3.1dB (150kHz to 30MHz) |
| 5    | Temperature test                  | 0.64°C                  |
| 6    | Humidity test                     | 3.8%                    |
| 7    | DC power voltages                 | 0.026%                  |

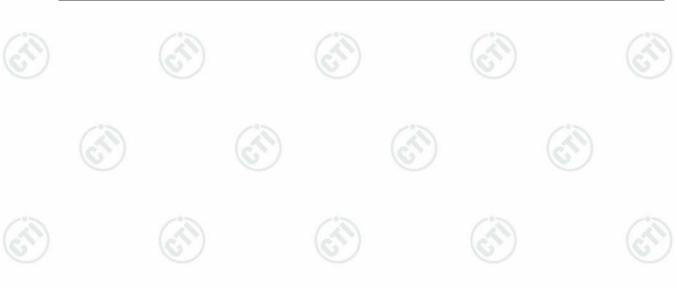








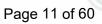





Report No. : EED32M80086901 Page 10 of 60

7 Equipment List

| -qaipilici                             | it List           | T Poly                       | 2107             |                           | 200                           |
|----------------------------------------|-------------------|------------------------------|------------------|---------------------------|-------------------------------|
|                                        |                   | RF test s                    | system           |                           |                               |
| Equipment                              | Manufacturer      | Mode No.                     | Serial<br>Number | Cal. Date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |
| Spectrum<br>Analyzer                   | Keysight          | N9010A                       | MY54510339       | 02-17-2020                | 02-16-2021                    |
| Signal<br>Generator                    | Keysight          | N5182B                       | MY53051549       | 02-17-2020                | 02-16-2021                    |
| Temperature/<br>Humidity<br>Indicator  | biaozhi           | HM10                         | 1804186          | 06-29-2020                | 06-28-2021                    |
| High-pass filter                       | Sinoscite         | FL3CX03WG18N<br>M12-0398-002 | ( <del>4</del> ) | (                         | <u></u>                       |
| High-pass filter                       | MICRO-<br>TRONICS | SPA-F-63029-4                | <u></u>          |                           |                               |
| DC Power                               | Keysight          | E3642A                       | MY56376072       | 02-17-2020                | 02-16-2021                    |
| PC-1                                   | Lenovo            | R4960d                       |                  | (A)-                      | (2)                           |
| BT&WI-FI<br>Automatic<br>control       | R&S               | OSP120                       | 101374           | 02-17-2020                | 02-16-2021                    |
| RF control unit                        | JS Tonscend       | JS0806-2                     | 158060006        | 02-17-2020                | 02-16-2021                    |
| BT&WI-FI<br>Automatic test<br>software | JS Tonscend       | JS1120-3                     |                  | (                         | <u>i</u>                      |


| Conducted disturbance Test         |              |           |                  |                           |                               |  |
|------------------------------------|--------------|-----------|------------------|---------------------------|-------------------------------|--|
| Equipment                          | Manufacturer | Model No. | Serial<br>Number | Cal. date<br>(mm-dd-yyyy) | Cal. Due date<br>(mm-dd-yyyy) |  |
| Receiver                           | R&S          | ESCI      | 100435           | 04-28-2020                | 04-27-2021                    |  |
| Temperature/<br>Humidity Indicator | Defu         | TH128     |                  | /                         | - 63                          |  |
| LISN                               | R&S          | ENV216    | 100098           | 03-05-2020                | 03-04-2021                    |  |
| Barometer                          | changchun    | DYM3      | 1188             |                           |                               |  |











|                                        | 3M                  | Semi/full-anecho     | ic Chamber       |                                         |                               |
|----------------------------------------|---------------------|----------------------|------------------|-----------------------------------------|-------------------------------|
| Equipment                              | Manufacturer        | Model No.            | Serial<br>Number | Cal. date<br>(mm-dd-yyyy)               | Cal. Due date<br>(mm-dd-yyyy) |
| 3M Chamber &<br>Accessory<br>Equipment | TDK                 | SAC-3                |                  | 05-24-2019                              | 05-23-2022                    |
| TRILOG Broadband<br>Antenna            | Schwarzbeck         | VULB9163             | 9163-618         | 05-16-2020                              | 05-15-2021                    |
| Loop Antenna                           | Schwarzbeck         | FMZB 1519B           | 1519B-<br>076    | 04-25-2018                              | 04-24-2021                    |
| Receiver                               | R&S                 | ESCI7                | 100938-<br>003   | 10-21-2019<br>10-16-2020                | 10-20-2020<br>10-15-2021      |
| Multi device<br>Controller             | maturo              | NCD/070/107<br>11112 | ( <del>2</del>   | (                                       | <u></u>                       |
| Temperature/<br>Humidity Indicator     | Shanghai<br>qixiang | HM10                 | 1804298          | 06-29-2020                              | 06-28-2021                    |
| Cable line                             | Fulai(7M)           | SF106                | 5219/6A          |                                         |                               |
| Cable line                             | Fulai(6M)           | SF106                | 5220/6A          |                                         |                               |
| Cable line                             | Fulai(3M)           | SF106                | 5216/6A          |                                         |                               |
| Cable line                             | Fulai(3M)           | SF106                | 5217/6A          | / i i i i i i i i i i i i i i i i i i i | / 3                           |





Page 12 of 60

|                                       |                  | 3M full-anechoi       | ic Chamber       |                           |                            |
|---------------------------------------|------------------|-----------------------|------------------|---------------------------|----------------------------|
| Equipment                             | Manufacturer     | Model No.             | Serial<br>Number | Cal. date<br>(mm-dd-yyyy) | Cal. Due date (mm-dd-yyyy) |
| RSE Automatic test software           | JS Tonscend      | JS36-RSE              | 10166            |                           |                            |
| Receiver                              | Keysight         | N9038A                | MY57290136       | 03-05-2020                | 03-04-2021                 |
| Spectrum<br>Analyzer                  | Keysight         | N9020B                | MY57111112       | 03-05-2020                | 03-04-2021                 |
| Spectrum<br>Analyzer                  | Keysight         | N9030B                | MY57140871       | 03-05-2020                | 03-04-2021                 |
| TRILOG<br>Broadband<br>Antenna        | Schwarzbeck      | VULB 9163             | 9163-1148        | 04-25-2018                | 04-24-2021                 |
| Horn Antenna                          | Schwarzbeck      | BBHA 9170             | 9170-832         | 04-25-2018                | 04-24-2021                 |
| Horn Antenna                          | ETS-<br>LINDGREN | 3117                  | 00057407         | 07-10-2018                | 07-09-2021                 |
| Preamplifier                          | EMCI             | EMC184055SE           | 980596           | 05-20-2020                | 05-19-2021                 |
| Preamplifier                          | EMCI             | EMC001330             | 980563           | 04-22-2020                | 04-21-2021                 |
| Preamplifier                          | JS Tonscend      | 980380                | EMC051845<br>SE  | 01-09-2020                | 01-08-2021                 |
| Temperature/<br>Humidity<br>Indicator | biaozhi          | GM1360                | EE1186631        | 04-27-2020                | 04-26-2021                 |
| Fully Anechoic<br>Chamber             | TDK              | FAC-3                 |                  | 01-17-2018                | 01-16-2021                 |
| Filter bank                           | JS Tonscend      | JS0806-F              | 188060094        | 04-10-2018                | 04-09-2021                 |
| Cable line                            | Times            | SFT205-NMSM-<br>2.50M | 394812-0001      | (                         | 3°)                        |
| Cable line                            | Times            | SFT205-NMSM-<br>2.50M | 394812-0002      |                           |                            |
| Cable line                            | Times            | SFT205-NMSM-<br>2.50M | 394812-0003      |                           |                            |
| Cable line                            | Times            | SFT205-NMSM-<br>2.50M | 393495-0001      | ( <u>e</u> 1)             | (2                         |
| Cable line                            | Times            | EMC104-NMNM-<br>1000  | SN160710         | <u> </u>                  |                            |
| Cable line                            | Times            | SFT205-NMSM-<br>3.00M | 394813-0001      |                           |                            |
| Cable line                            | Times            | SFT205-NMNM-<br>1.50M | 381964-0001      | - 0                       | <u> (8)</u>                |
| Cable line                            | Times            | SFT205-NMSM-<br>7.00M | 394815-0001      |                           | e/                         |
| Cable line                            | Times            | HF160-KMKM-<br>3.00M  | 393493-0001      |                           |                            |









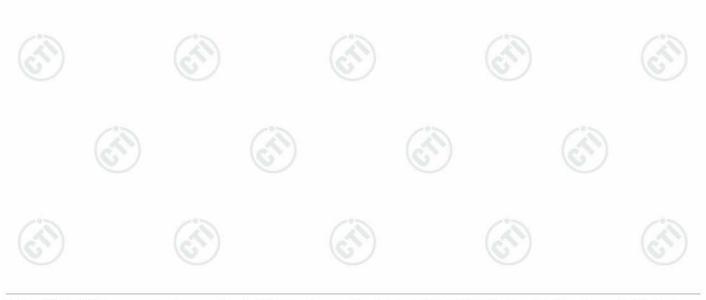








Report No. : EED32M80086901 Page 13 of 60


### 8 Radio Technical Requirements Specification

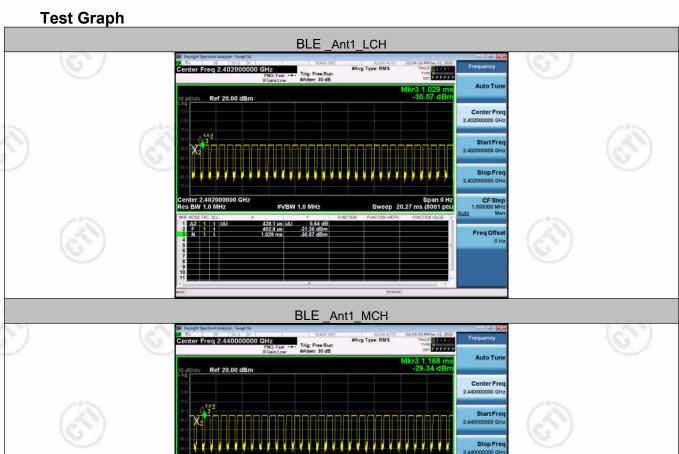
Reference documents for testing:

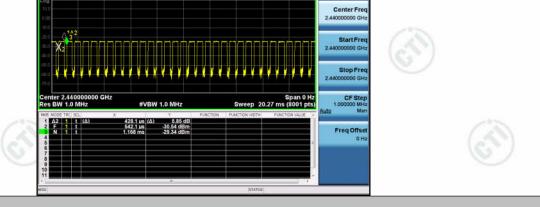
| Г |     | (0)              |                                                                   |
|---|-----|------------------|-------------------------------------------------------------------|
|   | No. | Identity         | Document Title                                                    |
|   | 1   | FCC Part15C      | Subpart C-Intentional Radiators                                   |
|   | 2   | ANSI C63.10-2013 | American National Standard for Testing Unlicesed Wireless Devices |

### Test Results List:

| Test method | Test item                                                                                              | Verdict                                                                                                                                                                                                                                                                                                                            | Note                                                                                                                                                                                                                                                                                                                                                               |
|-------------|--------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ANSI C63.10 | 6dB Occupied Bandwidth                                                                                 | PASS                                                                                                                                                                                                                                                                                                                               | Appendix A)                                                                                                                                                                                                                                                                                                                                                        |
| ANSI C63.10 | Conducted Peak Output<br>Power                                                                         | PASS                                                                                                                                                                                                                                                                                                                               | Appendix B)                                                                                                                                                                                                                                                                                                                                                        |
| ANSI C63.10 | Band-edge for RF Conducted Emissions                                                                   | PASS                                                                                                                                                                                                                                                                                                                               | Appendix C)                                                                                                                                                                                                                                                                                                                                                        |
| ANSI C63.10 | RF Conducted Spurious<br>Emissions                                                                     | PASS                                                                                                                                                                                                                                                                                                                               | Appendix D)                                                                                                                                                                                                                                                                                                                                                        |
| ANSI C63.10 | Power Spectral Density                                                                                 | PASS                                                                                                                                                                                                                                                                                                                               | Appendix E)                                                                                                                                                                                                                                                                                                                                                        |
| ANSI C63.10 | Antenna Requirement                                                                                    | PASS                                                                                                                                                                                                                                                                                                                               | Appendix F)                                                                                                                                                                                                                                                                                                                                                        |
| ANSI C63.10 | AC Power Line Conducted Emission                                                                       | PASS                                                                                                                                                                                                                                                                                                                               | Appendix G)                                                                                                                                                                                                                                                                                                                                                        |
| ANSI C63.10 | Restricted bands around fundamental frequency (Radiated Emission)                                      | PASS                                                                                                                                                                                                                                                                                                                               | Appendix H)                                                                                                                                                                                                                                                                                                                                                        |
| ANSI C63.10 | Radiated Spurious Emissions                                                                            | PASS                                                                                                                                                                                                                                                                                                                               | Appendix I)                                                                                                                                                                                                                                                                                                                                                        |
|             | ANSI C63.10  ANSI C63.10 | ANSI C63.10  Conducted Peak Output Power  ANSI C63.10  Band-edge for RF Conducted Emissions  ANSI C63.10  RF Conducted Spurious Emissions  ANSI C63.10  Power Spectral Density  ANSI C63.10  Antenna Requirement  ANSI C63.10  AC Power Line Conducted Emission  Restricted bands around fundamental frequency (Radiated Emission) | ANSI C63.10  Conducted Peak Output Power  ANSI C63.10  Band-edge for RF Conducted Emissions  ANSI C63.10  RF Conducted Spurious Emissions  ANSI C63.10  Power Spectral Density  ANSI C63.10  ANSI C63.10  Antenna Requirement  ANSI C63.10  AC Power Line Conducted Emission  ANSI C63.10  Restricted bands around fundamental frequency (Radiated Emission)  PASS |







Report No. : EED32M80086901 Page 14 of 60

### **Duty Cycle**

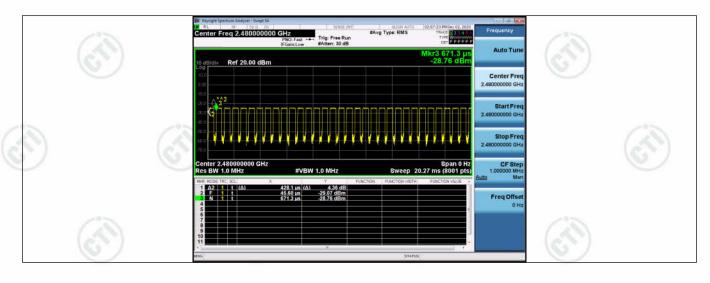
### Result Table

| Mode | Channel | Duty Cycle [%] | T(ms)  | 1/T(kHz) |
|------|---------|----------------|--------|----------|
| BLE  | LCH     | 68.42          | 0.6262 | 1.597    |
| BLE  | MCH     | 68.42          | 0.6259 | 1.598    |
| BLE  | НСН     | 68.42          | 0.6257 | 1.598    |





BLE \_Ant1\_HCH










Page 15 of 60





































































Report No.: EED32M80086901 Page 16 of 60

### Appendix A): 6dB Occupied Bandwidth

#### **Test Limit**

According to §15.247(a)(2) and RSS-247 section 5.2(a)

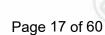
### 6 dB Bandwidth:

| 4 | Limit | Shall be at least 500kHz |  |
|---|-------|--------------------------|--|


<u>Occupied Bandwidth(99%)</u>: For reporting purposes only.

#### **Test Procedure**

Test method Refer as KDB 558074 D01, section 8.1 and ANSI 63.10:2013 clause 6.9.2 & 6.9.3.


- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 100kHz, VBW = 300kHz and Detector = Peak, to measurement 6 dB Bandwidth.
- 4. SA set RBW = 30kHz, VBW = 100kHz and Detector = Peak, to measurement 99% Bandwidth
- 5. Measure and record the result of 6 dB Bandwidth and 99% Bandwidth. in the test report.

#### **Test Setup**









### **Test Result**

| Mode | Channel | 6dB Bandwidth [MHz] | 99% OBW[MHz] | Verdict |
|------|---------|---------------------|--------------|---------|
| BLE  | LCH     | 0.6789              | 1.0122       | PASS    |
| BLE  | MCH     | 0.6825              | 1.0263       | PASS    |
| BLE  | HCH     | 0.6940              | 1.0199       | PASS    |





Page 18 of 60

## Test Graphs 6 dB Bandwidth

















### Page 19 of 60

### Occupied Bandwidth(99%)















Report No. : EED32M80086901 Page 20 of 60

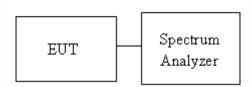
### Appendix B): Conducted Peak Output Power

### **Test Limit**

According to §15.247(b) and RSS-247 section 5.4(d)

### Peak output power:

For systems using digital modulation in the 2400-2483.5 MHz, and 5725-5850 MHz bands: 1 Watt(30 dBm), base on the use of antennas with directional gain not exceed 6 dBi If transmitting antennas of directional gain greater than 6dBi are used the peak output power the conducted output power from the intentional radiator shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi. In case of point-to-point operation, the limit has to be reduced by 1dB for every 3 dB that the directional gain of the antenna exceeds 6 dBi.


|       | (6) |                                                                         | 0 |
|-------|-----|-------------------------------------------------------------------------|---|
| Limit |     | $\square$ Antenna with DG greater than 6 dBi [Limit = $30 - (DG - 6)$ ] |   |
|       |     | ☐ Point-to-point operation                                              |   |

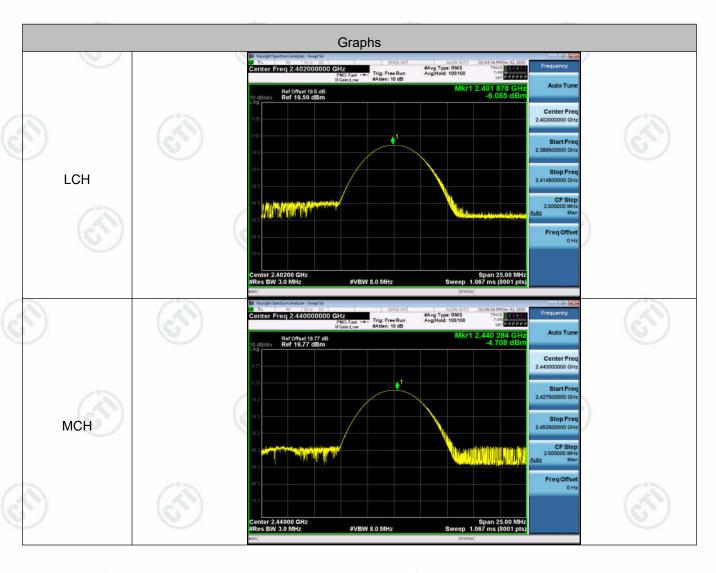
#### **Test Procedure**

Test method Refer as KDB 558074 D01, section 9.1.2.

- 1. The EUT RF output connected to spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT.
- 3. Spectrum analyzer settings are as follows:
  - a) Set the RBW≥DTS bandwidth.
  - b) Set VBW ≥ [3×RBW].
  - c) Set span ≥[3×RBW].
  - d) Sweep time = auto couple.
  - e) Detector = peak.
  - f) Trace mode = max hold.
  - g) Allow trace to fully stabilize.
  - h) Use peak marker function to determine the peak amplitude level
- 4. Measure and record the result in the test report.

### **Test Setup**






Report No. : EED32M80086901 Page 21 of 60

### **Test Result**

| Mode | Channel | Conduct Peak Power[dBm] | Verdict |
|------|---------|-------------------------|---------|
| BLE  | LCH     | -6.085                  | PASS    |
| BLE  | MCH     | -4.708                  | PASS    |
| BLE  | HCH     | -4.759                  | PASS    |

### **Test Graphs**





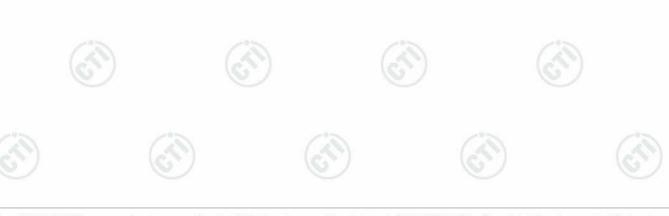























Report No. : EED32M80086901 Page 23 of 60

### Appendix C): Band-edge for RF Conducted Emissions

#### **Test Limit**

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

### **Test Procedure**

Test method Refer as KDB 558074 D01, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

#### **Test Setup**






Page 24 of 60

#### **Result Table**

| Mode | Channel | Carrier Power[dBm] | Max.Spurious Level<br>[dBm] | Limit [dBm] | Verdict |
|------|---------|--------------------|-----------------------------|-------------|---------|
| BLE  | LCH     | -6.041             | -56.430                     | -26.04      | PASS    |
| BLE  | НСН     | -4.586             | -38.673                     | -24.59      | PASS    |

### **Test Graphs**







Report No. : EED32M80086901 Page 25 of 60

# Appendix D): RF Conducted Spurious Emissions <u>Test Limit</u>

According to §15.247(d) and RSS-247 section 5.5

In any 100 kHz bandwidth outside the authorized frequency band,

Non-restricted bands shall be attenuated at least 20 dB/30 dB relative to the maximum PSD level in 100 kHz by RF conducted or a radiated measurement which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a).

### **Test Procedure**

Test method Refer as KDB 558074 D01, Section 11.

- 1. EUT RF output port connected to the SA by RF cable, and the path loss was compensated to result.
- 2. SA setting, RBW=100kHz, VBW=300kHz, Detector=Peak, Trace mode = max hold, SWT = Auto.
- 3. In any 100 kHz bandwidth outside the authorized frequency band, shall be attenuated at least 20 dB relative to the maximum in-band peak PSD level in 100 kHz when conducted power procedure is used. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

#### **Test Setup**





Page 26 of 60 Report No.: EED32M80086901

### **Result Table**

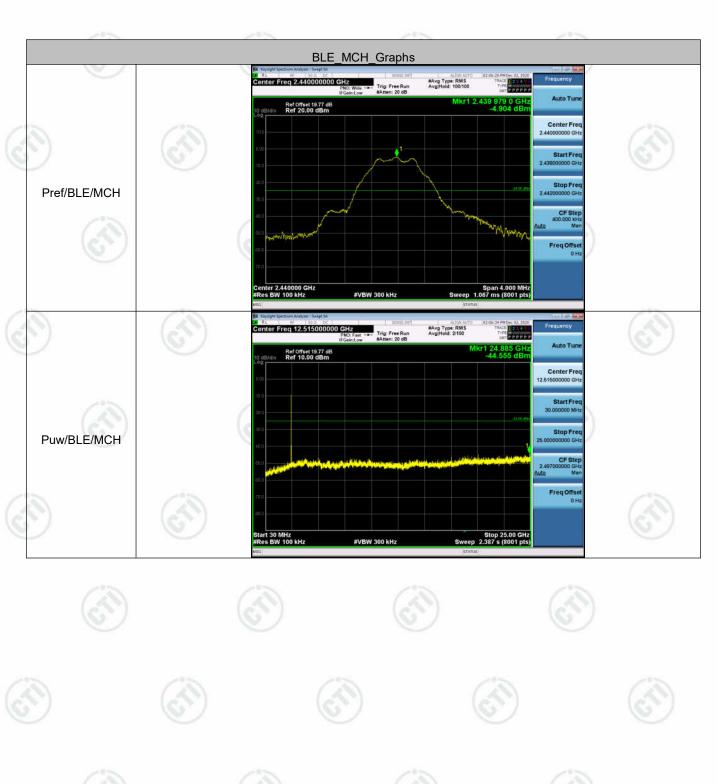
| Mode | Channel | Pref [dBm] | Puw[dBm]                             | Verdict |
|------|---------|------------|--------------------------------------|---------|
| BLE  | LCH     | -6.234     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| BLE  | MCH     | -4.904     | <limit< td=""><td>PASS</td></limit<> | PASS    |
| BLE  | НСН     | -4.907     | <limit< td=""><td>PASS</td></limit<> | PASS    |

**Test Graphs** 



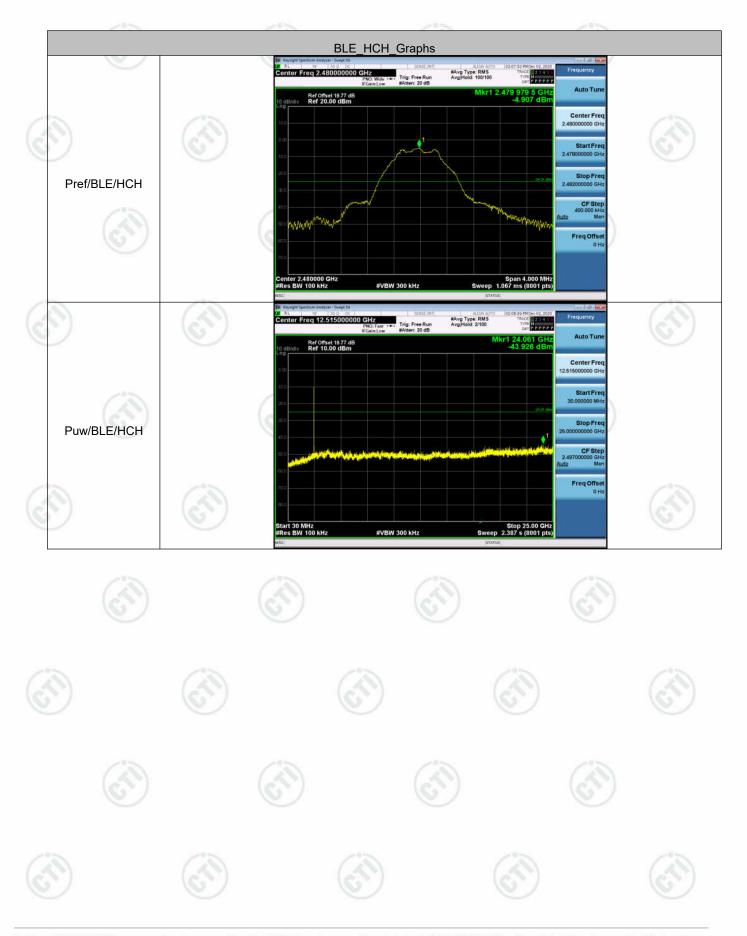

















Page 28 of 60





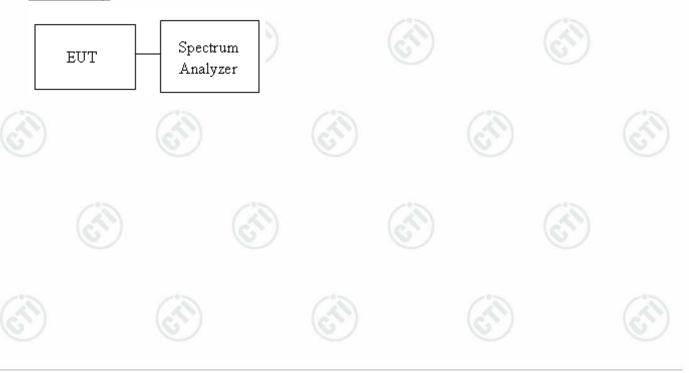
Report No. : EED32M80086901 Page 29 of 60

### **Appendix E): Power Spectral Density**

#### **Test Limit**

According to §15.247(e) and RSS-247 section 5.2(b)

For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.


| Limit 6 | <ul> <li>✓ Antenna not exceed 6 dBi : 8dBm</li> <li>☐ Antenna with DG greater than 6 dBi</li> <li>[ Limit = 8 - (DG - 6) ]</li> <li>☐ Point-to-point operation :</li> </ul> |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | I dilit-to-point operation.                                                                                                                                                 |

#### **Test Procedure**

Test method Refer as KDB 558074 D01, Section 10.2

- 1. The EUT RF output connected to the spectrum analyzer by RF cable.
- 2. Setting maximum power transmit of EUT
- 3. SA set RBW = 3kHz, VBW = 10kHz, Span = 1.5 times DTS Bandwidth (6 dB BW), Detector = Peak, Sweep Time = Auto and Trace = Max hold.
- 4. The path loss and Duty Factor were compensated to the results for each measurement by SA.
- Mark the maximum level.
   Measure and record the result of power spectral density. in the test report.

### **Test Setup**





Page 30 of 60

#### **Result Table**

| Mode | Channel | PSD [dBm] | Verdict |
|------|---------|-----------|---------|
| BLE  | LCH     | -19.861   | PASS    |
| BLE  | MCH     | -15.852   | PASS    |
| BLE  | HCH     | -16.437   | PASS    |

**Test Graphs** 

























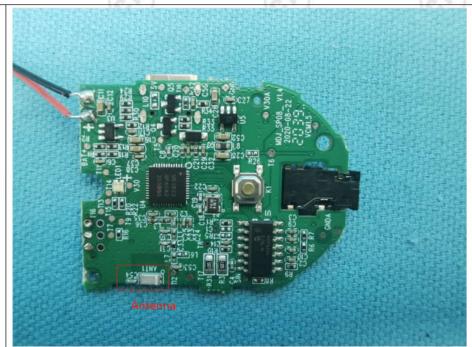




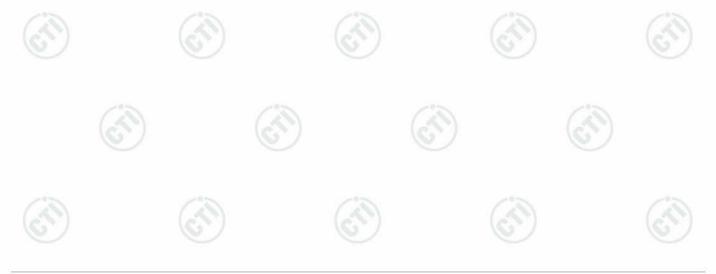


Report No.: EED32M80086901 Page 32 of 60

### Appendix F): Antenna Requirement


#### 15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.


#### 15.247(b) (4) requirement:

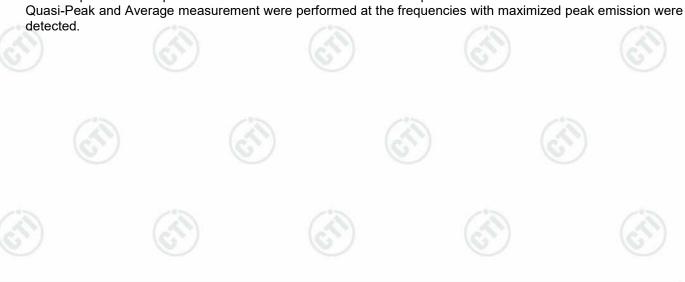
The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.





The antenna is Chip antenna. The best case gain of the antenna is 2.5dBi.

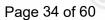




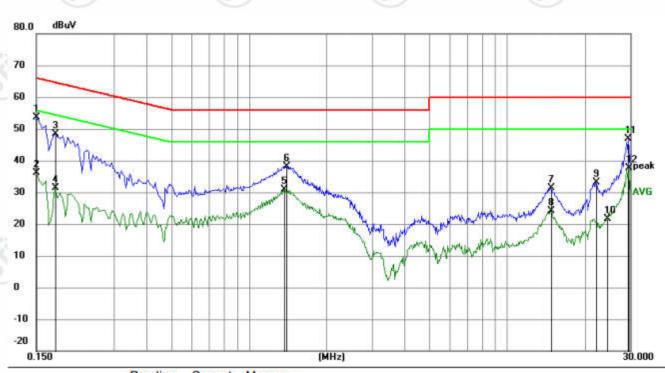

Report No.: EED32M80086901 Page 33 of 60

| Test Procedure: | Test frequency range :150KHz                                                                                                                                                                                                     | z-30MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                 | 1)The mains terminal disturbance voltage test was conducted in a shielded room.                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                 | 2) The EUT was connected to                                                                                                                                                                                                      | AC power source thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ough a LISN 1 (Line                                                                                                               | Impedan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                 | Stabilization Network) whi                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                 | power cables of all other u                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                 | which was bonded to the g<br>for the unit being measure                                                                                                                                                                          | • 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                 | multiple power cables to a                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | •                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                 | exceeded.                                                                                                                                                                                                                        | onigio Elori providod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | and raung or and Eren                                                                                                             | · was not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                 | 3)The tabletop EUT was place                                                                                                                                                                                                     | ced upon a non-metal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | lic table 0.8m above                                                                                                              | the grour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                 | reference plane. And for flohorizontal ground reference                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nent, the EUT was pl                                                                                                              | aced on th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                 | 4) The test was performed w                                                                                                                                                                                                      | rith a vertical ground r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | eference plane. The                                                                                                               | rear of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|                 | EUT shall be 0.4 m from the                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                 | reference plane was bond                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                 | 1 was placed 0.0 m from                                                                                                                                                                                                          | the become af the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | unit condantent and I                                                                                                             | ما اممامما                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                 | 1 was placed 0.8 m from                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                 | ground reference plane f                                                                                                                                                                                                         | for LISNs mounted o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n top of the groun                                                                                                                | d referen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
|                 |                                                                                                                                                                                                                                  | for LISNs mounted on<br>Detween the closest po                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n top of the groun<br>pints of the LISN 1 a                                                                                       | d referend<br>nd the EU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                 | ground reference plane f<br>plane. This distance was b<br>All other units of the EUT                                                                                                                                             | for LISNs mounted on<br>petween the closest potential<br>and associated equiprocess.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n top of the groun<br>pints of the LISN 1 a<br>nent was at least 0.8                                                              | d referend<br>nd the EU<br>3 m from th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                 | ground reference plane f<br>plane. This distance was b<br>All other units of the EUT a<br>LISN 2.                                                                                                                                | for LISNs mounted of<br>petween the closest pot<br>and associated equiprom<br>m emission, the relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | on top of the groun<br>bints of the LISN 1 a<br>ment was at least 0.8<br>we positions of equip                                    | d reference nd the EU 3 m from the ment and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| eri)            | ground reference plane f<br>plane. This distance was t<br>All other units of the EUT a<br>LISN 2.<br>5) In order to find the maximu                                                                                              | for LISNs mounted of<br>petween the closest pot<br>and associated equiprom<br>m emission, the relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | on top of the groun<br>bints of the LISN 1 a<br>ment was at least 0.8<br>we positions of equip                                    | d reference nd the EU 3 m from the ment and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Limit:          | ground reference plane f<br>plane. This distance was b<br>All other units of the EUT a<br>LISN 2.<br>5) In order to find the maximu<br>of the interface cables                                                                   | for LISNs mounted of petween the closest potential and associated equipment of the memission, the relative must be changed a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | on top of the groun bints of the LISN 1 a ment was at least 0.8 we positions of equipaccording to ANSI                            | d reference nd the EU 3 m from the ment and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Limit:          | ground reference plane f<br>plane. This distance was b<br>All other units of the EUT a<br>LISN 2.<br>5) In order to find the maximu<br>of the interface cables                                                                   | for LISNs mounted of petween the closest potential associated equipment of the memission, the relative must be changed at the closest potential associated equipment of the change of the change of the closest potential associated by the change of the chan | on top of the groun bints of the LISN 1 a ment was at least 0.8 we positions of equipaccording to ANSI                            | d reference nd the EU 3 m from the ment and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Limit:          | ground reference plane f<br>plane. This distance was be<br>All other units of the EUT at<br>LISN 2.  5) In order to find the maximu<br>of the interface cables<br>conducted measurement.  Frequency range (MHz)                  | for LISNs mounted of petween the closest potential and associated equiprom emission, the relative must be changed a similar (continuation). Limit (continuation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | on top of the groun bints of the LISN 1 a ment was at least 0.8 by e positions of equipaccording to ANSI dBµV)  Average           | d reference nd the EU 3 m from the ment and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Limit:          | ground reference plane for plane. This distance was be All other units of the EUT at LISN 2.  5) In order to find the maximu of the interface cables conducted measurement.  Frequency range (MHz)  0.15-0.5                     | for LISNs mounted of petween the closest potential associated equipment of the memission, the relative must be changed at the closest potential associated equipment of the change of the change of the closest potential associated by the change of the chan | on top of the groun bints of the LISN 1 a ment was at least 0.8 we positions of equipaccording to ANSI                            | d reference nd the EU 3 m from the ment and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Limit:          | ground reference plane f<br>plane. This distance was be<br>All other units of the EUT at<br>LISN 2.  5) In order to find the maximu<br>of the interface cables<br>conducted measurement.  Frequency range (MHz)                  | for LISNs mounted of petween the closest potential and associated equiprom emission, the relative must be changed a similar (continuation). Limit (continuation)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | on top of the groun bints of the LISN 1 a ment was at least 0.8 by e positions of equipaccording to ANSI dBµV)  Average           | d reference nd the EU 3 m from the ment and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Limit:          | ground reference plane for plane. This distance was be All other units of the EUT at LISN 2.  5) In order to find the maximu of the interface cables conducted measurement.  Frequency range (MHz)  0.15-0.5                     | for LISNs mounted of petween the closest potential and associated equipment of the must be changed at the control of the contr | n top of the groun bints of the LISN 1 a ment was at least 0.8 ve positions of equipaccording to ANSI  BHV  Average  56 to 46*    | d reference nd the EU 3 m from the ment and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| Limit:          | ground reference plane f<br>plane. This distance was be<br>All other units of the EUT at<br>LISN 2.  5) In order to find the maximu<br>of the interface cables<br>conducted measurement.  Frequency range (MHz)  0.15-0.5  0.5-5 | for LISNs mounted of petween the closest potential associated equipments of the change | n top of the groun bints of the LISN 1 a ment was at least 0.8 we positions of equipaccording to ANSI  Average  56 to 46*  46  50 | d reference nd the EU and the EU |  |  |  |  |  |

#### **Measurement Data**


An initial pre-scan was performed on the live and neutral lines with peak detector.




www.cti-cert.com E-mail: info@cti-cert.com Complaint call: 0755-33681700 Complaint E-mail: complaint@cti-cert.com Hotline: 400-6788-333











| No. | Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment |       | Margin |          |         |  |
|-----|-----|---------|------------------|-------------------|------------------|-------|--------|----------|---------|--|
|     |     | MHz     | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector | Comment |  |
| 1   |     | 0.1500  | 43.64            | 9.87              | 53.51            | 66.00 | -12.49 | peak     |         |  |
| 2   |     | 0.1500  | 26.37            | 9.87              | 36.24            | 56.00 | -19.76 | AVG      |         |  |
| 3   |     | 0.1770  | 38.61            | 9.87              | 48.48            | 64.63 | -16.15 | peak     |         |  |
| 4   |     | 0.1770  | 21.62            | 9.87              | 31.49            | 54.63 | -23.14 | AVG      |         |  |
| 5   |     | 1.3695  | 21.16            | 9.82              | 30.98            | 46.00 | -15.02 | AVG      |         |  |
| 6   |     | 1.3965  | 28.22            | 9.81              | 38.03            | 56.00 | -17.97 | peak     |         |  |
| 7   |     | 14.7570 | 21.47            | 9.92              | 31.39            | 60.00 | -28.61 | peak     |         |  |
| 8   |     | 14.7570 | 14.15            | 9.92              | 24.07            | 50.00 | -25.93 | AVG      |         |  |
| 9   |     | 22.1145 | 23.14            | 9.98              | 33.12            | 60.00 | -26.88 | peak     |         |  |
| 10  |     | 24.4860 | 11.74            | 10.00             | 21.74            | 50.00 | -28.26 | AVG      |         |  |
| 11  |     | 29.4360 | 36.82            | 10.03             | 46.85            | 60.00 | -13.15 | peak     |         |  |
| 12  | *   | 29.6340 | 27.61            | 10.03             | 37.64            | 50.00 | -12.36 | AVG      |         |  |
|     |     |         |                  |                   |                  |       |        |          |         |  |





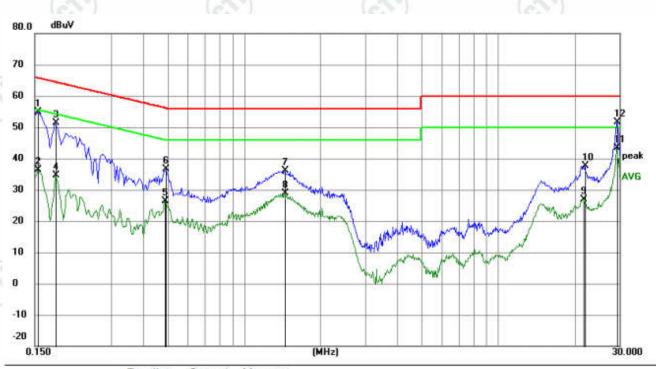

















### Page 35 of 60

#### Neutral line:



| No  | . Mk. | Freq.   | Reading<br>Level | Correct<br>Factor | Measure-<br>ment | Limit | Margin |          |         |
|-----|-------|---------|------------------|-------------------|------------------|-------|--------|----------|---------|
|     |       | MHz     | dBuV             | dB                | dBuV             | dBuV  | dB     | Detector | Comment |
| 1   |       | 0.1545  | 45.04            | 9.87              | 54.91            | 65.75 | -10.84 | peak     |         |
| 2   |       | 0.1545  | 26.50            | 9.87              | 36.37            | 55.75 | -19.38 | AVG      |         |
| 3   |       | 0.1815  | 41.58            | 9.87              | 51.45            | 64.42 | -12.97 | peak     |         |
| 4   |       | 0.1815  | 24.75            | 9.87              | 34.62            | 54.42 | -19.80 | AVG      |         |
| 5   |       | 0.4875  | 16.50            | 9.95              | 26.45            | 46.21 | -19.76 | AVG      |         |
| 6   |       | 0.4920  | 26.60            | 9.95              | 36.55            | 56.13 | -19.58 | peak     |         |
| 7   |       | 1.4460  | 26.35            | 9.81              | 36.16            | 56.00 | -19.84 | peak     |         |
| - 8 |       | 1.4505  | 19.08            | 9.81              | 28.89            | 46.00 | -17.11 | AVG      |         |
| 9   |       | 21.6195 | 16.82            | 9.98              | 26.80            | 50.00 | -23.20 | AVG      |         |
| 10  |       | 22.0244 | 27.72            | 9.98              | 37.70            | 60.00 | -22.30 | peak     |         |
| 11  | *     | 29.3595 | 33.41            | 10.03             | 43.44            | 50.00 | -6.56  | AVG      |         |
| 12  |       | 29.4225 | 41.68            | 10.03             | 51.71            | 60.00 | -8.29  | peak     |         |

#### Notes:

- 1. The following Quasi-Peak and Average measurements were performed on the EUT:
- 2. Final Test Level =Receiver Reading + LISN Factor + Cable Loss.













Report No. : EED32M80086901 Page 36 of 60

Appendix H): Restricted bands around fundamental frequency (Radiated)

| Receiver Setup: | 1.90.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 70 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Receiver Setup. | Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RBW                                                                                                                           | VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                               |
|                 | 30MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120kHz                                                                                                                        | 300kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Quasi-peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                               |
|                 | AL 40U-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                          | 3MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                               |
|                 | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1MHz                                                                                                                          | 10kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                               |
| est Procedure:  | Below 1GHz test procedu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | re as below:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 6                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                                             |
|                 | Test method Refer as KDB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 558074 D01 , S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Section 12.                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |
|                 | <ul> <li>a. The EUT was placed or at a 3 meter semi-anech determine the position of the EUT was set 3 met was mounted on the top c. The antenna height is videtermine the maximum polarizations of the antended. For each suspected em the antenna was tuned was turned from 0 degree. The test-receiver system</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | noic camber. The first he highest rates away from the of a variable-haried from one on value of the first heights from the best to 360 degrees to 360 degrees to 260 mes are set to Petron was set to Petron to heights from the set to Petron to heights from the set to Petron to heights from the set to Petron the set to  | the table was adiation. the interfer neight anter meter to for eld strength make the nown was arran 1 meter to rees to find   | ence-receinna tower. our meters n. Both hor neasurement ged to its 4 meters the maxin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | iving antennal above the grantal and vent.  worst case are and the rotate and the rotate and many reading.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | to<br>, whice<br>ound to<br>ertica<br>and the |
|                 | Bandwidth with Maximu f. Place a marker at the e frequency to show complete bands. Save the spectro for lowest and highest of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nd of the restric<br>pliance. Also m<br>um analyzer plo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | easure any                                                                                                                    | emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s in the restri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |
|                 | f. Place a marker at the e<br>frequency to show comp<br>bands. Save the spectru<br>for lowest and highest of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nd of the restric<br>pliance. Also m<br>um analyzer plo<br>hannel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | easure any                                                                                                                    | emission                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s in the restri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                               |
|                 | f. Place a marker at the e<br>frequency to show com<br>bands. Save the spectro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nd of the restrict pliance. Also mum analyzer plothannel  re as below: e is the test site oer change form meter and table west channel, inents are perfound the X ax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e, change fin table 0.8 le is 1.5 method in X, kis positioni                                                                  | remissions<br>for each por<br>rom Semi-<br>meter to 1<br>ter).<br>t channel<br>Y, Z axis p<br>ing which i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | s in the restriction of the control | dulation<br>nambe<br>ove                      |
| imit:           | f. Place a marker at the ending frequency to show complete bands. Save the spectrum for lowest and highest of the first state o | nd of the restrict pliance. Also mum analyzer plothannel  re as below: e is the test site oer change form meter and table west channel, inents are perfound the X ax                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | e, change fin table 0.8 le is 1.5 methe Highest rmed in X, kis positioniuencies me                                            | remissions for each por form Semi- meter to 1 ter). t channel Y, Z axis p ing which i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s in the restriction of the control | dulation<br>nambe<br>ove                      |
| imit:           | f. Place a marker at the ending frequency to show complete bands. Save the spectrum for lowest and highest of the first state o | nd of the restrict pliance. Also mum analyzer place hannel  re as below: e is the test site of the change form meter and table west channel, ments are perfound the X axes until all frequents.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e, change fin table 0.8 le is 1.5 method in X, kis positioniuencies method.                                                   | rom Semi-<br>meter to 1<br>ter).<br>t channel<br>Y, Z axis p<br>ing which i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Anechoic Ch<br>.5 meter( Abo<br>positioning for<br>t is worse cases complete.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dulation<br>nambe<br>ove                      |
| imit:           | f. Place a marker at the ending frequency to show compliands. Save the spectrum for lowest and highest of the spectrum for lowest and highest of the spectrum for lowest and highest of the standard form.  Above 1GHz test procedum g. Different between above to fully Anechoic Chamber 18GHz the distance is 1 h. Test the EUT in the low in the radiation measurem that Transmitting mode, and j. Repeat above procedum.  Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | nd of the restrict pliance. Also mum analyzer plothannel re as below: e is the test site per change form meter and table west channel, ments are performents are performents and the X axes until all frequents (dBµV).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | e, change fin table 0.8 le is 1.5 met the Highest rmed in X, kis positioniuencies met med | rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Anechoic Ch<br>.5 meter( Abo<br>positioning for<br>t is worse cases complete.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | dulation<br>nambe<br>ove                      |
| imit:           | f. Place a marker at the ending frequency to show compounds. Save the spectrum for lowest and highest of the following for lowest and highest of the following for fully Anechoic Chamber 18GHz the distance is 18 h. Test the EUT in the lower in the radiation measurem for Transmitting mode, and j. Repeat above procedure for the following | nd of the restrict pliance. Also mum analyzer plothannel  re as below: e is the test site oper change form meter and table west channel, ments are performents are performent all frequential frequential (dBµV).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e, change fin table 0.8 le is 1.5 methe Highest rmed in X, kis positioni uencies med/m @3m)                                   | rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa  Rei Quasi-pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Anechoic Ch.5 meter( Aboositioning for tis worse cases complete.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | dulation<br>nambe<br>ove                      |
| imit:           | f. Place a marker at the ending frequency to show compliands. Save the spectrum for lowest and highest of the fully Anechoic Chamber 18GHz the distance is 1 h. Test the EUT in the lowed in the radiation measurem for Transmitting mode, and j. Repeat above procedum for the spectrum | nd of the restrict pliance. Also mum analyzer plothannel re as below: the is the test site per change form meter and table west channel, ments are performents are performent all frequential frequential (dBµV).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e, change fin table 0.8 le is 1.5 method in X, kis positioniuencies method (m. @3m)                                           | rom Semi- meter to 1 ter). t channel Y, Z axis p ing which i easured wa  Rei Quasi-pe Quasi-pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Anechoic Ch .5 meter( Abo cositioning for t is worse cas as complete. mark eak Value eak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | dulation<br>nambe<br>ove                      |
| imit:           | f. Place a marker at the endirequency to show compliands. Save the spectrum for lowest and highest of the spectrum for lowest and highest of lowest and highest of lowest and highest of fully Anechoic Chamber 18GHz the distance is 1 h. Test the EUT in the lowed in the radiation measurem Transmitting mode, and j. Repeat above procedur.  Frequency  30MHz-88MHz  88MHz-216MHz  216MHz-960MHz  960MHz-1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | nd of the restrict pliance. Also mum analyzer plothannel  re as below: e is the test site our change form meter and table west channel, ments are performents are performent all frequential frequenti | e, change fin table 0.8 le is 1.5 methe Highest rmed in X, kis positioni uencies med      | remissions for each por for eac | Anechoic Ch.5 meter( Aboositioning for tis worse cases complete.  mark eak Value eak Value eak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | dulation<br>nambe<br>ove                      |
| imit:           | f. Place a marker at the ending frequency to show compounds. Save the spectrum for lowest and highest of the fully Anechoic Chamber 18GHz the distance is 1 h. Test the EUT in the lower in the radiation measured from the spectrum from the spectrum for the spectrum | nd of the restrict pliance. Also mum analyzer plot channel  re as below: e is the test site per change form meter and table west channel, ments are perfound the X axes until all frequency Limit (dBµV 40.0 43.5 46.0 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | e, change fin table 0.8 le is 1.5 method in X, kis positioni uencies method in X (m @3m)                                      | remissions for each por for eac | Anechoic Ch. 5 meter (Above Stioning for tis worse cases complete.  mark eak Value eak Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | dulation<br>nambe<br>ove                      |

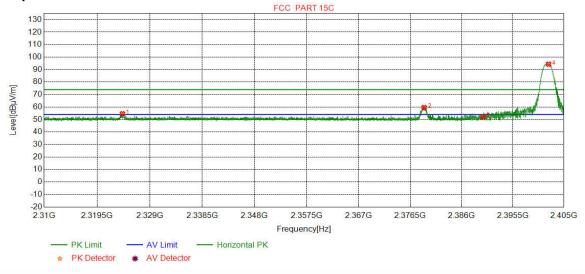




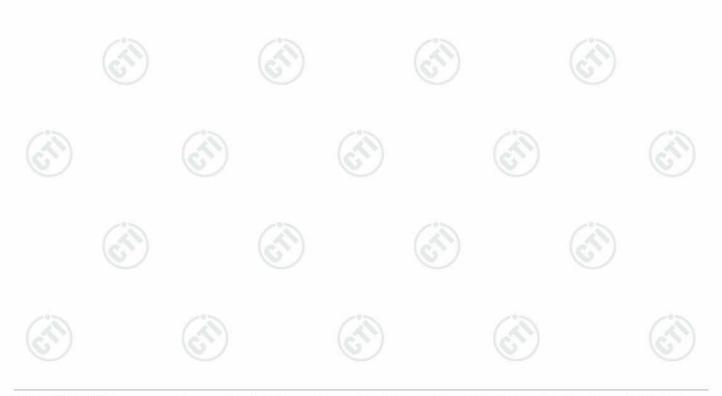









Page 37 of 60

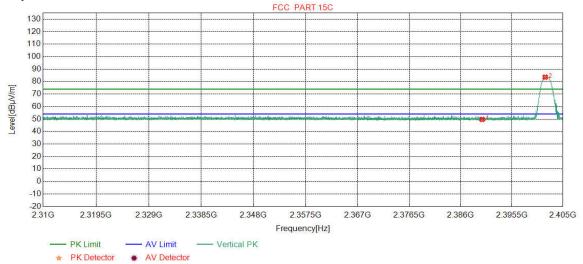

## Test plot as follows:

| Mode:   | BLE GFSK Transmitting | Channel: | 2402 |
|---------|-----------------------|----------|------|
| Remark: | PK                    |          | (0.) |

## **Test Graph**



| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   |
|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|------------|
| 1  | 2324.0926      | 32.15                 | 13.47                 | -43.13                | 52.13             | 54.62             | 74.00             | 19.38          | Pass   | Horizontal |
| 2  | 2379.0823      | 32.23                 | 13.45                 | -43.12                | 57.07             | 59.63             | 74.00             | 14.37          | Pass   | Horizontal |
| 3  | 2390.0000      | 32.25                 | 13.37                 | -43.12                | 49.69             | 52.19             | 74.00             | 21.81          | Pass   | Horizontal |
| 4  | 2402.1498      | 32.26                 | 13.31                 | -43.12                | 91.87             | 94.32             | 74.00             | -20.32         | Pass   | Horizontal |





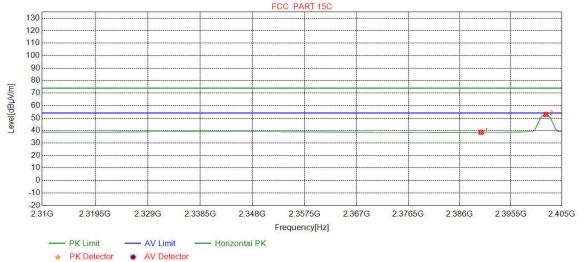

| Page | 38 | of | 60 |  |
|------|----|----|----|--|
|------|----|----|----|--|

| Mode:   | BLE GFSK Transmitting | Channel: | 2402 |
|---------|-----------------------|----------|------|
| Remark: | PK                    |          |      |

## **Test Graph**



| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| 1  | 2390.0000      | 32.25                 | 13.37                 | -43.12                | 47.20             | 49.70             | 74.00             | 24.30          | Pass   | Vertical |
| 2  | 2401.7001      | 32.26                 | 13.31                 | -43.12                | 81.07             | 83.52             | 74.00             | -9.52          | Pass   | Vertical |





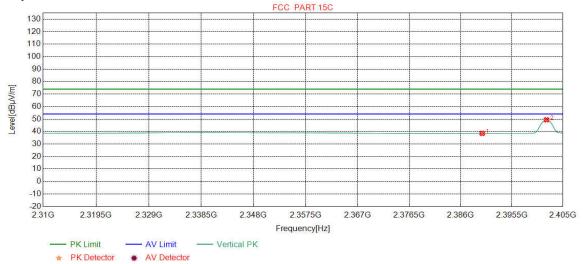

| Page | 39 | of | 60 |  |
|------|----|----|----|--|
|------|----|----|----|--|

| Mode:   | BLE GFSK Transmitting | Channel: | 2402 |
|---------|-----------------------|----------|------|
| Remark: | AV                    |          |      |

## **Test Graph**



| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   |
|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|------------|
| 1  | 2390.0000      | 32.25                 | 13.37                 | -43.12                | 36.01             | 38.51             | 54.00             | 15.49          | Pass   | Horizontal |
| 2  | 2402.0105      | 32.26                 | 13.31                 | -43.12                | 50.42             | 52.87             | 54.00             | 1.13           | Pass   | Horizontal |





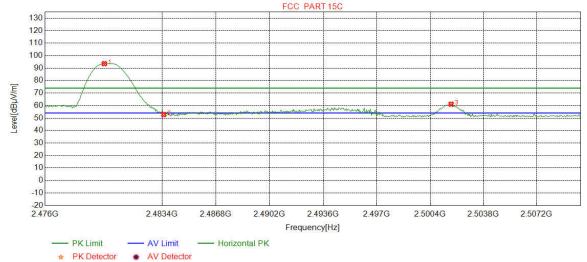

| Page 4 | 0 of 60 |
|--------|---------|
|--------|---------|

| Mode:   | BLE GFSK Transmitting | Channel: | 2402 |
|---------|-----------------------|----------|------|
| Remark: | AV                    |          |      |

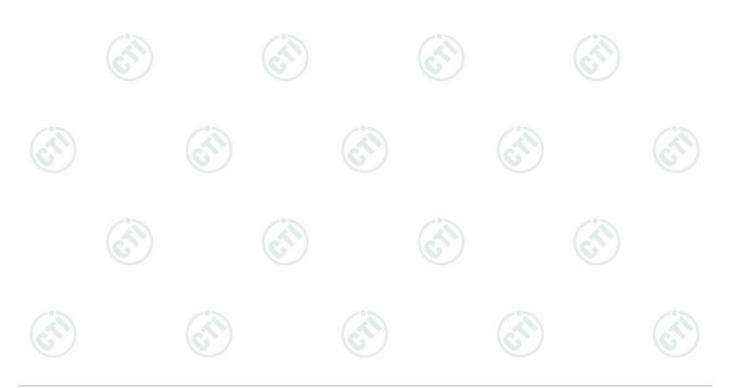
## **Test Graph**



| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| 1  | 2390.0000      | 32.25                 | 13.37                 | -43.12                | 36.02             | 38.52             | 54.00             | 15.48          | Pass   | Vertical |
| 2  | 2401.9471      | 32.26                 | 13.31                 | -43.12                | 46.93             | 49.38             | 54.00             | 4.62           | Pass   | Vertical |







| Page 41 | of 60 |
|---------|-------|
|---------|-------|

| Mode:   | BLE GFSK Transmitting | Channel: | 2480 |
|---------|-----------------------|----------|------|
| Remark: | PK                    |          |      |

## **Test Graph**



| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   |
|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|------------|
| 1  | 2479.7447      | 32.37                 | 13.39                 | -43.10                | 90.91             | 93.57             | 74.00             | -19.57         | Pass   | Horizontal |
| 2  | 2483.5000      | 32.38                 | 13.38                 | -43.11                | 50.16             | 52.81             | 74.00             | 21.19          | Pass   | Horizontal |
| 3  | 2501.7447      | 32.40                 | 13.32                 | -43.10                | 58.47             | 61.09             | 74.00             | 12.91          | Pass   | Horizontal |



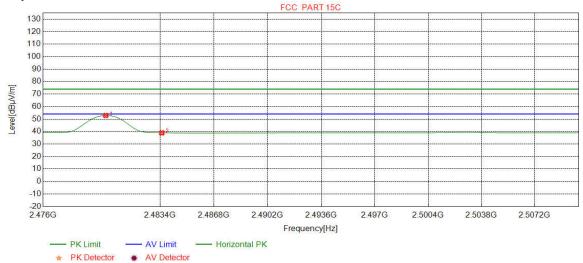


| Mode:   | BLE GFSK Transmitting | Channel: | 2480 |
|---------|-----------------------|----------|------|
| Remark: | PK                    |          |      |

## **Test Graph**



| NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
| 1  | 2390.0000      | 32.37                 | 13.41                 | -43.11                | 48.75             | 51.42             | 74.00             | 22.58          | Pass   | Vertical |
| 2  | 2479.7021      | 32.37                 | 13.39                 | -43.10                | 80.80             | 83.46             | 74.00             | -9.46          | Pass   | Vertical |
| 3  | 2483.5000      | 32.38                 | 13.38                 | -43.11                | 48.28             | 50.93             | 74.00             | 23.07          | Pass   | Vertical |





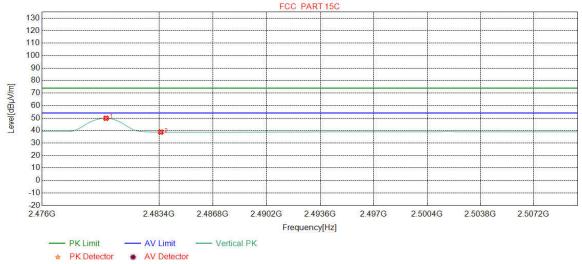

| Page | 43 | of | 60 |  |
|------|----|----|----|--|
|------|----|----|----|--|

| Mode:   | BLE GFSK Transmitting | Channel: | 2480 |
|---------|-----------------------|----------|------|
| Remark: | AV                    |          |      |

## **Test Graph**



| N | 0 | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity   |
|---|---|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|------------|
|   | 1 | 2479.9574      | 32.37                 | 13.39                 | -43.10                | 50.19             | 52.85             | 54.00             | 1.15           | Pass   | Horizontal |
|   | 2 | 2483.5000      | 32.38                 | 13.38                 | -43.11                | 36.25             | 38.90             | 54.00             | 15.10          | Pass   | Horizontal |



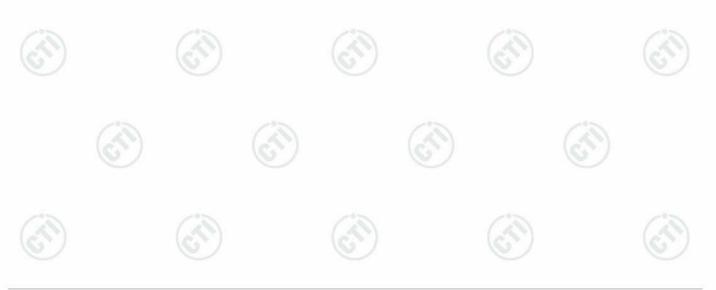



| Page 4 | 4 of 60 |
|--------|---------|
|--------|---------|

| Mode:   | BLE GFSK Transmitting | Channel: | 2480 |
|---------|-----------------------|----------|------|
| Remark: | AV                    |          |      |

## **Test Graph**




|   | NO | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity |
|---|----|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|
|   | 1  | 2480.0426      | 32.37                 | 13.39                 | -43.10                | 47.16             | 49.82             | 54.00             | 4.18           | Pass   | Vertical |
| Ī | 2  | 2483.5000      | 32.38                 | 13.38                 | -43.11                | 36.09             | 38.74             | 54.00             | 15.26          | Pass   | Vertical |

### Note:

The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor





Report No. : EED32M80086901 Page 45 of 60

# **Appendix I) Radiated Spurious Emissions**

| Receiver Setup: | Frequency         | Detector   | RBW    | VBW    | Remark     |  |
|-----------------|-------------------|------------|--------|--------|------------|--|
|                 | 0.009MHz-0.090MHz | Peak       | 10kHz  | 30kHz  | Peak       |  |
|                 | 0.009MHz-0.090MHz | Average    | 10kHz  | 30kHz  | Average    |  |
| <b>A</b>        | 0.090MHz-0.110MHz | Quasi-peak | 10kHz  | 30kHz  | Quasi-peak |  |
| )               | 0.110MHz-0.490MHz | Peak       | 10kHz  | 30kHz  | Peak       |  |
|                 | 0.110MHz-0.490MHz | Average    | 10kHz  | 30kHz  | Average    |  |
|                 | 0.490MHz -30MHz   | Quasi-peak | 10kHz  | 30kHz  | Quasi-peak |  |
|                 | 30MHz-1GHz        | Quasi-peak | 120kHz | 300kHz | Quasi-peak |  |
| (67)            | Above 10Uz        | Peak       | 1MHz   | 3MHz   | Peak       |  |
|                 | Above 1GHz        | Peak       | 1MHz   | 10kHz  | Average    |  |

### Test Procedure:

### Below 1GHz test procedure as below:

Test method Refer as KDB 558074 D01, Section 12.1

- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, whichwas mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

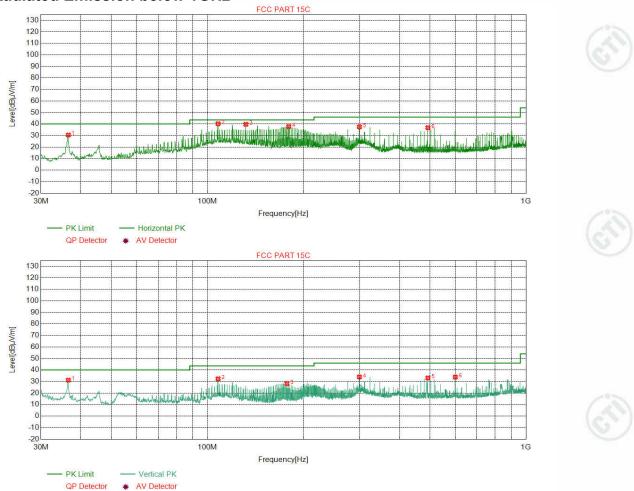
### Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 meter to 1.5 meter( Above 18GHz the distance is 1 meter and table is 1.5 meter).
- h. Test the EUT in the lowest channel ,the middle channel ,the Highest channel
- i. The radiation measurements are performed in X, Y, Z axis positioning for Transmitting mode, and found the X axis positioning which it is worse case.
- Repeat above procedures until all frequencies measured was complete.

|    | n | าเ | t. |
|----|---|----|----|
| _, |   | ш  | ι. |

| Frequency         | Field strength (microvolt/meter) | Limit<br>(dBµV/m) | Remark     | Measurement distance (m) |
|-------------------|----------------------------------|-------------------|------------|--------------------------|
| 0.009MHz-0.490MHz | 2400/F(kHz)                      | -                 | (49)       | 300                      |
| 0.490MHz-1.705MHz | 24000/F(kHz)                     | -                 | (0)        | 30                       |
| 1.705MHz-30MHz    | 30                               | -                 | -          | 30                       |
| 30MHz-88MHz       | 100                              | 40.0              | Quasi-peak | 3                        |
| 88MHz-216MHz      | 150                              | 43.5              | Quasi-peak | 3                        |
| 216MHz-960MHz     | 200                              | 46.0              | Quasi-peak | 3                        |
| 960MHz-1GHz       | 500                              | 54.0              | Quasi-peak | 3                        |
| Above 1GHz        | 500                              | 54.0              | Average    | 3                        |

Note: 15.35(b), Unless otherwise specified, the limit on peak radio frequency emissions is 20dB above the maximum permitted average emission limit applicable to the equipment under test. This peak limit applies to the total peak emission level radiated by the device.






# **Radiated Spurious Emissions test Data:**

During the test, the Radiated Spurious Emissions from 30MHz to 1GHz was performed in all modes with all channels, GFSK, Channel 2440MHz was selected as the worst condition. The test data of the worst-case condition was recorded in this report.

### **Radiated Emission below 1GHz**



| Mode | Mode:          |                       | BLE G           | SK Trans              | smitting          |                   | Channel:          |                | 2440   |          |        |
|------|----------------|-----------------------|-----------------|-----------------------|-------------------|-------------------|-------------------|----------------|--------|----------|--------|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable loss [dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
| 1    | 36.5967        | 11.21                 | 0.67            | -31.38                | 49.98             | 30.48             | 40.00             | 9.52           | Pass   | Н        | PK     |
| 2    | 107.9958       | 10.92                 | 1.23            | -32.04                | 60.13             | 40.24             | 43.50             | 3.26           | Pass   | Н        | PK     |
| 3    | 131.9572       | 7.60                  | 1.34            | -32.01                | 62.80             | 39.73             | 43.50             | 3.77           | Pass   | Н        | PK     |
| 4    | 179.9770       | 9.00                  | 1.58            | -31.99                | 59.20             | 37.79             | 43.50             | 5.71           | Pass   | Н        | PK     |
| 5    | 299.9780       | 13.20                 | 2.06            | -31.40                | 53.67             | 37.53             | 46.00             | 8.47           | Pass   | Н        | PK     |
| 6    | 492.0572       | 16.87                 | 2.65            | -31.89                | 49.21             | 36.84             | 46.00             | 9.16           | Pass   | Н        | PK     |
| 7    | 36.5967        | 11.21                 | 0.67            | -31.38                | 50.70             | 31.20             | 40.00             | 8.80           | Pass   | V        | PK     |
| 8    | 107.9958       | 10.92                 | 1.23            | -32.04                | 52.24             | 32.35             | 43.50             | 11.15          | Pass   | V        | PK     |
| 9    | 177.5518       | 8.87                  | 1.57            | -31.99                | 49.69             | 28.14             | 43.50             | 15.36          | Pass   | V        | PK     |
| 10   | 299.9780       | 13.20                 | 2.06            | -31.40                | 50.12             | 33.98             | 46.00             | 12.02          | Pass   | V        | PK     |
| 11   | 492.0572       | 16.87                 | 2.65            | -31.89                | 45.48             | 33.11             | 46.00             | 12.89          | Pass   | V        | PK     |
| 12   | 600.0290       | 19.00                 | 2.96            | -31.50                | 43.37             | 33.83             | 46.00             | 12.17          | Pass   | V        | PK     |



# Page 47 of 60

## **Transmitter Emission above 1GHz**

| Mode | Mode:          |                       |                       | BLE GFSK Transmitting |                   |                   |                   |                | Channel: |          | 2402   |  |
|------|----------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|-------------------|----------------|----------|----------|--------|--|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Reading<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result   | Polarity | Remark |  |
| 1    | 1330.4330      | 28.23                 | 2.79                  | -42.75                | 59.29             | 47.56             | 74.00             | 26.44          | Pass     | Н        | PK     |  |
| 2    | 1792.2792      | 30.33                 | 3.31                  | -42.71                | 50.94             | 41.87             | 74.00             | 32.13          | Pass     | Н        | PK     |  |
| 3    | 3979.0653      | 33.78                 | 4.33                  | -43.00                | 49.72             | 44.83             | 74.00             | 29.17          | Pass     | Н        | PK     |  |
| 4    | 4804.1203      | 34.50                 | 4.55                  | -42.80                | 53.12             | 49.37             | 74.00             | 24.63          | Pass     | Н        | PK     |  |
| 5    | 6925.2617      | 36.07                 | 5.84                  | -42.24                | 48.70             | 48.37             | 74.00             | 25.63          | Pass     | Н        | PK     |  |
| 6    | 9271.4181      | 37.65                 | 6.62                  | -42.06                | 48.75             | 50.96             | 74.00             | 23.04          | Pass     | Н        | PK     |  |
| 7    | 1332.8333      | 28.23                 | 2.80                  | -42.75                | 56.48             | 44.76             | 74.00             | 29.24          | Pass     | V        | PK     |  |
| 8    | 2681.3681      | 32.69                 | 4.11                  | -43.10                | 51.35             | 45.05             | 74.00             | 28.95          | Pass     | V        | PK     |  |
| 9    | 4805.1203      | 34.50                 | 4.55                  | -42.80                | 53.34             | 49.59             | 74.00             | 24.41          | Pass     | V        | PK     |  |
| 10   | 6908.2606      | 36.06                 | 5.87                  | -42.25                | 49.87             | 49.55             | 74.00             | 24.45          | Pass     | V        | PK     |  |
| 11   | 9332.4222      | 37.63                 | 6.62                  | -42.06                | 49.15             | 51.34             | 74.00             | 22.66          | Pass     | V        | PK     |  |
| 12   | 11436.5624     | 38.86                 | 7.39                  | -42.00                | 49.06             | 53.31             | 74.00             | 20.69          | Pass     | V        | PK     |  |

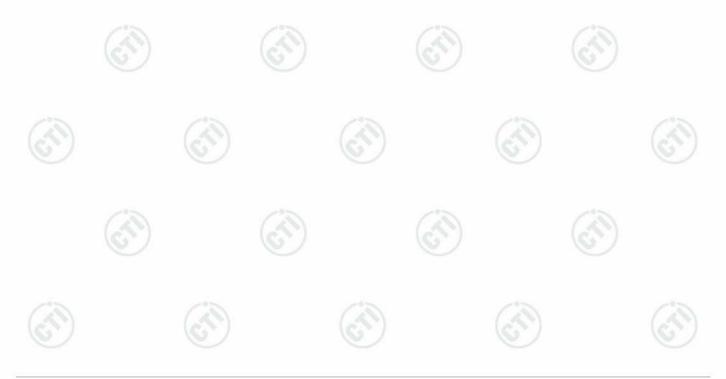
| Mode | Mode:          |                       |                       | SK Transr             | nitting               |                   | Channel:          |                | 2440   |          |        |
|------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|----------------|--------|----------|--------|
| NO   | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Readin<br>g<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
| 1    | 1332.4332      | 28.23                 | 2.80                  | -42.75                | 59.85                 | 48.13             | 74.00             | 25.87          | Pass   | Н        | PK     |
| 2    | 3232.0155      | 33.29                 | 4.52                  | -43.10                | 49.69                 | 44.40             | 74.00             | 29.60          | Pass   | Н        | PK     |
| 3    | 4880.1253      | 34.50                 | 4.80                  | -42.80                | 51.76                 | 48.26             | 74.00             | 25.74          | Pass   | Н        | PK     |
| 4    | 6846.2564      | 36.04                 | 5.50                  | -42.29                | 49.54                 | 48.79             | 74.00             | 25.21          | Pass   | Н        | PK     |
| 5    | 9086.4058      | 37.68                 | 6.45                  | -42.01                | 48.98                 | 51.10             | 74.00             | 22.90          | Pass   | Н        | PK     |
| 6    | 10467.4978     | 38.45                 | 7.04                  | -42.00                | 49.06                 | 52.55             | 74.00             | 21.45          | Pass   | Н        | PK     |
| 7    | 1332.8333      | 28.23                 | 2.80                  | -42.75                | 56.21                 | 44.49             | 74.00             | 29.51          | Pass   | V        | PK     |
| 8    | 3950.0633      | 33.76                 | 4.34                  | -43.01                | 49.61                 | 44.70             | 74.00             | 29.30          | Pass   | V        | PK     |
| 9    | 5003.1335      | 34.50                 | 4.82                  | -42.79                | 50.24                 | 46.77             | 74.00             | 27.23          | Pass   | V        | PK     |
| 10   | 5990.1993      | 35.78                 | 5.34                  | -42.60                | 50.72                 | 49.24             | 74.00             | 24.76          | Pass   | V        | PK     |
| 11   | 7869.3246      | 36.45                 | 5.99                  | -42.17                | 49.74                 | 50.01             | 74.00             | 23.99          | Pass   | V        | PK     |
| 12   | 9182.4122      | 37.66                 | 6.44                  | -42.03                | 49.28                 | 51.35             | 74.00             | 22.65          | Pass   | V        | PK     |





| _    | 40 |       |  |
|------|----|-------|--|
| Page | 48 | ot 60 |  |

| Mode: |                |                       | BLE GFSK Transmitting |                       |                       |                   |                   | Channel:       |        | 2480     |        |
|-------|----------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------|-------------------|----------------|--------|----------|--------|
| NO    | Freq.<br>[MHz] | Ant<br>Factor<br>[dB] | Cable<br>loss<br>[dB] | Pream<br>gain<br>[dB] | Readin<br>g<br>[dBµV] | Level<br>[dBµV/m] | Limit<br>[dBµV/m] | Margin<br>[dB] | Result | Polarity | Remark |
| 1     | 1328.6329      | 28.23                 | 2.79                  | -42.76                | 56.70                 | 44.96             | 74.00             | 29.04          | Pass   | Н        | PK     |
| 2     | 3365.0243      | 33.35                 | 4.53                  | -43.10                | 48.89                 | 43.67             | 74.00             | 30.33          | Pass   | Н        | PK     |
| 3     | 4960.1307      | 34.50                 | 4.82                  | -42.80                | 53.58                 | 50.10             | 74.00             | 23.90          | Pass   | Н        | PK     |
| 4     | 5954.1969      | 35.73                 | 5.32                  | -42.60                | 48.54                 | 46.99             | 74.00             | 27.01          | Pass   | Н        | PK     |
| 5     | 7811.3208      | 36.48                 | 6.08                  | -42.17                | 48.93                 | 49.32             | 74.00             | 24.68          | Pass   | Н        | PK     |
| 6     | 10562.5042     | 38.51                 | 6.97                  | -42.00                | 48.91                 | 52.39             | 74.00             | 21.61          | Pass   | Н        | PK     |
| 7     | 1328.2328      | 28.23                 | 2.79                  | -42.76                | 57.23                 | 45.49             | 74.00             | 28.51          | Pass   | V        | PK     |
| 8     | 1844.2844      | 30.67                 | 3.37                  | -42.81                | 50.81                 | 42.04             | 74.00             | 31.96          | Pass   | V        | PK     |
| 9     | 3203.0135      | 33.28                 | 4.64                  | -43.10                | 49.22                 | 44.04             | 74.00             | 29.96          | Pass   | V        | PK     |
| 10    | 4495.0997      | 34.49                 | 4.65                  | -42.80                | 50.16                 | 46.50             | 74.00             | 27.50          | Pass   | V        | PK     |
| 11    | 5991.1994      | 35.79                 | 5.34                  | -42.61                | 50.38                 | 48.90             | 74.00             | 25.10          | Pass   | V        | PK     |
| 12    | 8480.3654      | 36.59                 | 6.45                  | -42.00                | 49.94                 | 50.98             | 74.00             | 23.02          | Pass   | V        | PK     |


### Note:

1) The field strength is calculated by adding the Antenna Factor, Cable Factor & Preamplifier. The basic equation with a sample calculation is as follows:

Final Test Level =Receiver Reading -Correct Factor

Correct Factor = Preamplifier Factor - Antenna Factor - Cable Factor

2) Scan from 9kHz to 25GHz, the disturbance above 13GHz and below 30MHz was very low, and the above harmonics were the highest point could be found when testing, so only the above harmonics had been displayed. The amplitude of spurious emissions from the radiator which are attenuated more than 20dB below the limit need not be reported.

