FCC Test Report (Co-Located) Report No.: RFBBQZ-WTW-P20080382-1 FCC ID: PY320200497 Test Model: WAX610 Received Date: Aug. 19, 2020 **Test Date:** Sep. 02, 2020 **Issued Date:** Sep. 11, 2020 **Applicant:** NETGEAR, INC. Address: 350 East Plumeria Drive San Jose, CA 95134 Issued By: Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch Lin Kou Laboratories Lab Address: No. 47-2, 14th Ling, Chia Pau Vil., Lin Kou Dist., New Taipei City, Taiwan Test Location: No. 19, Hwa Ya 2nd Rd., Wen Hwa Vil., Kwei Shan Dist., Taoyuan City 33383, Taiwan FCC Registration / 788550 / TW0003 **Designation Number:** This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us. You have 60 days from date of issuance of this report to notify us of any material error or omission caused by our negligence, provided, however, that such notice shall be in writing and shall specifically address the issue you wish to raise. A failure to raise such issue within the prescribed time shall constitute your unqualified acceptance of the completeness of this report, the tests conducted and the correctness of the report contents. Unless specific mention, the uncertainty of measurement has been explicitly taken into account to declare the compliance or non-compliance to the specification. Report No.: RFBBQZ-WTW-P20080382-1 Page No. 1 / 24 Report Format Version: 6.1.1 # **Table of Contents** | R | eleas | e Control Record | . 3 | |---|--|--|--| | 1 | (| Certificate of Conformity | . 4 | | 2 | ; | Summary of Test Results | . 5 | | | 2.1
2.2 | Measurement Uncertainty | | | 3 | (| General Information | . 6 | | | 3.1
3.2
3.2.1
3.3
3.3.1
3.4 | Description of Support Units Configuration of System under Test General Description of Applied Standards | . 9
11
12
12
12 | | 4 | - | Test Types and Results | 13 | | | 4.1.3
4.1.4
4.1.5
4.1.6 | Test Instruments Test Procedures Deviation from Test Standard Test Setup EUT Operating Conditions Test Results Conducted Out of Band Emission Measurement | 13
14
15
15
16
17
18
21 | | | 4.2.3
4.2.4
4.2.5
4.2.6 | | 21
21
21
21
21
21 | | 5 | ı | Pictures of Test Arrangements | 23 | | Α | ppen | dix – Information of the Testing Laboratories | 24 | # **Release Control Record** | Issue No. | Description | Date Issued | |------------------------|------------------|---------------| | RFBBQZ-WTW-P20080382-1 | Original release | Sep. 11, 2020 | # **Certificate of Conformity** Product: WiFi 6 AX1800 Access Point **Brand: NETGEAR** Test Model: WAX610 Sample Status: Engineering sample Applicant: NETGEAR, INC. Test Date: Sep. 02, 2020 Standards: 47 CFR FCC Part 15, Subpart C (Section 15.247) 47 CFR FCC Part 15, Subpart E (Section 15.407) ANSI C63.10:2013 The above equipment has been tested by Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, and found compliance with the requirement of the above standards. The test record, data evaluation & Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's RF characteristics under the conditions specified in this report. Polly Chien / Specialist Sep. 11, 2020 Approved by: Bruce Chen / Senior Project Engineer # 2 Summary of Test Results | Applied
Standard: | 47 CFR FCC Part 15, Subpart C (Section 15.247) 47 CFR FCC Part 15, Subpart E (Section 15.407) Test Item Result Remarks | | | | |--|---|------|--|--| | FCC
Clause | | | | | | 15.205 / 15.209 /
15.247(d)
15.407(b)
(1/2/3/4(i/ii)/6) | Radiated Emissions | Pass | Meet the requirement of limit. Minimum passing margin is -0.2dB at 2390.00MHz. | | Note: Determining compliance based on the results of the compliance measurement, not taking into account measurement instrumentation uncertainty. # 2.1 Measurement Uncertainty Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the EUT as specified in CISPR 16-4-2: | Measurement | Frequency | Expanded Uncertainty (k=2) (±) | |---------------------------------|-----------------|--------------------------------| | | 9kHz ~ 30MHz | 3.04 dB | | Radiated Emissions up to 1 GHz | 30MHz ~ 200MHz | 3.63 dB | | | 200MHz ~1000MHz | 3.64 dB | | Radiated Emissions above 1 GHz | 1GHz ~ 18GHz | 2.29 dB | | Radiated Effissions above 1 GHZ | 18GHz ~ 40GHz | 2.29 dB | # 2.2 Modification Record There were no modifications required for compliance. # 3 General Information # 3.1 General Description of EUT | Product | WiFi 6 AX1800 Access Point | | | |----------------------------------|--|--|--| | Brand | NETGEAR | | | | Test Model | WAX610 | | | | Sample Status Engineering sample | | | | | Dawer Cumby Dating | 12Vdc (adapter) | | | | Power Supply Rating | 54Vdc (POE) | | | | | CCK, DQPSK, DBPSK for DSSS | | | | Modulation Type | 256QAM, 64QAM, 16QAM, QPSK, BPSK for OFDM | | | | | 1024QAM for OFDMA | | | | | 802.11b: 11.0/ 5.5/ 2.0/ 1.0Mbps | | | | | 802.11g: 54.0/ 48.0/ 36.0/ 24.0/ 18.0/ 12.0/ 9.0/ 6.0Mbps | | | | | 802.11a: 54/48/36/24/18/12/9/6Mbps | | | | Transfer Rate | 802.11n: up to 400Mbps (For 2.4G Band) | | | | Hallstel Nate | 802.11n: up to 300Mbps (For 5G Band) | | | | | 802.11ac: up to 867Mbps (For 5G Band) | | | | | 802.11ax: up to 574Mbps (For 2.4G Band) | | | | | 802.11ax: up to 1200Mbps (For 5G Band) | | | | | 2.4GHz: 2412 ~ 2462MHz | | | | Operating Frequency | 5.0GHz: 5180 ~ 5240MHz, 5260 ~ 5320MHz, 5500 ~ 5720MHz, 5745 ~ | | | | | 5825MHz | | | | | 2412 ~ 2462MHz: | | | | | 802.11b, 802.11g, 802.11n (HT20), 802.11n (VHT20), 802.11ax (HE20): 11 | | | | | 802.11n (HT40), 802.11n (VHT40), 802.11ax (HE40): 7 | | | | | 5180 ~ 5240MHz: | | | | | 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): 4 | | | | | 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): 2 | | | | | 802.11ac (VHT80), 802.11ax (HE80): 1 | | | | | 5260 ~ 5320MHz: | | | | | 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): 4 | | | | Number of Channel | 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): 2 | | | | | 802.11ac (VHT80), 802.11ax (HE80): 1 | | | | | 5500~5720MHz: | | | | | 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): 12 | | | | | 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): 6 | | | | | 802.11ac (VHT80), 802.11ax (HE80): 3 | | | | | 5745 ~ 5825MHz: | | | | | 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): 5 | | | | | 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): 2 | | | | | 802.11ac (VHT80), 802.11ax (HE80): 1 | | | | | CDD Mode: | |-------------------|-------------------------| | | 2412~2462MHz: 412.311mW | | | 5180~5240MHz: 827.694mW | | | 5260~5320MHz: 218.304mW | | | 5500~5720MHz: 217.787mW | | Output Dower | 5745~5825MHz: 830.248mW | | Output Power | Beamforming Mode: | | | 2412~2462MHz: 385.074mW | | | 5180~5240MHz: 827.694mW | | | 5260~5320MHz: 217.173mW | | | 5500~5720MHz: 217.787mW | | | 5745~5825MHz: 830.248mW | | Antenna Type | Refer to Note | | Antenna Connector | Refer to Note | | Accessory Device | Adapter | | Cable Supplied | N/A | ### Note: - 1. This report is prepared for FCC class II permissive change. The differences compared with the original report (BV CPS report no.: RF200315C01-2) is adding 5.26GHz to 5.32GHz and 5.50GHz to 5.72GHz by software. - 2. The EUT incorporates a MIMO function. Physically, the EUT provides 2 completed transmitters and 2 receivers. | Band | Modulation Mode | Beamforming Mode | TX Function | |-----------------|------------------|------------------|-------------| | | 802.11b | Not Support | 2TX | | | 802.11g | Not Support | 2TX | | | 802.11n (HT20) | Support | 2TX | | 0.4011= D === 4 | 802.11n (HT40) | Support | 2TX | | 2.4GHz Band | 802.11n (VHT20) | Support | 2TX | | | 802.11n (VHT40) | Support | 2TX | | | 802.11ax (HE20) | Support | 2TX | | | 802.11ax (HE40) | Support | 2TX | | | 802.11a | Not Support | 2TX | | | 802.11n (HT20) | Support | 2TX | | | 802.11n (HT40) | Support | 2TX | | | 802.11ac (VHT20) | Support | 2TX | | 5GHz Band | 802.11ac (VHT40) | Support | 2TX | | | 802.11ac (VHT80) | Support | 2TX | | | 802.11ax (HE20) | Support | 2TX | | | 802.11ax (HE40) | Support | 2TX | | | 802.11ax (HE80) | Support | 2TX | ^{*} The bandwidth and modulation are similar for HT20/HT40/ VHT20/VHT40 on 802.11n mode and HE20/HE40 on 802.11ax mode. Therefore the investigated worst case is the representative mode in test report. (Final test mode refer section 3.2.1) 3. The EUT uses following adapter and POE. | Adapter | | | |--------------|---|--| | Brand | NETGEAR | | | Model | AD2067M20 | | | P/N | 332-11074-01 | | | Input Power | 100-240Vac, 50/60Hz, 1.0A | | | Output Power | 12.0Vdc, 2.5A | | | Power Line | 1.8m power cable without core attached on adapter | | | POE (support unit only) | | | |-------------------------|---------------------------|--| | Brand | EnGenius | | | Model | EPA5006GAT | | | Input Power | 100-240Vac, 0.8A, 50-60Hz | | | Output Power | 54Vdc, 0.6A | | 4. The following antennas were provided to the EUT. | Ant. Type | PIFA | |-------------|------------------| | Connector | IPEX | | Gain (dBi) | Directional Gain | | 2.4GHz | 4.13 | | 5GHz Band 1 | 5.18 | | 5GHz Band 2 | 5.06 | | 5GHz Band 3 | 5.08 | | 5GHz Band 4 | 5.51 | ^{*}For detailed antenna information, please refer to the Operational Description-Antenna Specification report. ^{*} The above Antenna information is declared by manufacturer and for more detailed features description, please refer to the manufacturer's specifications, the laboratory shall not be held responsible. ^{5.} WLAN 2.4GHz & WLAN 5GHz technology can transmit at same time. # 3.2 Description of Test Modes ## For 2.4GHz 11 channels are provided for 802.11b, 802.11g, 802.11n (HT20), 802.11n (VHT20), 802.11ax (HE20): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 1 | 2412MHz | 7 | 2442MHz | | 2 | 2417MHz | 8 | 2447MHz | | 3 | 2422MHz | 9 | 2452MHz | | 4 | 2427MHz | 10 | 2457MHz | | 5 | 2432MHz | 11 | 2462MHz | | 6 | 2437MHz | | | 7 channels are provided for 802.11n (HT40), 802.11n (VHT40), 802.11ax (HE40): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 3 | 2422MHz | 7 | 2442MHz | | 4 | 2427MHz | 8 | 2447MHz | | 5 | 2432MHz | 9 | 2452MHz | | 6 | 2437MHz | | | ### For 5180 ~ 5240MHz: 4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 36 | 5180 MHz | 44 | 5220 MHz | | 40 | 5200 MHz | 48 | 5240 MHz | 2 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 38 | 5190 MHz | 46 | 5230 MHz | 1 channel is provided for 802.11ac (VHT80), 802.11ax (HE80): | <u>'</u> | \ // | |----------|-----------| | Channel | Frequency | | 42 | 5210MHz | ## 5260~5320MHz: 4 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 52 | 5260 MHz | 60 | 5300 MHz | | 56 | 5280 MHz | 64 | 5320 MHz | 2 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): | | \ | 1 // / | | |---------|-----------|---------|-----------| | Channel | Frequency | Channel | Frequency | | 54 | 5270 MHz | 62 | 5310 MHz | 1 channel is provided for 802.11ac (VHT80), 802.11ax (HE80): | Channel | Frequency | |---------|-----------| | 58 | 5290MHz | Report No.: RFBBQZ-WTW-P20080382-1 Page No. 9 / 24 Report Format Version: 6.1.1 # 5500~5720MHz: 12 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 100 | 5500 MHz | 124 | 5620 MHz | | 104 | 5520 MHz | 128 | 5640 MHz | | 108 | 5540 MHz | 132 | 5660 MHz | | 112 | 5560 MHz | 136 | 5680 MHz | | 116 | 5580 MHz | 140 | 5700 MHz | | 120 | 5600 MHz | 144 | 5720 MHz | 6 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 102 | 5510 MHz | 126 | 5630 MHz | | 110 | 5550 MHz | 134 | 5670 MHz | | 118 | 5590 MHz | 142 | 5710 MHz | 3 channels are provided for 802.11ac (VHT80), 802.11ax (HE80): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 106 | 5530 MHz | 138 | 5690 MHz | | 122 | 5610 MHz | | | ## For 5745 ~ 5825MHz: 5 channels are provided for 802.11a, 802.11n (HT20), 802.11ac (VHT20), 802.11ax (HE20): | Channel | Frequency | Channel | Frequency | |---------|-----------|---------|-----------| | 149 | 5745MHz | 161 | 5805MHz | | 153 | 5765MHz | 165 | 5825MHz | | 157 | 5785MHz | | | 2 channels are provided for 802.11n (HT40), 802.11ac (VHT40), 802.11ax (HE40): | Channel | Frequency | Channel | Frequency | |---------|------------|---------|------------| | Channel | rrequericy | Charlie | rrequericy | | 151 | 5755MHz | 159 | 5795MHz | 1 channel is provided for 802.11ac (VHT80), 802.11ax (HE80): | Channel | Frequency | |---------|-----------| | 155 | 5775MHz | # 3.2.1 Test Mode Applicability and Tested Channel Detail | EUT Configure | | Applicable to | | | |---------------|-------|---------------|----|--------------------| | Mode | RE≥1G | RE<1G | ОВ | Description | | - | √ | √ | √ | Power from adapter | Where RE≥1G: Radiated Emission above 1GHz & Bandedge Measurement RE<1G: Radiated Emission below 1GHz **OB: Conducted Out-Band Emission Measurement** Note: The EUT had been pre-tested on the positioned of each 3 axis. The worst case was found when positioned on Y-plane. # Radiated Emission Test (Above 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | EUT
Configure
Mode | Mode | Freq. Range
(MHz) | Available Channel | Tested Channel | Modulation
Technology | |--------------------------|-------------------|----------------------|-------------------|----------------|--------------------------| | - | | 2412 ~ 2462 | 1 to 11 | | OFDM | | | 802.11g + 802.11a | 5260 ~ 5320 | 38 to 46 | 6 + 116 | OFDM | | | | 5500 ~ 5720 | 149 to 165 | | OFDM | # Radiated Emission Test (Below 1GHz): Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | EUT
Configure
Mode | Mode | Freq. Range
(MHz) | Available Channel | Tested Channel | Modulation
Technology | |--------------------------|-------------------|----------------------|-------------------|----------------|--------------------------| | | | 2412 ~ 2462 | 1 to 11 | | OFDM | | - | 802.11g + 802.11a | 5260 ~ 5320 | 38 to 46 | 6 + 116 | OFDM | | | | 5500 ~ 5720 | 149 to 165 | | OFDM | ### **Conducted Out-Band Emission Measurement** Pre-Scan has been conducted to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports (if EUT with antenna diversity architecture). Following channel(s) was (were) selected for the final test as listed below. | EUT
Configure
Mode | Mode | Freq. Range
(MHz) | Available Channel | Tested Channel | Modulation
Technology | | |--------------------------|-------------------|----------------------|-------------------|----------------|--------------------------|--| | | | 2412 ~ 2462 | 1 to 11 | | OFDM | | | - | 802.11g + 802.11a | 5260 ~ 5320 | 38 to 46 | 6 + 116 | OFDM | | | | | 5500 ~ 5720 | 149 to 165 | | OFDM | | # **Test Condition:** | Applicable to Environmental Conditions | | Input Power | Tested by | | |--|-------------------|--------------|------------|--| | RE≥1G 25 deg. C, 70% RH | | 120Vac, 60Hz | Noah Chang | | | RE<1G | 25 deg. C, 70% RH | 120Vac, 60Hz | Noah Chang | | | ОВ | 25 deg. C, 70% RH | 120Vac, 60Hz | Noah Chang | | # 3.3 Description of Support Units The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests. | 10 |) | Product | Brand | Model No. | Serial No. FCC ID | | Remarks | |----|-----|----------|--------|-----------|-------------------|--------------|---------| | Α | . N | Notebook | Lenovo | 81A4 | YD02TWF5 | PPD-QCNFA435 | - | #### Note: - 1. All power cords of the above support units are non-shielded (1.8m). - 2. Item A acted as a communication partner to transfer data. | ID | Descriptions | Qty. | Length (m) | Shielding
(Yes/No) | Cores (Qty.) | Remarks | |----|--------------|------|------------|-----------------------|--------------|-------------| | 1. | LAN | 1 | 7 | N | 0 | RJ45, Cat5e | # 3.3.1 Configuration of System under Test # 3.4 General Description of Applied Standards The EUT is a RF Product. According to the specification of the EUT declared by the manufacturer, it must comply with the requirements of the following standards: **FCC Part 15, Subpart C (15.247)** **FCC Part 15, Subpart E (15.407)** ANSI C63.10:2013 All test items have been performed and recorded as per the above standards. # 4 Test Types and Results # 4.1 Radiated Emission and Bandedge Measurement # 4.1.1 Limits of Radiated Emission and Bandedge Measurement Radiated emissions which fall in the restricted bands must comply with the radiated emission limits specified as below table. Other emissions shall be at least 30dB below the highest level of the desired power: | Frequencies (MHz) | Field Strength (microvolts/meter) | Measurement Distance (meters) | |-------------------|-----------------------------------|-------------------------------| | 0.009 ~ 0.490 | 2400/F(kHz) | 300 | | 0.490 ~ 1.705 | 24000/F(kHz) | 30 | | 1.705 ~ 30.0 | 30 | 30 | | 30 ~ 88 | 100 | 3 | | 88 ~ 216 | 150 | 3 | | 216 ~ 960 | 200 | 3 | | Above 960 | 500 | 3 | #### Note: - 1. The lower limit shall apply at the transition frequencies. - 2. Emission level (dBuV/m) = 20 log Emission level (uV/m). - 3. For frequencies above 1000MHz, the field strength limits are based on average detector, however, the peak field strength of any emission shall not exceed the maximum permitted average limits, specified above by more than 20dB under any condition of modulation. Limits of unwanted emission out of the restricted bands | Applicable To | | | Limit | | | |--|---------------|------------------|---|--|--| | 789033 D02 General UNII Test Procedure | | | Field Strength at 3m | | | | New Ru | les v(|)2r01 | PK: 74 (dBµV/m) | AV: 54 (dBμV/m) | | | Frequency Band | Applicable To | | EIRP Limit | Equivalent Field Strength at 3m | | | 5150~5250 MHz | 15.407(b)(1) | | | | | | 5250~5350 MHz | 15.407(b)(2) | | PK: -27 (dBm/MHz) | PK: 68.2(dBµV/m) | | | 5470~5725 MHz | | 15.407(b)(3) | | | | | 5725~5850 MHz | \boxtimes | 15.407(b)(4)(i) | PK: -27 (dBm/MHz) ^{*1}
PK: 10 (dBm/MHz) ^{*2}
PK: 15.6 (dBm/MHz) ^{*3}
PK: 27 (dBm/MHz) ^{*4} | PK: 68.2(dBμV/m) ^{*1} PK: 105.2 (dBμV/m) ^{*2} PK: 110.8(dBμV/m) ^{*3} PK: 122.2 (dBμV/m) ^{*4} | | | | | 15.407(b)(4)(ii) | Emission limits in section 15.247(d) | | | ^{*1} beyond 75 MHz or more above of the band edge. Note: The following formula is used to convert the equipment isotropic radiated power (eirp) to field strength: E = $$\frac{1000000\sqrt{30P}}{3}$$ µV/m, where P is the eirp (Watts). Report No.: RFBBQZ-WTW-P20080382-1 Page No. 13 / 24 Report Format Version: 6.1.1 ^{*2} below the band edge increasing linearly to 10 dBm/MHz at 25 MHz above. ^{*3} below the band edge increasing linearly to a level of 15.6 dBm/MHz at 5 MHz above. ^{*4} from 5 MHz above or below the band edge increasing linearly to a level of 27 dBm/MHz at the band edge. ## 4.1.2 Test Instruments | Description &
Manufacturer | Model No. | Serial No. | Date of Calibration | Due Date of
Calibration | |---|------------------------------|--------------------------|---------------------|----------------------------| | Test Receiver
ROHDE & SCHWARZ | ESCI | 100424 | Dec. 31, 2019 | Dec. 30, 2020 | | Spectrum Analyzer ROHDE & SCHWARZ | FSP40 | 100040 | Sep. 23, 2019 | Sep. 22, 2020 | | BILOG Antenna
SCHWARZBECK | VULB9168 | 9168-155 | Nov. 11, 2019 | Nov. 10, 2020 | | HORN Antenna
SCHWARZBECK | BBHA 9120D | 9120D-1170 | Nov. 24, 2019 | Nov. 23, 2020 | | HORN Antenna
SCHWARZBECK | BBHA 9170 | BBHA9170241 | Nov. 24, 2019 | Nov. 23, 2020 | | Loop Antenna
TESEQ | HLA 6121 | 45745 | Jul. 06, 2020 | Jul. 05, 2021 | | Preamplifier Agilent (Below 1GHz) | 8447D | 2944A10631 | Jun. 08, 2020 | Jun. 07, 2021 | | Preamplifier
KEYSIGHT
(Above 1GHz) | 83017A | MY53270295 | Jun. 08, 2020 | Jun. 07, 2021 | | RF Coaxial Cable
WOKEN
With 5dB PAD | 8D-FB | Cable-CH4-01 | Aug. 16, 2020 | Aug. 15, 2021 | | RF Coaxial Cable
EMCI | EMC102-KM-KM-3
000 | 150929 | Aug. 16, 2020 | Aug. 15, 2021 | | RF Coaxial Cable
EMCI | EMC102-KM-KM-6
00 | 150928 | Aug. 16, 2020 | Aug. 15, 2021 | | RF signal cable
HUBER+SUHNER | SUCOFLEX 104 | MY
13380+295012/04 | Jun. 08, 2020 | Jun. 07, 2021 | | RF signal cable
HUBER+SUHNER | SUCOFLEX 104 | Cable-CH4-03
(250724) | Jun. 08, 2020 | Jun. 07, 2021 | | Software
BV ADT | ADT_Radiated_
V7.6.15.9.5 | NA | NA | NA | | Antenna Tower
inn-co GmbH | MA 4000 | 010303 | NA | NA | | Antenna Tower Controller BV ADT | AT100 | AT93021703 | NA | NA | | Turn Table
BV ADT | TT100 | TT93021703 | NA | NA | | Turn Table Controller BV ADT | SC100 | SC93021703 | NA | NA | | Boresight Antenna Fixture | FBA-01 | FBA-SIP01 | NA | NA | | Pre-amplifier
(18GHz-40GHz)
EMC | EMC184045B | 980175 | Sep. 05, 2019 | Sep. 04, 2020 | Note: 1. The calibration interval of the above test instruments is 12 months and the calibrations are traceable to NML/ROC and NIST/USA. ^{2.} The test was performed in HwaYa Chamber 4. #### 4.1.3 Test Procedures ### For Radiated emission below 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter chamber room. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - Parallel, perpendicular, and ground-parallel orientations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to Quasi-Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. #### Note: The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 9kHz at frequency below 30MHz. #### For Radiated emission above 30MHz - a. The EUT was placed on the top of a rotating table 0.8 meters (for 30MHz ~ 1GHz) / 1.5 meters (for above 1GHz) above the ground at 3 meter chamber room for test. The table was rotated 360 degrees to determine the position of the highest radiation. - b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. - c. The height of antenna is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. - d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading. - e. The test-receiver system was set to quasi-peak detect function and specified bandwidth with maximum hold mode when the test frequency is below 1 GHz. - f. The test-receiver system was set to peak and average detect function and specified bandwidth with maximum hold mode when the test frequency is above 1 GHz. If the peak reading value also meets average limit, measurement with the average detector is unnecessary. # Note: - 1. The resolution bandwidth and video bandwidth of test receiver/spectrum analyzer is 120kHz for Quasi-peak detection (QP) at frequency below 1GHz. - 2. The resolution bandwidth of test receiver/spectrum analyzer is 1 MHz and the video bandwidth is 3 MHz for Peak detection (PK) at frequency above 1GHz. - 3. The resolution bandwidth of test receiver/spectrum analyzer is 1MHz and the video bandwidth is ≥ 1/T (Duty cycle < 98%) or 10Hz (Duty cycle ≥ 98%) for Average detection (AV) at frequency above 1GHz. - 4. All modes of operation were investigated and the worst-case emissions are reported. # 4.1.4 Deviation from Test Standard No deviation. # 4.1.5 Test Setup # For Radiated emission below 30MHz # For Radiated emission 30MHz to 1GHz ## For Radiated emission above 1GHz For the actual test configuration, please refer to the attached file (Test Setup Photo). # 4.1.6 EUT Operating Conditions - a. Placed the EUT on the testing table. - b. Prepared a notebook to act as a communication partner and placed it outside of testing area. - c. The communication partner connected with EUT via a RJ45 cable and ran a test program (provided by manufacturer) to enable EUT under transmission condition continuously at specific channel frequency. - d. The communication partner sent data to EUT by command "PING". # 4.1.7 Test Results Above 1GHz Data: 802.11g + 802.11a | CHANNEL | CH 6 + CH 116 | DETECTOR FUNCTION | Peak (PK) | |-----------------|---------------|-------------------|--------------| | FREQUENCY RANGE | 1GHz ~ 40GHz | DETECTOR FUNCTION | Average (AV) | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | | |-----|---|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|--------------------------------|--| | NO. | FREQ. (MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN (dB) | ANTENNA
HEIGHT (m) | TABLE
ANGLE
(Degree) | RAW VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | 1 | 2390.00 | 66.8 PK | 74.0 | -7.2 | 1.50 H | 59 | 33.3 | 33.5 | | | 2 | 2390.00 | 53.8 AV | 54.0 | -0.2 | 1.50 H | 59 | 20.3 | 33.5 | | | 3 | *2437.00 | 123.6 PK | | | 1.50 H | 59 | 90.0 | 33.6 | | | 4 | *2437.00 | 114.0 AV | | | 1.50 H | 59 | 80.4 | 33.6 | | | 5 | 4874.00 | 47.8 PK | 74.0 | -26.2 | 2.26 H | 229 | 38.0 | 9.8 | | | 6 | 4874.00 | 37.3 AV | 54.0 | -16.7 | 2.26 H | 229 | 27.5 | 9.8 | | | 7 | *5580.00 | 117.3 PK | | | 1.23 H | 66 | 77.5 | 39.8 | | | 8 | *5580.00 | 107.0 AV | | | 1.23 H | 66 | 67.2 | 39.8 | | | 9 | 11160.00 | 64.3 PK | 74.0 | -9.7 | 1.69 H | 139 | 41.9 | 22.4 | | | 10 | 11160.00 | 51.2 AV | 54.0 | -2.8 | 1.69 H | 139 | 28.8 | 22.4 | | | | | ANTENI | NA POLARIT | Y & TEST DI | STANCE: VE | RTICAL AT | 3 M | | | | NO. | FREQ. (MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN (dB) | ANTENNA
HEIGHT (m) | TABLE
ANGLE
(Degree) | RAW VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | | 1 | 2390.00 | 64.0 PK | 74.0 | -10.0 | 2.57 V | 99 | 30.5 | 33.5 | | | 2 | 2390.00 | 51.9 AV | 54.0 | -2.1 | 2.57 V | 99 | 18.4 | 33.5 | | | 3 | *2437.00 | 117.8 PK | | | 2.50 V | 99 | 84.2 | 33.6 | | | 4 | *2437.00 | 107.8 AV | | | 2.50 V | 99 | 74.2 | 33.6 | | | 5 | 4874.00 | 47.4 PK | 74.0 | -26.6 | 3.01 V | 344 | 37.6 | 9.8 | | | 6 | 4874.00 | 37.6 AV | 54.0 | -16.4 | 3.01 V | 344 | 27.8 | 9.8 | | | 7 | *5580.00 | 112.9 PK | | | 1.00 V | 211 | 73.1 | 39.8 | | | 8 | *5580.00 | 103.0 AV | | _ | 1.00 V | 211 | 63.2 | 39.8 | | | 9 | 11160.00 | 62.9 PK | 74.0 | -11.1 | 1.65 V | 33 | 40.5 | 22.4 | | | 10 | 11160.00 | 50.9 AV | 54.0 | -3.1 | 1.65 V | 33 | 28.5 | 22.4 | | ## Remarks: - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit. - 4. Margin value = Emission Level Limit value - 5. " * ": Fundamental frequency. ## Below 1GHz data # 802.11g + 802.11a | CHANNEL | CH 6 + CH 116 | DETECTOR
FUNCTION | Quasi-Peak (QP) | |-----------------|---------------|----------------------|-----------------| | FREQUENCY RANGE | 9kHz ~ 1GHz | | | | | ANTENNA POLARITY & TEST DISTANCE: HORIZONTAL AT 3 M | | | | | | | | |-----|---|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|--------------------------------| | NO. | FREQ. (MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN (dB) | ANTENNA
HEIGHT (m) | TABLE
ANGLE
(Degree) | RAW VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 49.30 | 34.7 QP | 40.0 | -5.3 | 2.00 H | 108 | 43.4 | -8.7 | | 2 | 136.62 | 40.3 QP | 43.5 | -3.2 | 1.01 H | 120 | 49.7 | -9.4 | | 3 | 253.05 | 35.4 QP | 46.0 | -10.6 | 1.01 H | 123 | 44.8 | -9.4 | | 4 | 557.69 | 40.9 QP | 46.0 | -5.1 | 2.00 H | 106 | 43.5 | -2.6 | | 5 | 745.91 | 43.2 QP | 46.0 | -2.8 | 1.01 H | 209 | 40.6 | 2.6 | | 6 | 939.95 | 41.5 QP | 46.0 | -4.5 | 2.00 H | 0 | 34.3 | 7.2 | ## Remarks: - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz - 4. Margin value = Emission Level Limit value - 5. The emission levels were very low against the limit of frequency range $9kHz \sim 30MHz$: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report | CHANNEL | CH 6 + CH 116 | DETECTOR | O : D (OD) | |-----------------|---------------|----------|-----------------| | FREQUENCY RANGE | 9kHz ~ 1GHz | FUNCTION | Quasi-Peak (QP) | | ANTENNA POLARITY & TEST DISTANCE: VERTICAL AT 3 M | | | | | | | | | |---|-------------|-------------------------------|-------------------|-------------|-----------------------|----------------------------|---------------------|--------------------------------| | NO. | FREQ. (MHz) | EMISSION
LEVEL
(dBuV/m) | LIMIT
(dBuV/m) | MARGIN (dB) | ANTENNA
HEIGHT (m) | TABLE
ANGLE
(Degree) | RAW VALUE
(dBuV) | CORRECTION
FACTOR
(dB/m) | | 1 | 39.60 | 36.7 QP | 40.0 | -3.3 | 1.00 V | 49 | 46.2 | -9.5 | | 2 | 119.22 | 37.7 QP | 43.5 | -5.8 | 1.50 V | 91 | 48.8 | -11.1 | | 3 | 187.07 | 40.9 QP | 43.5 | -2.6 | 1.00 V | 76 | 52.1 | -11.2 | | 4 | 264.69 | 32.6 QP | 46.0 | -13.4 | 2.00 V | 12 | 41.4 | -8.8 | | 5 | 635.30 | 37.2 QP | 46.0 | -8.8 | 1.00 V | 34 | 37.5 | -0.3 | | 6 | 932.19 | 42.9 QP | 46.0 | -3.1 | 2.00 V | 209 | 35.9 | 7.0 | ### Remarks: - 1. Emission Level(dBuV/m) = Raw Value(dBuV) + Correction Factor(dB/m) - 2. Correction Factor(dB/m) = Antenna Factor(dB/m) + Cable Factor(dB) Pre-Amplifier Factor(dB) - 3. The other emission levels were very low against the limit of frequency range 30MHz ~ 1000MHz - 4. Margin value = Emission Level Limit value - 5. The emission levels were very low against the limit of frequency range $9kHz \sim 30MHz$: the amplitude of spurious emissions attenuated more than 20 dB below the permissible value to be report ## 4.2 Conducted Out of Band Emission Measurement ### 4.2.1 Limits of Conducted Out of Band Emission Measurement Below -30dB of the highest emission level of operating band (in 100kHz Resolution Bandwidth). ### 4.2.2 Test Setup ### 4.2.3 Test Instruments Refer to section 4.1.2 to get information of above instrument. ### 4.2.4 Test Procedure ### **MEASUREMENT PROCEDURE REF** - a. Set the RBW = 100 kHz. - b. Set the VBW ≥ 300 kHz. - c. Detector = peak. - d. Sweep time = auto couple. - e. Trace mode = max hold. - f. Allow trace to fully stabilize. - g. Use the peak marker function to determine the maximum power level in any 100 kHz band segment within the fundamental EBW. # **MEASUREMENT PROCEDURE OOBE** - a. Set RBW = 100 kHz. - b. Set VBW ≥ 300 kHz. - c. Detector = peak. - d. Sweep = auto couple. - e. Trace Mode = max hold. - f. Allow trace to fully stabilize. - g. Use the peak marker function to determine the maximum amplitude level. ### 4.2.5 Deviation from Test Standard No deviation. ## 4.2.6 EUT Operating Condition The software provided by client to enable the EUT under transmission condition continuously at lowest, middle and highest channel frequencies individually. # 4.2.7 Test Results The spectrum plots are attached on the following pages. D1 line indicates the highest level, and D2 line indicates the 30dB offset below D1. It shows compliance with the requirement. # 802.11g CH 1 + 802.11a CH 116 | 5 Pictures of Test Arrangements | |---| | Please refer to the attached file (Test Setup Photo). | Report No.: RFBBQZ-WTW-P20080382-1 # Appendix - Information of the Testing Laboratories We, Bureau Veritas Consumer Products Services (H.K.) Ltd., Taoyuan Branch, were founded in 1988 to provide our best service in EMC, Radio, Telecom and Safety consultation. Our laboratories are FCC recognized accredited test firms and accredited and approved according to ISO/IEC 17025. Hsin Chu EMC/RF/Telecom Lab Tel: 886-3-6668565 Fax: 886-3-6668323 If you have any comments, please feel free to contact us at the following: Linko EMC/RF Lab Tel: 886-2-26052180 Fax: 886-2-26051924 Hwa Ya EMC/RF/Safety Lab Tel: 886-3-3183232 Fax: 886-3-3270892 Email: service.adt@tw.bureauveritas.com Web Site: www.bureauveritas-adt.com The address and road map of all our labs can be found in our web site also. --- END ---