

JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2101578

FCC REPORT (WIFI)

Applicant: SKY PHONE LLC

Address of Applicant: 1348 Washington Av. Suite 350, Miami Beach, FL 33139

Equipment Under Test (EUT)

Product Name: Tablet

Model No.: Elite OctaPlus

Trade mark: SKY DEVICES

FCC ID: 2ABOSSKYELIOCTAPL

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 13 Aug., 2021

Date of Test: 14 Aug., to 01 Sep., 2021

Date of report issued: 02 Sep., 2021

Test Result: PASS*

* In the configuration tested, the EUT complied with the standards specified above.

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

2 Version

Version No.	Date	Description
00	02 Sep., 2021	Original

Reviewed by: Date: 02 Sep., 2021

Project Engineer

Page 2 of 42

Contents

			Page
1	CO	VER PAGE	1
2	VEF	RSION	2
3	CO	NTENTS	3
4		ST SUMMARY	
5		NERAL INFORMATION	
ວ	GEI		
	5.1	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T	5
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	MEASUREMENT UNCERTAINTY	6
	5.6	LABORATORY FACILITY	
	5.7	LABORATORY LOCATION	
	5.8	TEST INSTRUMENTS LIST	7
6	TES	ST RESULTS AND MEASUREMENT DATA	8
	6.1	ANTENNA REQUIREMENT	8
	6.2	CONDUCTED EMISSION	9
	6.3	CONDUCTED OUTPUT POWER	12
	6.4	OCCUPY BANDWIDTH	13
	6.5	POWER SPECTRAL DENSITY	14
	6.6	BAND EDGE	15
	6.6.		
	6.6.	.2 Radiated Emission Method	16
	6.7	Spurious Emission	
	6.7.		
	6.7.	.2 Radiated Emission Method	34
7	TES	ST SETUP PHOTO	41
Ω	FII	T CONSTRUCTIONAL DETAILS	42

4 Test Summary

Test Items	Section in CFR 47	Test Data	Result
Antenna requirement	15.203 & 15.247 (b)	See Section 6.1	Pass
AC Power Line Conducted Emission	15.207	See Section 6.2	Pass
Duty Cycle	ANSI C63.10-2013	Appendix A – 2.4G Wi-Fi	Pass
Conducted Peak Output Power	15.247 (b)(3)	Appendix A – 2.4G Wi-Fi	Pass
6dB Emission Bandwidth 99% Occupied Bandwidth	15.247 (a)(2)	Appendix A – 2.4G Wi-Fi	Pass
Power Spectral Density	15.247 (e)	Appendix A – 2.4G Wi-Fi	Pass
Conducted Band Edge	45 247 (4)	Appendix A – 2.4G Wi-Fi	Pass
Radiated Band Edge	15.247 (d)	See Section 6.6.2	Pass
Conducted Spurious Emission	15 205 8 15 200	Appendix A – 2.4G Wi-Fi	Pass
Radiated Spurious Emission	15.205 & 15.209 See Section 6.7.2		Pass

Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- 3. The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013

KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5 General Information

5.1 Client Information

Applicant:	SKY PHONE LLC	
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139	
Manufacturer:	SKY PHONE LLC	
Address:	1348 Washington Av. Suite 350, Miami Beach, FL 33139	

5.2 General Description of E.U.T.

Product Name:	Tablet			
Model No.:	Elite OctaPlus			
Operation Frequency:	2412MHz~2462MHz: 802.11b/802.11g/802.11n(HT20)			
	2422MHz~2452MHz: 802.11n(HT40)			
Channel numbers:	11: 802.11b/802.11g/802.11(HT20)			
	7: 802.11n(HT40)			
Channel separation:	5MHz			
Modulation technology: (IEEE 802.11b)	Direct Sequence Spread Spectrum (DSSS)			
Modulation technology: (IEEE 802.11g/802.11n)	Orthogonal Frequency Division Multiplexing(OFDM)			
Data speed (IEEE 802.11b):	1Mbps, 2Mbps, 5.5Mbps, 11Mbps			
Data speed (IEEE 802.11g):	6Mbps, 9Mbps, 12Mbps, 18Mbps, 24Mbps, 36Mbps, 48Mbps, 54Mbps			
Data speed (IEEE 802.11n):	Up to 150Mbps			
Antenna Type:	Internal Antenna			
Antenna gain:	1.66dBi			
Power supply:	Rechargeable Li-ion Battery DC3.7V, 4000mAh			
AC adapter:	Input: AC100-240V, 50/60Hz, 0.2A Output: DC 5.0V, 2.0A			
Test Sample Condition:	The test samples were provided in good working order with no visible defects.			

Operation Frequency each of channel for 802.11b/g/n(HT20)							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	2412MHz	4	2427MHz	7	2442MHz	10	2457MHz
2	2417MHz	5	2432MHz	8	2447MHz	11	2462MHz
3	2422MHz	6	2437MHz	9	2452MHz		

Note:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} For 802.11n-HT40 mode, the channel number is from 3 to 9;

^{2.} Channel 1, 6 & 11 selected for 802.11b/g/n-HT20 as Lowest, Middle and Highest channel. Channel 3, 6 & 9 selected for 802.11n-HT40 as Lowest, Middle and Highest Channel.

5.3 Test environment and mode

Operating Environment:				
Temperature:	24.0 °C			
Humidity:	54 % RH			
Atmospheric Pressure:	1010 mbar			
Test mode:				
Transmitting mode	Keep the EUT in continuous transmitting with modulation			

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. We have verified the construction and function in typical operation. All the test modes were carried out with the EUT in transmitting operation, which was shown in this test report and defined as follows:

Per-scan all kind of data rate, the follow list were the worst case.					
Mode Data rate					
802.11b	1Mbps				
802.11g	6Mbps				
802.11n(HT20)	6.5Mbps				
802.11n(HT40)	13.5Mbps				

5.4 Description of Support Units

The EUT has been tested as an independent unit.

5.5 Measurement Uncertainty

Parameters	Expanded Uncertainty
Conducted Emission (150kHz ~ 30MHz)	2.62 dB (k=2)
10m SAC Radiated Emission (30MHz ~ 1000MHz)	4.32 dB (k=2)
3m SAC Radiated Emission (1GHz ~ 18GHz)	5.34 dB (k=2)
Output Power	1.28 dB (k=2)
Frequency	0.074ppm (k=2)
Conduction spurious	2.27 dB (k=2)

5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

• ISED - CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: https://portal.a2la.org/scopepdf/4346-01.pdf

5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.8 Test Instruments list

Radiated Emission:	Radiated Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
3m SAC	ETS	RFD-100	Q1984	04-14-2021	04-13-2024		
Loop Antenna	SCHWARZBECK	FMZB 1519 B	1519B-044	03-07-2021	03-06-2022		
BiConiLog Antenna	SCHWARZBECK	VULB9163	9163-1246	03-07-2021	03-06-2022		
Horn Antenna	SCHWARZBECK	BBHA9120D	912D-916	03-07-2021	03-06-2022		
Broad-Band Horn Antenna	SCHWARZBECK	BBHA9170	1067	04-02-2021	04-01-2022		
EMI Test Receiver	Rohde & Schwarz	ESRP7	101070	03-03-2021	03-02-2022		
Spectrum analyzer	Rohde & Schwarz	FSP30	101454	03-03-2021	03-02-2022		
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021		
Spectrum analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021		
Low Pre-amplifier	SCHWARZBECK	BBV9743B	00305	03-07-2021	03-06-2022		
High Pre-amplifier	SKET	LNPA_0118G-50	MF280208233	03-07-2021	03-06-2022		
Cable	Qualwave	JYT3M-1G-NN-8M	JYT3M-1	03-07-2021	03-06-2022		
Cable	Qualwave	JYT3M-18G-NN-8M	JYT3M-2	03-07-2021	03-06-2022		
Cable	Qualwave	JYT3M-1G-BB-5M	JYT3M-3	03-07-2021	03-06-2022		
Cable	Bost	JYT3M-40G-SS-8M	JYT3M-4	04-02-2021	04-01-2022		
EMI Test Software	Tonscend	TS+		Version:3.0.0.1			
10m SAC	ETS	RFSD-100-F/A	Q2005	04-28-2021	04-27-2024		
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1249	04-02-2021	04-01-2022		
BiConiLog Antenna	SCHWARZBECK	VULB 9168	1250	04-02-2021	04-01-2022		
EMI Test Receiver	R&S	ESR 3	102800	04-08-2021	04-07-2022		
EMI Test Receiver	R&S	ESR 3	102802	04-08-2021	04-07-2022		
Low Pre-amplifier	Bost	LNA 0920N	2016	04-06-2021	04-05-2022		
Low Pre-amplifier	Bost	LNA 0920N	2019	04-06-2021	04-05-2022		
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-1	04-02-2021	04-01-2022		
Cable	Bost	JYT10M-1G-NN-10M	JYT10M-2	04-02-2021	04-01-2022		
Test Software	R&S	EMC32	\	/ersion: 10.50.4	0		

Conducted Emission:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
EMI Test Receiver	Rohde & Schwarz	ESCI 3	101189	03-03-2021	03-02-2022	
LISN	Rohde & Schwarz	ENV432	101602	04-06-2021	04-05-2022	
LISN	Rohde & Schwarz	ESH3-Z5	843862/010	06-18-2020	06-17-2022	
RF Switch	TOP PRECISION	RSU0301	N/A	03-03-2021	03-02-2022	
Cable	Bost	JYTCE-1G-NN-2M	JYTCE-1	03-03-2021	03-02-2022	
EMI Test Software	AUDIX	E3	Version: 6.110919b			

Conducted method:						
Test Equipment	Manufacturer	Model No.	Serial No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)	
Spectrum Analyzer	Keysight	N9010B	MY60240202	11-27-2020	11-26-2021	
Vector Signal Generator	Keysight	N5182B	MY59101009	11-27-2020	11-26-2021	
Analog Signal Generator	Keysight	N5173B	MY59100765	11-27-2020	11-26-2021	
Power Detector Box	MWRF-test	MW100-PSB	MW201020JYT	11-27-2020	11-26-2021	
Simulated Station	Rohde & Schwarz	CMW270	102335	11-27-2020	11-26-2021	
RF Control Box	MWRF-test	MW100-RFCB	MW200927JYT	N/A	N/A	
PDU	MWRF-test	XY-G10	N/A	N/A	N/A	
Test Software	MWRF-tes	MTS 8310	Version: 2.0.0.0			
DC Power Supply	Keysight	E3642A	MY60296194	11-27-2020	11-26-2021	

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6 Test results and Measurement Data

6.1 Antenna requirement

Standard requirement: FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

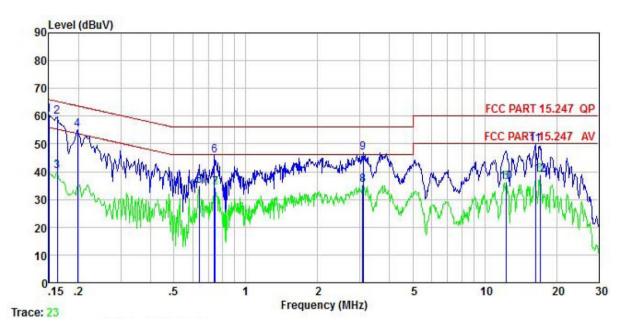
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

E.U.T Antenna:

The Wi-Fi antenna is an Internal antenna which cannot replace by end-user, the best case gain of the antenna is 1.66 dBi.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

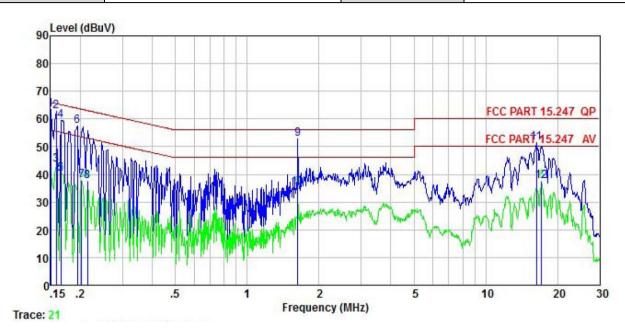
6.2 Conducted Emission


Test Requirement:	FCC Part 15 C Section 15.2	207		
Test Frequency Range:	150 kHz to 30 MHz			
Class / Severity:	Class B			
Receiver setup:	RBW=9 kHz, VBW=30 kHz			
Limit:	Fraguenov rango (MHz)	Limit (d	dBuV)	
	Frequency range (MHz)	Quasi-peak	Average	
	0.15-0.5	66 to 56*	56 to 46*	
	0.5-5	56	46	
	5-30	60	50	
	* Decreases with the logarit	hm of the frequency.		
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.10(latest version) on conducted measurement. 			
Test setup:	LISN	st	er — AC power	
Test Instruments:	Refer to section 5.9 for deta	ails		
Test mode:	Refer to section 5.3 for deta	ails		
Test results:	Passed			

Page 9 of 42

Measurement Data:

Product name:	Tablet	Product model:	Elite OctaPlus
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Line
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

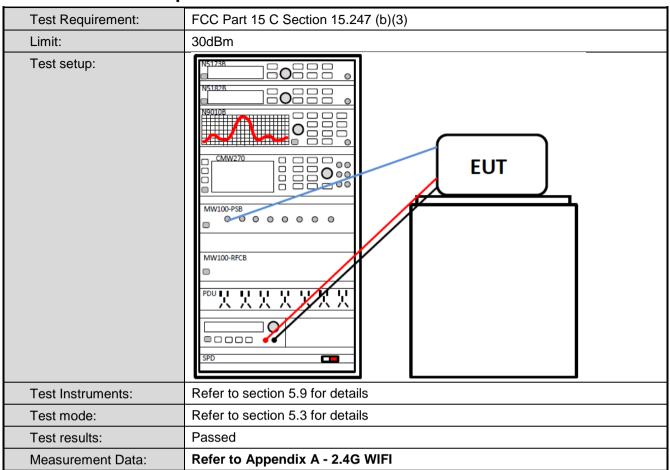

	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu∀	dB	dB	₫B	dBu₹	dBu₹	dB	
1	0.150	50.16	10.22	-0.05	0.01	60.34	66.00	-5.66	QP
2	0.162	49.61	10.22	-0.08	0.01	59.76	65.34	-5.58	QP
2	0.162	29.88	10.22	-0.08	0.01	40.03	55.34	-15.31	Average
4 5 6 7 8 9	0.198	45.05	10.23	-0.16	0.04	55.16	63.71	-8.55	QP
5	0.637	25.02	10.30	-0.39	0.02	34.95	46.00	-11.05	Average
6	0.739	35.78	10.30	-0.28	0.03	45.83	56.00	-10.17	QP
7	0.747	24.12	10.30	-0.24	0.03	34.21	46.00	-11.79	Average
8	3.090	24.95	10.35	-0.19	0.07	35.18	46.00	-10.82	Average
9	3.107	36.63	10.35	-0.19	0.07	46.86	56.00	-9.14	QP
10	12.318	22.68	10.69	2.78	0.10	36.25	50.00	-13.75	Average
11	16.312	36.14	10.81	2.83	0.16	49.94	60.00	-10.06	QP
12	17.018	25.32	10.83	2.44	0.16	38.75	50.00	-11.25	Average

Notes:

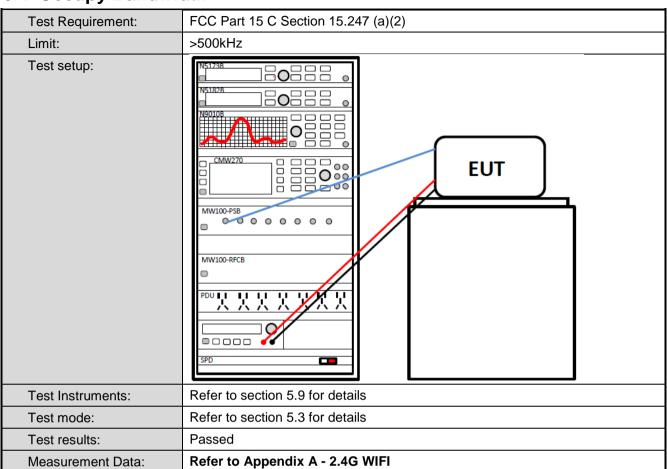
- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

Product name:	Tablet	Product model:	Elite OctaPlus
Test by:	Mike	Test mode:	Wi-Fi Tx mode
Test frequency:	150 kHz ~ 30 MHz	Phase:	Neutral
Test voltage:	AC 120 V/60 Hz	Environment:	Temp: 22.5℃ Huni: 55%

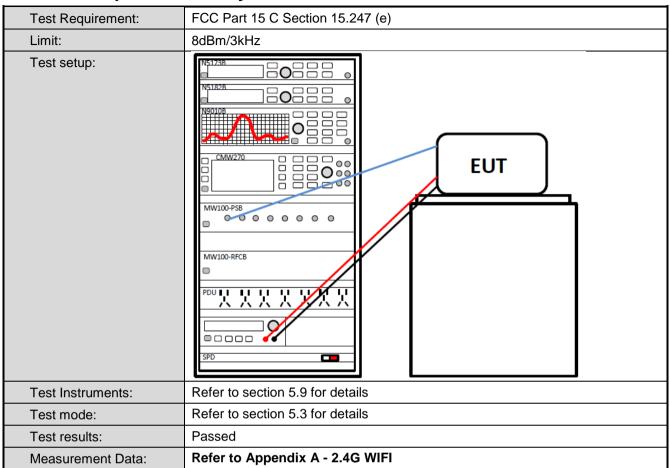
	Freq	Read Level	LISN Factor	Aux Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	<u>d</u> B	<u>d</u> B		dBu₹	dBu∜	<u>dB</u>	
1 2 3 4 5 6 7 8 9	0.150	53.06	10.19	0.01	0.01	63.27	66.00	The second second	
2	0.158	52.63	10.20		0.01	62.85	65.56		
3	0.158	33.35		0.01	0.01	43.57			Average
4	0.166	49.27	10.20	0.01	0.01	59.49	65.16	-5.67	QP
5	0.166	29.91	10.20	0.01	0.01	40.13	55.16	-15.03	Average
6	0.194	47.18	10.22	0.00	0.03	57.43	63.84	-6.41	QP
7	0.202	27.52	10.22	0.00	0.04	37.78	53.54	-15.76	Average
8	0.214	27.15	10.23	0.00	0.03	37.41	53.05	-15.64	Average
9	1.628	42.12	10.32	0.14	0.16	52.74	56.00	-3.26	QP
10	1.628	24.59	10.32	0.14	0.16	35.21	46.00	-10.79	Average
11	16.312	38.15		2.29	0.16	51.37	60.00		
12	17.109	24.71	10.80	1.80	0.15	37.46			Äverage


Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level =Receiver Read level + LISN Factor + Aux Factor + Cable Loss.



6.3 Conducted Output Power


6.4 Occupy Bandwidth

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.5 Power Spectral Density

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

6.6 Band Edge

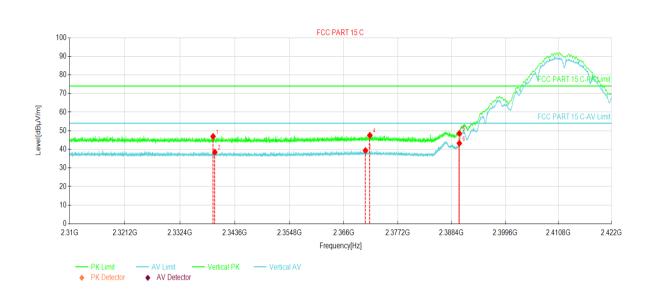
6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)				
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.				
Test setup:	NS182B NS18B NS18				
Test Instruments:	Refer to section 5.9 for details				
Test mode:	Refer to section 5.3 for details				
Test results:	Passed				
Measurement Data:	Refer to Appendix A - 2.4G WIFI				

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 15 of 42

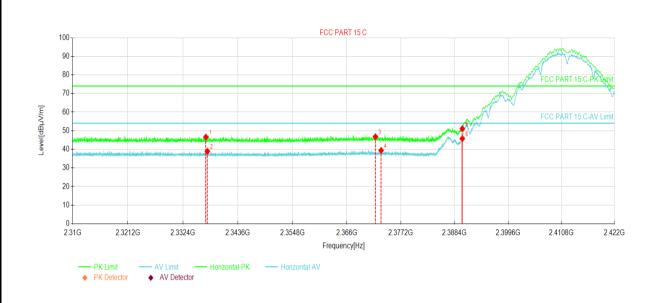
6.6.2 Radiated Emission Method


Test Requirement:	FCC Part 15 C Section 15.209 and 15.205					
Test Frequency Range:	2310 MHz to 2390) MHz and 24	183.5 MHz to 2	500 MHz		
Test Distance:	3m					
Receiver setup:	Frequency	Detector	RBW	VBW		
	Above 1GHz	Peak	1MHz	3MHz	+	
Limite	Frequency	RMS	<u> 1MHz </u>	3MHz	z Average Value Remark	
Limit:			54.00	3111)	Average Value	
	Above 1GH		74.00		Peak Value	
Test procedure:	 The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet. 					
Test setup:	- 150cm	AE EUT (Turntable)	Ground Reference Plane		na Tower	
Test Instruments:	Refer to section 5	.9 for details				
Test mode:	Refer to section 5	.3 for details				
Test results:	Passed					

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11b mode:

Product Name:	Tablet	Product Model:	Elite OctaPlus
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

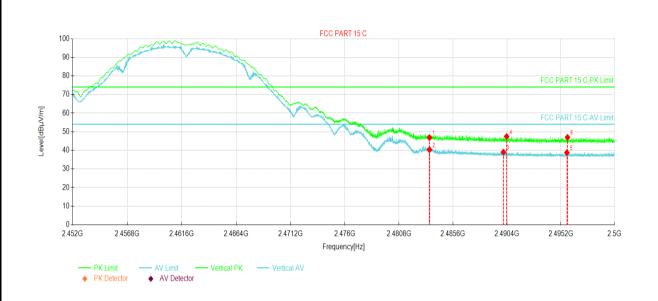

NO.∂	Freq [MHz]	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace∂	Polarity _®
1₽	2339.14	40.02₽	46.93₽	6.91₽	74.00₽	27.07₽	PK₽	Vertical₽
2₽	2339.49	31.57₽	38.48₽	6.91₽	54.00₽	15.52₽	AV₽	Vertical₽
3₽	2370.49	32.34₽	39.35₽	7.01₽	54.00₽	14.65₽	AV₽	Vertical₽
4.₽	2371.40	40.52₽	47.54₽	7.02₽	74.00₽	26.46₽	PK₽	Vertical₽
5₽	2390.01	41.45₽	48.53₽	7.08₽	74.00₽	25.47₽	PK₽	Vertical₽
6₽	2390.01	36.17₽	43.25₽	7.08₽	54.00₽	10.75₽	AV₽	Vertical₽

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Product Name:	Tablet	Product Model:	Elite OctaPlus
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

NO.	Freq.⊬ [MHz]∂	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace	Polarity∂
1₽	2337.06	39.69₽	46.59₽	6.90₽	74.00₽	27.41∂	PK₽	Horizontal ₂
2₽	2337.37	32.05₽	38.95₽	6.90₽	54.00₽	15.05₽	AV₽	Horizontal ₂
3₽	2371.93	39.76₽	46.78₽	7.02₽	74.00₽	27.22₽	PK₽	Horizontal ₂
4₽	2373.11	32.40₽	39.42₽	7.02₽	54.00₽	14.58₽	AV₽	Horizontal ₂
5₽	2390.01	44.00₽	51.08₽	7.08₽	74.00₽	22.92₽	PK₽	Horizontal ₂
6₽	2390.01	38.68₽	45.76₽	7.08₽	54.00₽	8.24₽	AV₽	Horizontal ₂

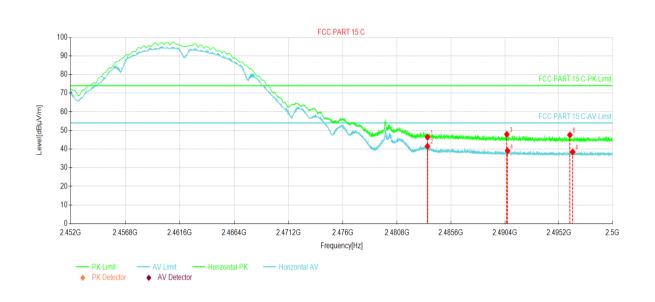

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 18 of 42

Project No.: JYTSZE2108048

Product Name:	Tablet	Product Model:	Elite OctaPlus
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

NO.	Freq [MHz]	Reading√ [dBµV/m]∞	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace∘	Polarity⊮
1₽	2483.50	39.13₽	46.82₽	7.69₽	74.00₽	27.18₽	PK₽	Vertical₽
2₽	2483.50	32.66₽	40.35₽	7.69₽	54.00₽	13.65₽	AV₽	Vertical₽
3₽	2490.08	31.29₽	39.02₽	7.73₽	54.00₽	14.98₽	AV₽	Vertical₽
4₽	2490.37	39.69₽	47.42₽	7.73₽	74.00₽	26.58₽	PK₽	Vertical₽
5₽	2495.74	30.96₽	38.73₽	7.77₽	54.00₽	15.27₽	AV₽	Vertical₽
6₽	2495.80	39.19₽	46.96₽	7.77₽	74.00₽	27.04₽	PK₽	Vertical₽

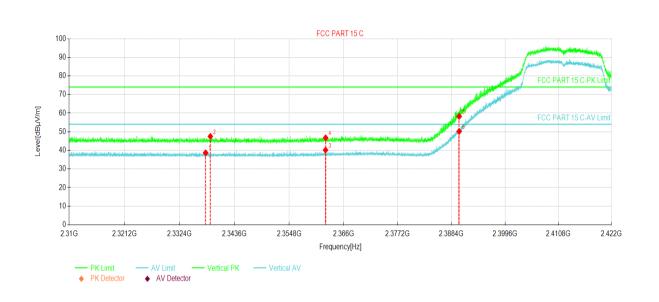

Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 19 of 42

Product Name:	Tablet	Product Model:	Elite OctaPlus
Test By:	Mike	Test mode:	802.11b Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

NO.	Freq [MHz].	Reading√ [dBµV/m]∞	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace∂	Polarity⊬
1₽	2483.50	38.69₽	46.38₽	7.69₽	74.00₽	27.62₽	PK₽	Horizontal₽
2₽	2483.50	33.80₽	41.49₽	7.69₽	54.00₽	12.51₽	AV₽	Horizontal₽
3₽	2490.56	40.20₽	47.93₽	7.73₽	74.00₽	26.07₽	PK₽	Horizontal₽
4₽	2490.62	31.37₽	39.11₽	7.74₽	54.00₽	14.89₽	AV₽	Horizontal₽
5₽	2496.19	39.80₽	47.57₽	7.77₽	74.00₽	26.43₽	PK₽	Horizontal₽
6₽	2496.44	30.70₽	38.48₽	7.78₽	54.00₽	15.52₽	AV₽	Horizontal₄

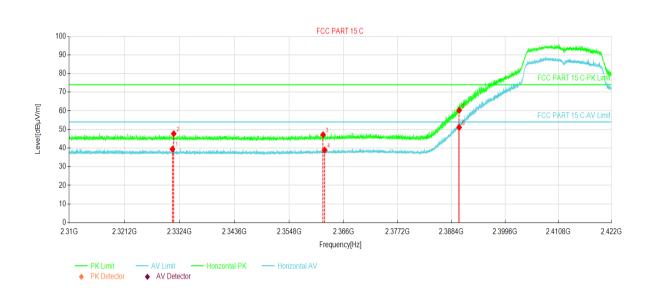

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

802.11g mode:

Product Name:	Tablet	Product Model:	Elite OctaPlus	
Test By:	Mike	Test mode:	802.11g Tx mode	
Test Channel:	Lowest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

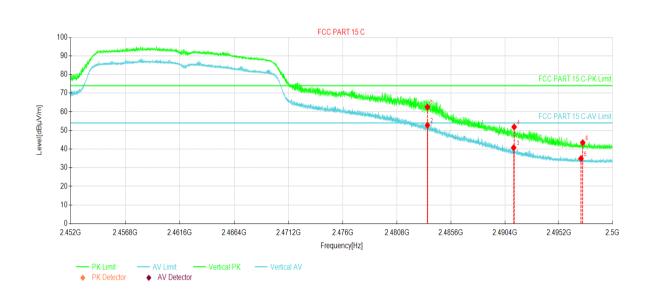
NO.₽	Freq.√ [MHz]	Reading [dBµV/m]	Level [dBµV/m]∂	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace∂	Polarity⊮
1₽	2337.69	31.74₽	38.64₽	6.90₽	54.00₽	15.36₽	AV₽	Vertical₽
2₽	2338.65	40.56₽	47.47₽	6.91₽	74.00₽	26.53₽	PK₽	Vertical₽
3₽	2362.29	33.15₽	40.14₽	6.99₽	54.00₽	13.86₽	AV₽	Vertical₽
4₽	2362.30	39.72₽	46.71₽	6.99₽	74.00₽	27.29₽	PK₽	Vertical₽
5₽	2390.01	51.18₽	58.26₽	7.08₽	74.00₽	15.74₽	PK₽	Vertical₽
6₊	2390.01	43.10₽	50.18₽	7.08₽	54.00₽	3.82₽	AV₽	Vertical₽


Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

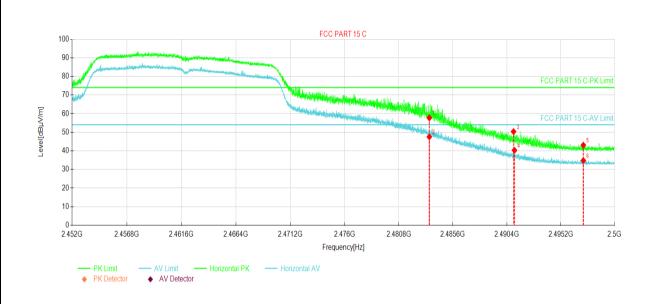
Product Name:	Tablet	Product Model: Elite OctaPlus	
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%


NO.	Freq.⊬ [MHz]∂	Reading⊸ [dBµV/m]∍	Level⊬ [dBµV/m]⊬	Factor⊮ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊮ [dB]⊮	Trace₽	Polarity∉
1₽	2330.93	32.56₽	39.44₽	6.88₽	54.00₽	14.56₽	AV₽	Horizontal ₂
2₽	2331.19	40.83₽	47.71₽	6.88₽	74.00₽	26.29₽	PK₽	Horizontal₽⊸
3₽	2361.78	40.18₽	47.16₽	6.98₽	74.00₽	26.84₽	PK₽	Horizontal₽⊸
4₽	2362.10	31.97₽	38.95₽	6.98₽	54.00₽	15.05₽	AV₽	Horizontal₽⊸
5₽	2390.01	53.13₽	60.21₽	7.08₽	74.00₽	13.79₽	PK₽	Horizontal₽⊸
6₽	2390.01	43.98₽	51.06₽	7.08₽	54.00₽	2.94₽	AV₄⋾	Horizontal₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Tablet	Product Model:	Elite OctaPlus	
Test By:	Mike	Test mode: 802.11g Tx mode		
Test Channel:	Highest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%	


NO.	Freq.√ [MHz]	Reading⊬ [dBµV/m]⊬	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]₄	Margin⊬ [dB]∉	Trace	Polarity∂
1₽	2483.50	54.84₽	62.53₽	7.69₽	74.00₽	11.47₽	PK₽	Vertical₽
2₽	2483.50	45.11₽	52.80₽	7.69₽	54.00₽	1.20₽	AV₽	Vertical _₽
3₽	2491.17	33.00₽	40.74₽	7.74₽	54.00₽	13.26₽	AV₽	Vertical _₽
4.₽	2491.21	44.10₽	51.84₽	7.74₽	74.00₽	22.16₽	PK₽	Vertical₽
5₽	2497.18	27.13₽	34.91₽	7.78₽	54.00₽	19.09₽	AV₽	Vertical₽
6₽	2497.33	35.67₽	43.45₽	7.78₽	74.00₽	30.55₽	PK₽	Vertical₽

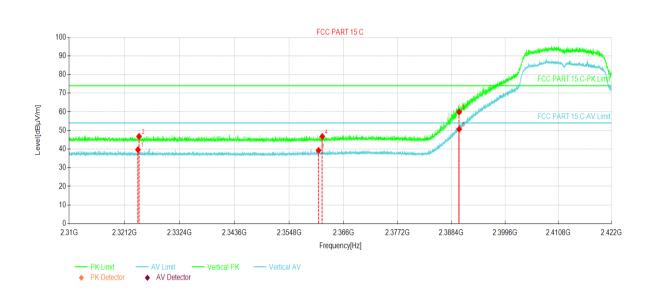
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 23 of 42

Product Name:	Tablet	Product Model:	Elite OctaPlus
Test By:	Mike	Test mode:	802.11g Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

NO.₽	Freq.∉ [MHz]∉	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]∉	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace	Polarity⊮
1₽	2483.50	50.03₽	57.72₽	7.69₽	74.00₽	16.28₽	PK₽	Horizontal₽
2₽	2483.50	39.81₽	47.50₽	7.69₽	54.00₽	6.50₽	AV₽	Horizontal₽
3₽	2490.99	42.60₽	50.34₽	7.74₽	74.00₽	23.66₽	PK₽	Horizontal₄
4₽	2491.07	32.56₽	40.30₽	7.74₽	54.00₽	13.70₽	AV₽	Horizontal₽
5₽	2497.21	35.28₽	43.06₽	7.78₽	74.00₽	30.94₽	PK₽	Horizontal₽
6₽	2497.21	27.02₽	34.80₽	7.78₽	54.00₽	19.20₽	AV₽	Horizontalℯ

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

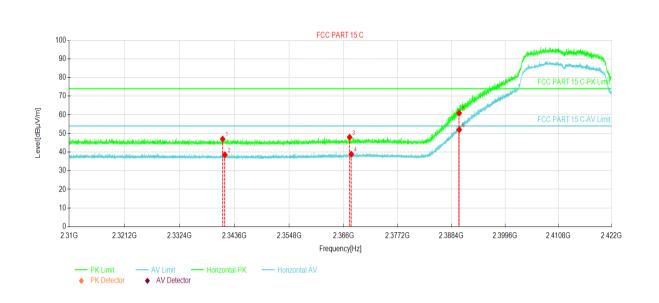

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 24 of 42

802.11n(HT20):

Product Name:	Tablet	Product Model:	Elite OctaPlus
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Lowest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

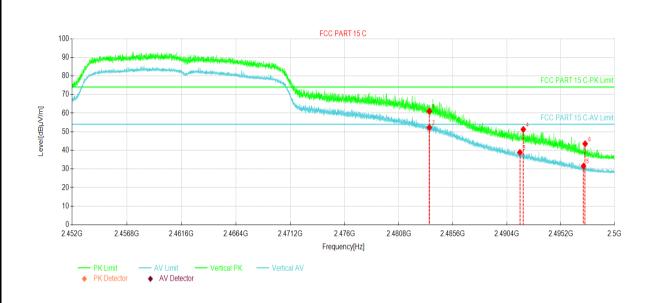
NO.	Freq.⊬ [MHz]	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]₄	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]₄	Margin⊬ [dB]⊬	Trace∉	Polarity∂
1₽	2323.93	32.81₽	39.67₽	6.86₽	54.00₽	14.33₽	AV₽	Vertical₄
2₽	2324.14	39.93₽	46.79₽	6.86₽	74.00₽	27.21₽	PK₽	Vertical₄
3₽	2360.84	32.29₽	39.27₽	6.98₽	54.00₽	14.73₽	AV₽	Vertical₽
4₽	2361.61	39.76₽	46.74₽	6.98₽	74.00₽	27.26₽	PK₽	Vertical₽
5₽	2390.01	43.57₽	50.65₽	7.08₽	54.00₽	3.35₽	AV₽	Vertical₄
6₽	2390.01	52.82₽	59.90₽	7.08₽	74.00₽	14.10₽	PK₽	Vertical₽


Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 25 of 42

Product Name:	Tablet	Product Model:	Elite OctaPlus	
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode	
Test Channel:	Lowest channel	Polarization:	Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%	

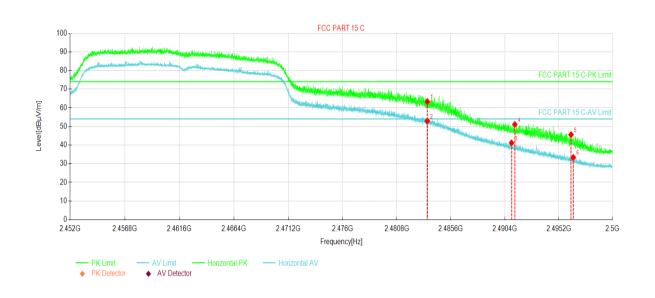

NO.	Freq.∉ [MHz]∉	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]∉	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace	Polarity∉
1₽	2341.16	40.06₽	46.98₽	6.92₽	74.00₽	27.02₽	PK₽	Horizontal
2₽	2341.61	31.63₽	38.55₽	6.92₽	54.00₽	15.45₽	AV₽	Horizontal _e
3₽	2367.26	40.94₽	47.94₽	7.00₽	74.00₽	26.06₽	PK₽	Horizontal _e
4₽	2367.59	31.86₽	38.86₽	7.00₽	54.00₽	15.14₽	AV₽	Horizontal
5₽	2390.01	53.82₽	60.90₽	7.08₽	74.00₽	13.10₽	PK₽	Horizontal
6₽	2390.01	44.92₽	52.00₽	7.08₽	54.00₽	2.00₽	AV₽	Horizontal _e

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Tablet	Product Model: Elite OctaPlus	
Test By:	Mike	Test mode:	802.11n(HT20) Tx mode
Test Channel:	Highest channel	Polarization:	Vertical
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

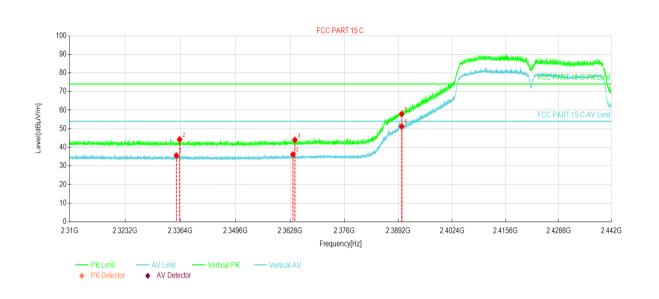
NO.₽	Freq.⊬ [MHz]⊬	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]∉	Factor⊬ [dB]∉	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace∘	Polarity⊮
1₽	2483.50	53.32₽	61.01₽	7.69₽	74.00₽	12.99₽	PK₽	Vertical ₂
2₽	2483.50	44.56₽	52.25₽	7.69₽	54.00₽	1.75₽	AV₽	Vertical₄⊸
3₽	2491.56	31.16₽	38.90₽	7.74₽	54.00₽	15.10₽	AV₽	Vertical₽
4₽	2491.86	43.51₽	51.25₽	7.74₽	74.00₽	22.75₽	PK₽	Vertical₄⊸
5₽	2497.23	23.77₽	31.55₽	7.78₽	54.00₽	22.45₽	AV₽	Vertical _₽
6₽	2497.37	35.74₽	43.52₽	7.78₽	74.00₽	30.48₽	PK₽	Vertical _₽


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Page 27 of 42

Product Name:	Tablet	Product Model:	Elite OctaPlus
Test By:	Mike	Test mode: 802.11n(HT20) Tx r	
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%

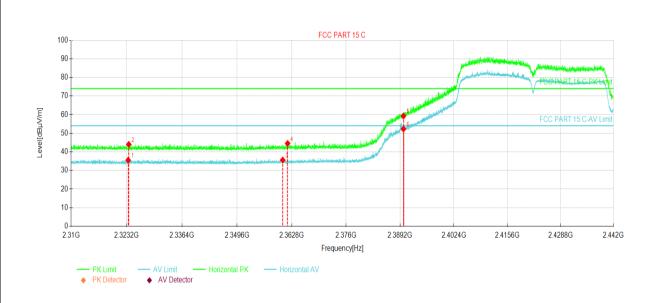

NO.	Freq [MHz]	Reading√ [dBµV/m]∞	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace∉	Polarity
1₽	2483.50	55.61₽	63.30₽	7.69₽	74.00₽	10.70₽	PK₽	Horizontal
2₽	2483.50	45.23₽	52.92₽	7.69₽	54.00₽	1.08₽	AV₽	Horizontal
3₽	2490.99	33.41₽	41.15₽	7.74₽	54.00₽	12.85₽	AV₽	Horizontal₽
4₽	2491.28	43.35₽	51.09₽	7.74₽	74.00₽	22.91₽	PK₽	Horizontal₽
5₽	2496.29	37.83₽	45.60₽	7.77₽	74.00₽	28.40₽	PK₽	Horizontal _e
6₽	2496.50	25.58₽	33.36₽	7.78₽	54.00₽	20.64₽	AV₽	Horizontal _e

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11n(HT40):

Product Name:	Tablet	Product Model:	Elite OctaPlus	
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode	
Test Channel:	Lowest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%	

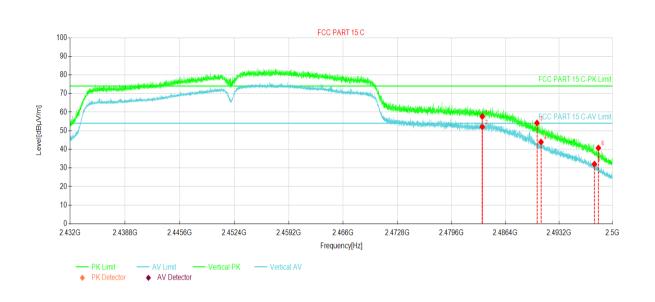
NO.₽	Freq.⊬ [MHz]⊬	Reading√ [dBµV/m]∞	Level⊬ [dBµV/m]⊮	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace∂	Polarity
1₽	2335.42	28.67₽	35.57₽	6.90₽	54.00₽	18.43₽	AV₽	Verticalℯ
2₽	2336.20	37.31₽	44.21₽	6.90₽	74.00₽	29.79₽	PK₽	Vertical₽
3₽	2363.50	29.17₽	36.16₽	6.99₽	54.00₽	17.84₽	AV₽	Verticalℯ
4₽	2363.98	37.00₽	43.99₽	6.99₽	74.00₽	30.01₽	PK₽	Verticalℯ
5₽	2390.02	50.80₽	57.88₽	7.08₽	74.00₽	16.12₽	PK₽	Verticalℯ
6₽	2390.02	44.20₽	51.28₽	7.08₽	54.00₽	2.72₽	AV₽	Vertical₽


Remark

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

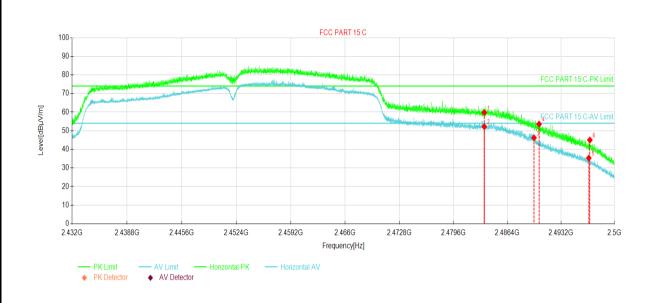
Product Name:	Tablet	Product Model:	Elite OctaPlus
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Lowest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%


NO.	Freq.∉ [MHz]∉	Reading⊮ [dBµV/m]⊮	Level⊬ [dBµV/m]₄	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace	Polarity∂
1₽	2323.54	28.64₽	35.50₽	6.86₽	54.00₽	18.50₽	AV₽	Horizontal₽
2₽	2323.67	37.14₽	44.00₽	6.86₽	74.00₽	30.00₽	PK₽	Horizontal
3₽	2360.62	28.60₽	35.58₽	6.98₽	54.00₽	18.42₽	AV₽	Horizontal _e
4₽	2361.81	37.51₽	44.49₽	6.98₽	74.00₽	29.51₽	PK₽	Horizontal ₂
5₽	2390.02	52.20₽	59.28₽	7.08₽	74.00₽	14.72₽	PK₽	Horizontal₽
6₽	2390.02	45.20₽	52.28₽	7.08₽	54.00₽	1.72₽	AV₽	Horizontal₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 30 of 42

Product Name:	Tablet	Product Model:	Elite OctaPlus	
Test By:	Mike	Test mode:		
Test Channel:	Highest channel	Polarization:	Vertical	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	


NO.	Freq.∉ [MHz]∉	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]∉	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace∘	Polarity⊬
1₽	2483.50	49.98₽	57.67₽	7.69₽	74.00₽	16.33₽	PK₽	Vertical _₽
2₽	2483.50	44.39₽	52.08₽	7.69₽	54.00₽	1.92₽	AV₽	Verticalℯ
3₽	2490.42	46.43₽	54.16₽	7.73₽	74.00₽	19.84₽	PK₽	Verticalℯ
4₽	2490.93	36.15₽	43.89₽	7.74₽	54.00₽	10.11₽	AV₽	Verticalℯ
5₽	2497.70	24.27₽	32.05₽	7.78₽	54.00₽	21.95₽	AV₽	Verticalℯ
6₽	2498.20	32.92₽	40.71₽	7.79₽	74.00₽	33.29₽	PK₽	Vertical₽

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Product Name:	Tablet	Product Model:	Elite OctaPlus
Test By:	Mike	Test mode:	802.11n(HT40) Tx mode
Test Channel:	Highest channel	Polarization:	Horizontal
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24°C Huni: 57%

NO.	Freq.⊬ [MHz]⊬	Reading√ [dBµV/m]√	Level⊬ [dBµV/m]⊬	Factor⊬ [dB]⊬	Limit⊬ [dBµV/m]⊮	Margin⊬ [dB]⊬	Trace	Polarity
1₽	2483.50	52.07₽	59.76₽	7.69₽	74.00₽	14.24₽	PK₽	Horizontal ₂
2₽	2483.50	44.50₽	52.19₽	7.69₽	54.00₽	1.81₽	AV₽	Horizontal ₂
3₽	2489.79	38.44₽	46.17₽	7.73₽	54.00₽	7.83₽	AV₽	Horizontalℯ
4₽	2490.42	45.85₽	53.58₽	7.73₽	74.00₽	20.42₽	PK₽	Horizontalℯ
5₽	2496.73	27.57₽	35.35₽	7.78₽	54.00₽	18.65₽	AV₽	Horizontal ₂
6₽	2496.87	37.22₽	45.00₽	7.78₽	74.00₽	29.00₽	PK₽	Horizontal _*

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

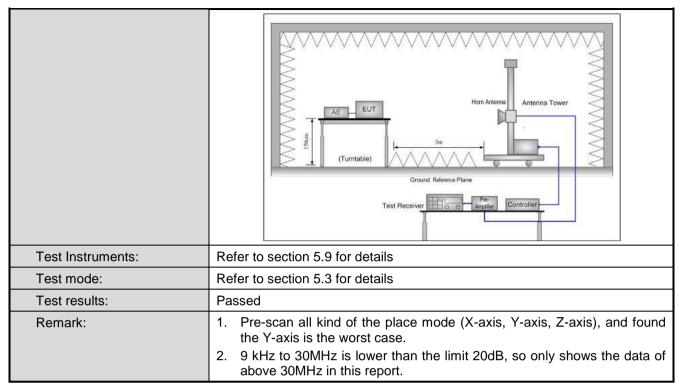
Page 32 of 42

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph(b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.					
Test setup:	NS182R NS18R NS182R NS18R NS182R NS18R NS					
Test Instruments:	Refer to section 5.9 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					
Measurement Data:	Refer to Appendix A - 2.4G WIFI					

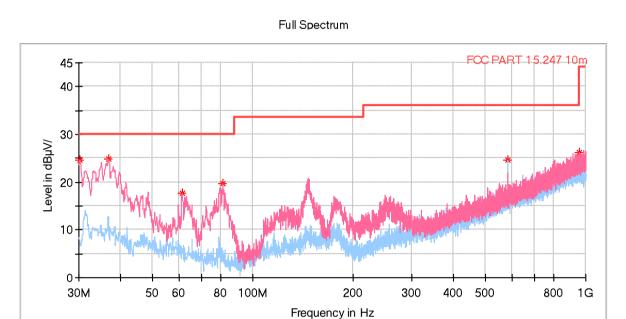
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



6.7.2 Radiated Emission Method

6.7.2 Radiated Emission				= :			
Test Requirement:	FCC Part 15 C Se	ection 15.2	209 an	d 15.205			
Test Frequency Range:	9kHz to 25GHz						
Test Distance:	3m or 10m						
Receiver setup:	Frequency	Detect	or	RBW	V	BW	Remark
	30MHz-1GHz	Quasi-pe	eak	120KHz	300)KHz	Quasi-peak Value
	Above 1GHz	Peak		1MHz		ЛHz	Peak Value
		RMS		1MHz		ИHz	Average Value
Limit:	Frequency		Limit	(dBuV/m @10)m)	_	Remark
	30MHz-88MH			30.0			uasi-peak Value
	88MHz-216MH			33.5			uasi-peak Value
	216MHz-960M 960MHz-1GH	-		36.0 44.0			uasi-peak Value uasi-peak Value
	Frequency	IZ	Limit	44.0 t (dBuV/m @3i	m)	Q	Remark
	rrequericy		LIIIII	54.0	111)		Average Value
	Above 1GHz	<u> </u>		74.0			Peak Value
Test Procedure:	1. The EUT w	as placed	d on		a rot	ating	table 0.8m(below
	(below 1GHz 360 degrees 2. The EUT wa away from the top of a v. 3. The antenna ground to det horizontal and measuremen 4. For each sus and then the and the rota to maximum reasonable of the EUT wou	c) or 3 meters to determine the interference ariable-he height is well to the interference ariable and vertical part. pected emantenna we table was table was table with the interference and in level of the interference and int	er cha ine the meters ence-reight a varied e max polariz mission vas turned ith Ma the El ting conted. (re-tes	mber(above e position of to solve position of to solve position of the ecceiving antontenna tower from one medimum value of the eccentrations of the eccentr	1GHz the hid z) or enna, ter to of the ante as arr ees to Dete Mode wed are e emis ne us	z). The ghest r 3 me which of four m field sinna are canged in 1 me co 360 cc. was 10 and the pssions ing pea	ters(above 1GHz) was mounted on neters above the trength. Both e set to make the to its worst case ter to 4 meters legrees to find the ction and dB lower than the beak values of that did not have ak, quasi-peak or
Test setup:	Below 1GHz Turn Table Ground Pl. Above 1GHz	0.8m	1m		<i></i>	Searc Anter RF Test Receive	nna :

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366


Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

Measurement Data (worst case):

Below 1GHz:

Product Name:	Tablet	Product Model:		
Test By:	Mike	Test mode:	Wi-Fi Tx mode	
Test Frequency:	30 MHz ~ 1 GHz	Polarization:	Vertical & Horizontal	
Test Voltage:	AC 120/60Hz	Environment:	Temp: 24℃ Huni: 57%	

■ Frequency↓ (MHz)∂	Quasi peak↓ (dB ₽V/m)₽		Margin↓ (dB)∂	Height↓ (cm)₽	Pol∉	Azimuth↓ (deg)∂	Corr.↓ (dB/m)₽
■ 30.1940004	24.54∂	30.00₽	5.46₽	100.0₽	V₽	130.0₽	-17.7₽
■ 36.8870004	24.81₽	30.00₽	5.19₽	100.0↩	V₽	28.0₽	-16.3₽
61.234000√	17.74₽	30.00₽	12.26₽	100.0₽	V₽	310.0₽	
81.216000√	19.77₽	30.00₽	10.23₽	100.0₽	V₽	331.0₽	-20.1₽
585.034000√	24.54₽	36.00₄	11.46₽	100.0₽	H₽	259.0₽	-7.0₽
■ 959.2600004	26.16₽	36.00₽	9.84₽	100.0↩	V₽	126.0₽	0.0↔

Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 36 of 42

Above 1GHz

Above 1GHz						
			802.11b			
		Test ch	annel: Lowest ch	nannel		
		Det	tector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	57.78	-9.46	48.32	74.00	25.68	Vertical
4824.00	59.08	-9.46	49.62	74.00	24.38	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	52.77	-9.46	43.31	54.00	10.69	Vertical
4824.00	53.56	-9.46	44.10	54.00	9.90	Horizontal
			annel: Middle ch			
		Det	tector: Peak Valu		1	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	58.27	-9.11	49.16	74.00	24.84	Vertical
4874.00	59.04	-9.11	49.93	74.00	24.07	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	52.32	-9.11	43.21	54.00	10.79	Vertical
4874.00	53.78	-9.11	44.67	54.00	9.33	Horizontal
		Taskah	anal I Kabaatal	h ann al		
			annel: Highest cl			
F	Dec II e el	Dei	tector: Peak Valu		NA - veries	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4924.00	58.09	-8.74	49.35	74.00	24.65	Vertical
4924.00	58.93	-8.74	50.19	74.00	23.81	Horizontal
		Dete	ctor: Average Va	alue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4924.00	53.24	-8.74	44.50	54.00	9.50	Vertical
4924.00	53.22	-8.74	44.48	54.00	9.52	Horizontal

Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

			802.11g							
		Test ch	annel: Lowest ch	nannel						
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4824.00	58.19	-9.46	48.73	74.00	25.27	Vertical				
4824.00	59.51	-9.46	50.05	74.00	23.95	Horizontal				
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4824.00	52.83	-9.46	43.37	54.00	10.63	Vertical				
4824.00	53.67	-9.46	44.21	54.00	9.79	Horizontal				

annel		
е		
Limit Line (dBuV/m)	Margin (dB)	Polarization
74.00	25.00	Vertical
74.00	23.91	Horizontal
lue		
Limit Line (dBuV/m)	Margin (dB)	Polarization
54.00	10.42	Vertical
54.00	9.66	Horizontal
•	Limit Line (dBuV/m) 74.00 74.00 ue Limit Line (dBuV/m) 54.00	Limit Line (dBuV/m) (dB) 74.00 25.00 74.00 23.91 ue Limit Line Margin (dBuV/m) (dB) 54.00 10.42

		Test ch	annel: Highest c	hannel						
Detector: Peak Value										
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4924.00	58.36	-8.74	49.62	74.00	24.38	Vertical				
4924.00	59.47	-8.74	50.73	74.00	23.27	Horizontal				
		Dete	ctor: Average Va	alue						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization				
4924.00	53.00	-8.74	44.26	54.00	9.74	Vertical				
4924.00	53.06	-8.74	44.32	54.00	9.68	Horizontal				

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Project No.: JYTSZE2108048

			802.11n(HT20)			
			annel: Lowest ch			
_	T	Dei	tector: Peak Valu		T	
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	58.66	-9.46	49.20	74.00	24.80	Vertical
4824.00	59.01	-9.46	49.55	74.00	24.45	Horizontal
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4824.00	52.56	-9.46	43.10	54.00	10.90	Vertical
4824.00	53.05	-9.46	43.59	54.00	10.41	Horizontal
		Test ch	annel: Middle ch	annel		
		Det	tector: Peak Valu	ıe		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	58.66	-9.11	49.55	74.00	24.45	Vertical
4874.00	58.98	-9.11	49.87	74.00	24.13	Horizontal
		Dete	ctor: Average Va	lue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	52.31	-9.11	43.20	54.00	10.80	Vertical
4874.00	52.80	-9.11	43.69	54.00	10.31	Horizontal
						•
		Test cha	annel: Highest ch	nannel		
			tector: Peak Valu			
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
4924.00	58.33	-8.74	49.59	74.00	24.41	Vertical
4924.00	59.13	-8.74	50.39	74.00	23.61	Horizonta
		Dete	ctor: Average Va	llue		
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarizatio
100100	52.02	-8.74	43.28	54.00	10.72	Vertical
4924.00						

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 39 of 42

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

802.11n(HT40)						
Test channel: Lowest channel						
Detector: Peak Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4844.00	59.10	-9.32	49.78	74.00	24.22	Vertical
4844.00	58.98	-9.32	49.66	74.00	24.34	Horizontal
Detector: Average Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4844.00	52.60	-9.32	43.28	54.00	10.72	Vertical
4844.00	53.53	-9.32	44.21	54.00	9.79	Horizontal
Test channel: Middle channel						
Detector: Peak Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	59.56	-9.11	50.45	74.00	23.55	Vertical
4874.00	59.28	-9.11	50.17	74.00	23.83	Horizontal
Detector: Average Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4874.00	52.67	-9.11	43.56	54.00	10.44	Vertical
4874.00	53.28	-9.11	44.17	54.00	9.83	Horizontal
Test channel: Highest channel						
Detector: Peak Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4904.00	59.01	-8.90	50.11	74.00	23.89	Vertical
4904.00	59.07	-8.90	50.17	74.00	23.83	Horizontal
Detector: Average Value						
Frequency (MHz)	Read Level (dBuV)	Factor(dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Margin (dB)	Polarization
4904.00	52.49	-8.90	43.59	54.00	10.41	Vertical
4904.00	53.82	-8.90	44.92	54.00	9.08	Horizontal

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

^{1.} Final Level = Receiver Read level + Factor.

^{2.} The emission levels of other frequencies are lower than the limit 20dB and not show in test report.