

# JianYan Testing Group Shenzhen Co., Ltd.

Report No: JYTSZB-R12-2101577

# FCC REPORT (BLE)

Applicant: SKY PHONE LLC

Address of Applicant: 1348 Washington Av. Suite 350, Miami Beach, FL 33139

## **Equipment Under Test (EUT)**

Product Name: Tablet

Model No.: Elite OctaPlus

Trade mark: SKY DEVICES

FCC ID: 2ABOSSKYELIOCTAPL

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 13 Aug., 2021

**Date of Test:** 14 Aug., to 01 Sep., 2021

Date of report issued: 02 Sep., 2021

Test Result: PASS \*

#### Authorized Signature:



Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the JYT product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

<sup>\*</sup> In the configuration tested, the EUT complied with the standards specified above.





# 2 Version

| Version No. | Date          | Description |
|-------------|---------------|-------------|
| 00          | 02 Sep., 2021 | Original    |
|             |               |             |
|             |               |             |
|             |               |             |
|             |               |             |

| Tested by: ///(۱۹۶۰) |               | Date: | 02 Sep., 2021 |  |
|----------------------|---------------|-------|---------------|--|
|                      | Test Engineer |       |               |  |
|                      |               |       |               |  |

Reviewed by:

Winner Thang
Date: 02 Sep., 2021

Project Engineer

Mika OII





# **Contents**

|                   |       |                                | Page |
|-------------------|-------|--------------------------------|------|
| 1                 | COV   | /ER PAGE                       | 1    |
| 2                 | VER   | SION                           | 2    |
| 3                 | CON   | ITENTS                         | 3    |
| 4                 |       | T SUMMARY                      |      |
| <del>-</del><br>5 |       | IERAL INFORMATION              |      |
| <b>၁</b>          | GEN   |                                |      |
|                   | 5.1   | CLIENT INFORMATION             |      |
|                   | 5.2   | GENERAL DESCRIPTION OF E.U.T.  |      |
|                   | 5.3   | TEST ENVIRONMENT AND MODE      |      |
|                   | 5.4   | DESCRIPTION OF SUPPORT UNITS   |      |
|                   | 5.5   | MEASUREMENT UNCERTAINTY        | 6    |
|                   | 5.6   | LABORATORY FACILITY            |      |
|                   | 5.7   | LABORATORY LOCATION            |      |
|                   | 5.8   | TEST INSTRUMENTS LIST          | 7    |
| 6                 | TES   | T RESULTS AND MEASUREMENT DATA | 8    |
|                   | 6.1   | ANTENNA REQUIREMENT:           |      |
|                   | 6.2   | CONDUCTED EMISSION             | 9    |
|                   | 6.3   | CONDUCTED OUTPUT POWER         | 12   |
|                   | 6.4   | OCCUPY BANDWIDTH               |      |
|                   | 6.5   | POWER SPECTRAL DENSITY         | 14   |
|                   | 6.6   | BAND EDGE                      | 15   |
|                   | 6.6.1 |                                |      |
|                   | 6.6.2 | Radiated Emission Method       | 16   |
|                   | 6.7   | Spurious Emission              |      |
|                   | 6.7.1 |                                |      |
|                   | 6.7.2 | Radiated Emission Method       | 34   |
| 7                 | TES   | T SETUP PHOTO                  | 41   |
| 0                 | CIT   | CONSTRUCTIONAL DETAILS         | 42   |





# 4 Test Summary

| Test Items                                    | Section in CFR 47   | Test Data         | Result |
|-----------------------------------------------|---------------------|-------------------|--------|
| Antenna requirement                           | 15.203 & 15.247 (b) | See Section 6.1   | Pass   |
| AC Power Line Conducted Emission              | 15.207              | See Section 6.2   | Pass   |
| Conducted Peak Output Power                   | 15.247 (b)(3)       | Appendix A - BLE  | Pass   |
| 6dB Emission Bandwidth 99% Occupied Bandwidth | 15.247 (a)(2)       | Appendix A - BLE  | Pass   |
| Power Spectral Density                        | 15.247 (e)          | Appendix A - BLE  | Pass   |
| Conducted Band Edge                           | 15 247 (d)          | Appendix A - BLE  | Pass   |
| Radiated Band Edge                            | 15.247 (d)          | See Section 6.6.2 | Pass   |
| Conducted Spurious Emission                   | 15.205 & 15.209     | Appendix A - BLE  | Pass   |
| Radiated Spurious Emission                    | 15.205 & 15.209     | See Section 6.7.2 | Pass   |

#### Remark:

- 1. Pass: The EUT complies with the essential requirements in the standard.
- 2. N/A: Not Applicable.
- The cable insertion loss used by "RF Output Power" and other conduction measurement items is 0.5dB (provided by the customer).

Test Method: ANSI C63.10-2013
KDB 558074 D01 15.247 Meas Guidance v05r02

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366





# 5 General Information

# **5.1 Client Information**

| Applicant:    | SKY PHONE LLC                                        |
|---------------|------------------------------------------------------|
| Address:      | 1348 Washington Av. Suite 350, Miami Beach, FL 33139 |
| Manufacturer: | SKY PHONE LLC                                        |
| Address:      | 1348 Washington Av. Suite 350, Miami Beach, FL 33139 |

# 5.2 General Description of E.U.T.

| Product Name:          | Tablet                                                                        |
|------------------------|-------------------------------------------------------------------------------|
| Model No.:             | Elite OctaPlus                                                                |
| Operation Frequency:   | 2402-2480 MHz                                                                 |
| Channel numbers:       | 40                                                                            |
| Channel separation:    | 2 MHz                                                                         |
| Modulation technology: | GFSK                                                                          |
| Data speed :           | 1Mbps & 2Mbps; Coded PHY,S=2 & Coded PHY,S=8                                  |
| Antenna Type:          | Internal Antenna                                                              |
| Antenna gain:          | 1.66 dBi                                                                      |
| Power supply:          | Rechargeable Li-ion Battery DC3.85V, 5000mAh                                  |
| AC adapter:            | Input: AC100-240V, 50/60Hz, 0.2A                                              |
|                        | Output: DC 5.0V, 2.0A                                                         |
| Test Sample Condition: | The test samples were provided in good working order with no visible defects. |

| Operation Frequency each of channel |           |         |           |         |           |         |           |
|-------------------------------------|-----------|---------|-----------|---------|-----------|---------|-----------|
| Channel                             | Frequency | Channel | Frequency | Channel | Frequency | Channel | Frequency |
| 0                                   | 2402MHz   | 10      | 2422MHz   | 20      | 2442MHz   | 30      | 2462MHz   |
| 1                                   | 2404MHz   | 11      | 2424MHz   | 21      | 2444MHz   | 31      | 2464MHz   |
| 2                                   | 2406MHz   | 12      | 2426MHz   | 22      | 2446MHz   | 32      | 2466MHz   |
| 3                                   | 2408MHz   | 13      | 2428MHz   | 23      | 2448MHz   | 33      | 2468MHz   |
| 4                                   | 2410MHz   | 14      | 2430MHz   | 24      | 2450MHz   | 34      | 2470MHz   |
| 5                                   | 2412MHz   | 15      | 2432MHz   | 25      | 2452MHz   | 35      | 2472MHz   |
| 6                                   | 2414MHz   | 16      | 2434MHz   | 26      | 2454MHz   | 36      | 2474MHz   |
| 7                                   | 2416MHz   | 17      | 2436MHz   | 27      | 2456MHz   | 37      | 2476MHz   |
| 8                                   | 2418MHz   | 18      | 2438MHz   | 28      | 2458MHz   | 38      | 2478MHz   |
| 9                                   | 2420MHz   | 19      | 2440MHz   | 29      | 2460MHz   | 39      | 2480MHz   |

#### Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test. Channel No. 0, 20 & 39 were selected as Lowest, Middle and Highest channel.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



## 5.3 Test environment and mode

| Operating Environment: | Operating Environment:                                  |  |  |  |  |
|------------------------|---------------------------------------------------------|--|--|--|--|
| Temperature:           | 24.0 °C                                                 |  |  |  |  |
| Humidity:              | 54 % RH                                                 |  |  |  |  |
| Atmospheric Pressure:  | 1010 mbar                                               |  |  |  |  |
| Test mode:             | Test mode:                                              |  |  |  |  |
| Transmitting mode      | Keep the EUT in continuous transmitting with modulation |  |  |  |  |

Radiated Emission: The sample was placed 0.8m (below 1GHz)/1.5m (above 1GHz) above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

# 5.4 Description of Support Units

The EUT has been tested as an independent unit.

# 5.5 Measurement Uncertainty

| Parameters                                  | Expanded Uncertainty |
|---------------------------------------------|----------------------|
| Conducted Emission (150kHz ~ 30MHz)         | 2.62 dB (k=2)        |
| 10m SAC Radiated Emission (30MHz ~ 1000MHz) | 4.32 dB (k=2)        |
| 3m SAC Radiated Emission (1GHz ~ 18GHz)     | 5.34 dB (k=2)        |
| Output Power                                | 1.28 dB (k=2)        |
| Frequency                                   | 0.074ppm (k=2)       |
| Conduction spurious                         | 2.27 dB (k=2)        |

## 5.6 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

#### • FCC - Designation No.: CN1211

JianYan Testing Group Shenzhen Co., Ltd. has been accredited as a testing laboratory by FCC(Federal Communications Commission). The test firm Registration No. is 727551.

#### ISED – CAB identifier.: CN0021

The 3m Semi-anechoic chamber of JianYan Testing Group Shenzhen Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

#### A2LA - Registration No.: 4346.01

This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017 General requirements for the competence of testing and calibration laboratories. The test scope can be found as below link: <a href="https://portal.a2la.org/scopepdf/4346-01.pdf">https://portal.a2la.org/scopepdf/4346-01.pdf</a>

# 5.7 Laboratory Location

JianYan Testing Group Shenzhen Co., Ltd.

Address: No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xingiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.

Tel: +86-755-23118282, Fax: +86-755-23116366

Email: info-JYTee@lets.com, Website: http://www.ccis-cb.com

JianYan Testing Group Shenzhen Co., Ltd.

No.101, Building 8, Innovation Wisdom Port, No.155 Hongtian Road, Huangpu Community, Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China.





# 5.8 Test Instruments list

| Radiated Emission:         |                 |                  |                   |                        |                            |  |
|----------------------------|-----------------|------------------|-------------------|------------------------|----------------------------|--|
| Test Equipment             | Manufacturer    | Model No.        | Serial No.        | Cal.Date<br>(mm-dd-yy) | Cal.Due date<br>(mm-dd-yy) |  |
| 3m SAC                     | ETS             | RFD-100          | Q1984             | 04-14-2021             | 04-13-2024                 |  |
| Loop Antenna               | SCHWARZBECK     | FMZB 1519 B      | 1519B-044         | 03-07-2021             | 03-06-2022                 |  |
| BiConiLog Antenna          | SCHWARZBECK     | VULB9163         | 9163-1246         | 03-07-2021             | 03-06-2022                 |  |
| Horn Antenna               | SCHWARZBECK     | BBHA9120D        | 912D-916          | 03-07-2021             | 03-06-2022                 |  |
| Broad-Band Horn<br>Antenna | SCHWARZBECK     | BBHA9170         | 1067              | 04-02-2021             | 04-01-2022                 |  |
| EMI Test Receiver          | Rohde & Schwarz | ESRP7            | 101070            | 03-03-2021             | 03-02-2022                 |  |
| Spectrum analyzer          | Rohde & Schwarz | FSP30            | 101454            | 03-03-2021             | 03-02-2022                 |  |
| Spectrum Analyzer          | Keysight        | N9010B           | MY60240202        | 11-27-2020             | 11-26-2021                 |  |
| Spectrum analyzer          | Keysight        | N9010B           | MY60240202        | 11-27-2020             | 11-26-2021                 |  |
| Low Pre-amplifier          | SCHWARZBECK     | BBV9743B         | 00305             | 03-07-2021             | 03-06-2022                 |  |
| High Pre-amplifier         | SKET            | LNPA_0118G-50    | MF280208233       | 03-07-2021             | 03-06-2022                 |  |
| Cable                      | Qualwave        | JYT3M-1G-NN-8M   | JYT3M-1           | 03-07-2021             | 03-06-2022                 |  |
| Cable                      | Qualwave        | JYT3M-18G-NN-8M  | JYT3M-2           | 03-07-2021             | 03-06-2022                 |  |
| Cable                      | Qualwave        | JYT3M-1G-BB-5M   | JYT3M-3           | 03-07-2021             | 03-06-2022                 |  |
| Cable                      | Bost            | JYT3M-40G-SS-8M  | JYT3M-4           | 04-02-2021             | 04-01-2022                 |  |
| EMI Test Software          | Tonscend        | TS+              |                   | Version:3.0.0.1        |                            |  |
| 10m SAC                    | ETS             | RFSD-100-F/A     | Q2005             | 04-28-2021             | 04-27-2024                 |  |
| BiConiLog Antenna          | SCHWARZBECK     | VULB 9168        | 1249              | 04-02-2021             | 04-01-2022                 |  |
| BiConiLog Antenna          | SCHWARZBECK     | VULB 9168        | 1250              | 04-02-2021             | 04-01-2022                 |  |
| EMI Test Receiver          | R&S             | ESR 3            | 102800            | 04-08-2021             | 04-07-2022                 |  |
| EMI Test Receiver          | R&S             | ESR 3            | 102802            | 04-08-2021             | 04-07-2022                 |  |
| Low Pre-amplifier          | Bost            | LNA 0920N        | 2016              | 04-06-2021             | 04-05-2022                 |  |
| Low Pre-amplifier          | Bost            | LNA 0920N        | 2019              | 04-06-2021             | 04-05-2022                 |  |
| Cable                      | Bost            | JYT10M-1G-NN-10M | JYT10M-1          | 04-02-2021             | 04-01-2022                 |  |
| Cable                      | Bost            | JYT10M-1G-NN-10M | JYT10M-2          | 04-02-2021             | 04-01-2022                 |  |
| Test Software              | R&S             | EMC32            | Version: 10.50.40 |                        | 0                          |  |

| Conducted Emission: |                 |                |                    |                         |                             |  |
|---------------------|-----------------|----------------|--------------------|-------------------------|-----------------------------|--|
| Test Equipment      | Manufacturer    | Model No.      | Serial No.         | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |
| EMI Test Receiver   | Rohde & Schwarz | ESCI 3         | 101189             | 03-03-2021              | 03-02-2022                  |  |
| LISN                | Rohde & Schwarz | ENV432         | 101602             | 04-06-2021              | 04-05-2022                  |  |
| LISN                | Rohde & Schwarz | ESH3-Z5        | 843862/010         | 06-18-2020              | 06-17-2022                  |  |
| RF Switch           | TOP PRECISION   | RSU0301        | N/A                | 03-03-2021              | 03-02-2022                  |  |
| Cable               | Bost            | JYTCE-1G-NN-2M | JYTCE-1            | 03-03-2021              | 03-02-2022                  |  |
| EMI Test Software   | AUDIX           | E3             | Version: 6.110919b |                         |                             |  |

| Conducted method:       |                 |            |             |                         |                             |  |
|-------------------------|-----------------|------------|-------------|-------------------------|-----------------------------|--|
| Test Equipment          | Manufacturer    | Model No.  | Serial No.  | Cal. Date<br>(mm-dd-yy) | Cal. Due date<br>(mm-dd-yy) |  |
| Spectrum Analyzer       | Keysight        | N9010B     | MY60240202  | 11-27-2020              | 11-26-2021                  |  |
| Vector Signal Generator | Keysight        | N5182B     | MY59101009  | 11-27-2020              | 11-26-2021                  |  |
| Analog Signal Generator | Keysight        | N5173B     | MY59100765  | 11-27-2020              | 11-26-2021                  |  |
| Power Detector Box      | MWRF-test       | MW100-PSB  | MW201020JYT | 11-27-2020              | 11-26-2021                  |  |
| Simulated Station       | Rohde & Schwarz | CMW270     | 102335      | 11-27-2020              | 11-26-2021                  |  |
| RF Control Box          | MWRF-test       | MW100-RFCB | MW200927JYT | N/A                     | N/A                         |  |
| PDU                     | MWRF-test       | XY-G10     | N/A         | N/A                     | N/A                         |  |
| Test Software           | MWRF-tes        | MTS 8310   | ,           | Version: 2.0.0.0        |                             |  |
| DC Power Supply         | Keysight        | E3642A     | MY60296194  | 11-27-2020              | 11-26-2021                  |  |



Project No.: JYTSZE2108048



# 6 Test results and Measurement Data

## 6.1 Antenna requirement:

**Standard requirement:** FCC Part 15 C Section 15.203 /247(b)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or electrical connector is prohibited.

15.247(b) (4) requirement:

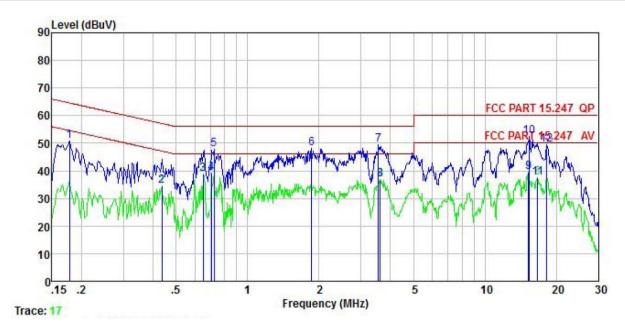
(4) The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

#### E.U.T Antenna:

The BLE antenna is an Internal antenna which cannot replace by end-user, the best-case gain of the antenna is 1.66dBi.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 8 of 42




# 6.2 Conducted Emission

| Test Frequency Range:  Class B  Receiver setup:  RBW=9kHz, VBW=30kHz  Limit:  Frequency range (MHz)  Quasi-peak Average (M-5-5-5-5-6-6-6-6-5-30 Average (M-5-30-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-6-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | gh a            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Receiver setup:    RBW=9kHz, VBW=30kHz   Limit (dBuV)     Quasi-peak   Average     0.15-0.5   66 to 56*   56 to 46      0.5-5   56   46      5-30   60   50      * Decreases with the logarithm of the frequency.    Test procedure:   1. The E.U.T and simulators are connected to the main power through line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment.   2. The peripheral devices are also connected to the main power through line impedance with 500h termination. (Please refer to the block diagram of the test setup at photographs).   3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | gh a            |
| Limit:    Frequency range (MHz)   Quasi-peak   Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | gh a            |
| Prequency range (MHz)  Quasi-peak  O.15-0.5  66 to 56*  0.5-5  56  46  5-30  * Decreases with the logarithm of the frequency.  1. The E.U.T and simulators are connected to the main power through line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment.  2. The peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices are also connected to the main power through the peripheral devices | gh a            |
| 1. The E.U.T and simulators are connected to the main power throughine impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment.  2. The peripheral devices are also connected to the main power throughing impedance with 500h termination. (Please refer to the block diagram of the test setup as photographs).  3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | gh a            |
| Test procedure:  1. The E.U.T and simulators are connected to the main power through line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment.  2. The peripheral devices are also connected to the main power through line impedance of the measuring equipment.  2. The peripheral devices are also connected to the main power through line impedance with 500h termination. (Please refer to the block diagram of the test setup as photographs).  3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | igh a<br>ough a |
| Test procedure:  1. The E.U.T and simulators are connected to the main power through line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment.  2. The peripheral devices are also connected to the main power through the LISN that provides a 500hm/50uH coupling impedance with 500h termination. (Please refer to the block diagram of the test setup and photographs).  3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ough a          |
| * Decreases with the logarithm of the frequency.  1. The E.U.T and simulators are connected to the main power through line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment.  2. The peripheral devices are also connected to the main power through the LISN that provides a 500hm/50uH coupling impedance with 500h termination. (Please refer to the block diagram of the test setup as photographs).  3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ough a          |
| Test procedure:  1. The E.U.T and simulators are connected to the main power through line impedance stabilization network (L.I.S.N.), which provides a 500hm/50uH coupling impedance for the measuring equipment.  2. The peripheral devices are also connected to the main power through the LISN that provides a 500hm/50uH coupling impedance with 500h termination. (Please refer to the block diagram of the test setup as photographs).  3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ough a          |
| line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment.  2. The peripheral devices are also connected to the main power through LISN that provides a 50ohm/50uH coupling impedance with 50oh termination. (Please refer to the block diagram of the test setup as photographs).  3. Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ough a          |
| according to ANSI C63.10(latest version) on conducted measurer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | anged           |
| Test setup: Reference Plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
| AUX Equipment E.U.T  Remark E.U.T: Equipment Under Test LISN Line Impedence Stabilization Network Test table height=0.8m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                 |
| Test Instruments: Refer to section 5.9 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |
| Test mode: Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |
| Test results: Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |

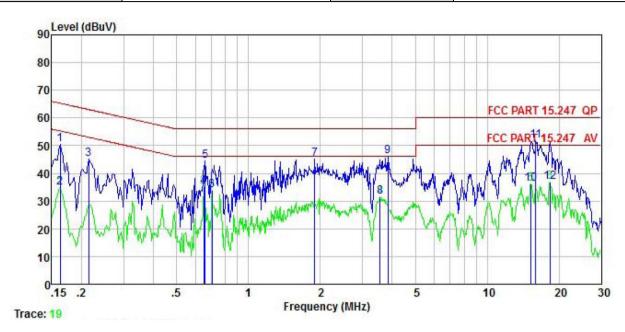


#### **Measurement Data:**

| Product name:   | Tablet           | Product model: | Elite OctaPlus        |
|-----------------|------------------|----------------|-----------------------|
| Test by:        | Mike             | Test mode:     | BLE Tx mode           |
| Test frequency: | 150 kHz ~ 30 MHz | Phase:         | Line                  |
| Test voltage:   | AC 120 V/60 Hz   | Environment:   | Temp: 22.5℃ Huni: 55% |



|                                           | Freq   | Read<br>Level | LISN<br>Factor | Aux<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|-------------------------------------------|--------|---------------|----------------|---------------|---------------|-------|---------------|---------------|---------|
| _                                         | MHz    | dBu∜          | <u>dB</u>      | <u>d</u> B    | d <u>B</u>    | dBu∀  | dBu∜          | dB            |         |
| 1                                         | 0.178  | 40.84         | 10.23          | -0.12         | 0.01          | 50.96 | 64.59         | -13.63        | QP      |
| 2                                         | 0.435  | 24.18         | 10.28          | 0.13          | 0.03          | 34.62 | 47.15         | -12.53        | Average |
| 3                                         | 0.651  | 28.83         | 10.30          | -0.39         | 0.03          | 38.77 | 46.00         | -7.23         | Average |
| 4                                         | 0.705  | 29.32         | 10.30          | -0.38         | 0.03          | 39.27 | 46.00         | -6.73         | Average |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.724  | 37.71         | 10.30          | -0.32         | 0.03          | 47.72 | 56.00         | -8.28         | QP      |
| 6                                         | 1.858  | 37.93         | 10.33          | -0.24         | 0.19          | 48.21 | 56.00         | -7.79         | QP      |
| 7                                         | 3.565  | 39.13         | 10.37          | -0.11         | 0.08          | 49.47 | 56.00         | -6.53         | QP      |
| 8                                         | 3.623  | 26.40         | 10.38          | -0.10         | 0.08          | 36.76 | 46.00         | -9.24         | Average |
| 9                                         | 15.226 | 24.94         | 10.77          | 3.53          | 0.14          | 39.38 | 50.00         |               | Average |
| 10                                        | 15.388 | 38.06         | 10.78          | 3.38          | 0.15          | 52.37 | 60.00         | -7.63         |         |
| 11                                        | 16.661 | 24.02         | 10.82          | 2.68          | 0.16          | 37.68 | 50.00         | -12.32        | Average |
| 12                                        | 18.232 | 36.71         | 10.87          | 1.74          | 0.15          | 49.47 |               | -10.53        |         |


#### Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.

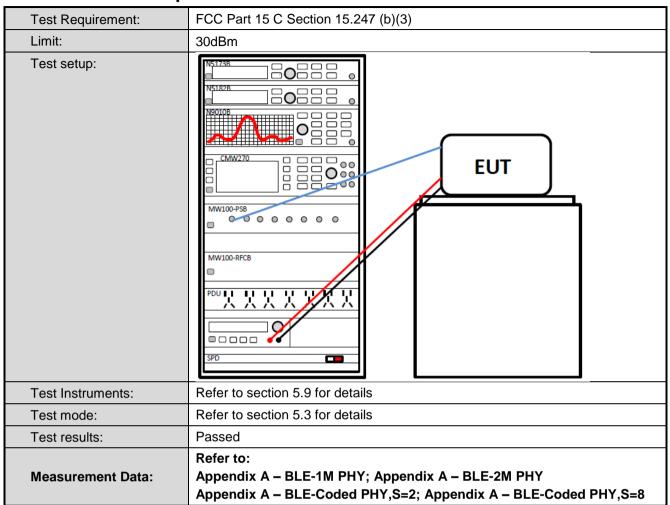
Xinqiao Street, Bao'an District, Shenzhen, Guangdong, People's Republic of China. Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



| Product name:   | Tablet           | Product model: | Elite OctaPlus        |
|-----------------|------------------|----------------|-----------------------|
| Test by:        | Mike             | Test mode:     | BLE Tx mode           |
| Test frequency: | 150 kHz ~ 30 MHz | Phase:         | Neutral               |
| Test voltage:   | AC 120 V/60 Hz   | Environment:   | Temp: 22.5℃ Huni: 55% |



|                                           | Freq   | Read<br>Level | LISN<br>Factor | Aux<br>Factor | Cable<br>Loss | Level | Limit<br>Line | Over<br>Limit | Remark  |
|-------------------------------------------|--------|---------------|----------------|---------------|---------------|-------|---------------|---------------|---------|
|                                           | MHz    | dBu∀          | dB             | ₫B            | ₫B            | dBu₹  | ₫₿u₹          | <u>dB</u>     |         |
| 1                                         | 0.162  | 40.36         | 10.20          | 0.01          | 0.01          | 50.58 |               | -14.76        |         |
| 2                                         | 0.162  | 24.68         | 10.20          | 0.01          | 0.01          | 34.90 | 55.34         | -20.44        | Average |
| 3                                         | 0.214  | 34.97         | 10.23          | 0.00          | 0.03          | 45.23 | 63.05         | -17.82        | QP      |
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 | 0.651  | 24.79         | 10.30          | 0.04          | 0.03          | 35.16 | 46.00         | -10.84        | Average |
| 5                                         | 0.658  | 34.11         | 10.30          | 0.04          | 0.03          | 44.48 | 56.00         | -11.52        | QP      |
| 6                                         | 0.705  | 23.40         | 10.30          | 0.04          | 0.03          | 33.77 | 46.00         | -12.23        | Average |
| 7                                         | 1.898  | 34.46         | 10.32          | 0.16          | 0.20          | 45.14 | 56.00         | -10.86        | QP      |
| 8                                         | 3.565  | 20.60         | 10.36          | 0.43          | 0.08          | 31.47 | 46.00         | -14.53        | Average |
| 9                                         | 3.840  | 35.09         | 10.37          | 0.49          | 0.08          | 46.03 | 56.00         | -9.97         | QP      |
| 10                                        | 15.226 | 22.33         | 10.73          | 3.04          | 0.14          | 36.24 | 50.00         | -13.76        | Average |
| 11                                        | 15.970 | 38.25         | 10.76          | 2.54          | 0.16          | 51.71 | 60.00         |               |         |
| 12                                        | 18.328 | 24.90         | 10.83          | 1.14          | 0.15          | 37.02 | 50.00         | -12.98        | Average |

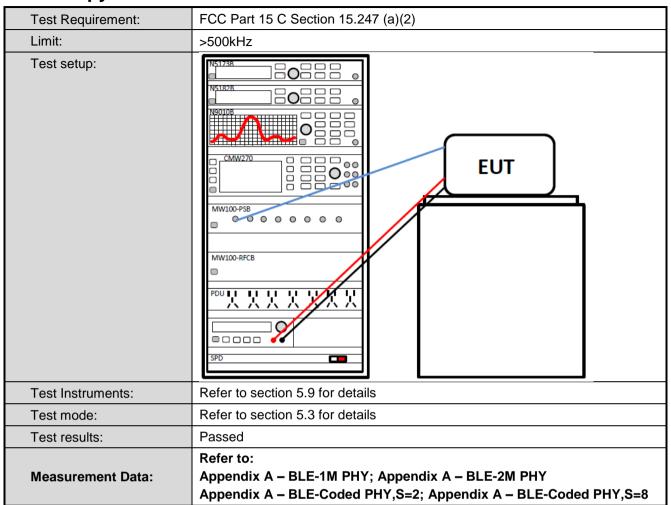

#### Notes:

- 1. An initial pre-scan was performed on the line and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Aux Factor + Cable Loss.





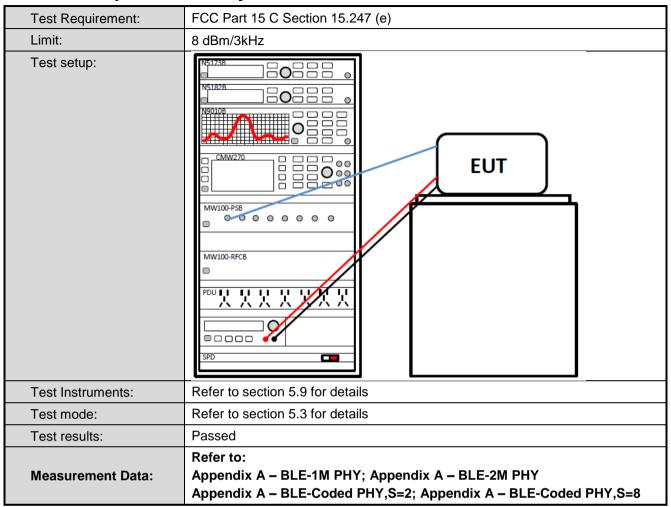
# **6.3 Conducted Output Power**




Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366






## 6.4 Occupy Bandwidth







# 6.5 Power Spectral Density





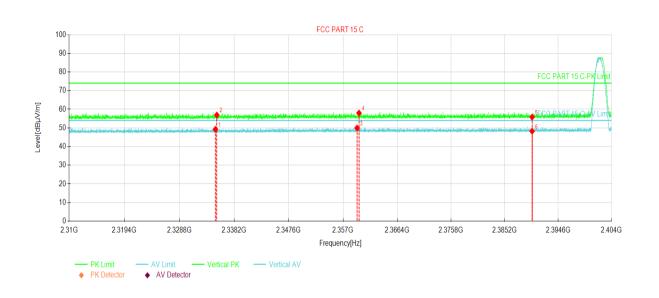
# 6.6 Band Edge

## 6.6.1 Conducted Emission Method

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |  |  |  |  |  |
| Test setup:       | NS11738 NS1182R NS1182R NS1182R NS100PSB NMW100-PSB NMW100-PSB NMW100-RFCB NMW100-RFCB NMW100-RFCB NMW100-RFCB                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| Test Instruments: | Refer to section 5.9 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| Measurement Data: | Refer to: Appendix A – BLE-1M PHY; Appendix A – BLE-2M PHY Appendix A – BLE-Coded PHY,S=2; Appendix A – BLE-Coded PHY,S=8                                                                                                                                                                                                                                                               |  |  |  |  |  |

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366




#### **Radiated Emission Method** 6.6.2

| Test Requirement:     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FCC Part 15 C Section 15.205 and 15.209 |                                 |               |                            |  |  |  |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|---------------------------------|---------------|----------------------------|--|--|--|
| Test Frequency Range: | 2310 MHz to 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2390 MHz and                            | 2483.5MHz to 2                  | 2500 MHz      |                            |  |  |  |
| Test Distance:        | 3m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3m                                      |                                 |               |                            |  |  |  |
| Receiver setup:       | Frequency Detector RBW VBW Rei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                 |               |                            |  |  |  |
| ·                     | Above 1GHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Peak                                    | 1MHz                            | 3MHz          | Peak Value                 |  |  |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | RMS   1MHz   3MHz   Average value       |                                 |               |                            |  |  |  |
| Limit:                | Frequer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ncy Liı                                 | mit (dBuV/m @3                  |               | Remark                     |  |  |  |
|                       | Above 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | GHz —                                   | 54.00<br>74.00                  |               | verage Value<br>Peak Value |  |  |  |
| Test Procedure:       | <ol> <li>The EUT was placed on the top of a rotating table 1.5 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.</li> <li>The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.</li> <li>The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.</li> <li>For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.</li> <li>The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.</li> <li>If the emission level of the EUT in peak mode was 10 dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10 dB margin would be re-tested one by one using peak, quasipeak or average method as specified and then reported in a data sheet.</li> </ol> |                                         |                                 |               |                            |  |  |  |
| Test setup:           | AE (T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Test Receiver                           | Horn Antenna 3m Reference Plane | Antenna Tower |                            |  |  |  |
| Test Instruments:     | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Refer to section 5.9 for details        |                                 |               |                            |  |  |  |
| Test mode:            | Refer to section                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | on 5.3 for detai                        | ls                              |               |                            |  |  |  |
| Test results:         | Passed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                 |               |                            |  |  |  |
|                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         |                                 |               |                            |  |  |  |

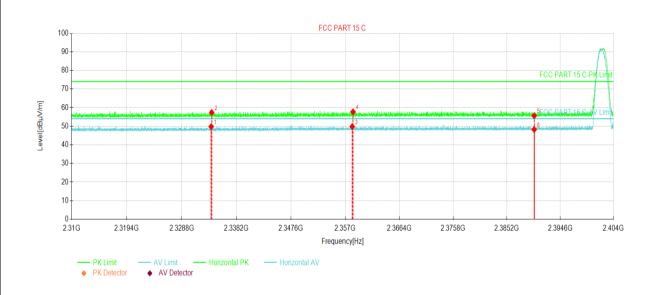


## PHY: 1MHz

| Product Name: | Tablet         | Product Model: | Elite OctaPlus      |
|---------------|----------------|----------------|---------------------|
| Test By:      | Mike           | Test mode:     | BLE Tx mode         |
| Test Channel: | Lowest channel | Polarization:  | Vertical            |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24℃ Huni: 57% |



| NO.∂ | Freq.⊬<br>[MHz]∂ | Reading√<br>[dBµV/m]∞ | Level.<br>[dBµV/m]. | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]∂ | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity∉ |
|------|------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-----------|
| 1₽   | 2334.98          | 42.35₽                | 49.25₽              | 6.90₽            | 54.00₽              | 4.75₽            | AV₽    | Vertical₽ |
| 2↩   | 2335.23          | 50.00₽                | 56.90₽              | 6.90₽            | 74.00₽              | 17.10₽           | PK₽    | Vertical₽ |
| 3₽   | 2359.43          | 42.96₽                | 49.94₽              | 6.98₽            | 54.00₽              | 4.06₽            | AV₽    | Vertical₽ |
| 4₽   | 2359.76          | 50.98₽                | 57.96₽              | 6.98₽            | 74.00₽              | 16.04₽           | PK₽    | Vertical₽ |
| 5₽   | 2390.00          | 48.74₽                | 55.82₽              | 7.08₽            | 74.00₽              | 18.18₽           | PK₽    | Vertical₽ |
| 6₽   | 2390.00          | <b>41.18</b> ₽        | 48.26₽              | 7.08₽            | 54.00₽              | 5.74₽            | AV₽    | Vertical₽ |


#### Remark:

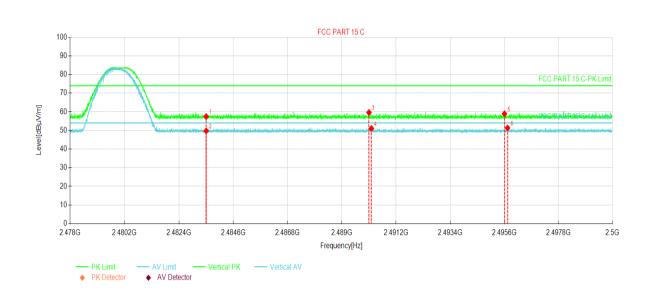
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 17 of 42



| Product Name: | Tablet         | Product Model: | Elite OctaPlus      |
|---------------|----------------|----------------|---------------------|
| Test By:      | Mike           | Test mode:     | BLE Tx mode         |
| Test Channel: | Lowest channel | Polarization:  | Horizontal          |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24℃ Huni: 57% |




| NO. | Freq.⊬<br>[MHz]∂ | Reading√<br>[dBµV/m]∞ | Level.<br>[dBµV/m]. | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]⊬ | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity∂   |
|-----|------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-------------|
| 1₽  | 2333.85          | 42.89₽                | 49.78₽              | 6.89₽            | 54.00₽              | 4.22₽            | AV₽    | Horizontal₽ |
| 2₽  | 2333.94          | 50.49₽                | 57.38₽              | 6.89₽            | 74.00₽              | 16.62₽           | PK₽    | Horizontal₽ |
| 3₽  | 2358.21          | 42.82₽                | 49.79₽              | 6.97₽            | 54.00₽              | 4.21₽            | AV₽    | Horizontal₽ |
| 4₽  | 2358.34          | 50.77₽                | 57.74₽              | 6.97₽            | 74.00₽              | 16.26₽           | PK₽    | Horizontal₽ |
| 5₽  | 2390.00          | 48.54₽                | 55.62₽              | 7.08₽            | 74.00₽              | 18.38₽           | PK₽    | Horizontal₽ |
| 6₽  | 2390.00          | 41.17₽                | 48.25₽              | 7.08₽            | 54.00₽              | 5.75₽            | AV₽    | Horizontal₽ |

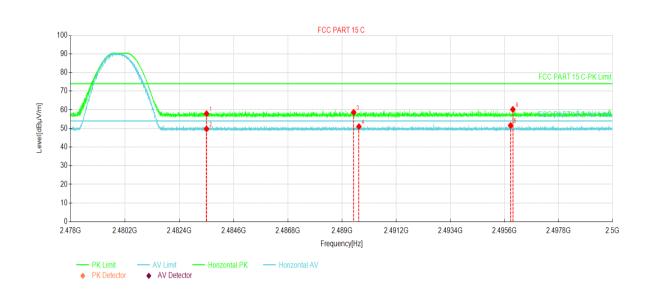
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 18 of 42



| Product Name: | Tablet          | Product Model: | Elite OctaPlus      |
|---------------|-----------------|----------------|---------------------|
| Test By:      | Mike            | Test mode:     | BLE Tx mode         |
| Test Channel: | Highest channel | Polarization:  | Vertical            |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24℃ Huni: 57% |




| NO.₽ | Freq.4<br>[MHz]4 | Reading√<br>[dBµV/m]∞ | Level.<br>[dBµV/m]. | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]∂ | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity  |
|------|------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-----------|
| 1₽   | 2483.50          | 49.73₽                | 57.42₽              | 7.69₽            | 74.00₽              | 16.58₽           | PK₽    | Vertical₽ |
| 2₽   | 2483.50          | 42.06₽                | 49.75₽              | 7.69₽            | 54.00₽              | 4.25₽            | AV₽    | Vertical₽ |
| 3₽   | 2490.09          | 51.86₽                | 59.59₽              | 7.73₽            | 74.00₽              | 14.41₽           | PK₽    | Vertical₽ |
| 4₽   | 2490.19          | 43.29₽                | 51.02₽              | 7.73₽            | 54.00₽              | 2.98₽            | AV₽    | Vertical₽ |
| 5₽   | 2495.60          | 51.16₽                | 58.93₽              | 7.77₽            | 74.00₽              | 15.07₽           | PK₽    | Vertical₽ |
| 6₽   | 2495.72          | 43.54₽                | 51.31₽              | 7.77₽            | 54.00₽              | 2.69₽            | AV₽    | Vertical₽ |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

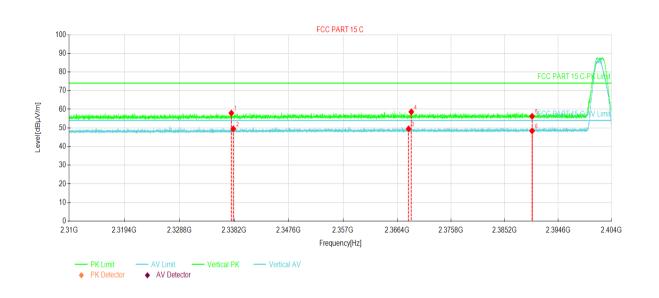
Page 19 of 42



| Product Name: | Tablet          | Product Model: | Elite OctaPlus       |
|---------------|-----------------|----------------|----------------------|
| Test By:      | Mike            | Test mode:     | BLE Tx mode          |
| Test Channel: | Highest channel | Polarization:  | Horizontal           |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24°C Huni: 57% |



| NO.₽ | Freq.₽<br>[MHz]₽ | Reading√<br>[dBµV/m]∞ | Level.<br>[dBµV/m]. | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]∂ | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity∂   |
|------|------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-------------|
| 1₽   | 2483.50          | 50.23₽                | 57.92₽              | 7.69₽            | 74.00₽              | 16.08₽           | PK₽    | Horizontal₽ |
| 2₽   | 2483.50          | 42.05₽                | 49.74₽              | 7.69₽            | 54.00₽              | 4.26₽            | AV₽    | Horizontal₽ |
| 3₽   | 2489.46          | 50.91₽                | 58.64₽              | 7.73₽            | 74.00₽              | 15.36₽           | PK₽    | Horizontal₽ |
| 4₽   | 2489.68          | 43.24₽                | 50.97₽              | 7.73₽            | 54.00₽              | 3.03₽            | AV₽    | Horizontal₽ |
| 5₽   | 2495.84          | 43.80₽                | 51.57₽              | 7.77₽            | 54.00₽              | 2.43₽            | AV₽    | Horizontal₽ |
| 6₽   | 2495.93          | 52.41₽                | 60.18₽              | 7.77₽            | 74.00₽              | 13.82₽           | PK₽    | Horizontal₽ |


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 20 of 42

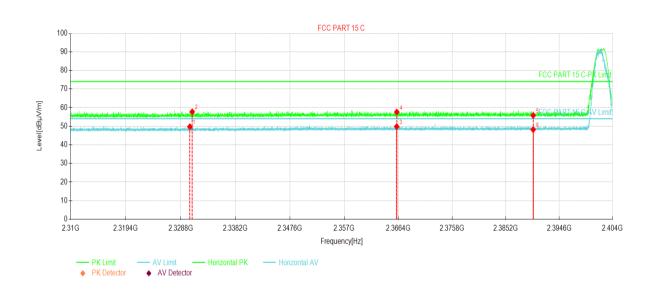


## PHY: 2MHz

| Product Name: | Tablet         | Product Model: | Elite OctaPlus       |
|---------------|----------------|----------------|----------------------|
| Test By:      | Mike           | Test mode:     | BLE Tx mode          |
| Test Channel: | Lowest channel | Polarization:  | Vertical             |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24°C Huni: 57% |



| NO.₽ | Freq.⊬<br>[MHz]∂ | Reading√<br>[dBµV/m]∞ | Level⊬<br>[dBµV/m]₽ | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]⊬ | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity∉ |
|------|------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-----------|
| 1₽   | 2337.72          | 51.06₽                | 57.96₽              | 6.90₽            | 74.00₽              | 16.04₽           | PK₽    | Vertical₽ |
| 2₽   | 2338.06          | 42.60₽                | 49.51₽              | 6.91₽            | 54.00₽              | 4.49₽            | AV₽    | Vertical₽ |
| 3₽   | 2368.39          | 42.47₽                | 49.48₽              | 7.01₽            | 54.00₽              | 4.52₽            | AV₽    | Vertical₽ |
| 4₽   | 2368.86          | 51.61₽                | 58.62₽              | 7.01₽            | 74.00₽              | 15.38₽           | PK₽    | Vertical₽ |
| 5₽   | 2390.00          | 49.15₽                | 56.23₽              | 7.08₽            | 74.00₽              | 17.77₽           | PK₽    | Vertical₽ |
| 6₽   | 2390.00          | 41.32₽                | 48.40₽              | 7.08₽            | 54.00₽              | 5.60₽            | AV₽    | Vertical₽ |


## Remark:

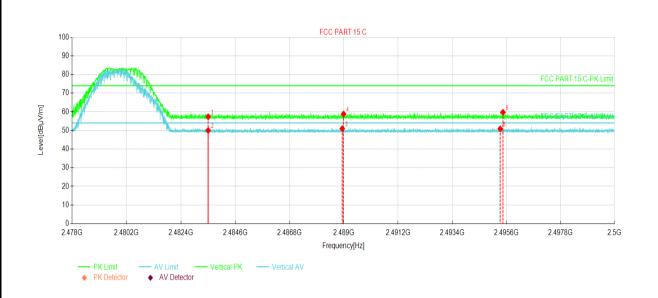
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 21 of 42



| Product Name: | Tablet         | Product Model: | Elite OctaPlus       |
|---------------|----------------|----------------|----------------------|
| Test By:      | Mike           | Test mode:     | BLE Tx mode          |
| Test Channel: | Lowest channel | Polarization:  | Horizontal           |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24°C Huni: 57% |



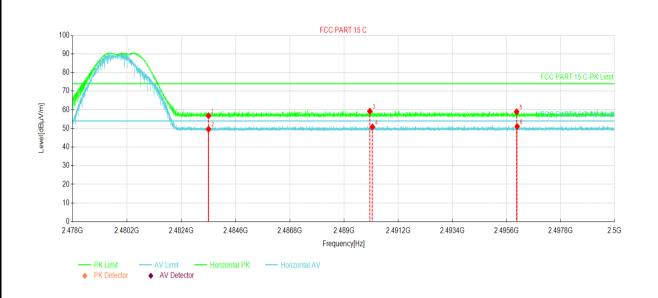

| NO.₽ | Freq.⊬<br>[MHz]∂ | Reading√<br>[dBµV/m]∞ | Level⊬<br>[dBµV/m]₽ | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]∂ | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity∉   |
|------|------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-------------|
| 1₽   | 2330.37          | 42.83₽                | 49.71₽              | 6.88₽            | 54.00₽              | 4.29₽            | AV₽    | Horizontal₽ |
| 2↩   | 2330.77          | 50.86₽                | 57.74₽              | 6.88₽            | 74.00₽              | 16.26₽           | PK₽    | Horizontal₽ |
| 3₽   | 2366.11          | 42.80₽                | 49.80₽              | 7.00₽            | 54.00₽              | 4.20₽            | AV₽    | Horizontal₽ |
| 4₽   | 2366.13          | 50.62₽                | 57.62₽              | 7.00₽            | 74.00₽              | 16.38₽           | PK₽    | Horizontal₽ |
| 5₽   | 2390.00          | 48.70₽                | 55.78₽              | 7.08₽            | 74.00₽              | 18.22₽           | PK₽    | Horizontal₽ |
| 6₽   | 2390.00          | 41.12₽                | 48.20₽              | 7.08₽            | 54.00₽              | 5.80₽            | AV₽    | Horizontal₽ |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 22 of 42



| Product Name: | Tablet          | Product Model: | Elite OctaPlus      |
|---------------|-----------------|----------------|---------------------|
| Test By:      | Mike            | Test mode:     | BLE Tx mode         |
| Test Channel: | Highest channel | Polarization:  | Vertical            |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24℃ Huni: 57% |




| NO.₽ | Freq.⊬<br>[MHz]∂ | Reading√<br>[dBµV/m]∞ | Level⊬<br>[dBµV/m]₄ | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]⊬ | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity₽ |
|------|------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-----------|
| 1₽   | 2483.50          | 49.64₽                | 57.33₽              | 7.69₽            | 74.00₽              | 16.67₽           | PK₽    | Vertical₽ |
| 2↩   | 2483.50          | 42.29₽                | 49.98₽              | 7.69₽            | 54.00₽              | 4.02₽            | AV₽    | Vertical₽ |
| 3₽   | 2488.93          | 43.22₽                | 50.94₽              | 7.72₽            | 54.00₽              | 3.06₽            | AV₽    | Vertical₽ |
| 4₽   | 2488.98          | 51.04₽                | 58.76₽              | 7.72₽            | 74.00₽              | 15.24₽           | PK₽    | Vertical₽ |
| 5₽   | 2495.34          | 43.05₽                | 50.82₽              | 7.77₽            | 54.00₽              | 3.18₽            | AV₽    | Vertical₽ |
| 6↩   | 2495.46          | 51.95₽                | 59.72₽              | 7.77₽            | 74.00₽              | 14.28₽           | PK₽    | Vertical₽ |

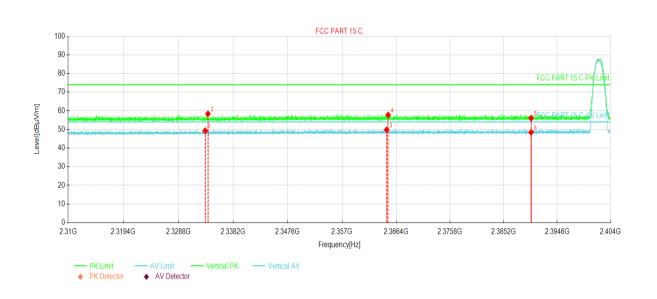
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



| Product Name: | Tablet          | Product Model: | Elite OctaPlus       |
|---------------|-----------------|----------------|----------------------|
| Test By:      | Mike            | Test mode:     | BLE Tx mode          |
| Test Channel: | Highest channel | Polarization:  | Horizontal           |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24°C Huni: 57% |



| NO. | Freq.⊌<br>[MHz]∂ | Reading⊮<br>[dBµV/m]⊮ | Level<br>[dBµV/m]∂ | Factor⊬<br>[dB]⊮ | Limit⊬<br>[dBµV/m]∂ | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity₀   |
|-----|------------------|-----------------------|--------------------|------------------|---------------------|------------------|--------|-------------|
| 1₽  | 2483.50          | 49.12₽                | 56.81₽             | 7.69₽            | 74.00₽              | 17.19₽           | PK₽    | Horizontal₽ |
| 2↩  | 2483.50          | 41.91₽                | 49.60₽             | 7.69₽            | 54.00₽              | 4.40₽            | AV₽    | Horizontal₽ |
| 3₽  | 2490.04          | 51.49₽                | 59.22₽             | 7.73₽            | 74.00₽              | 14.78₽           | PK₽    | Horizontal₽ |
| 4₽  | 2490.14          | 43.06₽                | 50.79₽             | 7.73₽            | 54.00₽              | 3.21₽            | AV₽    | Horizontal₽ |
| 5₽  | 2496.01          | 51.16₽                | 58.93₽             | 7.77₽            | 74.00₽              | 15.07₽           | PK₽    | Horizontal₽ |
| 6₽  | 2496.03          | 43.27₽                | 51.04₽             | 7.77₽            | 54.00₽              | 2.96₽            | AV₽    | Horizontal₽ |


- Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 24 of 42

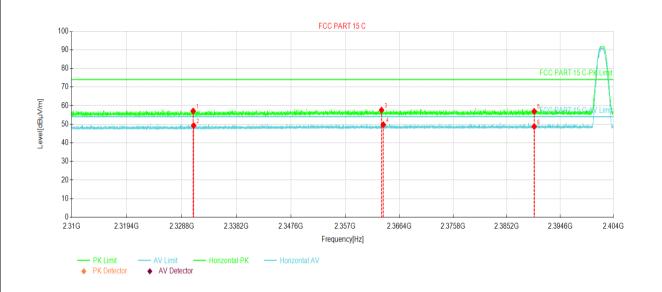


## Coded PHY, S=2

| Product Name: | Tablet         | Product Model: | Elite OctaPlus       |
|---------------|----------------|----------------|----------------------|
| Test By:      | Mike           | Test mode:     | BLE Tx mode          |
| Test Channel: | Lowest channel | Polarization:  | Vertical             |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24°C Huni: 57% |



| NO. | Freq.₽<br>[MHz]₽ | Reading√<br>[dBµV/m]√ | Level<br>[dBµV/m]∘ | Factor⊌<br>[dB]⊌ | Limit.<br>[dBµV/m]. | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity∉  |
|-----|------------------|-----------------------|--------------------|------------------|---------------------|------------------|--------|------------|
| 1₽  | 2333.39          | 42.39₽                | 49.28₽             | 6.89₽            | 54.00₽              | 4.72₽            | AV₽    | Vertical₽  |
| 2↩  | 2333.87          | 51.46₽                | 58.35₽             | 6.89₽            | 74.00₽              | 15.65₽           | PK₽    | Vertical₽  |
| 3₽  | 2364.76          | 42.80₽                | 49.79₽             | 6.99₽            | 54.00₽              | 4.21₽            | AV₽    | Vertical₽  |
| 4₽  | 2365.00          | 50.76₽                | 57.75₽             | 6.99₽            | 74.00₽              | 16.25₽           | PK₽    | Vertical₽  |
| 5₽  | 2390.00          | 48.90₽                | 55.98₽             | 7.08₽            | 74.00₽              | 18.02₽           | PK₽    | Vertical₽  |
| 6₄□ | 2390.00          | 41.36₽                | 48.44₽             | 7.08₽            | 54.00₽              | 5.56₽            | AV₽    | Vertical₽⊸ |


#### Remark:

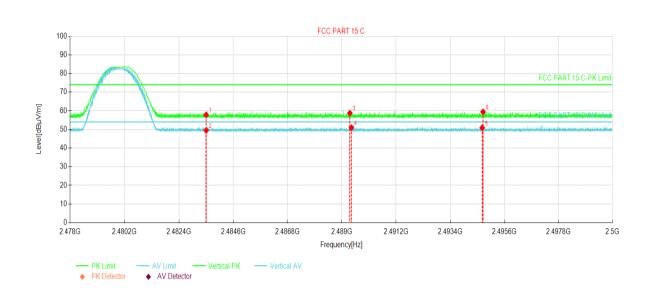
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366



| Product Name: | Tablet         | Product Model: | Elite OctaPlus      |
|---------------|----------------|----------------|---------------------|
| Test By:      | Mike           | Test mode:     | BLE Tx mode         |
| Test Channel: | Lowest channel | Polarization:  | Horizontal          |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24℃ Huni: 57% |




| NO.₽ | Freq.⊬<br>[MHz]∂ | Reading√<br>[dBµV/m]∞ | Level⊬<br>[dBµV/m]₽ | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]⊬ | Margin⊬<br>[dB]∉ | Trace₽ | Polarity∂   |
|------|------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-------------|
| 1₽   | 2330.76          | 50.21₽                | 57.09₽              | 6.88₽            | 74.00₽              | 16.91₽           | PK₽    | Horizontal₽ |
| 2₄೨  | 2330.84          | 42.39₽                | 49.27₽              | 6.88₽            | 54.00₽              | 4.73₽            | AV₽    | Horizontal₽ |
| 3₽   | 2363.30          | 50.59₽                | 57.58₽              | 6.99₽            | 74.00₽              | 16.42₽           | PK₽    | Horizontal₽ |
| 4₽   | 2363.61          | 42.76₽                | 49.75₽              | 6.99₽            | 54.00₽              | 4.25₽            | AV₽    | Horizontal₽ |
| 5₽   | 2390.00          | 49.82₽                | 56.90₽              | 7.08₽            | 74.00₽              | 17.10₽           | PK₽    | Horizontal₽ |
| 6₊□  | 2390.00          | 41.66₽                | 48.74₽              | 7.08₽            | 54.00₽              | 5.26₽            | AV₽    | Horizontal₽ |

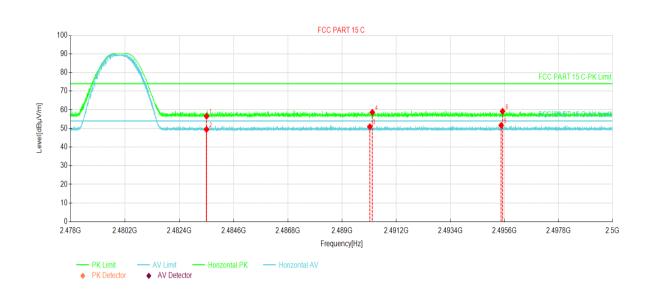
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 26 of 42



| Product Name: | Tablet          | Product Model: | Elite OctaPlus      |
|---------------|-----------------|----------------|---------------------|
| Test By:      | Mike            | Test mode:     | BLE Tx mode         |
| Test Channel: | Highest channel | Polarization:  | Vertical            |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24℃ Huni: 57% |




| NO.₽ | Freq.↓<br>[MHz]∂ | Reading√<br>[dBµV/m]∞ | Level⊬<br>[dBµV/m]₽ | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]⊬ | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity∉ |
|------|------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-----------|
| 1₽   | 2483.50          | 50.09₽                | 57.78₽              | 7.69₽            | 74.00₽              | 16.22₽           | PK₽    | Vertical₽ |
| 2↩   | 2483.50          | 41.78₽                | 49.47₽              | 7.69₽            | 54.00₽              | 4.53₽            | AV₽    | Vertical₽ |
| 3₽   | 2489.32          | 51.00₽                | 58.73₽              | 7.73₽            | 74.00₽              | 15.27₽           | PK₽    | Vertical₽ |
| 4₽   | 2489.38          | 43.26₽                | 50.99₽              | 7.73₽            | 54.00₽              | 3.01₽            | AV₽    | Vertical₽ |
| 5₽   | 2494.69          | 43.12₽                | 50.88₽              | 7.76₽            | 54.00₽              | 3.12₽            | AV₽    | Vertical₽ |
| 6₽   | 2494.73          | 51.66₽                | 59.42₽              | 7.76₽            | 74.00₽              | 14.58₽           | PK₽    | Vertical₽ |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

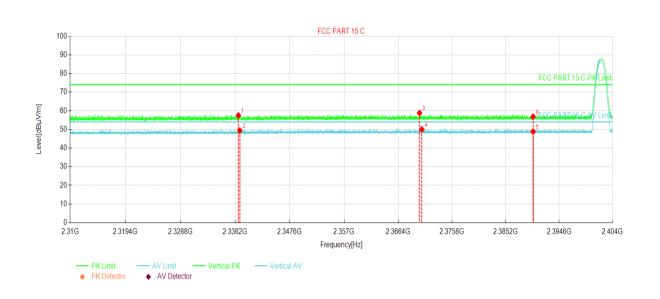
Page 27 of 42



| Product Name: | Tablet          | Product Model: | Elite OctaPlus       |
|---------------|-----------------|----------------|----------------------|
| Test By:      | Mike            | Test mode:     | BLE Tx mode          |
| Test Channel: | Highest channel | Polarization:  | Horizontal           |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24°C Huni: 57% |



| NO. | Freq.⊬<br>[MHz]∂ | Reading⊮<br>[dBµV/m]⊮ | Level⊬<br>[dBµV/m]₽ | Factor⊬<br>[dB]∉ | Limit⊬<br>[dBµV/m]⊬ | Margin⊬<br>[dB]∉ | Trace₽ | Polarity∂   |
|-----|------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-------------|
| 1₽  | 2483.50          | 48.88₽                | 56.57₽              | 7.69₽            | 74.00₽              | 17.43₽           | PK₽    | Horizontal₽ |
| 243 | 2483.50          | 41.78₽                | 49.47₽              | 7.69₽            | 54.00₽              | 4.53₽            | AV₽    | Horizontal₽ |
| 3₽  | 2490.12          | 43.17₽                | 50.90₽              | 7.73₽            | 54.00₽              | 3.10₽            | AV₽    | Horizontal₽ |
| 4₽  | 2490.22          | 50.90₽                | 58.63₽              | 7.73₽            | 74.00₽              | 15.37₽           | PK₽    | Horizontal₽ |
| 5₽  | 2495.46          | 43.87₽                | 51.64₽              | 7.77₽            | 54.00₽              | 2.36₽            | AV₽    | Horizontal₽ |
| 6₽  | 2495.52          | 51.46₽                | 59.23₽              | 7.77₽            | 74.00₽              | 14.77₽           | PK₽    | Horizontal₽ |


- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

. 66 Page 28 of 42

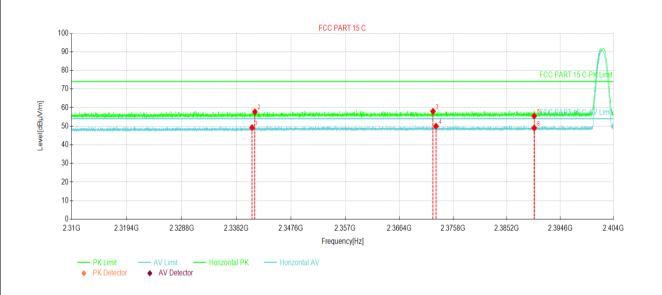


## Coded PHY, S=8

| Product Name: | Tablet         | Product Model: | Elite OctaPlus       |
|---------------|----------------|----------------|----------------------|
| Test By:      | Mike           | Test mode:     | BLE Tx mode          |
| Test Channel: | Lowest channel | Polarization:  | Vertical             |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24°C Huni: 57% |



| NO. | Freq.⊬<br>[MHz]∂ | Reading⊮<br>[dBµV/m]⊭ | Level<br>[dBµV/m]∘ | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]⊬ | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity∉ |
|-----|------------------|-----------------------|--------------------|------------------|---------------------|------------------|--------|-----------|
| 1₽  | 2338.76          | 50.59₽                | 57.50₽             | 6.91₽            | 74.00₽              | 16.50₽           | PK₽    | Vertical₽ |
| 2₽  | 2339.00          | 42.46₽                | 49.37₽             | 6.91₽            | 54.00₽              | 4.63₽            | AV₽    | Vertical₽ |
| 3₽  | 2370.12          | 51.80₽                | 58.81₽             | 7.01₽            | 74.00₽              | 15.19₽           | PK₽    | Vertical₽ |
| 4₽  | 2370.53          | 43.01₽                | 50.02₽             | 7.01₽            | 54.00₽              | 3.98₽            | AV₽    | Vertical₽ |
| 5₽  | 2390.00          | 41.77₽                | 48.85₽             | 7.08₽            | 54.00₽              | 5.15₽            | AV₽    | Vertical₽ |
| 6₽  | 2390.00          | 49.71₽                | 56.79₽             | 7.08₽            | 74.00₽              | 17.21₽           | PK₽    | Vertical₽ |


#### Remark:

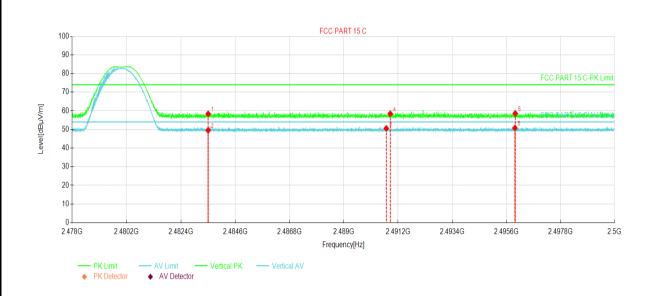
- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 29 of 42



| Product Name: | Tablet         | Product Model: | Elite OctaPlus      |
|---------------|----------------|----------------|---------------------|
| Test By:      | Mike           | Test mode:     | BLE Tx mode         |
| Test Channel: | Lowest channel | Polarization:  | Horizontal          |
| Test Voltage: | AC 120/60Hz    | Environment:   | Temp: 24℃ Huni: 57% |



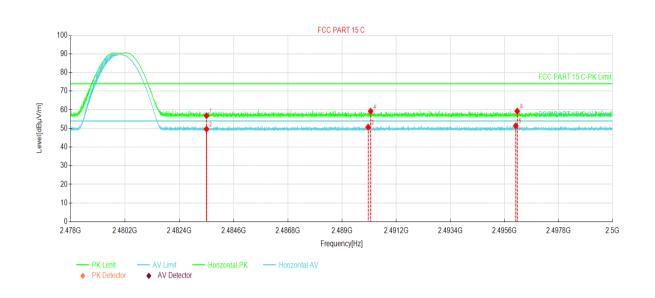

| NO. | Freq.⊬<br>[MHz]∂ | Reading√<br>[dBµV/m]∞ | Level⊬<br>[dBµV/m]⊬ | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]⊬ | Margin⊬<br>[dB]⊬ | Trace₽ | Polarity₽   |
|-----|------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-------------|
| 1₽  | 2340.89          | 42.35₽                | 49.26₽              | 6.91₽            | 54.00₽              | 4.74₽            | AV₽    | Horizontal₽ |
| 2₄⋾ | 2341.38          | 50.79₽                | 57.71₽              | 6.92₽            | 74.00₽              | 16.29₽           | PK₽    | Horizontal₽ |
| 3₽  | 2372.27          | 50.95₽                | 57.97₽              | 7.02₽            | 74.00₽              | 16.03₽           | PK₽    | Horizontal₽ |
| 4.₽ | 2372.79          | 43.01₽                | 50.03₽              | 7.02₽            | 54.00₽              | 3.97₽            | AV₽    | Horizontal₽ |
| 5₽  | 2390.00          | 48.35₽                | 55.43₽              | 7.08₽            | 74.00₽              | 18.57₽           | PK₽    | Horizontal₽ |
| 6₽  | 2390.00          | 41.97₽                | 49.05₽              | 7.08₽            | 54.00₽              | 4.95₽            | AV₽    | Horizontal₽ |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Page 30 of 42



| Product Name: | Tablet          | Product Model: | Elite OctaPlus       |
|---------------|-----------------|----------------|----------------------|
| Test By:      | Mike            | Test mode:     | BLE Tx mode          |
| Test Channel: | Highest channel | Polarization:  | Vertical             |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24°C Huni: 57% |




| NO.₽ | Freq.⊬<br>[MHz]∂ | Reading√<br>[dBµV/m]∞ | Level⊬<br>[dBµV/m]₽ | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]⊬ | Margin⊬<br>[dB]∉ | Trace₽ | Polarity₽ |
|------|------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-----------|
| 1.₽  | 2483.50          | 50.61₽                | 58.30₽              | 7.69₽            | 74.00₽              | 15.70₽           | PK₽    | Vertical₽ |
| 2₄□  | 2483.50          | 41.83₽                | 49.52₽              | 7.69₽            | 54.00₽              | 4.48₽            | AV₽    | Vertical₽ |
| 3₄□  | 2490.71          | 42.77₽                | 50.51₽              | 7.74₽            | 54.00₽              | 3.49₽            | AV₽    | Vertical₽ |
| 4₽   | 2490.88          | 50.65₽                | 58.39₽              | 7.74₽            | 74.00₽              | 15.61₽           | PK₽    | Vertical₽ |
| 5₽   | 2495.94          | 43.01₽                | 50.78₽              | 7.77₽            | 54.00₽              | 3.22₽            | AV₽    | Vertical₽ |
| 6€   | 2495.95          | 50.80₽                | 58.57₽              | 7.77₽            | 74.00₽              | 15.43₽           | PK₽    | Vertical₽ |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.



| Product Name: | Tablet          | Product Model: | Elite OctaPlus       |
|---------------|-----------------|----------------|----------------------|
| Test By:      | Mike            | Test mode:     | BLE Tx mode          |
| Test Channel: | Highest channel | Polarization:  | Horizontal           |
| Test Voltage: | AC 120/60Hz     | Environment:   | Temp: 24°C Huni: 57% |



| NO.₽ | Freq.⊬<br>[MHz]∂ | Reading√<br>[dBµV/m]∞ | Level⊬<br>[dBµV/m]⊬ | Factor⊬<br>[dB]⊬ | Limit⊬<br>[dBµV/m]∂ | Margin⊬<br>[dB]⊬ | Trace∂ | Polarity∂   |
|------|------------------|-----------------------|---------------------|------------------|---------------------|------------------|--------|-------------|
| 1₽   | 2483.50          | 49.13₽                | 56.82₽              | 7.69₽            | 74.00₽              | 17.18₽           | PK₽    | Horizontal. |
| 2₽   | 2483.50          | 41.93₽                | 49.62₽              | 7.69₽            | 54.00₽              | 4.38₽            | AV₽    | Horizontal@ |
| 3₽   | 2490.05          | 42.97₽                | 50.70₽              | 7.73₽            | 54.00₽              | 3.30₽            | AV₽    | Horizontal@ |
| 4₽   | 2490.15          | 51.50₽                | 59.23₽              | 7.73₽            | 74.00₽              | 14.77₽           | PK₽    | Horizontal₽ |
| 5₽   | 2496.05          | 43.65₽                | 51.42₽              | 7.77₽            | 54.00₽              | 2.58₽            | AV₽    | Horizontal₽ |
| 6₽   | 2496.11          | 51.51₽                | 59.28₽              | 7.77₽            | 74.00₽              | 14.72₽           | PK₽    | Horizontal. |

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

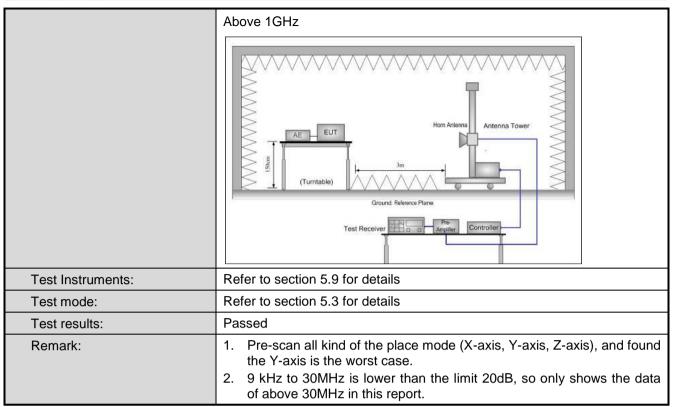


# **Spurious Emission**

#### 6.7.1 **Conducted Emission Method**

| Test Requirement: | FCC Part 15 C Section 15.247 (d)                                                                                                                                                                                                                                                                                                                                                        |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Limit:            | In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. |
| Test setup:       | NS1173R NS1182R NS010B NS010B NMW100-PSB NMW100-PSB NMW100-RFCB NMW100-RFCB NMW100-RFCB NMW100-RFCB                                                                                                                                                                                                                                                                                     |
| Test Instruments: | Refer to section 5.9 for details                                                                                                                                                                                                                                                                                                                                                        |
| Test mode:        | Refer to section 5.3 for details                                                                                                                                                                                                                                                                                                                                                        |
| Test results:     | Passed                                                                                                                                                                                                                                                                                                                                                                                  |
| Measurement Data: | Refer to: Appendix A – BLE-1M PHY; Appendix A – BLE-2M PHY Appendix A – BLE-Coded PHY,S=2; Appendix A – BLE-Coded PHY,S=8                                                                                                                                                                                                                                                               |

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366




## 6.7.2 Radiated Emission Method

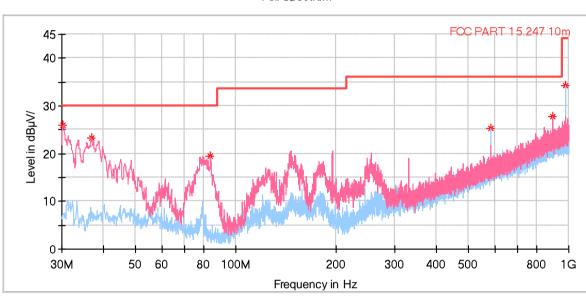
| Test Requirement:     | FCC Part 15 C                                                                                                                                                                 | Section 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | .205                                                                                                                       | 5 and 15.209                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                                                                                                                                                                                                                                                   |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Test Frequency Range: | 9kHz to 25GHz                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                                                                                                                                                                                                                                                   |
| Test Distance:        | 3m or 10m                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      |                                                                                                                                                                                                                                                                                                                                   |
| Receiver setup:       | Frequency                                                                                                                                                                     | Detector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ctor RBW                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VBW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                      | Remark                                                                                                                                                                                                                                                                                                                            |
|                       | 30MHz-1GHz                                                                                                                                                                    | Quasi-pea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ak                                                                                                                         | 120KHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OKHz Quasi-peak Value                                                                                |                                                                                                                                                                                                                                                                                                                                   |
|                       | Above 1GHz                                                                                                                                                                    | Peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hz                                                                                                   | Peak Value                                                                                                                                                                                                                                                                                                                        |
|                       | 7,0000 10112                                                                                                                                                                  | RMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                            | 1MHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Hz                                                                                                   | Average Value                                                                                                                                                                                                                                                                                                                     |
| Limit:                | Frequency                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lim                                                                                                                        | nit (dBuV/m @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                      | Remark                                                                                                                                                                                                                                                                                                                            |
|                       | 30MHz-88M                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            | 30.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      | Quasi-peak Value                                                                                                                                                                                                                                                                                                                  |
|                       | 88MHz-216N                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            | 33.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      | Quasi-peak Value                                                                                                                                                                                                                                                                                                                  |
|                       | 216MHz-960I<br>960MHz-1G                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                            | 36.0<br>44.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      | Quasi-peak Value<br>Quasi-peak Value                                                                                                                                                                                                                                                                                              |
|                       | Frequency                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Lin                                                                                                                        | nit (dBuV/m @                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                      | Remark                                                                                                                                                                                                                                                                                                                            |
|                       |                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LIII                                                                                                                       | 54.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3111)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                      | Average Value                                                                                                                                                                                                                                                                                                                     |
|                       | Above 1GF                                                                                                                                                                     | lz –                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            | 74.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                      | Peak Value                                                                                                                                                                                                                                                                                                                        |
| Test Procedure:       | 1. The EUT                                                                                                                                                                    | was place                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ed c                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | of a ro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | tating                                                                                               | table 0.8m(below                                                                                                                                                                                                                                                                                                                  |
|                       | (below 1G rotated 36 radiation.  2. The EUT waway from on the top of 3. The antening the ground Both horizon make the notate of the emission of the EUT have 10 de radiation. | was set 10 the interfect of a variable and v | meters to meters to meters to meters to meter tent. emmeter tent. emmeter tent to meter tent tent tent tent tent tent tent | er chamber(and determined ters(below 10 deters(below | above the part of | 1GHz cositio 3 me na, wh cer to f ue of f the a as arra eights degre de. de was ped ar ie emis y one | 10 meter chamber (a). The table was in of the highest eters (above 1GHz) inich was mounted four meters above the field strength. Internal are set to anged to its worst from 1 meter to 4 ees to 360 degrees etect Function and is 10 dB lower than and the peak values assions that did not using peak, quasi-reported in a data |
| Test setup:           | Below 1GHz  Turn Table  Ground Plane                                                                                                                                          | 4m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | S<br>A<br>RF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Antenna To<br>learch<br>Intenna<br>Test<br>Ceiver                                                    | ower                                                                                                                                                                                                                                                                                                                              |

Project No.: JYTSZE2108048





Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366 Page 35 of 42




#### Measurement Data (worst case):

#### **Below 1GHz:**

| Product Name:   | Tablet         | Product Model: | Elite OctaPlus        |  |
|-----------------|----------------|----------------|-----------------------|--|
| Test By:        | Mike           | Test mode:     | BLE Tx mode           |  |
| Test Frequency: | 30 MHz ~ 1 GHz | Polarization:  | Vertical & Horizontal |  |
| Test Voltage:   | AC 120/60Hz    | Environment:   | Temp: 24℃ Huni: 57%   |  |





| ľ | Frequency↓               | Quasi peak↓     | Limit↓              | margin↓            | Heignt↓            | POL            | Azimutn↓            | Corr.↓               |
|---|--------------------------|-----------------|---------------------|--------------------|--------------------|----------------|---------------------|----------------------|
| ı | (MHz).a                  | (dB # V/m).     | (dB # V/m)          | (dB). <sub>1</sub> | (cm). <sub>1</sub> |                | (deg).              | (dB/m). <sub>1</sub> |
| ŀ | 30.291000 <sub>.1</sub>  | 25.97.          | 30.00.              | 4.03.              | 100.0.             | <b>V</b> .1    | 308.0               | -17.6.               |
| ŀ | 36.790000 <sub>.1</sub>  | 23.31.a         | 30.00 <sub>.1</sub> | 6.69. <sub>1</sub> | <b>100.0</b> .1    | <b>V</b> .1    | 191.0 <sub>.1</sub> | -16.3 <sub>.1</sub>  |
| ŀ | 83.932000. <sub>1</sub>  | 19.46.          | 30.00.              | 10.54.             | <b>100.0</b> .5    | <b>V</b> .1    | 138.0 <sub>.1</sub> | - <b>20.1</b> .,     |
| ŀ | 585.034000. <sub>1</sub> | <b>25.26</b> .1 | 36.00.              | 10.74.             | 100.0.1            | H <sub>a</sub> | 279.0.              | - <b>7.0</b> .1      |
| ŀ | 896.792000 <sub>.1</sub> | 27.78.          | 36.00.              | 8.22.              | 100.0.             | <b>V</b> .1    | 2.0.                | -0.8.                |
| [ | 975.071000.              | 34.14.          | 44.00.              | 9.86. <sub>1</sub> | <b>100.0</b> .1    | H <sub>a</sub> | 284.0 <sub>.1</sub> | -0.4.1               |
|   |                          |                 |                     |                    |                    |                |                     |                      |

## Remark:

- 1. Final Level = Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor.
- 2. The emission levels of other frequencies are lower than the limit 20dB and not show in test report.
- 3. The Aux Factor is a notch filter switch box loss, this item is not used.





## **Above 1GHz**

## PHY: 1MHz

|                    | Test channel: Lowest channel |            |                   |                        |                |              |  |  |
|--------------------|------------------------------|------------|-------------------|------------------------|----------------|--------------|--|--|
|                    | Detector: Peak Value         |            |                   |                        |                |              |  |  |
| Frequency<br>(MHz) | Read Level<br>(dBuV)         | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |
| 4804.00            | 55.71                        | -9.60      | 46.11             | 74.00                  | 27.89          | Vertical     |  |  |
| 4804.00            | 55.72                        | -9.60      | 46.12             | 74.00                  | 27.88          | Horizontal   |  |  |
|                    |                              | Dete       | ctor: Average Va  | alue                   |                |              |  |  |
| Frequency<br>(MHz) | Read Level<br>(dBuV)         | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |
| 4804.00            | 47.95                        | -9.60      | 38.35             | 54.00                  | 15.65          | Vertical     |  |  |
| 4804.00            | 47.94                        | -9.60      | 38.34             | 54.00                  | 15.66          | Horizontal   |  |  |
|                    |                              |            |                   |                        |                |              |  |  |
|                    |                              |            |                   |                        |                |              |  |  |

|                    | Test channel: Middle channel |            |                   |                        |                |              |  |  |
|--------------------|------------------------------|------------|-------------------|------------------------|----------------|--------------|--|--|
|                    | Detector: Peak Value         |            |                   |                        |                |              |  |  |
| Frequency<br>(MHz) | Read Level<br>(dBuV)         | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |
| 4884.00            | 55.90                        | -9.04      | 46.86             | 74.00                  | 27.14          | Vertical     |  |  |
| 4884.00            | 56.18                        | -9.04      | 47.14             | 74.00                  | 26.86          | Horizontal   |  |  |
|                    |                              | Dete       | ctor: Average Va  | alue                   |                |              |  |  |
| Frequency<br>(MHz) | Read Level<br>(dBuV)         | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |
| 4884.00            | 48.00                        | -9.04      | 38.96             | 54.00                  | 15.04          | Vertical     |  |  |
| 4884.00            | 47.73                        | -9.04      | 38.69             | 54.00                  | 15.31          | Horizontal   |  |  |

|                    | Test channel: Highest channel |            |                   |                        |                |              |  |  |  |
|--------------------|-------------------------------|------------|-------------------|------------------------|----------------|--------------|--|--|--|
|                    | Detector: Peak Value          |            |                   |                        |                |              |  |  |  |
| Frequency<br>(MHz) | Read Level<br>(dBuV)          | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |  |
| 4960.00            | 55.40                         | -8.45      | 46.95             | 74.00                  | 27.05          | Vertical     |  |  |  |
| 4960.00            | 56.33                         | -8.45      | 47.88             | 74.00                  | 26.12          | Horizontal   |  |  |  |
|                    |                               | Dete       | ctor: Average Va  | alue                   |                |              |  |  |  |
| Frequency<br>(MHz) | Read Level<br>(dBuV)          | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |  |
| 4960.00            | 48.22                         | -8.45      | 39.77             | 54.00                  | 14.23          | Vertical     |  |  |  |
| 4960.00            | 47.50                         | -8.45      | 39.05             | 54.00                  | 14.95          | Horizontal   |  |  |  |
|                    |                               |            |                   |                        |                |              |  |  |  |

#### Remark:

<sup>1.</sup> Final Level =Receiver Read level + Factor.

<sup>2.</sup> The emission levels of other frequencies are lower than the limit 20dB and not show in test report.





PHY: 2MHz

|                         |                      | Test ch    | annel: Lowest ch  | nannel                 |                |              |  |
|-------------------------|----------------------|------------|-------------------|------------------------|----------------|--------------|--|
|                         |                      | De         | tector: Peak Valu | ie                     |                |              |  |
| Frequency<br>(MHz)      | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4804.00                 | 56.87                | -9.60      | 47.27             | 74.00                  | 26.73          | Vertical     |  |
| 4804.00                 | 55.37                | -9.60      | 45.77             | 74.00                  | 28.23          | Horizontal   |  |
| Detector: Average Value |                      |            |                   |                        |                |              |  |
| Frequency<br>(MHz)      | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4804.00                 | 48.98                | -9.60      | 39.38             | 54.00                  | 14.62          | Vertical     |  |
| 4804.00                 | 47.52                | -9.60      | 37.92             | 54.00                  | 16.08          | Horizontal   |  |
|                         |                      |            |                   |                        |                |              |  |
|                         |                      | Test ch    | annel: Middle ch  | nannel                 |                |              |  |
|                         |                      | De         | tector: Peak Valu | ne                     |                |              |  |
| Frequency               | Read Level           |            | l evel            | Limit Line             | Margin         |              |  |

| Test channel: Middle channel |                      |            |                   |                        |                |              |  |  |
|------------------------------|----------------------|------------|-------------------|------------------------|----------------|--------------|--|--|
| Detector: Peak Value         |                      |            |                   |                        |                |              |  |  |
| Frequency<br>(MHz)           | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |
| 4884.00                      | 56.71                | -9.04      | 47.67             | 74.00                  | 26.33          | Vertical     |  |  |
| 4884.00                      | 55.45                | -9.04      | 46.41             | 74.00                  | 27.59          | Horizontal   |  |  |
|                              |                      | Dete       | ctor: Average Va  | alue                   |                |              |  |  |
| Frequency<br>(MHz)           | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |
| 4884.00                      | 49.19                | -9.04      | 40.15             | 54.00                  | 13.85          | Vertical     |  |  |
| 4884.00                      | 47.53                | -9.04      | 38.49             | 54.00                  | 15.51          | Horizontal   |  |  |
|                              |                      |            |                   |                        |                | 1            |  |  |

| Test channel: Highest channel |                      |            |                   |                        |                |              |  |
|-------------------------------|----------------------|------------|-------------------|------------------------|----------------|--------------|--|
| Detector: Peak Value          |                      |            |                   |                        |                |              |  |
| Frequency<br>(MHz)            | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4960.00                       | 56.90                | -8.45      | 48.45             | 74.00                  | 25.55          | Vertical     |  |
| 4960.00                       | 55.23                | -8.45      | 46.78             | 74.00                  | 27.22          | Horizontal   |  |
|                               |                      | Dete       | ctor: Average Va  | alue                   |                |              |  |
| Frequency<br>(MHz)            | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4960.00                       | 48.97                | -8.45      | 40.52             | 54.00                  | 13.48          | Vertical     |  |
| 4960.00                       | 47.99                | -8.45      | 39.54             | 54.00                  | 14.46          | Horizontal   |  |
|                               |                      |            |                   |                        |                |              |  |

#### Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

<sup>1.</sup> Final Level =Receiver Read level + Factor.

<sup>2.</sup> The emission levels of other frequencies are lower than the limit 20dB and not show in test report.





## Coded PHY, S=2

| Test channel: Lowest channel |                      |            |                   |                        |                |              |  |
|------------------------------|----------------------|------------|-------------------|------------------------|----------------|--------------|--|
| Detector: Peak Value         |                      |            |                   |                        |                |              |  |
| Frequency<br>(MHz)           | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4804.00                      | 55.36                | -9.60      | 45.76             | 74.00                  | 28.24          | Vertical     |  |
| 4804.00                      | 55.53                | -9.60      | 45.93             | 74.00                  | 28.07          | Horizontal   |  |
|                              |                      | Dete       | ctor: Average Va  | alue                   |                |              |  |
| Frequency<br>(MHz)           | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4804.00                      | 47.99                | -9.60      | 38.39             | 54.00                  | 15.61          | Vertical     |  |
| 4804.00                      | 48.16                | -9.60      | 38.56             | 54.00                  | 15.44          | Horizontal   |  |
|                              |                      |            |                   |                        |                |              |  |

|                    | Test channel: Middle channel |            |                   |                        |                |              |  |  |  |
|--------------------|------------------------------|------------|-------------------|------------------------|----------------|--------------|--|--|--|
|                    | Detector: Peak Value         |            |                   |                        |                |              |  |  |  |
| Frequency<br>(MHz) | Read Level<br>(dBuV)         | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |  |
| 4884.00            | 55.84                        | -9.04      | 46.80             | 74.00                  | 27.20          | Vertical     |  |  |  |
| 4884.00            | 55.90                        | -9.04      | 46.86             | 74.00                  | 27.14          | Horizontal   |  |  |  |
|                    |                              | Dete       | ctor: Average Va  | alue                   |                |              |  |  |  |
| Frequency<br>(MHz) | Read Level<br>(dBuV)         | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |  |  |
| 4884.00            | 48.18                        | -9.04      | 39.14             | 54.00                  | 14.86          | Vertical     |  |  |  |
| 4884.00            | 47.87                        | -9.04      | 38.83             | 54.00                  | 15.17          | Horizontal   |  |  |  |

| Test channel: Highest channel |                      |            |                   |                        |                |              |  |
|-------------------------------|----------------------|------------|-------------------|------------------------|----------------|--------------|--|
| Detector: Peak Value          |                      |            |                   |                        |                |              |  |
| Frequency<br>(MHz)            | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4960.00                       | 56.12                | -8.45      | 47.67             | 74.00                  | 26.33          | Vertical     |  |
| 4960.00                       | 56.19                | -8.45      | 47.74             | 74.00                  | 26.26          | Horizontal   |  |
|                               |                      | Dete       | ctor: Average Va  | alue                   |                |              |  |
| Frequency<br>(MHz)            | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4960.00                       | 48.02                | -8.45      | 39.57             | 54.00                  | 14.43          | Vertical     |  |
| 4960.00                       | 48.16                | -8.45      | 39.71             | 54.00                  | 14.29          | Horizontal   |  |
|                               |                      |            |                   |                        |                |              |  |

#### Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

<sup>1.</sup> Final Level =Receiver Read level + Factor.

<sup>2.</sup> The emission levels of other frequencies are lower than the limit 20dB and not show in test report.





## Coded PHY, S=8

| Test channel: Lowest channel |                      |            |                   |                        |                |              |  |
|------------------------------|----------------------|------------|-------------------|------------------------|----------------|--------------|--|
| Detector: Peak Value         |                      |            |                   |                        |                |              |  |
| Frequency<br>(MHz)           | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4804.00                      | 56.50                | -9.60      | 46.90             | 74.00                  | 27.10          | Vertical     |  |
| 4804.00                      | 54.66                | -9.60      | 45.06             | 74.00                  | 28.94          | Horizontal   |  |
|                              |                      | Dete       | ctor: Average Va  | alue                   |                |              |  |
| Frequency<br>(MHz)           | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4804.00                      | 48.34                | -9.60      | 38.74             | 54.00                  | 15.26          | Vertical     |  |
| 4804.00                      | 48.10                | -9.60      | 38.50             | 54.00                  | 15.50          | Horizontal   |  |
|                              |                      | •          |                   |                        |                |              |  |

|                    |                      | Test ch    | annel: Middle ch  | nannel                 |                |              |
|--------------------|----------------------|------------|-------------------|------------------------|----------------|--------------|
|                    |                      | De         | tector: Peak Valu | ue                     |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4884.00            | 56.93                | -9.04      | 47.89             | 74.00                  | 26.11          | Vertical     |
| 4884.00            | 54.34                | -9.04      | 45.30             | 74.00                  | 28.70          | Horizontal   |
|                    |                      | Dete       | ctor: Average Va  | alue                   |                |              |
| Frequency<br>(MHz) | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |
| 4884.00            | 47.84                | -9.04      | 38.80             | 54.00                  | 15.20          | Vertical     |
| 4884.00            | 48.03                | -9.04      | 38.99             | 54.00                  | 15.01          | Horizontal   |
|                    |                      |            |                   |                        |                |              |

| Test channel: Highest channel |                      |            |                   |                        |                |              |  |
|-------------------------------|----------------------|------------|-------------------|------------------------|----------------|--------------|--|
| Detector: Peak Value          |                      |            |                   |                        |                |              |  |
| Frequency<br>(MHz)            | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4960.00                       | 56.67                | -8.45      | 48.22             | 74.00                  | 25.78          | Vertical     |  |
| 4960.00                       | 54.83                | -8.45      | 46.38             | 74.00                  | 27.62          | Horizontal   |  |
|                               |                      | Dete       | ctor: Average Va  | alue                   |                |              |  |
| Frequency<br>(MHz)            | Read Level<br>(dBuV) | Factor(dB) | Level<br>(dBuV/m) | Limit Line<br>(dBuV/m) | Margin<br>(dB) | Polarization |  |
| 4960.00                       | 47.77                | -8.45      | 39.32             | 54.00                  | 14.68          | Vertical     |  |
| 4960.00                       | 47.95                | -8.45      | 39.50             | 54.00                  | 14.50          | Horizontal   |  |

#### Remark:

Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

<sup>1.</sup> Final Level =Receiver Read level + Factor.

<sup>2.</sup> The emission levels of other frequencies are lower than the limit 20dB and not show in test report.